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ABSTRACT

Unsupervised contrastive learning has shown significant performance improve-
ments in recent years, often approaching or even rivaling supervised learning in
various tasks. However, its learning mechanism is fundamentally different from
supervised learning. Previous works have shown that difficult examples (well-
recognized in supervised learning as examples around the decision boundary),
which are essential in supervised learning, contribute minimally in unsupervised
settings. In this paper, perhaps surprisingly, we find that the direct removal of
difficult examples, although reduces the sample size, can boost the downstream
classification performance of contrastive learning. To uncover the reasons behind
this, we develop a theoretical framework modeling the similarity between different
pairs of samples. Guided by this framework, we conduct a thorough theoretical
analysis revealing that the presence of difficult examples negatively affects the
generalization of contrastive learning. Furthermore, we demonstrate that the re-
moval of these examples, and techniques such as margin tuning and temperature
scaling can enhance its generalization bounds, thereby improving performance.
Empirically, we propose a simple and efficient mechanism for selecting difficult
examples and validate the effectiveness of the aforementioned methods, which
substantiates the reliability of our proposed theoretical framework.

1 INTRODUCTION

Figure 1: Excluding difficult
examples improves unsuper-
vised contrastive learning.

Contrastive learning has demonstrated exceptional empirical perfor-
mance in the realm of unsupervised representation learning, effec-
tively learning high-quality representations of high-dimensional data
using substantial volumes of unlabeled data by aligning an anchor
point with its augmented views in the embedding space (Caron et al.,
2020; Chen et al., 2020a;b; 2021; He et al., 2020). Unsupervised
contrastive learning may own quite different working mechanisms
from supervised learning, as discussed in Joshi & Mirzasoleiman
(2023). For example, difficult examples (also known as difficult-to-
learn examples in Joshi & Mirzasoleiman (2023)), which contribute
the most to supervised learning, contribute the least or even nega-
tively to contrastive learning performance. They show that on image
datasets such as CIFAR-100 and STL-10, excluding 20%-40% of the examples does not negatively
impact downstream task performance. More surprisingly, their results showed, but somehow failed
to notice, that excluding these samples on certain datasets like STL-10 can lead to performance
improvements in downstream tasks.

Taking a step further beyond their study, we find that this surprising result is not just a specialty of a
certain dataset, but a universal phenomenon across multiple datasets. Specifically, we run SimCLR on
the original CIFAR-10, CIFAR-100, STL-10, and TinyImagenet datasets, the SAS core subsets (Joshi
& Mirzasoleiman, 2023) selected with a deliberately tuned size, and a subset selected by a sample
removal mechanism to be proposed in this paper. In Figure 1, we report the gains of linear probing
accuracy by using the subsets compared with the original datasets. We see that on all these benchmark
datasets, excluding a certain fraction of examples results in comparable and even better downstream
performance. This result is somewhat anti-intuitive because deep learning models trained with more
samples, benefiting from lower sample error, usually perform better. Yet our observation indicates
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that difficult examples can hurt unsupervised contrastive learning performances. This observation
naturally raises a question:

What is the mechanism behind difficult examples impacting the learning process of
unsupervised contrastive learning?

To comprehensively characterize such impact, we first develop a theoretical framework, i.e., the simi-
larity graph, to describe the similarity between different sample pairs. Specifically, pairs containing
difficult samples, termed as difficult pairs, exhibit higher similarities than other different-class pairs.
Based on this similarity graph, we derive the linear probing error bounds of contrastive learning
models trained with and without difficult samples, proving that the presence of difficult examples
negatively affects performance. Next, we prove that the most straightforward idea of directly remov-
ing difficult examples improves the generalization bounds. Further, we also theoretically demonstrate
that commonly used techniques such as margin tuning (Zhou et al., 2024) and temperature scaling
(Khaertdinov et al., 2022; Kukleva et al., 2023; Zhang et al., 2021) mitigate the negative effects of
difficult examples by modifying the similarity between sample pairs from different perspectives,
thereby improving the generalization bounds. Experimentally, we propose a simple but effective
mechanism for selecting difficult samples that does not rely on pre-trained models. The performance
improvements achieved by addressing difficult samples through the aforementioned methods align
with our theoretical analysis of the generalization bounds.

The contributions of this paper are summarized as follows:

• We find that removing certain training examples boosts the performance of unsupervised
contrastive learning is a universal empirical phenomenon on multiple benchmark datasets.
Through a mixing-image experiment, we conjecture that the removal of difficult examples is
the cause.

• We design a theoretical framework that models the similarity between different pairs of
samples to characterize how difficult samples in contrastive learning affect the generalization
of downstream tasks. Based on this framework, we theoretically prove that the existence of
difficult samples hurts contrastive learning performances.

• We theoretically analyze how possible solutions, i.e. directly removing difficult samples,
margin tuning, and temperature scaling, can address the issue of difficult examples by
improving the generalization bounds in different ways.

• In experiments, we propose a simple and efficient mechanism for selecting difficult examples
and validate the effectiveness of the aforementioned methods, which substantiates the
reliability of our proposed theoretical framework.

2 DIFFICULT EXAMPLES HURT: A MIXING IMAGE EXPERIMENT

We start this section by revealing that difficult examples do hurt contrastive learning performances
through a proof-of-concept toy experiment.

The concept of difficult examples is borrowed from supervised learning, denoting the examples
around the decision boundary. It is somewhat related to hard negative samples, a pure unsupervised
learning concept defined as highly similar negative samples to the anchor point, but is different in
nature. (See Appendix A.1 for more discussions.)

Figure 2: Excluding (mixed)
difficult examples improves
performance.

However, in real datasets, as difficult examples rely on the specific clas-
sifier trained in the supervised learning manner, we can not precisely
know the ground truth difficult examples. Therefore, we in turn add
additional difficult examples and observe the effects of these examples.
Specifically, we generate a mixing-image dataset containing more diffi-
cult samples by mixing a γ fraction of images on CIFAR-10 dataset at
the pixel level (these samples lying around the class difficult), termed
as γ-Mixed CIFAR-10 datasets. Then, we train the representative
contrastive learning algorithm SimCLR (Chen et al., 2020a) on the
original, 10%-, and 20%-Mixed CIFAR-10 datasets using ResNet18
model. We report the linear probing accuracy in Figure 2.
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Compared with the model trained on the original dataset, we find that with the mixed difficult
examples included in the training dataset, the performance of contrastive learning drops. This result
indicates that the (mixed) difficult samples significantly negatively impact contrastive learning. As
the mixing ratio γ increases, the performance drops, indicating that more difficult examples lead to
worse contrastive learning performances.

Moreover, we show that removing the (mixed) difficult samples can boost performance. Specifically,
we compare performance on the Mixed CIFAR-10 datasets with that on the datasets removing the
mixed examples. As shown in Figure 2, despite being trained with a smaller sample size, models
trained on datasets removing the mixed examples perform better than the ones trained with the mixed
examples, which further verifies that difficult examples hurt unsupervised contrastive learning, and
removal of these difficult examples can boost learning performance.

3 THEORETICAL CHARACTERIZATION OF WHY DIFFICULT EXAMPLES HURT
CONTRASTIVE LEARNING

In this section, to explain why difficult examples negatively impact the performance of contrastive
learning, we provide theoretical evidence on generalization bounds. In Section 3.1 we present the
necessary preliminaries that lay the foundation for our theoretical analysis. In Section 3.2, we
introduce the similarity graph describing difficult examples. In Section 3.3, we respectively derive
error bounds of contrastive learning with and without difficult examples.

3.1 PRELIMINARIES

Notations. Given a natural data x̄ ∈ X̄ := Rd, we denote the distribution of its augmentations
by A(·|x̄) and the set of all augmented data by X , which is assumed to be finite but exponentially
large. For mathematical simplicity, we assume class-balanced data with n denoting the number of
augmented samples per class and r+1 denoting the number of classes, hence |X | = n(r+1). Let nd

represent the number of difficult examples per class and Dd the set of difficult examples. In addition,
we denote k as the feature dimension in contrastive representation learning.

Similarity Graph (Augmentation Graph). As described in HaoChen et al. (2021), an augmentation
graph G represents the distribution of augmented samples, where the edge weight wxx′ signifies the
joint probability of generating augmented views x and x′ from the same natural data, i.e., wxx′ :=
Ex̄∼P̄ [A(x|x̄)A(x′|x̄)], where P̄ denotes the distribution of natural data. The total probability
across all pairs of augmented data sums up to 1, i.e.,

∑
x,x′∈X wxx′ = 1. The adjacency matrix

of the augmentation graph is denoted as A = (wxx′)x,x′∈X , and the normalized adjacency matrix
is Ā = D−1/2AD−1/2, where D := diag(wx)x∈X , and wx :=

∑
x′∈X wxx′ . The concept of

augmentation graph is further extended to describe similarities beyond image augmentation, such as
cross-domain images (Shen et al., 2022), multi-modal data (Zhang et al., 2023), and labeled examples
(Cui et al., 2023).

Contrastive losses. For theoretical analysis, we consider the spectral contrastive loss L(f) proposed
by HaoChen et al. (2021) as a good performance proxy for the widely used InfoNCE loss

LSpec(f) := −2 · Ex,x+ [f(x)⊤f(x+)] + Ex,x′

[(
f(x)⊤f(x′)

)2]
, (1)

where x, x+, and x′ represent the anchor, positive sample, and negative sample, respectively. As
proved in Balestriero & LeCun (2022); Johnson et al. (2022); Tan et al. (2024), the spectral contrastive
loss and the InfoNCE loss share the same population minimum with variant kernel derivations. Further,
the spectral contrastive loss is theoretically shown to be equivalent to the matrix factorization loss.
For F = (ux)x∈X , where ux = w

1/2
x f(x), the matrix factorization loss is:

Lmf(F ) := ∥Ā− FF⊤∥2F = LSpec(f) + const. (2)

3.2 MODELING OF DIFFICULT EXAMPLES

We start by introducing a similarity graph, to describe the relationships between various samples.
In contrastive learning, examples are used in a pairwise manner, so we define difficult sample pairs
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as sample pairs that include at least one difficult sample. As difficult examples lie around the
decision boundary, they should have higher augmentation similarity to examples from different
classes. Therefore, it is natural for us to define the difficult pairs as different-class sample pairs with
higher similarity. Correspondingly, easy pairs are defined as different-class sample pairs containing
no difficult samples, or different-class sample pairs with lower similarity.

Specifically, we define the augmentation similarity between a sample and itself as 1. Then we
assume the similarity between same-class samples is α (Figure 3(a)), the similarity between a sample
(conceptually far away from the class boundary) and all samples from other classes is β (Figure
3(b)), and the similarity between different-class boundary samples (conceptually close to the class
boundary) is γ (Figure 3(c)). Naturally, we have β < γ < α < 1.

(a) Similarity α. (b) Similarity β. (c) Similarity γ. (d) Adjacency matrix.

Figure 3: Modeling of difficult examples. The similarity between same-class samples is α (a), the
similarity between different-class difficult samples is γ (c), and the similarity between other samples
is β (b). The adjacency matrix of a 4-sample subset is shown in (d).

In Figure 3(d), we illustrate our modeling of adjacency matrix through a 4-sample subset D4 :=
x1, x2, x3, x4, where x1 and x2 belong to Class 0, and x3 and x4 belong to Class 1. We define x1 and
x3 as difficult samples (assuming these two samples are distributed around the classification boundary
as depicted in Figure 3(c)), i.e. x1, x3 ∈ Dd. Conversely, we define x2 and x4 (assuming these
samples are distributed far from the classification boundary) as easy samples, i.e. x2, x4 ∈ D4 \ Dd.
The relationship between each pair of samples in D4 can be mathematically formulated as an
adjacency matrix shown in Figure 3(d).

In addition, the above modeling could be relaxed by adding random terms to the similarity values.
Specifically, for some constant ϵ > 0, for a similarity matrix A = (ãij), we replace aij with
ãij = aij + ϵ · εij for i ̸= j, where aij takes values in {α, β, γ}, εij = εji are i.i.d. random variables
with mean 0 and variance 1. We discuss the relaxation in detail in Section B.3.

In what follows, our theoretical analysis is based on the generalized similarity graph containing
|X | = n(r+1) samples. The formal definition of the generalized adjacency matrix is in Appendix B.

3.3 ERROR BOUNDS WITH AND WITHOUT DIFFICULT EXAMPLES

Based on the similarity graph in Section 3.2, we derive the linear probing error bounds for contrastive
learning models trained with and without difficult examples in Theorems 3.3 and 3.4. We mention
that we adopt the label recoverability (with labeling error δ) and realizability assumptions from
HaoChen et al. (2021).

Assumption 3.1 (Labels are recoverable from augmentations). Let x̄ ∼ PX̄ and y(x̄) be its label.
Let the augmentation x ∼ A(·|x̄). We assume that there exists a classifier g that can predict y(x̄)
given x with error at most δ, i.e. g(x) = y(x̄) with probability at least 1− δ.

Assumption 3.2 (Realizability). Let F be a hypothesis class containing functions from X to Rk. We
assume that at least one of the global minima of LSpec belongs to F .

Assumption 3.1 indicates that labels are recoverable from the augmentations, and Assumption 3.2
indicates that the universal minimizer of the population spectral contrastive loss can be realized by
the hypothesis class. The proofs are shown in Appendix B.1.
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Theorem 3.3 (Error Bound without Difficult Examples). Denote Ew.o. as the linear probing error of
a contrastive learning model trained on a dataset without difficult examples. Then

Ew.o. ≤
4δ

1− 1−α
(1−α)+nα+nrβ

+ 8δ. (3)

Theorem 3.4 (Error Bound with Difficult Examples). Denote Ew.d. as the linear probing error
of a contrastive learning model trained on a dataset with nd difficult examples per class. Then if
nd ≤ k ≤ nd + r + 1, there holds

Ew.d. ≤
4δ

1− (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β)

+ 8δ. (4)

Discussions. By comparing Theorems 3.3 and 3.4, also considering that (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β) >

1−α
(1−α)+nα+nrβ , we see the presence of difficult examples leads to a strictly worse linear probing error
bound for a contrastive learning model. Moreover, more challenging difficult examples (larger γ − β)
result in worse error bounds. When γ = β, i.e. no difficult examples exist, the bound in Theorem 3.4
reduces to that in Theorem 3.3.

Intuitively, through the augmentation graph, contrastive learning could be understood as a spectral
clustering problem (HaoChen et al., 2021). As the difficult examples lie very close to the classi-
fication boundary, they could fall into the wrong clusters during self-supervised pre-training. In
the downstream applications, the wrongly clustered examples provide false prior knowledge to the
downstream classification, which harms the performance of all test samples.

4 THEORETICAL CHARACTERIZATION ON ELIMINATING EFFECTS OF
DIFFICULT EXAMPLES

Building on the above unified theoretical framework, we theoretically analyze that directly removing
difficult samples (Section 4.1), margin tuning (Section 4.2), and temperature scaling (Section 4.3)
can handle difficult examples by improving the generalization bounds in different ways.

4.1 REMOVING DIFFICULT SAMPLES

In Figures 1 and 2, empirical experiments demonstrated that removing difficult samples can improve
learning performance. Corollary 4.1 provides a theoretical explanation for this counter-intuitive
phenomenon based on our established framework.
Corollary 4.1. Denote ER as the linear probing error of a contrastive learning model trained on a
selected subset removing all difficult examples Dd. Then there holds

ER ≤ 4δ

1− 1−α
(1−α)+(n−nd)α+(n−nd)rβ

+ 8δ. (5)

Corollary 4.1 shows that when the difficult examples are removed, the linear probing error bound
has the same form as the case where no difficult examples are present (Theorem 3.3), but with n
replaced by n− nd. Compared with the case without removing difficult examples (Theorem 3.4),
the bound in equation 5 is smaller than that in equation 4 when γ − β > nd(1−α)(α+rγ)

r[(1−α)+(n−nd)(α+rβ)] .
This indicates that removing difficult examples enhances the error bound when these samples are
significantly harder than the easy ones (i.e., large γ − β) or when the number of difficult samples is
small (i.e., small nd).

4.2 MARGIN TUNING

Aside from sample removal, we also consider using the margin tuning technique to deal with difficult
examples. Specifically, we add additional margin parameters to the similarity of difficult pairs in the
loss function (see Eq. 14). Here, we delve into how margin tuning can enhance the generalization in
the presence of difficult examples.
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Theorem 4.2. The margin tuning loss is equivalent to the matrix factorization loss

Lmf−M(F ) := ∥(Ā− M̄)− FF⊤∥2F , (6)

where Ā is the normalized adjacency matrix, and M̄ is the normalized margin matrix.

Theorem 4.2 indicates that adjusting margins alters the similarity graph by subtracting a normalized
margin matrix M̄ from the normalized similarity matrix Ā. Intuitively, by subtracting the additional
similarity values of difficult examples with appropriately chosen margins, the remaining values will
match those of easy examples. Specifically, in the following Theorem 4.3, we show that properly
chosen margins can eliminate the negative impact of difficult examples.
Theorem 4.3. Denote EM as the linear probing error for the margin tuning loss equation 31 trained
on a dataset with difficult samples Dd. If we let

mx,x′ = c0/(c
2
1c2) · (γ − β) (7)

for y(x) ̸= y(x′), x, x′ ∈ Dd, where c0 := (1−α)+nα+(n−nd)rβ, c1 := (1−α)+nα+nrβ+
ndr(γ − β) and c2 := (1− α) + nα+ nrβ, and mx,x′ = 0 for x, x′ /∈ Dd, then we have

EM = Ew.o.. (8)

Note that when n is large enough, mx,x′ for x or x′ /∈ Dd are higher-order infinitesimals relative to
equation 7, and primarily affect normalization rather than the core problem. Thus, we focus on cases
where x, x′ ∈ Dd and defer specific forms of other mx,x′ values to the proofs for brevity.

Theorem 4.3 shows that with appropriately chosen margins, the linear probing error bound for
the margin tuning loss in the presence of difficult examples becomes equivalent to the standard
contrastive loss without such examples, as indicated in Theorem 3.3. Since equation 7 > 0, this
suggests applying a positive margin to the difficult example pairs. Additionally, the more challenging
the example pairs are (i.e., the larger γ − β), the greater the margin value should be.

4.3 TEMPERATURE SCALING

We also consider the widely used temperature scaling technique in eliminating the negative effects
of difficult examples. Specifically, we add an additional temperature scaling parameter to the base
temperature of difficult pairs in the loss function and assign the base temperature to all the other pairs
(see Eq. 15). Here, we investigate how temperature scaling can enhance generalization.
Theorem 4.4. The temperature scaling loss is equivalent to the matrix factorization loss

Lmf−T(F ) := ∥T ⊙ Ā− FF⊤∥2wF , (9)

where Ā is the normalized adjacency matrix of similarity graph, T ⊙ Ā is the element-wise product
of matrices T and Ā, and ∥ · ∥wF is the weighted Frobenius norm (specified in the proof).

Theorem 4.4 shows that adjusting temperatures modifies the similarity graph by multiplying the
temperature values with the normalized similarity matrix Ā. Intuitively, by scaling the similarity
values between difficult examples, we can match these values to those of easy examples, thereby
mitigating the negative effects of difficult examples. Specifically, the following Theorem 4.5 outlines
the appropriate temperature values to be chosen.
Theorem 4.5. Denote ET as the linear probing error for the temperature scaling loss equation 40
trained on a dataset with difficult samples Dd. If we let

τx,x′ = (c1/c2)(β/γ) (10)

for y(x) ̸= y(x′), x, x′ ∈ Dd, where c1 := (1 − α) + nα + nrβ + ndr(γ − β) and c2 :=
(1− α) + nα+ nrβ, and τx,x′ = 1 for x, x′ /∈ Dd, then we have

ET ≤ 4[1− (nd/n)
2 + (γ/β)2(nd/n)

2]δ

1− 1−α
(1−α)+nα+nrβ

+ 8δ. (11)

Likewise, here we only focus on the temperature values between difficult examples, and defer the
specific forms of other τx,x′ values to the proofs for brevity.
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Theorem 4.5 shows the linear probing error bound of the temperature scaling loss when trained on
data containing difficult examples. Specifically, with large n and nd/n → 0, we have ET/Ew.o. −
1 ≈ O((nd/n)

2) and Ew.d./Ew.o. − 1 ≈ O(1/n). This indicates that, when O(nd) ≲ O(n1/2),
ET/Ew.o. ≲ Ew.d./Ew.o., meaning ET converges faster to Ew.o.. Detailed calculations show that
when nd <

√
r

(α+rβ)(γ+β)β · n1/2, there holds ET < Ew.d., which means that temperature scaling

improves the error bound. Note that we have approximately τx,x′ ∝ β/γ. This inspires us to choose
smaller temperature values for the difficult example pairs. The more difficult the example pairs
(smaller β/γ), the smaller the temperature values that should be chosen.

5 VERIFICATION EXPERIMENTS

This paper primarily focuses on theoretical analysis, explaining how different samples in contrastive
learning impact generalization. The experiments in this part are mainly designed to validate the
theoretical insights and demonstrate that the proposed directions for improving performance are
sound. The experiments are not intended to achieve state-of-the-art results but rather to confirm
the correctness of our theoretical findings. We hope that readers will appreciate the theoretical
contributions of this work and not focus excessively on the experimental results.

In Section 5.1, we present an efficient mechanism for selecting difficult samples. We then evaluate
the removal of difficult samples (Section 5.2), margin tuning (Section 5.3), and temperature scaling
(Section 5.4), all of which are theoretically established to mitigate the impact of these difficult
examples. In Section 5.5, we propose a combined method, and discuss the scalability under different
paradigms and the connection between difficult samples and long-tail distribution. The specific loss
forms can be found in Appendix A.2.

5.1 DIFFICULT EXAMPLES SELECTION

In this section, we design a simple yet efficient selection mechanism to validate our theoretical
analysis, without relying on additional pretrained models or incurring extra computational overhead
(Joshi & Mirzasoleiman, 2023).

To identify difficult sample pairs which from different classes but with high similarity, we com-
pute the cosine similarity of each sample to other samples in the same batch using features before
projector mapping. We define posHigh and posLow as percentiles of the similarity sorted in de-
scending order, where SimposHigh and SimposLow are the corresponding similarities. Generally,
following the characterization in Section 3.2 and Appendix B, we can roughly assume posHigh
corresponds to 1/(r + 1), where r + 1 is the class number1. Sample pairs with cosine similarities
above SimposHigh are considered from the same class. Sample pairs with the similarity between
SimposHigh and SimposLow are considered as difficult examples. Sample pairs with cosine simi-
larities below SimposLow are considered as easy-to-learn samples from different classes. Here for
posLow, we note that when optimizing γ of difficult examples, if some easy-to-learn samples are
involved, the process will also optimize β, which is a good thing for the representation learning to
push samples from different classes further apart. Therefore, we can easily find a value close to the
bottom of the sorted similarity for posLow, even 100%. Experiments in Figure 4(a) and Figure 4(b)
show that our method is not sensitive to the exact values of posHigh and posLow.

Using this selection mechanism, for an augmented sample pair (xi, xj) in the current batch, we define
the selecting indicator of difficult pairs as

pi,j := 1[SimposLow≤sij<SimposHigh], (12)

where si,j denotes the cosine similarity between the representations of xi and xj , and 1[condition]
denotes the indicator function returning 1 if the condition holds and 0 otherwise. For each sample xi,
we get a vector Pi = (pi,j)

2N
j=1 representing the indicator of difficult pairs. After calculating these

indicators for all samples in the current batch, we stack the vectors Pi row-wise to create the selection
matrix P . In practice, Pi can be computed in parallel, making the computation of P efficient. The
elements of P are either 0 or 1, indicating whether pairs are difficult pairs or not.

1We do not need to know the exact label of each class. A rough class number is enough, which can be easily
known by clustering.
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(a) Different posHigh (b) Different posLow (c) Ratio trends in the training

Figure 4: Parameter sensitivity of difficult example interval ends posHigh (4(a)) and posLow (4(b)).
Parameter analysis on CIFAR-100: the trend of the ratio of sample pairs from different classes in
(SimposLow, SimposHigh) during the training process (4(c)).

We can use the class information to verify the proportions of sample pairs from different classes in
(SimposLow, SimposHigh) on CIFAR-10, which can demonstrate the effectiveness of our selection
mechanism. As shown in Figure 4(c), along with the progress of training, the ratio of sample pairs
from different classes approaches close to 100% within the range (SimposLow, SimposHigh).

5.2 REMOVING DIFFICULT SAMPLES

We here introduce a simple and practical method for removing difficult samples based on our proposed
selection mechanism. Eliminating the impact of difficult samples means preventing sample pairs
that include difficult samples from interfering with the training process. To achieve this, we use the
selection matrix P to identify and remove difficult samples.

Table 1: Classification accuracy with or without removing difficult examples on CIFAR-10, CIFAR-
100, STL-10 and TinyImagenet dataset using SimCLR. Results are averaged over three runs.

Method CIFAR-10 CIFAR-100 STL-10 TinyImagenet
SimCLR (Baseline) 88.26 59.95 75.98 69.58
SimCLR (Removing) 89.03 60.31 76.10 71.06

It can be observed from Table 1 that removing difficult examples yields a 0.8% performance boost on
CIFAR-10, a 0.6% performance boost on CIFAR-100, and a 3.7% performance boost on TinyImagenet
compared to the baseline method. We reach the same conclusion as in Joshi & Mirzasoleiman (2023):
By removing difficult samples, we can achieve comparable results or even slight improvements over
the baseline. However, removing difficult samples may not be the most effective method for handling
difficult samples, because it shrinks sample size. Next, we investigate two techniques that handle
difficult samples better, margin tuning in Section 5.3 and temperature scaling in Section 5.4.

5.3 MARGIN TUNING ON DIFFICULT SAMPLES

To effectively apply margin tuning in line with our theoretical analysis, we adopt a margin tuning
factor σ > 0. For the selected difficult sample pairs identified by the selection matrix P , we add a
margin σ to the similarity values, and for the unselected pairs, we use the original InfoNCE.

Table 2: Classification accuracy with or without margin tuning on CIFAR-10, CIFAR-100, STL-10
and TinyImagenet dataset. Results are averaged over three runs.

Method CIFAR-10 CIFAR-100 STL-10 TinyImagenet
Baseline 88.26 59.95 75.98 69.58
MT (All Samples) 88.52 60.09 76.02 70.06
MT (Selected Samples) 89.16 61.28 76.83 79.14

It can be observed from Table 2 that applying margin tuning to all samples directly only achieves
comparable results as the baseline SimCLR, highlighting the importance of the selection mechanism
for difficult examples. While applying margin tuning to the selected samples brings consistent
performance gains on CIFAR-10, CIFAR-100, and TinyImageNet. These results validate both the
effectiveness of our selection mechanism and the reliability of our analysis on margin tuning.
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5.4 TEMPERATURE SCALING ON DIFFICULT SAMPLES

We define the temperature scaling factor ρ > 0. Given the base temperature τ > 0, we attach
temperature ρτ to the selected difficult sample pairs identified by the selection matrix P , whereas
attach base temperature τ to the unselected pairs.

Table 3: Classification accuracy with or without temperature scaling on CIFAR-10, CIFAR-100,
STL-10 and TinyImagenet dataset. Results are averaged over three runs.

Method CIFAR-10 CIFAR-100 STL-10 TinyImagenet
Baseline 88.26 59.95 75.98 69.58
TS (All Samples) 88.38 59.20 75.76 69.36
TS (Selected Samples) 89.24 61.67 76.62 78.52

It can be observed from Table 3 that applying temperature scaling to all samples directly can even hurt
the performance of contrastive learning compared to baseline SimCLR, highlighting the importance
of selecting difficult examples. In contrast, applying temperature scaling to the selected samples
brings consistent performance gains on CIFAR-10, CIFAR-100, and TinyImageNet. These results
validate both the effectiveness of our selection mechanism and the reliability of our analysis on
temperature scaling.

5.5 EXTENSIONS

Combined method. From Sections 4.2 and 4.3, we observe that margin tuning and temperature
scaling eliminate the effects of difficult examples in different ways. Therefore, it is natural to combine
the two methods, and see if the combined method could reach better performances.

Table 4: Classification accuracy with or without combined method on CIFAR-10, CIFAR-100, STL-
10 and TinyImagenet dataset. Results are averaged over three runs.

Method CIFAR-10 CIFAR-100 STL-10 TinyImagenet
Baseline 88.26 59.95 75.98 69.58
Margin Tuning 89.16 61.28 76.83 79.14
Temperature Scaling 89.24 61.67 76.62 78.52
Combined Method 89.68 62.86 77.35 80.00

It can be observed from Table 4 that the combined method yields a 1.6% performance improvement on
CIFAR-10, a 4.9% performance improvement on CIFAR-100 and a 15.0% performance improvement
on TinyImagenet compared to the baseline SimCLR. The improvement surpasses that achieved by
using only margin tuning or temperature scaling. The combined method on the Mixed CIFAR-10
datasets also achieves performance improvements consistently as shown in Section A.5. The complete
algorithm is presented in Algorithm 1.

Alternative contrastive learning paradigm. We delve deeper into the scalability of our meth-
ods across various self-supervised learning paradigms. Results in Table 5 demonstrate consistent
performance enhancements comparable to those achieved by SimCLR on the MoCo on CIFAR-10.

Complex classification scenarios. We explore our method by targeting difficult samples under the
long-tail classification scenario, where difficult samples are even more difficult to learn according to
the imbalanced distributions. The findings in Table 6 illustrate that our approach outperforms the
baseline SimCLR in scenarios involving distributional imbalance, indicating the adaptivity of our
approach to complex classification scenarios.

Table 5: The results of incorporating the Com-
bined method with different architectures on
CIFAR-10.

Method MoCo SimCLR

Baseline 85.84 88.26
Combined Method 86.82 89.68

Table 6: Classification accuracy by using Com-
bined method on TinyImagenet-LT. We also use
SimCLR as the baseline method.

Method TinyImagenet-LT

Baseline 43.34
Combined Method 47.62
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Further discussions. We also provide a sensitivity analysis of parameters in Section A.4 and conduct
a detailed analysis of results in Table 5 and Table 6 in Section A.5. Furthermore, discussions about
which features are advantageous for selecting difficult examples are also presented in Section A.5. In
Section A.5, we have also included the experimental results on ImageNet-1K, the trending of the
derived bounds with Mixed CIFAR-10 dataset and the significance analysis of γ and β.

6 CONCLUSION

In this paper, we construct a theoretical framework to specifically analyze the impact of difficult
examples on contrastive learning. We prove that difficult examples hurt the performance of contrastive
learning from the perspective of linear probing error bounds. We further demonstrate how techniques
such as margin tuning, temperature scaling, and the removal of these examples from the dataset can
improve performance from the perspective of enhancing the generalization bounds. The experimental
results demonstrate the reliability of our theoretical analysis.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 RELATED WORKS

Self-supervised contrastive learning. Self-supervised contrastive learning (Chen et al., 2020a;b;
2021; He et al., 2020) aims to learn an encoder that maps augmentations (e.g. flips, random crops, etc.)
of the same input to proximate features, while ensuring that augmentations of distinct inputs yield
divergent features. The encoder, once pre-trained, is later fined-tuned on a specific downstream dataset.
The effectiveness of contrastive learning methods are typically evaluated through the performances
of the downstream tasks such as linear classification. Depending on the reliance of negative samples,
contrastive learning methods can be broadly categorized into two kinds. The first kind (Chen et al.,
2020a;b; He et al., 2020) learns the encoder by aligning an anchor point with its augmented versions
(positive samples) while at the same time explicitly pushing away the others (negative samples). On
the other hand, the second kind do not depend on negative samples. They often necessitate additional
components like projectors (Grill et al., 2020), stop-gradient techniques (Chen & He, 2021), or
high-dimensional embeddings (Zbontar et al., 2021). Nevertheless, the first kind of methods continue
to be the mainstream in self-supervised contrastive learning and have been expanded into numerous
other domains (Aberdam et al., 2021; Khaertdinov et al., 2021; Lee et al., 2022). The analysis and
discussions of this paper focus mainly on the first kind of contrastive learning methods that relies on
both positive and negative samples.

Contrastive Learning Theory. The early studies of theoretical aspects of contrastive learning
manage to link contrastive learning to the supervised downstream classification. Arora et al. (2019)
proves that representations learned by contrastive learning algorithms can achieve small errors in
the downstream linear classification task. Ash et al. (2022); Bao et al. (2022); Nozawa & Sato
(2021) incorporate the effect of negative samples and further extend surrogate bounds. Later on,
HaoChen et al. (2021) focuses on the unsupervised nature of contrastive learning by modeling the
feature similarities between augmented samples and provides generalization guarantee for linear
evaluation through borrowing mathematical tools from spectral clustering. The idea of modeling
similarities is later extended to analyzing contrastive learning for unsupervised domain adaption
(Shen et al., 2022) and weakly supervised learning (Cui et al., 2023). In a similar vein, Wang et al.
(2021) put forward the idea of augmentation overlap to explain the alignment of positive samples.
Besides, contrastive learning is also interpreted through various other theoretical frameworks in
unsupervised learning, such as nonlinear independent component analysis (Zimmermann et al., 2021),
neighborhood component analysis (Ko et al., 2022), stochastic neighbor embedding (Hu et al., 2023),
geometric analysis of embedding spaces (Huang et al., 2023), and message passing techniques (Wang
et al., 2023). In this paper, our basic assumptions are based on HaoChen et al. (2021) and focus on
modeling the similarities between difficult example pairs.

Difference between difficult examples and hard negative samples. Difficult examples and hard
negative samples both significantly affect the performance of self-supervised learning. However,
while difficult examples are associated with the classification boundary, hard negative samples
(Kalantidis et al., 2020; Robinson et al., 2020) are defined in relation to the anchor point. Previous
research on hard negative sampling typically modifies contrastive learning models to emphasize
these challenging samples so as to achieve better performance. In contrast, our findings indicate that
unmodified contrastive learning models experience performance degradation due to the existence
of difficult samples. Aside from ad hoc modifications, a straightforward removal of these difficult
samples can also boost performance. As a systematic explanation of this finding is lacking, we
establish a unified theoretical framework that addresses this challenge.

A.2 LOSS FUNCTIONS OF SAMPLE REMOVAL, MARGIN TUNING, AND TEMPERATURE
SCALING

Based on the sample selection matrix P defined in equation 12, we adapt the InfoNCE loss into
versions of sample removal, margin tuning, and temperature scaling, respectively.

Sample Removal. We define the removal loss as follows:

ℓR(i, j) := − log
exp

(
(si,j(1− pi,j))/τ

)∑2N
k=1 1[k ̸=i] exp

(
(si,k(1− pi,k))/τ

) , (13)
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where si,j denotes the similarity between augmented instances xi and xj . If pi,j = 0, the sample
pair xi and xj does not include difficult samples, so (si,j(1 − pi,j))/τ = si,j/τ , retaining the
original form of the InfoNCE loss. If pi,j = 1, the sample pair xi and xj are difficult pairs, so
(si,j(1− pi,j))/τ = 0, effectively removing them.

Margin Tuning. We start with the basic form of the widely used InfoNCE loss and define the margin
tuning loss for each positive pair. Specifically, within each minibatch of size N , we generate 2N
samples through data augmentation. Given the margin tuning factor σ > 0, for an anchor sample xi

and its corresponding positive sample xj , we define the margin tuning loss as follows:

ℓM(i, j) := − log
exp

(
(si,j + pi,jσ)/τ

)∑2N
k=1 1[k ̸=i] exp

(
(si,k + pi,kσ)/τ

) , (14)

where si,j denotes the similarity between augmented instances xi and xj , and τ > 0 denotes the
temperature parameter. After the above operation, we assign the same margin value to all selected
difficult sample pairs, achieving the goal of margin tuning for specific sample pairs.

Temperature Scaling. To apply temperature scaling consistent with our theoretical analysis, we start
with the basic form of the InfoNCE loss and define the temperature scaling loss for each positive pair.
Specifically, within each minibatch, given the temperature scaling factor ρ, for an anchor sample xi

and its corresponding positive sample xj , we define the temperature scaling loss as follows:

ℓT(i, j) := − log
exp

( si,j
[pi,jρ+(1−pi,j)]τ

)∑2N
k=1 1[k ̸=i] exp

( si,k
[pi,kρ+(1−pi,k)]τ

) , (15)

where si,j denotes the similarity between augmented instances xi and xj .

Combined Method. The combined loss function as

ℓ(i, j) := − log
exp

( si,j+pi,jσ
[pi,jρ+(1−pi,j)]τ

)∑2N
k=1 1[k ̸=i] exp

( si,k+pi,kσ
[pi,kρ+(1−pi,k)]τ

) , (16)

where si,j denotes the similarity between augmented instances xi and xj . The whole training
procedure of the combined method is shown in Algorithm 1.

Algorithm 1 Training procedure of Combined method
Input: batch size N , base temperature τ , posHigh and posLow for determining the size of the interval, margin

tuning factor σ, temperature scaling factor ρ, encoder f(·), projector g(·) and data augmentation T .
Output: encoder network f(·), and throw away g(·).
1: for sampled minibatch {x̄k}Nk=1 do
2: for all k ∈{1,...,N} do
3: Draw two augmentation functions t, t′ ∼ T ;
4: x2k−1 = t(x̄k) and x2k = t′(x̄k);
5: h2k−1 = f(x2k−1) and h2k = f(x2k);
6: z2k−1 = g(h2k−1) and z2k = g(h2k).
7: end for
8: for all k ∈{1,...,2N} do
9: Calculate Pi = (pi,j)

2N
j=1 by using hj , j ∈{1,...,2N} according to Eq. 12;

10: end for
11: The matrix P is obtained by splicing Pi, i ∈{1,...,2N} by rows.
12: for all i ∈{1,...,2N} and all j ∈{1,...,2N} do
13: si,j = z⊤

i zj/ (∥zi∥ ∥zj∥).
14: end for
15: Calculate ℓ(i, j) according to Eq. 16;
16: Calculate L = 1

2N

∑N
k=1[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)]; Update networks f and g to minimize L.

17: end for

A.3 TRAINING DETAILS

We run all experiments on an NVIDIA GeForce RTX 3090 24G GPU and we run experiments with
ResNet-18 on the CIFAR-10, CIFAR-100 and STL-10 dataset and ResNet-50 on the TinyImagenet
dataset. We only deal with the difficult examples during training time.
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For CIFAR-10 we set batch size as 512, learning rate as 0.25 and base temperature as 0.5. We choose
0.15 as the posHigh and 0.22 as the posLow. We set σ as 0.03 and ρ as 0.6 for CIFAR-10. For both
our method and SimCLR, we evaluate the models using linear probing, when evaluating we set batch
size as 512 and learning rate as 1. This experimental setup is also applicable to the Mixed CIFAR-10
dataset.

For CIFAR-100 we set batch size as 512, learning rate as 0.5 and base temperature as 0.1. We choose
0.013 as the posHigh and 0.5 as the posLow. We set σ as 0.1 and ρ as 0.7 for CIFAR-100. For both
our method and SimCLR, we evaluate the models using linear probing, when evaluating we set batch
size as 512 and learning rate as 0.1.

For STL-10 we set batch size as 256, learning rate as 0.5 and base temperature as 0.1. We choose
0.15 as the posHigh and 0.22 as the posLow. We set σ as 0.1 and ρ as 0.7 for STL-10. For both our
method and SimCLR, we evaluate the models using linear probing, when evaluating we set batch
size as 256 and learning rate as 0.1.

For TinyImagenet we set batch size as 512, learning rate as 0.5 and base temperature as 0.5. We
choose 0.013 as the posHigh and 0.5 as the posLow. We set σ as 0.1 and ρ as 0.7 for TinyImagenet.
For both our method and SimCLR, we evaluate the models using linear probing, when evaluating we
set batch size as 512 and learning rate as 0.1.

For the experimental results presented in Figure 1, we selected 20% SAS coreset for CIFAR-10, 95%
SAS coreset for CIFAR-100, 80% SAS coreset for STL-10, and 60% SAS coreset for TinyImagenet,
following the filtering method mentioned in (Joshi & Mirzasoleiman, 2023).

A.4 PARAMETER SENSITIVITY ANALYSIS

Evaluating different σ used in margin tuning part. The intention of σ is to add margins to the
similarity terms between difficult example pairs. We show the performance with different σ in
Figure 5(a), and the results show that when σ = 0.1 the proposal achieves the best performance on
CIFAR-100, and the performance does not degrade significantly with σ changes. This demonstrates
that our proposal is quite robust with the selection of σ.

Evaluating different ρ used in temperature scaling part. ρ is used for scaling downwards the
temperatures on the difficult example pairs so that we can eliminate the negative effects of difficult
examples. We show the performance with different ρ in Figure 5(b), and the results show that when
ρ = 0.7 the proposal achieves the best performance on CIFAR-100, and the performance does
not degrade significantly with ρ changes. We figure out that different values of ρ can all result in
performance improvements.
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Figure 5: (a) Parameter analysis of margin tuning factor σ,(b) temperature scaling factor ρ, all of the
above results are implemented on CIFAR-100.

A.5 FURTHER DISCUSSION

Which feature is better for difficult examples selection? In SimCLR, the authors found that
the proposal of projector g(·) allows the model to learn the auxiliary task better thus having better
downstream generalization. However, as mentioned in (Cosentino et al., 2022) they suggest the
problem of representation dimensional collapse after using projector, therefore, we here explore
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whether it is better to use features before projector f(x) for difficult examples selection or g(f(x))
after projector.

Table 7: Classification accuracy by using Combined method on CIFAR-10 and CIFAR-100. Features
before projector means that we use f(x) for difficult examples selection and features after projector
means that we use g(f(x)) for difficult examples selection.

Features Baseline After projector Before projector

CIFAR-10 88.26 87.86 89.68
CIFAR-100 59.95 60.63 62.86

As shown in Table 7, We find that when using f(x) rather than g(f(x)) for difficult examples
selection we can gain a 2.1% performance improvement on CIFAR-10 and a 3.7% performance
improvement on CIFAR-100. These results suggest that utilizing features before projector is more
beneficial for difficult examples selection.
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Mixing Ratio  (%)
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Margin Tuning
Temperature Scaling
Combined Method

Figure 6: Detailed experimen-
tal results on the Mixed CI-
FAR datasets.

The combined method is also effective for the Mixed CIFAR-10
datasets. As we discussed earlier, the Mixed CIFAR-10 datasets con-
tain a large number of mixed difficult samples, making the learning
difficulty of this dataset significantly greater than that of the original
dataset. Based on this fact, this section explores whether our pro-
posed method can achieve performance improvements on the Mixed
CIFAR-10 datasets that are consistent with those on CIFAR-100,
Tiny ImageNet, and other datasets. We use the 10%- and 20%-Mixed
CIFAR-10 datasets as our baselines, while the 0%-Mixed CIFAR-10
datasets serve as our standard CIFAR-10 baseline. The experimental
results are shown in Figure 6. We found that using either margin tuning or temperature scaling alone
can improve performance over the original baseline, while the combined method yields better results
than using either approach individually. This finding is consistent with the experimental results on
other datasets and further validates the effectiveness of our method.

The proposal is effective for real-world datasets. We evaluated our method on the Imagenet-1k
dataset, which contains 1,000 categories and 1,281,167 training samples. We used ResNet18 as our
backbone, set the batch size to 1024, and resized each image to 96x96. We set the learning rate to 0.1
and the base temperature to 0.07. We chose 0.01 as the posHigh and 0.5 as the posLow. We set σ to
0.1 and ρ to 0.7. We also evaluated the models using linear probing. When evaluating, we set the
batch size to 1024 and the learning rate to 1. The specific results are shown in Table 8.

Table 8: Classification accuracy on Imagenet-1k.
Methods Baseline Removing Temperature Scaling Margin Tuning Combined

Accuracy 37.62 37.79 38.48 38.59 38.98

From the results on the real-world dataset, Imagenet-1k, which contains more categories, We can see
that even after running for only 400 epochs, our method achieves a performance improvement trend
consistent with the results mentioned in the paper, compared to the baseline method. These results
strengthen the findings and demonstrate broader applicability of this paper.

Focusing on difficult examples and removing them are both effective methods. We use tem-
perature scaling as an example to illustrate how we should handle difficult examples. We note that
placing greater emphasis on difficult examples (by selecting a smaller temperature) and discarding
this sample (which is effectively equivalent to setting the temperature to infinity (we use a large
value of 1,000,000,000 to approximate infinity here)) may seem contradictory. However, as shown
in Table 9, both approaches are indeed valid. This means that effectively handling difficult samples
is possible under sufficiently good conditions, while in the absence of such mechanisms, simply
discarding them can also be effective.

The scalability of our proposal under other contrastive learning paradigms. As mentioned in
(Johnson et al., 2022), InfoNCE and Spectral contrastive loss share the same population minimum
with variant kernel derivations. By using similar techniques of positive-pair kernel, our conclusions
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Table 9: Classification accuracy with various temperature scaling factors on CIFAR-100 datasets.
Setting the Temperature Scaling Factor to 0.7 represents using our proposed theoretical framework
to specifically address difficult samples, while setting the Temperature Scaling Factor to 1e9 means
discarding these difficult samples. Results are averaged over three runs.

Temperature Scaling Factor 0.7 1 10 100 1000 1e9

Accuracy 61.67 59.95 59.63 59.82 60.05 60.31

can also be further generalized to other self-supervised learning frameworks. To demonstrate the
scalability of the combined method, we supplement the comparative experiments based on the MoCo
(Chen et al., 2020b) algorithm. The experimental results demonstrate consistent improvements of
our method over both MoCo and SimCLR and show the scalability of our proposal under different
contrastive learning paradigms.

Connection between difficult examples and long-tailed distribution. Under the definition that
difficult examples contribute least to contrastive learning and that are consequently difficult to
distinguish by contrastive learning models, we can easily draw the following conclusion: difficult
examples can lead to unclear classification boundaries for the classes they belong to.

Due to the significant difference in the number of samples in the head and tail classes, the boundary
of tail classes is difficult to be accurately estimated due to the tail classes are prone to collapse when
the data is distributed with long-tailed distribution, as mentioned in (Samuel & Chechik, 2021). In
other words, tail classes can lead to unclear classification boundaries for the classes they belong to as
mentioned in (Fang et al., 2021).

So in this view, tail classes samples can also be seen as difficult samples. To better illustrate this point,
we will further validate the connection between them through the following experiments. We validate
our proposed Combined method on the classical long-tailed distribution dataset tiny-Imagenet-LT to
explore whether our proposed algorithm can achieve a performance improvement over the comparison
method SimCLR when distributional imbalance as another form of difficult samples also exists.The
results in Table 6 show that we can achieve better performance when distributional imbalance also
exists.

Analysis of the trending of the derived bounds. We analyze the trending of the derived bounds
on the Mixed CIFAR-10 dataset. Specifically, we vary the mixing ratios from 0% to 30%, where
0% represents the standard CIFAR-10 without mixing. The experimental parameter settings can
be referenced to A.3. For each class of samples, we sort them based on the difference between the
maximum and second-largest values after applying softmax to the outputs, and select the 8% (the
ratio is consistent with what is reported in the paper) smallest differences as the difficult examples,
as described in the paper. For the calculation of α, we take the mean of the similarity between all
samples of the same class. For the calculation of β, we take the mean of the similarity for the sample
pairs from different classes that do not contain the difficult examples. For the calculation of γ, we
take the mean of the similarity for the sample pairs from different classes that contain the difficult
examples.

Table 10: The trends of α, β, γ, and other metrics as the Mixing Ratio changes.
Mixing Ratio 0% 10% 20% 30%
acc (%) 88.3 88.0 87.7 86.2
α 47.2 44.0 41.2 38.7
β 19.1 19.5 20.1 20.8
γ 20.9 22.1 23.1 24.1
γ − β 1.80 2.60 3.00 3.30
Eigenvalue (×10−5) 2.93 3.36 3.58 3.72

In Table 10, we show that as the mixing ratio increases, the linear probing accuracy drops, and the
(K + 1)-th eigenvalue increases. Note that the classification error (left hand side of Eq.4) is 1-acc,
and the error bound (right hand side of Eq.4) increases with the eigenvalue increasing. This result
indicates that as the difficult examples increases, the classification error and the bound share the same
variation trend, thus validating theorem 3.4 that larger γ − β results in worse error bound.
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Significance analysis of γ and β. To verify the significance of γ and β., we tested γ and β, as
well as γ − β, on more real datasets. From the first three rows of Table 11, we found that on the
CIFAR-100 dataset (which has 10 times more classes than CIFAR-10), the difference between γ and
β remained consistent with that on the CIFAR-10 dataset. On the ImageNet-1k dataset (which has 100
times more classes than CIFAR-10,for specific experimental details and results on ImageNet-1k), the
difference between γ and β was even larger than on CIFAR-10. As a possible intuitive explanation,
we conjecture that the higher γ − β might results from the higher complexity of imagenet images,
e.g. different-class images with similar backgrounds can share higher similarity (higher γ), whereas
CIFAR images have relatively simple and consistent backgrounds. These results demonstrate that
even on real-world datasets, the difference between γ and β is significant.

Table 11: Comparison of β, γ γ − β , t-statistic and P value across different datasets.
Datasets CIFAR-10 CIFAR-100 Imagenet-1k

β 19.1 35.6 39.8
γ 20.9 37.4 42.9
γ − β 1.8 1.8 3.1
t-statistic -502.63 -539.36 -3844.21
P value 0.0 0.0 0.0

To better illustrate the significant difference between γ and β, we conducted an independent samples
t-test to support our conclusion. Specifically, we first collected all the β and γ values, and due to the
large sample size, we chose to use Welch’s t-test, which does not assume equal variances between the
two groups and is suitable for cases where the variances may differ. In the experiment, we focus on
two key statistics:

t-statistic: This measures the difference between the means of the two groups relative to the variance
within the samples. The t-statistic is a standardized measure used to determine whether the mean
difference between the two groups is significant or could be attributed to random fluctuations. The
larger the t-statistic, the more significant the difference between the two groups.

P value: The p-value indicates the probability of observing the current difference or more extreme
results under the assumption that the null hypothesis (i.e., no significant difference between the two
groups) is true. If the p-value is less than 0.05, it suggests that the observed difference is highly
unlikely under the null hypothesis, and we can reject the null hypothesis, concluding that there is a
significant difference between the two groups.

As shown in the last two rows of Table 11, on all datasets (CIFAR-10, CIFAR-100, Imagenet-1k), the
absolute value of the T-statistic is very large, and the P-value is close to zero. This indicates that the
mean difference between γ and β is highly statistically significant.

B PROOFS

Recall that in Section 3.2, we introduce the adjacency matrix of the similarity graph based on a
4-sample subset. Here we give the formal definition of the adjacency matrix of a generalized similarity
graph containing |X | = n(r + 1) samples, with n denoting the number of augmented samples per
class, and r + 1 denoting the number of classes.

Denote D = x1, . . . , xn(r+1) as the dataset, where xn(i−1)+1, . . . , xni belong to Class i for i ∈
1, . . . , r + 1. Denote nd as the number of difficult examples per class and Dd as the set of difficult
examples. Naturally, we denote ne := n − nd as the number of easy-to-learn examples per class.
Without loss of generality, we assume that the last nd examples in each class are difficult examples.
Let β < γ < α < 1. Then we define the elements of the adjacency matrix A = (wx,x′)x,x′∈X
as wx,x′ := 1 for x = x′; wx,x′ := α for x ̸= x′, y(x) = y(x′); wx,x′ := γ for x, x′ ∈ Dd,
y(x) ̸= y(x′), and wx,x′ := β otherwise.
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Specifically, we have the adjacency matrix of a similarity graph without difficult examples as

Aw.o. =


Asame−class Adifferent−class · · · Adifferent−class

Adifferent−class Asame−class · · · Adifferent−class

...
...

...
Adifferent−class Adifferent−class · · · Asame−class


(r+1)×(r+1)

(17)

and the adjacency matrix of a similarity graph with difficult examples as

Aw.d. =


Asame−class A′

different−class · · · A′
different−class

A′
different−class Asame−class · · · A′

different−class
...

...
...

A′
different−class A′

different−class · · · Asame−class


(r+1)×(r+1)

(18)

where

Asame−class =

 1 α · · · α
α 1 · · · α
· · ·
α α · · · 1


n×n

, (19)

Adifferent−class =

β · · · β
...

...
β · · · β


n×n

, (20)

and

A′
different−class =



β · · · β β · · · β
...

...
...

...
β · · · β β · · · β
β · · · β γ · · · γ
...

...
...

...
β · · · β γ · · · γ


(ne+nd)×(ne+nd)

. (21)

B.1 PROOFS RELATED TO SECTION 3.3

Proof of Theorem 3.3. For a dataset without difficult examples, the similarity between a sample and
itself is 1, the similarity between same-class samples is α, and the similarity between different-class
samples is β. Then the adjacent matrix of the similarity graph can be decomposed into the sum of
several matrix Kronecker products:

A = (1− α)Ir+1 ⊗ In + (α− β)Ir+1 ⊗ (1n · 1⊤
n ) + β(1r+1 · 1⊤

r+1)⊗ (1n · 1⊤
n ), (22)

where Ir+1 and In denote the (r + 1) × (r + 1) and n × n identity matrices respectively, and
1r+1 := (1, . . . , 1)⊤ ∈ Rr+1 and 1n := (1, . . . , 1)⊤ ∈ Rn denote the all-one vectors.

First, we calculate the eigenvalues and eigenvectors of A. Note that Ir+1 and In have eigenvalues 1
with arbitrary eigenvectors, 1n · 1⊤

n has eigenvalue n with eigenvector 1̄n := 1√
n
1n and eigenvalues

0 with eigenvectors {µ : µ⊤1n = 0}, and 1r+1 · 1⊤
r+1 has eigenvalue r + 1 with eigenvector

1̄r+1 := 1√
r+1

1r+1 and eigenvalues 0 with eigenvectors {ν : ν⊤1r+1 = 0}. Therefore, A has the
following sets of eigenvalues and eigenvectors:

λ1 = (1− α) + n(α− β) + n(r + 1)β, with eigenvector 1̄r+1 ⊗ 1̄n;

λ2 = . . . = λr+1 = (1− α) + n(α− β), with eigenvectors ν ⊗ 1̄n;

λr+2 = . . . = λn+r = 1− α, with eigenvectors 1̄r+1 ⊗ u;

λn+r+1 = . . . = λn(r+1) = 1− α, with eigenvectors u⊗ v.
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Next, we calculate the eigenvalues of Ā := D−1/2AD−1/2. By definition, we have D =
diag(w1, . . . , wn(r+1)) = [(1 − α) + nα + nrβ]In(r+1). Therefore, we have the eigenvalues
of A as

λ1 = 1,

λ2 = . . . = λr+1 =
(1− α) + n(α− β)

(1− α) + nα+ nrβ
,

λr+2 = . . . = λn(r+1) =
1− α

(1− α) + nα+ nrβ
.

Then according to Theorem B.3 in HaoChen et al. (2021), when k > r, there holds

Ew.o. ≤
4δ

1− λk+1
+ 8δ =

4δ

1− 1−α
(1−α)+nα+nrβ

+ 8δ. (23)

Proof of Theorem 3.4. For a dataset with nd difficult examples per class, the similarity between
a sample and itself is 1, the similarity between same-class samples is α, the similarity between
different-class easy-to-learn samples is β, and the similarity between different-class hard-to-learn
samples is γ. Without loss of generality, we assume that n is an integral multiple of nd, i.e. there exist
a κ ∈ Z+ such that n = κnd. Then the adjacent matrix of the similarity graph can be decomposed
into the sum of several matrix Kronecker products:

A = (1− α)Ir+1 ⊗ In + (α− β)Ir+1 ⊗ (1n · 1⊤
n ) + β(1r+1 · 1⊤

r+1)⊗ (1n · 1⊤
n )

+ (γ − β)(1r+1 · 1⊤
r+1)⊗ (eκ · e⊤κ )⊗ Ind

− (γ − β)Ir+1 ⊗ (eκ · e⊤κ )⊗ Ind
, (24)

where Ir+1, In, and Ind
denote the (r + 1) × (r + 1), n × n, and nd × nd identity matrices

respectively, 1r+1 := (1, . . . , 1)⊤ ∈ Rr+1 and 1n := (1, . . . , 1)⊤ ∈ Rn denote the all-one vectors,
and eκ := (0, . . . , 0, 1)⊤ ∈ Rκ.

Similarly, we can decompose D into

D = Ir+1 ⊗
[
[(1− α) + nα+ nrβ]In + ndr(γ − β)(eκ · e⊤κ )⊗ Ind

]
, (25)

and therefore we have

D−1 = Ir+1 ⊗
[ 1

c2
[Iκ − (eκ · e⊤κ )] +

1

c1
(eκ · e⊤κ )

]
⊗ Ind

, (26)

where we denote c1 := (1− α) + nα+ nrβ + ndr(γ − β) and c2 := (1− α) + nα+ nrβ.
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Then we have the decomposition of the normalized similarity matrix as

Ā = D−1/2AD−1/2

= (1− α)Ir+1 ⊗
[ 1

c2
[Iκ − (eκ · e⊤κ )] +

1

c1
(eκ · e⊤κ )

]
⊗ Ind

+ (γ − β)(1r+1 · 1⊤
r+1)⊗

1

c1
(eκ · e⊤κ )⊗ Ind

− (γ − β)Ir+1 ⊗
1

c1
(eκ · e⊤κ )⊗ Ind

.

+ (α− β)Ir+1 ⊗
[
[

1
√
c2

(1κ − eκ) +
1

√
c1

eκ] · [
1

√
c2

(1κ − eκ) +
1

√
c1

eκ]
⊤
]
⊗ (1nd

· 1⊤
nd
)

+ β(1r+1 · 1⊤
r+1)⊗

[
[

1
√
c2

(1κ − eκ) +
1

√
c1

eκ] · [
1

√
c2

(1κ − eκ) +
1

√
c1

eκ]
⊤
]
⊗ (1nd

· 1⊤
nd
)

=
1

c2
(1− α)Ir+1 ⊗ Iκ ⊗ Ind

+
1

c1
(γ − β)(1r+1 · 1⊤

r+1)⊗ (eκ · e⊤κ )⊗ Ind

−
[ 1

c1
(γ − β) + (

1

c2
− 1

c1
)(1− α)

]
Ir+1 ⊗ (eκ · e⊤κ )⊗ Ind

.

+ (α− β)Ir+1 ⊗
[
[

1
√
c2

(1κ − eκ) +
1

√
c1

eκ] · [
1

√
c2

(1κ − eκ) +
1

√
c1

eκ]
⊤
]
⊗ (1nd

· 1⊤
nd
)

+ β(1r+1 · 1⊤
r+1)⊗

[
[

1
√
c2

(1κ − eκ) +
1

√
c1

eκ] · [
1

√
c2

(1κ − eκ) +
1

√
c1

eκ]
⊤
]
⊗ (1nd

· 1⊤
nd
).

(27)

Now we calculate the eigenvalues and eigenvectors of A. For notational simplicity, we denote the
first three terms of equation 27 as Ā1 and the last two terms as Ā2. Note that Ir+1, Iκ, and Ind

have eigenvalues 1 with arbitrary eigenvectors, 1r+1 · 1⊤
r+1 has eigenvalue r + 1 with eigenvector

1̄r+1 := 1√
r+1

1r+1 and eigenvalues 0 with eigenvectors {ν : ν⊤1r+1 = 0}, and eκ · e⊤κ has
eigenvalue 1 with eigenvector e1 = (1, 0, . . . , 0)⊤ ∈ Rκ and eigenvalues 0 with eigenvectors
{e2, . . . ,eκ}. Let ξ ∈ Rnd denote an arbitrary vector. Then Ā1 has the following sets of eigenvalues
and eigenvectors:

λ1,1 = . . . = λ1,nd
=

1

c2
(1− α) +

1

c1
(γ − β)(r + 1)−

[ 1

c1
(γ − β) + (

1

c2
− 1

c1
)(1− α)

]
,

=
1

c1
(1− α) +

r

c1
(γ − β), with eigenvectors 1̄r+1 ⊗ e1 ⊗ ξ;

λ1,nd+1 = . . . = λ1,n =
1

c2
(1− α), with eigenvectors 1̄r+1 ⊗ ei ⊗ ξ, i = 2, . . . , κ;

λ1,n+1 = . . . = λ1,(r+1)n−rnd
=

1

c2
(1− α), with eigenvectors ν ⊗ ei ⊗ ξ, i = 2, . . . , κ;

λ1,(r+1)n−rnd+1 = . . . = λ1,(r+1)n =
1

c2
(1− α)−

[ 1

c1
(γ − β) + (

1

c2
− 1

c1
)(1− α)

]
,

=
1

c1
(1− α)− 1

c1
(γ − β), with eigenvectors ν ⊗ e1 ⊗ ξ.

On the other hand, note that 1nd
· 1⊤

nd
has eigenvalue nd with eigenvector 1̄nd

:= 1√
nd

1nd
and

eigenvalues 0 with eigenvectors {η : η⊤1nd
= 0}, and that by calculations, [ 1√

c2
(1κ−eκ)+

1√
c1
eκ] ·

[ 1√
c2
(1κ − eκ) +

1√
c1
eκ]

⊤ has eigenvalue κ−1
c2

+ 1
c1

with eigenvector {η :
∑κ−1

i=1 ηi = 0, ηκ =

(κ− 1)
√
c1/c2} and eigenvalues 0 with eigenvectors {θ :

∑κ−1
i=1 θi = 0, ηκ = 0}. Then Ā2 has the
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following sets of eigenvalues and eigenvectors:

λ2,1 = (α− β)
[κ− 1

c2
+

1

c1

]
nd + β(r + 1)

[κ− 1

c2
+

1

c1

]
nd,

= (α+ rβ)
[κ− 1

c2
+

1

c1

]
nd, with eigenvectors 1̄r+1 ⊗ η ⊗ 1̄nd

;

λ2,2 = . . . = λ2,r+1 = (α− β)
[κ− 1

c2
+

1

c1

]
nd, with eigenvectors ν ⊗ η ⊗ 1̄nd

;

λ2,r+2 = . . . = λ2,(r+1)n = 0, with other combinations of eigenvectors.

By Equation 13 in Fulton (2000), for two real symmetric n(r + 1)× n(r + 1) matrices Ā1 and Ā2,
we have the k + 1-th largest eigenvalue of Ā := Ā1 + Ā2 satisfies

λk+1 ≤ min
i+j=k+2

λ1,i + λ2,j

=



1

c1
(1− α) +

r

c1
(γ − β) + (α− β)

[κ− 1

c2
+

1

c1

]
nd, for k < r + 1,

min
{ 1

c1
(1− α) +

r

c1
(γ − β),

1

c2
(1− α) + (α− β)

[κ− 1

c2
+

1

c1

]
nd

}
=

1

c1
(1− α) +

r

c1
(γ − β), for r + 1 ≤ k < nd + r + 1.

Then according to Theorem B.3 in HaoChen et al. (2021), when r+1 ≤ k < nd + r+1, there holds

Ew.d. ≤
4δ

1− λk+1
+ 8δ =

4δ

1− 1
c1
(1− α)− r

c1
(γ − β)

+ 8δ =
4δ

1− (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β)

+ 8δ.

(28)

B.2 PROOFS RELATED TO SECTION 4

Proof of Corollary 4.1. By removing the difficult examples, we have the adjacency matrix as

A =


Asame−class Adifferent−class · · · Adifferent−class

Adifferent−class Asame−class · · · Adifferent−class

...
...

...
Adifferent−class Adifferent−class · · · Asame−class


(r+1)×(r+1)

, (29)

where

Adifferent−class =

β · · · β
...

...
β · · · β


ne×ne

. (30)

Then the matrix A reduces to Aw.o. and the error bound reduces to that in Theorem 3.3 with n
replaced with ne = n− nd.

The spectral contrastive loss with a margin M = (mx,x′) is defined as

LM(x; f) = −2Ex,x+f(x)⊤f(x+) + Ex,x′

[
f(x)⊤f(x′) +mx,x′

]2
. (31)
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Proof of Theorem 4.2.

LM = −2Ex,x+f(x)⊤f(x+) + Ex,x′

[
f(x)⊤f(x′) +mx,x′

]2
= −2

∑
x,x+

wx,x′f(x)⊤f(x+) +
∑
x,x′

wxwx′

[
f(x)⊤f(x′) +mx,x′

]2
=

∑
x,x′

{
− 2wx,x′f(x)⊤f(x′) + wxwx′

[
f(x)⊤f(x′)

]2
+ 2wxwx′mx,x′f(x)⊤f(x′) + wxwx′m2

x,x′

}
=

∑
x,x′

{
wxwx′

[
f(x)⊤f(x′)

]2
− 2[wx,x′ − wxwx′mx,x′ ]f(x)⊤f(x′) + wxwx′m2

x,x′

}
=

∑
x,x′

{[
[
√
wxf(x)]

⊤[
√
wx′f(x′)]

]2
− 2

[ wx,x′
√
wx

√
wx′

−
√
wx

√
wx′mx,x′

]
[
√
wxf(x)]

⊤[
√
wx′f(x′)]

+
[ wx,x′
√
wx

√
wx′

−
√
wx

√
wx′mx,x′

]2
+ 2wx,x′mx,x′ −

w2
x,x′

wxwx′

}
=

∑
x,x′

[ wx,x′
√
wx

√
wx′

−
√
wx

√
wx′mx,x′ − [

√
wxf(x)]

⊤[
√
wx′f(x′)]

]2
+

∑
x,x′

(
2wx,x′mx,x′ −

w2
x,x′

wxwx′

)
:= ∥(Ā− M̄)− FF⊤∥2F +

∑
x,x′

(
2wx,x′mx,x′ −

w2
x,x′

wxwx′

)
, (32)

where we denote Ā := D−1/2AD−1/2, M̄ := D1/2MD1/2, A := (wx,x′)
x,x′∈{xi}n(r+1)

i=1
, M :=

(mx,x′)
x,x′∈{xi}n(r+1)

i=1
, D := diag(w1, . . . , wn(r+1)), and F = (

√
wxf(x))x∈{xi}n(r+1)

i=1
.

Note that given the adjacency matrix of the similarity graph A and the margin matrix M , the second
term in equation 32 is a constant. Therefore, minimizing the margin tuning loss LM over f(x) is
equivalent to minimizing the matrix factorization loss Lmf−M := ∥(Ā−M̄)−FF⊤∥2F over F .

Proof of Theorem 4.3. Recall that when difficult examples exist, we assume that

wx,x′ :=


1 for x = x′,

α for x ̸= x′, y(x) = y(x′),

γ for x, x′ ∈ Dd, y(x) ̸= y(x′),

β otherwise.

(33)

Then by definition we have

wx =
∑
x′

wx,x′ =

{
(1− α) + nα+ nrβ + ndr(γ − β), for x ∈ Dd,

(1− α) + nα+ nrβ, for x /∈ Dd,
(34)
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and correspondingly

wx,x′

wxwx′
=



1

(1− α) + nα+ nrβ + ndr(γ − β)
, for x = x′, x ∈ Dd,

1

(1− α) + nα+ nrβ
, for x = x′, x /∈ Dd,

α

(1− α) + nα+ nrβ + ndr(γ − β)
, for x ̸= x′, y(x) = y(x′), x, x′ ∈ Dd,

α√
(1− α) + nα+ nrβ + ndr(γ − β)

√
(1− α) + nα+ nrβ

, for x ̸= x′, y(x) = y(x′), x ∈ Dd or x′ ∈ Dd,

α

(1− α) + nα+ nrβ
, for x ̸= x′, y(x) = y(x′), x, x′ /∈ Dd,

γ

(1− α) + nα+ nrβ + ndr(γ − β)
, for y(x) ̸= y(x′), x, x′ ∈ Dd,

β√
(1− α) + nα+ nrβ + ndr(γ − β)

√
(1− α) + nα+ nrβ

, for y(x) ̸= y(x′), x ∈ Dd or x′ ∈ Dd,

β

(1− α) + nα+ nrβ
, for y(x) ̸= y(x′), x, x′ /∈ Dd,

(35)

If we let

mx,x′ =



− ndr(γ − β)

[(1− α) + nα+ nrβ + ndr(γ − β)]2[(1− α) + nα+ nrβ]
, for x = x′, x ∈ Dd,

− ndr(γ − β)

[(1− α) + nα+ nrβ + ndr(γ − β)]2[(1− α) + nα+ nrβ]
α, for x ̸= x′, y(x) = y(x′), x, x′ ∈ Dd,

−

√
(1−α)+nα+nrβ+ndr(γ−β)√

(1−α)+nα+nrβ
− 1

[(1− α) + nα+ nrβ + ndr(γ − β)][(1− α) + nα+ nrβ]
α, for x ̸= x′, y(x) = y(x′), x ∈ Dd or x′ ∈ Dd,

[(1− α) + nα+ (n− nd)rβ](γ − β)

[(1− α) + nα+ nrβ + nd(γ − β)]2[(1− α) + nα+ nrβ]
, for y(x) ̸= y(x′), x, x′ ∈ Dd,

−

√
(1−α)+nα+nrβ+ndr(γ−β)√

(1−α)+nα+nrβ
− 1

[(1− α) + nα+ nrβ + ndr(γ − β)][(1− α) + nα+ nrβ]
β, for y(x) ̸= y(x′), x ∈ Dd or x′ ∈ Dd,

0 otherwise,
(36)

then we have

√
wx

√
wx′mx,x′

=



− ndr(γ − β)

[(1− α) + nα+ nrβ + ndr(γ − β)][(1− α) + nα+ nrβ]
, for x = x′, x ∈ Dd,

− ndr(γ − β)

[(1− α) + nα+ nrβ + ndr(γ − β)][(1− α) + nα+ nrβ]
α, for x ̸= x′, y(x) = y(x′), x, x′ ∈ Dd,

−
√
(1− α) + nα+ nrβ + ndr(γ − β)−

√
(1− α) + nα+ nrβ√

(1− α) + nα+ nrβ + ndr(γ − β)[(1− α) + nα+ nrβ]
α, for x ̸= x′, y(x) = y(x′), x ∈ Dd or x′ ∈ Dd,

[(1− α) + nα+ (n− nd)rβ](γ − β)

[(1− α) + nα+ nrβ + nd(γ − β)][(1− α) + nα+ nrβ]
, for y(x) ̸= y(x′), x, x′ ∈ Dd,

−
√

(1− α) + nα+ nrβ + ndr(γ − β)−
√

(1− α) + nα+ nrβ√
(1− α) + nα+ nrβ + ndr(γ − β)[(1− α) + nα+ nrβ]

β, for y(x) ̸= y(x′), x ∈ Dd or x′ ∈ Dd,

0 otherwise,
(37)
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and accordingly

wx,x′

wxwx′
−
√
wx

√
wx′mx,x′ =



1

(1− α) + nα+ nrβ
for x = x′,

α

(1− α) + nα+ nrβ
for x ̸= x′, y(x) = y(x′),

β

(1− α) + nα+ nrβ
otherwise.

(38)

In this case, Ā − M̄ is equivalent to the normalized similarity matrix of data without difficult
examples. That is, we have

EM = Ew.o.. (39)

The spectral contrastive loss with temperature T = (τx,x′) is defined as

LT(x; f) = −2Ex,x+

f(x)⊤f(x+)

τx,x+

+ Ex,x′

[f(x)⊤f(x′)

τx,x′

]2
. (40)

Proof of Theorem 4.4.

LT = Ex,x+f(x)⊤f(x+)/τx,x+ + Ex,x′

[
f(x)⊤f(x′)/τx,x′

]2
= −2

∑
x,x+

wx,x′f(x)⊤f(x+)/τx,x+ +
∑
x,x′

wxwx′

[
f(x)⊤f(x′)/τx,x′

]2
=

∑
x,x′

{
− 2wx,x′/τx,x′f(x)⊤f(x+) + wxwx′/τ2x,x′

[
f(x)⊤f(x′)/τx,x′

]2}
=

∑
x,x′

{
− 2

1

τx,x′

wx,x′
√
wx

√
wx′

[
√
wxf(x)]

⊤[
√
wx′f(x′)] +

1

τ2x,x′

[
[
√
wxf(x)]

⊤[
√
wx′f(x′)]

]2}
=

∑
x,x′

1

τ2x,x′

{[
[
√
wxf(x)]

⊤[
√
wx′f(x′)]

]2
− 2

τx,x′wx,x′
√
wx

√
wx′

[
√
wxf(x)]

⊤[
√
wx′f(x′)] +

τ2x,x′w2
x,x′

wxwx′
−

τ2x,x′w2
x,x′

wxwx′

}
=

∑
x,x′

1

τ2x,x′

[
τx,x′

wx,x′
√
wx

√
wx′

− [
√
wxf(x)]

⊤[
√
wx′f(x′)]

]2
− 1

τ2x,x′

∑
x,x′

τ2x,x′w2
x,x′

wxwx′

:= ∥T ⊙ Ā− FF⊤∥2wF − 1

τ2x,x′

∑
x,x′

τ2x,x′w2
x,x′

wxwx′
, (41)

where we denote T := (τx,x′)
x,x′∈{xi}n(r+1)

i=1
, Ā := D−1/2AD−1/2, A := (wx,x′)

x,x′∈{xi}n(r+1)
i=1

,

D := diag(w1, . . . , wn(r+1)), F = (
√
wxf(x))x∈{xi}n(r+1)

i=1
, T ⊙ Ā as the element-wise product of

matrices T and Ā, and ∥ · ∥wF as the weighted Frobenius norm where ∥B∥2wF :=
∑

x,x′
1

τ2
x,x′

b2x,x′

for arbitrary matrix B = (bx,x′) ∈ Rn(r+1)×n(r+1).

Note that given the adjacency matrix of the similarity graph A and the temperature matrix T , the
second term in equation 41 is a constant. Therefore, minimizing the temperature scaling loss LT over
f(x) is equivalent to minimizing the matrix factorization loss Lmf−T := ∥T ⊙ Ā− FF⊤∥2wF over
F .

Before we proceed to the proof of Theorem 4.5, we first extend Theorem B.3 in HaoChen et al. (2021)
to the temperature scaling loss by deriving the matrix factorization error bound under the weighted
Frobenius norm.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Lemma B.1. Let f∗
pop ∈ argminf :X→Rk LT(f) be a minimizer of the population temperature-

scaling loss LT(f). Then for any labeling function ŷ : X → [r], there exists a linear probe
B∗ ∈ Rr×k with norm ∥B∗∥F ≤ 1/(1− λk) such that

Ex̄∼PX̄ ,x∼A(·|x̄)

[
∥y⃗ −B∗f∗

pop(x)∥22
]
≤ ϕ̃ŷ

1− λk+1
+ 4∆(y, ŷ), (42)

where y⃗(x̄) is the one-hot embedding of y(x̄), and

ϕ̃ŷ =
∑

x,x′∼X

wx,x′

τ2x,x′
1[ŷ(x) ̸= ŷ(x′)]. (43)

Furthermore, the error can be bounded by

ET = Prx̄∼PX̄ ,x∼A(·|x̄)

(
gfpop∗,B∗ (x) ̸= y(x̄)

)
≤ 2ϕ̃ŷ

1− λk+1
+ 8∆(y, ŷ). (44)

We also need the following two supporting lemmas to prove Lemma B.1.
Lemma B.2. Let L be the normalized Laplacian matrix of some graph G, vi be the i-th smallest
unit-norm eigenvector of L with eigenvalue 1− λi, and R̃(u) := ũ⊤Lũ

u⊤u
for a vector u ∈ RN , where

ũ = (ui/τi)
N
i=1. Then for any k ∈ Z+ such that k < N and 1 − λk+1 > 0, there exists a vector

b ∈ Rk with norm ∥b∥2 ≤ ∥u∥2 such that∥∥∥u−
k∑

i=1

bivi

∥∥∥2
w
≤ R̃(u)

1− λk+1
∥u∥22, (45)

where ∥ · ∥ denotes the weighted l2-norm with weights τ−2 = (1/τ2i )
N
i=1.

Proof of Lemma B.2. We can decompose the vector u in the eigenvector basis as

u =

N∑
i=1

ζivi. (46)

Let b ∈ Rk be the vector such that bi = ζi. Then we have ∥b∥22 ≤ ∥u∥22 and∥∥∥u−
k∑

i=1

bivi

∥∥∥2
w
= ∥

N∑
i=k+1

ζivi∥2w

=

N∑
i=k+1

ζ2i /τ
2
i

≤ 1

1− λk+1

N∑
i=k+1

(1− λi)ζ
2
i /τ

2
i

=
1

1− λk+1

N∑
i=k+1

ζ2i /τ
2
i v

⊤
i (1− λi)vi

=
1

1− λk+1

N∑
i=k+1

ζ2i /τ
2
i v

⊤
i Lvi

=
1

1− λk+1

N∑
i=k+1

(ζi/τi · vi)⊤L(ζi/τi · vi). (47)

Denote ũ =
∑

i=1 ζi/τi · vi and R̃(u) := ũ⊤Lũ
u⊤u

. Then we have∥∥∥u−
k∑

i=1

bivi

∥∥∥2
w
≤ R̃(u)

1− λk+1
∥u∥22. (48)
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Lemma B.3. In the setting of Lemma B.2, let ŷ be an extended labeling function. Fix i ∈ [r]. Define
function uŷ

i (x) :=
√
wx · 1[ŷ(x) = i] and uŷ

i is the corresponding vector in RN . Also define the
following quantity

ϕ̃ŷ
i :=

∑
x,x′∈X wx,x′/τ2x,x′ · 1[(ŷ(x) = i ∧ ŷ(x′) ̸= i)or(ŷ(x) ̸= i ∧ ŷ(x′) = i)]∑

x∈X wx · 1[ŷ(x) = i]
. (49)

Then we have

R̃(uŷ
i ) =

1

2
ϕ̃ŷ
i . (50)

Proof of Lemma B.3. Let f be any function X → R, define function u(x) :=
√
wx · f(x). Let

u ∈ RN be the vector corresponding to u. Then by definition of Laplacian matrix, we have

ũ⊤Lũ = ∥ũ∥22 − ũD−1/2AD−1/2ũ

=
∑
x∈X

wx/τ
2
xf(x)

2 −
∑

x,x′∈X
wx,x′/τ2x,x′f(x)f(x′)

=
1

2

∑
x,x′∈X

wx,x′/τ2x,x′ [f(x)− f(x′)]2. (51)

Therefore we have

R̃(uŷ
i ) =

1

2

∑
x,x′∈X wx,x′/τ2x,x′ [f(x)− f(x′)]2∑

x∈X wxf(x)2
. (52)

Setting f(x) = 1[ŷ(x) = i] finishes the proof.

Proof of Lemma B.1. Let Fsc = [v1, v2, . . . , vk] be the matrix that contains the smallest k eigenvec-
tors of L = I − Ā as columns, and fsc is the corresponding feature extractor. By Lemma B.2, there
exists a vector bi ∈ Rk with norm bound ∥bi∥2 ≤ ∥uŷ

i ∥2 such that

∥uŷ
i − Fscbi∥2w ≤ R̃(uŷ

i )

1− λk+1
∥uŷ

i ∥
2
2. (53)

Combined with Lemma B.3, we have

∥uŷ
i − Fscbi∥2w ≤ ϕ̃ŷ

i

2(1− λk+1)
·

∑
x∈X·1[ŷ(x)=i]

=
1

2(1− λk+1)

∑
x,x′∈X

wx,x′/τ2x,x′ · 1[(ŷ(x) = i ∧ ŷ(x′) ̸= i)or(ŷ(x) ̸= i ∧ ŷ(x′) = i)].

(54)

Let matrix U := (uŷ
i )

k
i=1, and let u : X → Rk be the corresponding feature extractor. Define matrix

B ∈ RN×k such that B⊤ = (b1, . . . , bk). Summing equation 54 over all i ∈ [k] and by definition of
ϕ̃ŷ we have

∥U − FscB
⊤∥2wF ≤ 1

2(1− λk+1)

∑
x,x′∈X

wx,x′/τ2x,x′ · 1[ŷ(x) ̸= ŷ(x′)] =
ϕ̃ŷ

2(1− λk+1)
. (55)

By Theorem 4.4, for a feature extractor f∗
pop that minimizes the temperature scaling loss LT̊ , the

function f∗
mf(x) :=

√
wx · f∗

pop is a minimizer of the matrix factorization loss Lmf−T. Then we have

Ex̄∼PX̄ ,x∼A(·|x̄)∥y⃗(x)−B∗f∗
pop(x)∥22 ≤ 2Ex̄∼PX̄ ,x∼A(·|x̄)∥⃗̂y(x)−B∗f∗

pop(x)∥22 + 2Ex̄∼PX̄ ,x∼A(·|x̄)∥⃗̂y(x)− y⃗(x)∥22
= 2

∑
x∈X

wx · ∥⃗̂y(x)−B∗f∗
pop(x)∥22 + 4∆(y, ŷ)

= 2∥U − FscB
⊤∥2wF + 4∆(y, ŷ)

≤ ϕ̃ŷ

1− λk+1
+ 4∆(y, ŷ). (56)
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Then we move on to the formal proof of Theorem 4.5.

Proof of Theorem 4.5. According to equation 35 the proof of Theorem 4.3, if we let

τx,x′ =



(1− α) + nα+ nrβ + ndr(γ − β)

(1− α) + nα+ nrβ
, for y(x) = y(x′), x, x′ ∈ Dd,√

(1− α) + nα+ nrβ + ndr(γ − β)√
(1− α) + nα+ nrβ

, for x ∈ Dd or x′ ∈ Dd,

[(1− α) + nα+ nrβ + ndr(γ − β)]β

[(1− α) + nα+ nrβ]γ
for y(x) ̸= y(x′), x, x′ ∈ Dd,

1, otherwise,

(57)

then we have

τx,x′ · wx,x′

wxwx′
=



1

(1− α) + nα+ nrβ
for x = x′,

α

(1− α) + nα+ nrβ
for x ̸= x′, y(x) = y(x′),

β

(1− α) + nα+ nrβ
otherwise.

(58)

In this case, T ⊙Ā is equivalent to the normalized similarity matrix of data without difficult examples.

By Lemma B.1, we have

ET ≤ 2ϕ̃ŷ

1− λk+1
+ 8∆(y, ŷ). (59)

By Assumption 3.1, we have ∆(y, ŷ) ≤ δ. Besides, since τx,x′ ≤ 1 for y(x) ̸= y(x′), x, x′ ∈ Dc,
and otherwise τx,x′ ≥ 1, we have

ϕ̃ŷ =
∑

x,x′∈X
wx,x′/τ2x,x′1[ŷ(x) ̸= ŷ(x′)]

≤
∑

x,x′∈X\{x,x′:x,x′∈Dc}

wx,x′1[ŷ(x) ̸= ŷ(x′)] +
∑

y(x)̸=y(x′),x,x′∈Dc

(γ/β)2wx,x′1[ŷ(x) ̸= ŷ(x′)]

=
∑

x,x′∈X\{x,x′:x,x′∈Dc}

Ex̄∼PX̄ [A(x|x̄)A(x′|x̄) · 1[ŷ(x) ̸= ŷ(x′)]]

+ (γ/β)2
∑

x,x′∈Dc

Ex̄∼PX̄ [A(x|x̄)A(x′|x̄) · 1[ŷ(x) ̸= ŷ(x′)]]

≤
∑

x,x′∈X\{x,x′:x,x′∈Dc}

Ex̄∼PX̄ [A(x|x̄)A(x′|x̄) · (1[ŷ(x) ̸= ŷ(x̄)] + 1[ŷ(x′) ̸= ŷ(x̄)])]

+ (γ/β)2
∑

x,x′∈Dc

Ex̄∼PX̄ [A(x|x̄)A(x′|x̄) · (1[ŷ(x) ̸= ŷ(x̄)] + 1[ŷ(x′) ̸= ŷ(x̄)])]

= 2[1− (nd/n)
2]Ex̄∼PX̄ [A(x|x̄) · 1[ŷ(x) ̸= ŷ(x̄)]] + 2(γ/β)2(nd/n)

2Ex̄∼PX̄ [A(x|x̄) · 1[ŷ(x) ̸= ŷ(x̄)]]

= 2[1− (nd/n)
2 + (γ/β)2(nd/n)

2]δ. (60)

Therefore we have

ET ≤ 2ϕ̃ŷ

1− λk+1
+ 8∆(y, ŷ) ≤ [1− (nd/n)

2 + (γ/β)2(nd/n)
2] · 4δ

1− 1−α
(1−α)+nα+nrβ

+ 8δ. (61)
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B.3 RELAXATION ON THE IDEAL ADJACENCY MATRIX

To enhance the connection of the theoretical modeling of difficult examples (Section 3.2) to real-world
scenarios, we hereby discuss a possible relaxation on the ideal adjacency matrix of the similarity
graph.

The adjacency matrix could be relaxed by adding random terms to the similarity values. Specifically,
we replace A with Ã = (ãij), where ãii = 1, and ãij = ãij + ϵ · εij for i ̸= j, aij takes values in
{α, β, γ}, εij = εji are i.i.d. random variables with mean 0 and variance 1, ϵ > 0 is a small constant.
Then Ã can be decomposed into

Ã = A+ ϵ ·W − ϵ · diag(εii), (62)
where W turns out to be a real Wigner matrix. Note that as Eεij = 0, the normalization matrix
D̃ → ED̃ = D, as n(r+1) → ∞, and therefore we have ¯̃A = D̃−1/2ÃD̃−1/2 ≈ D−1/2ÃD−1/2.

For mathematical convenience, in the following analysis, we instead perform the relaxation on the
normalized adjacency matrix Ā, and investigate

˜̄A = Ā+ ϵ′ ·W ′ − ϵ′ · diag(εii), (63)
where ϵ > 0 and W is a Wigner’s matrix.
Theorem B.4 (Generalized version of Theorem 3.3). Denote Ew.o. as the linear probing error of a
contrastive learning model trained on a dataset without difficult examples. Under the generalized
assumption that A′ = A+ϵW , where W is a Wigner matrix with εii following the Dirac distribution,
then if n(r + 1) is large enough, we have

Ew.o. ≤
4δ

1− 1−α
(1−α)+nα+nrβ − 1

(1−α)+n(α+rβ)x0 · ϵ
+ 8δ,

where x0 ∈ (0, 2) is the unique solution to the following Kepler’s equation
1

2
x0

√
4− x2

0 + 2arg sin(x0/2) =
[
1− 2

r + 1

nd

n

]
π.

Theorem B.5 (Generalized version of Theorem 3.4). Denote Ew.d. as the linear probing error of
a contrastive learning model trained on a dataset with nd difficult examples per class. Under the
generalized assumption that A′ = A + ϵW , where W is a Wigner matrix with εii following the
Dirac distribution, if n(r + 1) is large enough and r + 1 ≤ k < nd + r + 1, we have

Ew.d. ≤
4δ

1− (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β) −

1
(1−α)+n(α+rβ)x0 · ϵ

+ 8δ.

Remark 1. (Value of x0) We derive the value of x0 through numerical methods for multiple datasets,
by using the empirical values of α, β, and γ calculated on the proxy augmentation graph. We have
x0 = 1.894 for CIFAR-10, x0 = 1.976 for CIFAR-100, and x0 = 1.995 for Imagenet-1k. Intuitively,
according to Wigner’s Semicircle Law, because nd ≪ n(r + 1), the value of x0 is near 2.

Remark 2. (Range of ϵ) The bounds are valid if 1−α
(1−α)+nα+nrβ + 1

(1−α)+n(α+rβ)x0 · ϵ < 1

and (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β) + 1

(1−α)+n(α+rβ)x0 · ϵ < 1. As (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β) >

1−α
(1−α)+nα+nrβ , we require ϵ < ϵbound =

1− (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β)

1
(1−α)+n(α+rβ)

x0
.

Remark 3. (Existing conclusions still hold) Note that the effect of the random similarity ϵ·εij is to add
an additional term to the upper bound of the eigenvalue, and the effect is the same with and without
the existence of difficult examples. When ϵ = 0, Theorems B.4 and B.5 degenerates to Theorems 3.3
and 3.4. . Moreover, as Corollary 4.1 can be directly derived by Theorem 3.3, the generalized version
becomes ER ≤ 4δ

1− 1−α
(1−α)+(n−nd)α+(n−nd)rβ

− 1
(1−α)+(n−nd)(α+rβ)

x0·ϵ
+ 8δ. Similarly, as the bounds in

Theorems 4.3 and 4.5 are based on a modified similarity matrix, we have EM = Ew.o. (Theorem 4.3)
and ET ≤ 4[1−(nd/n)

2+(γ/β)2(nd/n)
2]δ

1− 1−α
(1−α)+nα+nrβ

− 1
(1−α)+n(α+rβ)

x0·ϵ
+ 8δ (Theorem 4.5), where the theoretical insights of

these two theorems remain unchanged. That is, even under the generalized assumptions, we still have
the conclusion that sample removal, margin tuning, and temperature scaling improve the error bound
under the existence of difficult examples.
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Proof. Because EW = 0, when n(r + 1) is large enough, after normalization, we have Ā′ =
Ā + 1

(1−α)+n(α+rβ) · ϵW . By Equation 13 in Fulton (2000), when r + 1 ≤ k < nd + r + 1, we
have the k + 1-th largest eigenvalue of Ā′ satisfying

λ′
k+1 ≤ min

i+j=k+2
λi +

1

(1− α) + n(α+ rβ)
· ϵνj ≤ λr+2 +

1

(1− α) + n(α+ rβ)
· ϵνnd

,

where λi is the i-th largest eigenvalue of Ā and νj is the j-th largest eigenvalue of W .

On the one hand, according to the proofs of Theorems 3.3 and 3.4, we have λr+2 = 1−α
(1−α)+n(α+rβ)

(Theorem 3.3) and λr+2 ≤ (1−α)+r(γ−β)
(1−α)+n(α+rβ)+ndr(γ−β) (Theorem 3.3).

On the other hand, Because W is a Wigner matrix, we have its empirical spectral measure ν =
1

n(r+1)

∑n(r+1)
i=1 δνi

converging weakly almost surely to the quarter-circle distribution on [0, 2], with

density f(ν) = 1
2π

√
4− x21[|x| ≤ 2]. When j ≤ n(r + 1)/2 and n(r + 1) large enough, by

symmetry of f(ν), we have

1

2

[
1− 2j

n(r + 1)

]
=

∫ νj

x=0

f(ν), dν =
1

2π

[1
2
νj

√
4− ν2j + 2arg sin(νj/2)

]
. (64)

Then combine the above calculations, we have λ′
k+1 ≤ 1−α

(1−α)+n(α+rβ) + νj for the generalized

Theorem 3.1 and λ′
k+1 ≤ (1−α)+r(γ−β)

(1−α)+n(α+rβ)+ndr(γ−β) +
1

(1−α)+n(α+rβ) · ϵνj , where νj is the solution
to equation 64. Then we complete the proof by deriving the error bounds using the upper bounds of
λ′
k+1.

C USAGE OF LLM

We commit to using LLMs for text polishing based on prompts. All polished text are double-checked
by authors to ensure accuracy, avoid over-claims, and prevent confusion.
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