

# 000 001 002 003 004 005 DIFFICULT EXAMPLES HURT UNSUPERVISED CON- 006 TRASTIVE LEARNING: A THEORETICAL PERSPECTIVE 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027

## ABSTRACT

028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Unsupervised contrastive learning has shown significant performance improvements in recent years, often approaching or even rivaling supervised learning in various tasks. However, its learning mechanism is fundamentally different from supervised learning. Previous works have shown that difficult examples (well-recognized in supervised learning as examples around the decision boundary), which are essential in supervised learning, contribute minimally in unsupervised settings. In this paper, perhaps surprisingly, we find that the direct removal of difficult examples, although reduces the sample size, can boost the downstream classification performance of contrastive learning. To uncover the reasons behind this, we develop a theoretical framework modeling the similarity between different pairs of samples. Guided by this framework, we conduct a thorough theoretical analysis revealing that the presence of difficult examples negatively affects the generalization of contrastive learning. Furthermore, we demonstrate that the removal of these examples, and techniques such as margin tuning and temperature scaling can enhance its generalization bounds, thereby improving performance. Empirically, we propose a simple and efficient mechanism for selecting difficult examples and validate the effectiveness of the aforementioned methods, which substantiates the reliability of our proposed theoretical framework.

## 1 INTRODUCTION

031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Contrastive learning has demonstrated exceptional empirical performance in the realm of unsupervised representation learning, effectively learning high-quality representations of high-dimensional data using substantial volumes of unlabeled data by aligning an anchor point with its augmented views in the embedding space (Caron et al., 2020; Chen et al., 2020a;b; 2021; He et al., 2020). Unsupervised contrastive learning may own quite different working mechanisms from supervised learning, as discussed in Joshi & Mirzasoleiman (2023). For example, difficult examples (also known as difficult-to-learn examples in Joshi & Mirzasoleiman (2023)), which contribute the most to supervised learning, contribute the least or even negatively to contrastive learning performance. They show that on image datasets such as CIFAR-100 and STL-10, excluding 20%-40% of the examples does not negatively impact downstream task performance. More surprisingly, their results showed, but somehow failed to notice, that excluding these samples on certain datasets like STL-10 can lead to performance improvements in downstream tasks.

046  
047  
048  
049  
050  
051  
052  
053  
Taking a step further beyond their study, we find that this surprising result is not just a specialty of a certain dataset, but a universal phenomenon across multiple datasets. Specifically, we run SimCLR on the original CIFAR-10, CIFAR-100, STL-10, and TinyImagenet datasets, the SAS core subsets (Joshi & Mirzasoleiman, 2023) selected with a deliberately tuned size, and a subset selected by a sample removal mechanism to be proposed in this paper. In Figure 1, we report the gains of linear probing accuracy by using the subsets compared with the original datasets. We see that on all these benchmark datasets, excluding a certain fraction of examples results in comparable and even better downstream performance. This result is somewhat anti-intuitive because deep learning models trained with more samples, benefiting from lower sample error, usually perform better. Yet our observation indicates

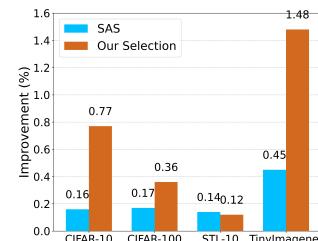


Figure 1: Excluding difficult examples improves unsupervised contrastive learning.

054 that difficult examples can hurt unsupervised contrastive learning performances. This observation  
 055 naturally raises a question:  
 056

057 *What is the mechanism behind difficult examples impacting the learning process of  
 058 unsupervised contrastive learning?*

059 To comprehensively characterize such impact, we first develop a theoretical framework, i.e., the simi-  
 060 larity graph, to describe the similarity between different sample pairs. Specifically, pairs containing  
 061 difficult samples, termed as difficult pairs, exhibit higher similarities than other different-class pairs.  
 062 Based on this similarity graph, we derive the linear probing error bounds of contrastive learning  
 063 models trained with and without difficult samples, proving that the presence of difficult examples  
 064 negatively affects performance. Next, we prove that the most straightforward idea of directly remov-  
 065 ing difficult examples improves the generalization bounds. Further, we also theoretically demon-  
 066 strate that commonly used techniques such as margin tuning (Zhou et al., 2024) and temperature scaling  
 067 (Khaertdinov et al., 2022; Kukleva et al., 2023; Zhang et al., 2021) mitigate the negative effects of  
 068 difficult examples by modifying the similarity between sample pairs from different perspectives,  
 069 thereby improving the generalization bounds. Experimentally, we propose a simple but effective  
 070 mechanism for selecting difficult samples that does not rely on pre-trained models. The performance  
 071 improvements achieved by addressing difficult samples through the aforementioned methods align  
 072 with our theoretical analysis of the generalization bounds.

073 The contributions of this paper are summarized as follows:

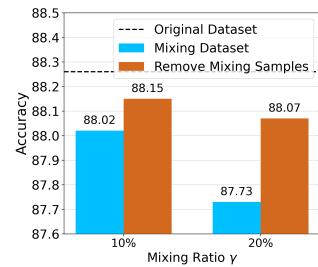
- 074 • We find that removing certain training examples boosts the performance of unsupervised  
 075 contrastive learning is a universal empirical phenomenon on multiple benchmark datasets.  
 076 Through a mixing-image experiment, we conjecture that the removal of difficult examples is  
 077 the cause.
- 078 • We design a theoretical framework that models the similarity between different pairs of  
 079 samples to characterize how difficult samples in contrastive learning affect the generalization  
 080 of downstream tasks. Based on this framework, we theoretically prove that the existence of  
 081 difficult samples hurts contrastive learning performances.
- 082 • We theoretically analyze how possible solutions, i.e. directly removing difficult samples,  
 083 margin tuning, and temperature scaling, can address the issue of difficult examples by  
 084 improving the generalization bounds in different ways.
- 085 • In experiments, we propose a simple and efficient mechanism for selecting difficult examples  
 086 and validate the effectiveness of the aforementioned methods, which substantiates the  
 087 reliability of our proposed theoretical framework.

## 089 2 DIFFICULT EXAMPLES HURT: A MIXING IMAGE EXPERIMENT

090 We start this section by revealing that difficult examples do hurt contrastive learning performances  
 091 through a proof-of-concept toy experiment.

092 The concept of difficult examples is borrowed from supervised learning, denoting the examples  
 093 around the decision boundary. It is somewhat related to hard negative samples, a pure unsupervised  
 094 learning concept defined as highly similar negative samples to the anchor point, but is different in  
 095 nature. (See Appendix A.1 for more discussions.)

096 However, in real datasets, as difficult examples rely on the specific clas-  
 097 sifier trained in the supervised learning manner, we can not precisely  
 098 know the ground truth difficult examples. Therefore, we in turn add  
 099 additional difficult examples and observe the effects of these examples.  
 100 Specifically, we generate a mixing-image dataset containing more diffi-  
 101 cult samples by mixing a  $\gamma$  fraction of images on CIFAR-10 dataset at  
 102 the pixel level (these samples lying around the class difficult), termed  
 103 as  $\gamma$ -Mixed CIFAR-10 datasets. Then, we train the representative  
 104 contrastive learning algorithm SimCLR (Chen et al., 2020a) on the  
 105 original, 10%- and 20%-Mixed CIFAR-10 datasets using ResNet18  
 106 model. We report the linear probing accuracy in Figure 2.



107 Figure 2: Excluding (mixed)  
 108 difficult examples improves  
 109 performance.

108 Compared with the model trained on the original dataset, we find that with the mixed difficult  
 109 examples included in the training dataset, the performance of contrastive learning drops. This result  
 110 indicates that the (mixed) difficult samples significantly negatively impact contrastive learning. As  
 111 the mixing ratio  $\gamma$  increases, the performance drops, indicating that more difficult examples lead to  
 112 worse contrastive learning performances.

113 Moreover, we show that removing the (mixed) difficult samples can boost performance. Specifically,  
 114 we compare performance on the Mixed CIFAR-10 datasets with that on the datasets removing the  
 115 mixed examples. As shown in Figure 2, despite being trained with a smaller sample size, models  
 116 trained on datasets removing the mixed examples perform better than the ones trained with the mixed  
 117 examples, which further verifies that difficult examples hurt unsupervised contrastive learning, and  
 118 removal of these difficult examples can boost learning performance.

119

### 120 3 THEORETICAL CHARACTERIZATION OF WHY DIFFICULT EXAMPLES HURT 121 CONTRASTIVE LEARNING

122

123 In this section, to explain why difficult examples negatively impact the performance of contrastive  
 124 learning, we provide theoretical evidence on generalization bounds. In Section 3.1 we present the  
 125 necessary preliminaries that lay the foundation for our theoretical analysis. In Section 3.2, we  
 126 introduce the similarity graph describing difficult examples. In Section 3.3, we respectively derive  
 127 error bounds of contrastive learning with and without difficult examples.

128

#### 129 3.1 PRELIMINARIES

130

131 **Notations.** Given a natural data  $\bar{x} \in \bar{\mathcal{X}} := \mathbb{R}^d$ , we denote the distribution of its augmentations  
 132 by  $\mathcal{A}(\cdot|\bar{x})$  and the set of all augmented data by  $\mathcal{X}$ , which is assumed to be finite but exponentially  
 133 large. For mathematical simplicity, we assume class-balanced data with  $n$  denoting the number of  
 134 augmented samples per class and  $r+1$  denoting the number of classes, hence  $|\mathcal{X}| = n(r+1)$ . Let  $n_d$   
 135 represent the number of difficult examples per class and  $\mathbb{D}_d$  the set of difficult examples. In addition,  
 136 we denote  $k$  as the feature dimension in contrastive representation learning.

137 **Similarity Graph (Augmentation Graph).** As described in HaoChen et al. (2021), an augmentation  
 138 graph  $\mathcal{G}$  represents the distribution of augmented samples, where the edge weight  $w_{xx'}$  signifies the  
 139 joint probability of generating augmented views  $x$  and  $x'$  from the same natural data, i.e.,  $w_{xx'} :=$   
 140  $\mathbb{E}_{\bar{x} \sim \mathcal{P}}[\mathcal{A}(x|\bar{x})\mathcal{A}(x'|\bar{x})]$ , where  $\mathcal{P}$  denotes the distribution of natural data. The total probability  
 141 across all pairs of augmented data sums up to 1, i.e.,  $\sum_{x,x' \in \mathcal{X}} w_{xx'} = 1$ . The adjacency matrix  
 142 of the augmentation graph is denoted as  $\mathbf{A} = (w_{xx'})_{x,x' \in \mathcal{X}}$ , and the normalized adjacency matrix  
 143 is  $\bar{\mathbf{A}} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ , where  $\mathbf{D} := \text{diag}(w_x)_{x \in \mathcal{X}}$ , and  $w_x := \sum_{x' \in \mathcal{X}} w_{xx'}$ . The concept of  
 144 augmentation graph is further extended to describe similarities beyond image augmentation, such as  
 145 cross-domain images (Shen et al., 2022), multi-modal data (Zhang et al., 2023), and labeled examples  
 146 (Cui et al., 2023).

147 **Contrastive losses.** For theoretical analysis, we consider the spectral contrastive loss  $\mathcal{L}(f)$  proposed  
 148 by HaoChen et al. (2021) as a good performance proxy for the widely used InfoNCE loss

$$\mathcal{L}_{\text{Spec}}(f) := -2 \cdot \mathbb{E}_{x,x^+} [f(x)^\top f(x^+)] + \mathbb{E}_{x,x'} \left[ (f(x)^\top f(x'))^2 \right], \quad (1)$$

149 where  $x$ ,  $x^+$ , and  $x'$  represent the anchor, positive sample, and negative sample, respectively. As  
 150 proved in Balestrieri & LeCun (2022); Johnson et al. (2022); Tan et al. (2024), the spectral contrastive  
 151 loss and the InfoNCE loss share the same population minimum with variant kernel derivations. Further,  
 152 the spectral contrastive loss is theoretically shown to be equivalent to the matrix factorization loss.  
 153 For  $F = (u_x)_{x \in \mathcal{X}}$ , where  $u_x = w_x^{1/2} f(x)$ , the matrix factorization loss is:

$$\mathcal{L}_{\text{mf}}(F) := \|\bar{\mathbf{A}} - FF^\top\|_F^2 = \mathcal{L}_{\text{Spec}}(f) + \text{const.} \quad (2)$$

#### 154 3.2 MODELING OF DIFFICULT EXAMPLES

155

156 We start by introducing a similarity graph, to describe the relationships between various samples.  
 157 In contrastive learning, examples are used in a pairwise manner, so we define difficult sample pairs

as sample pairs that include at least one difficult sample. As difficult examples lie around the [decision boundary](#), they should have higher augmentation similarity to examples from different classes. Therefore, it is natural for us to define the difficult pairs as different-class sample pairs with higher similarity. Correspondingly, easy pairs are defined as different-class sample pairs containing no difficult samples, or different-class sample pairs with lower similarity.

Specifically, we define the augmentation similarity between a sample and itself as 1. Then we assume the similarity between same-class samples is  $\alpha$  (Figure 3(a)), the similarity between a sample (conceptually far away from the class boundary) and all samples from other classes is  $\beta$  (Figure 3(b)), and the similarity between different-class boundary samples (conceptually close to the class boundary) is  $\gamma$  (Figure 3(c)). Naturally, we have  $\beta < \gamma < \alpha < 1$ .

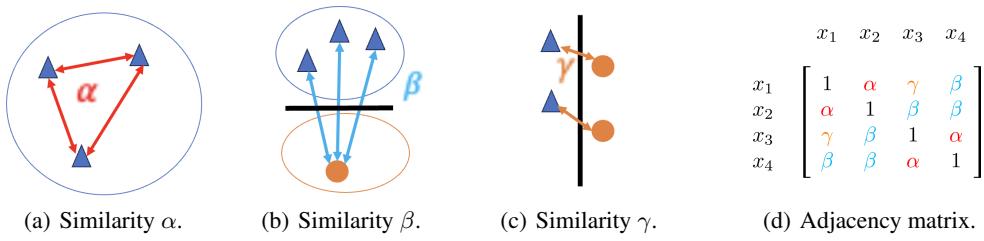


Figure 3: Modeling of difficult examples. The similarity between same-class samples is  $\alpha$  (a), the similarity between different-class difficult samples is  $\gamma$  (c), and the similarity between other samples is  $\beta$  (b). The adjacency matrix of a 4-sample subset is shown in (d).

In Figure 3(d), we illustrate our modeling of adjacency matrix through a 4-sample subset  $\mathbb{D}_4 := x_1, x_2, x_3, x_4$ , where  $x_1$  and  $x_2$  belong to Class 0, and  $x_3$  and  $x_4$  belong to Class 1. We define  $x_1$  and  $x_3$  as difficult samples (assuming these two samples are distributed around the classification boundary as depicted in Figure 3(c)), i.e.  $x_1, x_3 \in \mathbb{D}_d$ . Conversely, we define  $x_2$  and  $x_4$  (assuming these samples are distributed far from the classification boundary) as easy samples, i.e.  $x_2, x_4 \in \mathbb{D}_4 \setminus \mathbb{D}_d$ . The relationship between each pair of samples in  $\mathbb{D}_4$  can be mathematically formulated as an adjacency matrix shown in Figure 3(d).

In addition, the above modeling could be relaxed by adding random terms to the similarity values. Specifically, for some constant  $\epsilon > 0$ , for a similarity matrix  $\mathbf{A} = (\tilde{a}_{ij})$ , we replace  $a_{ij}$  with  $\tilde{a}_{ij} = a_{ij} + \epsilon \cdot \varepsilon_{ij}$  for  $i \neq j$ , where  $a_{ij}$  takes values in  $\{\alpha, \beta, \gamma\}$ ,  $\varepsilon_{ij} = \varepsilon_{ji}$  are i.i.d. random variables with mean 0 and variance 1. We discuss the relaxation in detail in Section B.3.

In what follows, our theoretical analysis is based on the generalized similarity graph containing  $|\mathcal{X}| = n(r + 1)$  samples. The formal definition of the generalized adjacency matrix is in Appendix B.

### 3.3 ERROR BOUNDS WITH AND WITHOUT DIFFICULT EXAMPLES

Based on the similarity graph in Section 3.2, we derive the linear probing error bounds for contrastive learning models trained with and without difficult examples in Theorems 3.3 and 3.4. We mention that we adopt the label recoverability (with labeling error  $\delta$ ) and realizability assumptions from HaoChen et al. (2021).

**Assumption 3.1** (Labels are recoverable from augmentations). Let  $\bar{x} \sim \mathcal{P}_{\bar{\mathcal{X}}}$  and  $y(\bar{x})$  be its label. Let the augmentation  $x \sim \mathcal{A}(\cdot | \bar{x})$ . We assume that there exists a classifier  $g$  that can predict  $y(\bar{x})$  given  $x$  with error at most  $\delta$ , i.e.  $g(x) = y(\bar{x})$  with probability at least  $1 - \delta$ .

**Assumption 3.2** (Realizability). Let  $\mathcal{F}$  be a hypothesis class containing functions from  $\mathcal{X}$  to  $\mathbb{R}^k$ . We assume that at least one of the global minima of  $\mathcal{L}_{\text{Spec}}$  belongs to  $\mathcal{F}$ .

Assumption 3.1 indicates that labels are recoverable from the augmentations, and Assumption 3.2 indicates that the universal minimizer of the population spectral contrastive loss can be realized by the hypothesis class. The proofs are shown in Appendix B.1.

216 **Theorem 3.3** (Error Bound without Difficult Examples). *Denote  $\mathcal{E}_{w.o.}$  as the linear probing error of  
217 a contrastive learning model trained on a dataset without difficult examples. Then*

$$219 \quad \mathcal{E}_{w.o.} \leq \frac{4\delta}{1 - \frac{1-\alpha}{(1-\alpha)+n\alpha+nr\beta}} + 8\delta. \quad (3)$$

221 **Theorem 3.4** (Error Bound with Difficult Examples). *Denote  $\mathcal{E}_{w.d.}$  as the linear probing error  
222 of a contrastive learning model trained on a dataset with  $n_d$  difficult examples per class. Then if  
223  $n_d \leq k \leq n_d + r + 1$ , there holds*

$$225 \quad \mathcal{E}_{w.d.} \leq \frac{4\delta}{1 - \frac{(1-\alpha)+r(\gamma-\beta)}{(1-\alpha)+n\alpha+nr\beta+n_d r(\gamma-\beta)}} + 8\delta. \quad (4)$$

228 **Discussions.** By comparing Theorems 3.3 and 3.4, also considering that  $\frac{(1-\alpha)+r(\gamma-\beta)}{(1-\alpha)+n\alpha+nr\beta+n_d r(\gamma-\beta)} >$   
229  $\frac{1-\alpha}{(1-\alpha)+n\alpha+nr\beta}$ , we see the presence of difficult examples leads to a strictly worse linear probing error  
230 bound for a contrastive learning model. Moreover, more challenging difficult examples (larger  $\gamma - \beta$ )  
231 result in worse error bounds. When  $\gamma = \beta$ , i.e. no difficult examples exist, the bound in Theorem 3.4  
232 reduces to that in Theorem 3.3.

233 Intuitively, through the augmentation graph, contrastive learning could be understood as a spectral  
234 clustering problem (HaoChen et al., 2021). As the difficult examples lie very close to the classi-  
235 fication boundary, they could fall into the wrong clusters during self-supervised pre-training. In  
236 the downstream applications, the wrongly clustered examples provide false prior knowledge to the  
237 downstream classification, which harms the performance of all test samples.

## 239 4 THEORETICAL CHARACTERIZATION ON ELIMINATING EFFECTS OF 240 DIFFICULT EXAMPLES

243 Building on the above unified theoretical framework, we theoretically analyze that directly removing  
244 difficult samples (Section 4.1), margin tuning (Section 4.2), and temperature scaling (Section 4.3)  
245 can handle difficult examples by improving the generalization bounds in different ways.

### 247 4.1 REMOVING DIFFICULT SAMPLES

248 In Figures 1 and 2, empirical experiments demonstrated that removing difficult samples can improve  
249 learning performance. Corollary 4.1 provides a theoretical explanation for this counter-intuitive  
250 phenomenon based on our established framework.

252 **Corollary 4.1.** *Denote  $\mathcal{E}_R$  as the linear probing error of a contrastive learning model trained on a  
253 selected subset removing all difficult examples  $\mathbb{D}_d$ . Then there holds*

$$254 \quad \mathcal{E}_R \leq \frac{4\delta}{1 - \frac{1-\alpha}{(1-\alpha)+(n-n_d)\alpha+(n-n_d)r\beta}} + 8\delta. \quad (5)$$

257 Corollary 4.1 shows that when the difficult examples are removed, the linear probing error bound  
258 has the same form as the case where no difficult examples are present (Theorem 3.3), but with  $n$   
259 replaced by  $n - n_d$ . Compared with the case without removing difficult examples (Theorem 3.4),  
260 the bound in equation 5 is smaller than that in equation 4 when  $\gamma - \beta > \frac{n_d(1-\alpha)(\alpha+r\gamma)}{r[(1-\alpha)+(n-n_d)(\alpha+r\beta)]}$ .  
261 This indicates that removing difficult examples enhances the error bound when these samples are  
262 significantly harder than the easy ones (i.e., large  $\gamma - \beta$ ) or when the number of difficult samples is  
263 small (i.e., small  $n_d$ ).

### 265 4.2 MARGIN TUNING

267 Aside from sample removal, we also consider using the margin tuning technique to deal with difficult  
268 examples. Specifically, we add additional margin parameters to the similarity of difficult pairs in the  
269 loss function (see Eq. 14). Here, we delve into how margin tuning can enhance the generalization in  
the presence of difficult examples.

270 **Theorem 4.2.** *The margin tuning loss is equivalent to the matrix factorization loss*

$$272 \quad \mathcal{L}_{\text{mf-M}}(F) := \|(\bar{\mathbf{A}} - \bar{\mathbf{M}}) - FF^\top\|_F^2, \quad (6)$$

273 where  $\bar{\mathbf{A}}$  is the normalized adjacency matrix, and  $\bar{\mathbf{M}}$  is the normalized margin matrix.

275 Theorem 4.2 indicates that adjusting margins alters the similarity graph by subtracting a normalized  
276 margin matrix  $\bar{\mathbf{M}}$  from the normalized similarity matrix  $\bar{\mathbf{A}}$ . Intuitively, by subtracting the additional  
277 similarity values of difficult examples with appropriately chosen margins, the remaining values will  
278 match those of easy examples. Specifically, in the following Theorem 4.3, we show that properly  
279 chosen margins can eliminate the negative impact of difficult examples.

280 **Theorem 4.3.** *Denote  $\mathcal{E}_M$  as the linear probing error for the margin tuning loss equation 31 trained  
281 on a dataset with difficult samples  $\mathbb{D}_d$ . If we let*

$$282 \quad m_{x,x'} = c_0/(c_1^2 c_2) \cdot (\gamma - \beta) \quad (7)$$

284 for  $y(x) \neq y(x')$ ,  $x, x' \in \mathbb{D}_d$ , where  $c_0 := (1 - \alpha) + n\alpha + (n - n_d)r\beta$ ,  $c_1 := (1 - \alpha) + n\alpha + nr\beta +$   
285  $n_d r(\gamma - \beta)$  and  $c_2 := (1 - \alpha) + n\alpha + nr\beta$ , and  $m_{x,x'} = 0$  for  $x, x' \notin \mathbb{D}_d$ , then we have

$$286 \quad \mathcal{E}_M = \mathcal{E}_{\text{w.o.}}. \quad (8)$$

288 Note that when  $n$  is large enough,  $m_{x,x'}$  for  $x$  or  $x' \notin \mathbb{D}_d$  are higher-order infinitesimals relative to  
289 equation 7, and primarily affect normalization rather than the core problem. Thus, we focus on cases  
290 where  $x, x' \in \mathbb{D}_d$  and defer specific forms of other  $m_{x,x'}$  values to the proofs for brevity.

291 Theorem 4.3 shows that with appropriately chosen margins, the linear probing error bound for  
292 the margin tuning loss in the presence of difficult examples becomes equivalent to the standard  
293 contrastive loss without such examples, as indicated in Theorem 3.3. Since equation 7 > 0, this  
294 suggests applying a positive margin to the difficult example pairs. Additionally, the more challenging  
295 the example pairs are (i.e., the larger  $\gamma - \beta$ ), the greater the margin value should be.

### 297 4.3 TEMPERATURE SCALING

298 We also consider the widely used temperature scaling technique in eliminating the negative effects  
299 of difficult examples. Specifically, we add an additional temperature scaling parameter to the base  
300 temperature of difficult pairs in the loss function and assign the base temperature to all the other pairs  
301 (see Eq. 15). Here, we investigate how temperature scaling can enhance generalization.

302 **Theorem 4.4.** *The temperature scaling loss is equivalent to the matrix factorization loss*

$$304 \quad \mathcal{L}_{\text{mf-T}}(F) := \|\mathbf{T} \odot \bar{\mathbf{A}} - FF^\top\|_{wF}^2, \quad (9)$$

306 where  $\bar{\mathbf{A}}$  is the normalized adjacency matrix of similarity graph,  $\mathbf{T} \odot \bar{\mathbf{A}}$  is the element-wise product  
307 of matrices  $\mathbf{T}$  and  $\bar{\mathbf{A}}$ , and  $\|\cdot\|_{wF}$  is the weighted Frobenius norm (specified in the proof).

308 Theorem 4.4 shows that adjusting temperatures modifies the similarity graph by multiplying the  
309 temperature values with the normalized similarity matrix  $\bar{\mathbf{A}}$ . Intuitively, by scaling the similarity  
310 values between difficult examples, we can match these values to those of easy examples, thereby  
311 mitigating the negative effects of difficult examples. Specifically, the following Theorem 4.5 outlines  
312 the appropriate temperature values to be chosen.

313 **Theorem 4.5.** *Denote  $\mathcal{E}_T$  as the linear probing error for the temperature scaling loss equation 40  
314 trained on a dataset with difficult samples  $\mathbb{D}_d$ . If we let*

$$315 \quad \tau_{x,x'} = (c_1/c_2)(\beta/\gamma) \quad (10)$$

317 for  $y(x) \neq y(x')$ ,  $x, x' \in \mathbb{D}_d$ , where  $c_1 := (1 - \alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)$  and  $c_2 :=$   
318  $(1 - \alpha) + n\alpha + nr\beta$ , and  $\tau_{x,x'} = 1$  for  $x, x' \notin \mathbb{D}_d$ , then we have

$$319 \quad \mathcal{E}_T \leq \frac{4[1 - (n_d/n)^2 + (\gamma/\beta)^2(n_d/n)^2]\delta}{1 - \frac{1-\alpha}{(1-\alpha)+n\alpha+nr\beta}} + 8\delta. \quad (11)$$

322 Likewise, here we only focus on the temperature values between difficult examples, and defer the  
323 specific forms of other  $\tau_{x,x'}$  values to the proofs for brevity.

324 Theorem 4.5 shows the linear probing error bound of the temperature scaling loss when trained on  
 325 data containing difficult examples. Specifically, with large  $n$  and  $n_d/n \rightarrow 0$ , we have  $\mathcal{E}_T/\mathcal{E}_{w.o.} - 1 \approx O((n_d/n)^2)$  and  $\mathcal{E}_{w.d.}/\mathcal{E}_{w.o.} - 1 \approx O(1/n)$ . This indicates that, when  $O(n_d) \lesssim O(n^{1/2})$ ,  
 326  $\mathcal{E}_T/\mathcal{E}_{w.o.} \lesssim \mathcal{E}_{w.d.}/\mathcal{E}_{w.o.}$ , meaning  $\mathcal{E}_T$  converges faster to  $\mathcal{E}_{w.o.}$ . Detailed calculations show that  
 327 when  $n_d < \sqrt{\frac{r}{(\alpha+r\beta)(\gamma+\beta)}}\beta \cdot n^{1/2}$ , there holds  $\mathcal{E}_T < \mathcal{E}_{w.d.}$ , which means that temperature scaling  
 328 improves the error bound. Note that we have approximately  $\tau_{x,x'} \propto \beta/\gamma$ . This inspires us to choose  
 329 smaller temperature values for the difficult example pairs. The more difficult the example pairs  
 330 (smaller  $\beta/\gamma$ ), the smaller the temperature values that should be chosen.  
 331

## 333 5 VERIFICATION EXPERIMENTS

336 This paper primarily focuses on theoretical analysis, explaining how different samples in contrastive  
 337 learning impact generalization. The experiments in this part are mainly designed to validate the  
 338 theoretical insights and demonstrate that the proposed directions for improving performance are  
 339 sound. The experiments are not intended to achieve state-of-the-art results but rather to confirm  
 340 the correctness of our theoretical findings. We hope that readers will appreciate the theoretical  
 341 contributions of this work and not focus excessively on the experimental results.

342 In Section 5.1, we present an efficient mechanism for selecting difficult samples. We then evaluate  
 343 the removal of difficult samples (Section 5.2), margin tuning (Section 5.3), and temperature scaling  
 344 (Section 5.4), all of which are theoretically established to mitigate the impact of these difficult  
 345 examples. In Section 5.5, we propose a **combined method**, and discuss the scalability under different  
 346 paradigms and the connection between difficult samples and long-tail distribution. The specific loss  
 347 forms can be found in Appendix A.2.

### 348 5.1 DIFFICULT EXAMPLES SELECTION

350 In this section, we design a simple yet efficient selection mechanism to validate our theoretical  
 351 analysis, without relying on additional pretrained models or incurring extra computational overhead  
 352 (Joshi & Mirzasoleiman, 2023).

353 To identify difficult sample pairs which from different classes but with high similarity, we com-  
 354 pute the cosine similarity of each sample to other samples in the same batch using features before  
 355 projector mapping. We define  $posHigh$  and  $posLow$  as percentiles of the similarity sorted in de-  
 356 scending order, where  $Sim_{posHigh}$  and  $Sim_{posLow}$  are the corresponding similarities. Generally,  
 357 following the characterization in Section 3.2 and Appendix B, we can roughly assume  $posHigh$   
 358 corresponds to  $1/(r+1)$ , where  $r+1$  is the class number<sup>1</sup>. Sample pairs with cosine similarities  
 359 above  $Sim_{posHigh}$  are considered from the same class. Sample pairs with the similarity between  
 360  $Sim_{posHigh}$  and  $Sim_{posLow}$  are considered as difficult examples. Sample pairs with cosine simi-  
 361 larities below  $Sim_{posLow}$  are considered as easy-to-learn samples from different classes. Here for  
 362  $posLow$ , we note that when optimizing  $\gamma$  of difficult examples, if some easy-to-learn samples are  
 363 involved, the process will also optimize  $\beta$ , which is a good thing for the representation learning to  
 364 push samples from different classes further apart. Therefore, we can easily find a value close to the  
 365 bottom of the sorted similarity for  $posLow$ , even 100%. Experiments in Figure 4(a) and Figure 4(b)  
 366 show that our method is not sensitive to the exact values of  $posHigh$  and  $posLow$ .

367 Using this selection mechanism, for an augmented sample pair  $(x_i, x_j)$  in the current batch, we define  
 368 the selecting indicator of difficult pairs as

$$p_{i,j} := \mathbf{1}_{[Sim_{posLow} \leq s_{ij} < Sim_{posHigh}]}, \quad (12)$$

369 where  $s_{i,j}$  denotes the cosine similarity between the representations of  $x_i$  and  $x_j$ , and  $\mathbf{1}_{[condition]}$   
 370 denotes the indicator function returning 1 if the condition holds and 0 otherwise. For each sample  $x_i$ ,  
 371 we get a vector  $P_i = (p_{i,j})_{j=1}^{2N}$  representing the indicator of difficult pairs. After calculating these  
 372 indicators for all samples in the current batch, we stack the vectors  $P_i$  row-wise to create the selection  
 373 matrix  $\mathbf{P}$ . In practice,  $P_i$  can be computed in parallel, making the computation of  $\mathbf{P}$  efficient. The  
 374 elements of  $\mathbf{P}$  are either 0 or 1, indicating whether pairs are difficult pairs or not.

375 <sup>1</sup>We do not need to know the exact label of each class. A rough class number is enough, which can be easily  
 376 known by clustering.

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

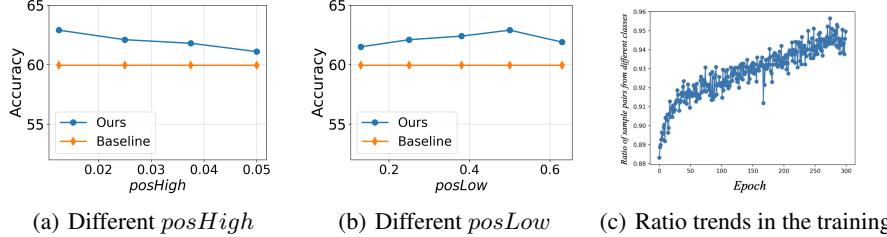
400

401

402

403

Figure 4: Parameter sensitivity of difficult example interval ends  $posHigh$  (4(a)) and  $posLow$  (4(b)). Parameter analysis on CIFAR-100: the trend of the ratio of sample pairs from different classes in  $(Sim_{posLow}, Sim_{posHigh})$  during the training process (4(c)).



We can use the class information to verify the proportions of sample pairs from different classes in  $(Sim_{posLow}, Sim_{posHigh})$  on CIFAR-10, which can demonstrate the effectiveness of our selection mechanism. As shown in Figure 4(c), along with the progress of training, the ratio of sample pairs from different classes approaches close to 100% within the range  $(Sim_{posLow}, Sim_{posHigh})$ .

## 5.2 REMOVING DIFFICULT SAMPLES

We here introduce a simple and practical method for removing difficult samples based on our proposed selection mechanism. Eliminating the impact of difficult samples means preventing sample pairs that include difficult samples from interfering with the training process. To achieve this, we use the selection matrix  $P$  to identify and remove difficult samples.

Table 1: Classification accuracy with or without removing difficult examples on CIFAR-10, CIFAR-100, STL-10 and TinyImagenet dataset using SimCLR. Results are averaged over three runs.

| Method            | CIFAR-10     | CIFAR-100    | STL-10       | TinyImagenet |
|-------------------|--------------|--------------|--------------|--------------|
| SimCLR (Baseline) | 88.26        | 59.95        | 75.98        | 69.58        |
| SimCLR (Removing) | <b>89.03</b> | <b>60.31</b> | <b>76.10</b> | <b>71.06</b> |

It can be observed from Table 1 that removing difficult examples yields a 0.8% performance boost on CIFAR-10, a 0.6% performance boost on CIFAR-100, and a 3.7% performance boost on TinyImagenet compared to the baseline method. We reach the same conclusion as in Joshi & Mirzasoleiman (2023): By removing difficult samples, we can achieve comparable results or even slight improvements over the baseline. However, removing difficult samples may not be the most effective method for handling difficult samples, because it shrinks sample size. Next, we investigate two techniques that handle difficult samples better, margin tuning in Section 5.3 and temperature scaling in Section 5.4.

## 5.3 MARGIN TUNING ON DIFFICULT SAMPLES

To effectively apply margin tuning in line with our theoretical analysis, we adopt a margin tuning factor  $\sigma > 0$ . For the selected difficult sample pairs identified by the selection matrix  $P$ , we add a margin  $\sigma$  to the similarity values, and for the unselected pairs, we use the original InfoNCE.

Table 2: Classification accuracy with or without margin tuning on CIFAR-10, CIFAR-100, STL-10 and TinyImagenet dataset. Results are averaged over three runs.

| Method                | CIFAR-10     | CIFAR-100    | STL-10       | TinyImagenet |
|-----------------------|--------------|--------------|--------------|--------------|
| Baseline              | 88.26        | 59.95        | 75.98        | 69.58        |
| MT (All Samples)      | 88.52        | 60.09        | 76.02        | 70.06        |
| MT (Selected Samples) | <b>89.16</b> | <b>61.28</b> | <b>76.83</b> | <b>79.14</b> |

It can be observed from Table 2 that applying margin tuning to all samples directly only achieves comparable results as the baseline SimCLR, highlighting the importance of the selection mechanism for difficult examples. While applying margin tuning to the selected samples brings consistent performance gains on CIFAR-10, CIFAR-100, and TinyImageNet. These results validate both the effectiveness of our selection mechanism and the reliability of our analysis on margin tuning.

432 5.4 TEMPERATURE SCALING ON DIFFICULT SAMPLES  
433434 We define the temperature scaling factor  $\rho > 0$ . Given the base temperature  $\tau > 0$ , we attach  
435 temperature  $\rho\tau$  to the selected difficult sample pairs identified by the selection matrix  $P$ , whereas  
436 attach base temperature  $\tau$  to the unselected pairs.  
437438 Table 3: Classification accuracy with or without temperature scaling on CIFAR-10, CIFAR-100,  
439 STL-10 and TinyImagenet dataset. Results are averaged over three runs.  
440

| Method                | CIFAR-10     | CIFAR-100    | STL-10       | TinyImagenet |
|-----------------------|--------------|--------------|--------------|--------------|
| Baseline              | 88.26        | 59.95        | 75.98        | 69.58        |
| TS (All Samples)      | 88.38        | 59.20        | 75.76        | 69.36        |
| TS (Selected Samples) | <b>89.24</b> | <b>61.67</b> | <b>76.62</b> | <b>78.52</b> |

445 It can be observed from Table 3 that applying temperature scaling to all samples directly can even hurt  
446 the performance of contrastive learning compared to baseline SimCLR, highlighting the importance  
447 of selecting difficult examples. In contrast, applying temperature scaling to the selected samples  
448 brings consistent performance gains on CIFAR-10, CIFAR-100, and TinyImageNet. These results  
449 validate both the effectiveness of our selection mechanism and the reliability of our analysis on  
450 temperature scaling.  
451452 5.5 EXTENSIONS  
453454 **Combined method.** From Sections 4.2 and 4.3, we observe that margin tuning and temperature  
455 scaling eliminate the effects of difficult examples in different ways. Therefore, it is natural to combine  
456 the two methods, and see if the combined method could reach better performances.  
457458 Table 4: Classification accuracy with or without combined method on CIFAR-10, CIFAR-100, STL-  
459 10 and TinyImagenet dataset. Results are averaged over three runs.  
460

| Method                 | CIFAR-10     | CIFAR-100    | STL-10       | TinyImagenet |
|------------------------|--------------|--------------|--------------|--------------|
| Baseline               | 88.26        | 59.95        | 75.98        | 69.58        |
| Margin Tuning          | 89.16        | 61.28        | 76.83        | 79.14        |
| Temperature Scaling    | 89.24        | 61.67        | 76.62        | 78.52        |
| <b>Combined Method</b> | <b>89.68</b> | <b>62.86</b> | <b>77.35</b> | <b>80.00</b> |

465 It can be observed from Table 4 that the combined method yields a 1.6% performance improvement on  
466 CIFAR-10, a 4.9% performance improvement on CIFAR-100 and a 15.0% performance improvement  
467 on TinyImagenet compared to the baseline SimCLR. The improvement surpasses that achieved by  
468 using only margin tuning or temperature scaling. The combined method on the Mixed CIFAR-10  
469 datasets also achieves performance improvements consistently as shown in Section A.5. The complete  
470 algorithm is presented in Algorithm 1.  
471472 **Alternative contrastive learning paradigm.** We delve deeper into the scalability of our meth-  
473 ods across various self-supervised learning paradigms. Results in Table 5 demonstrate consistent  
474 performance enhancements comparable to those achieved by SimCLR on the MoCo on CIFAR-10.  
475476 **Complex classification scenarios.** We explore our method by targeting difficult samples under the  
477 long-tail classification scenario, where difficult samples are even more difficult to learn according to  
478 the imbalanced distributions. The findings in Table 6 illustrate that our approach outperforms the  
479 baseline SimCLR in scenarios involving distributional imbalance, indicating the adaptivity of our  
480 approach to complex classification scenarios.  
481482 Table 5: The results of incorporating the Com-  
483 bined method with different architectures on  
484 CIFAR-10.  
485

| Method          | MoCo         | SimCLR       |
|-----------------|--------------|--------------|
| Baseline        | 85.84        | 88.26        |
| Combined Method | <b>86.82</b> | <b>89.68</b> |

486 Table 6: Classification accuracy by using Com-  
487 bined method on TinyImagenet-LT. We also use  
488 SimCLR as the baseline method.  
489

| Method          | TinyImagenet-LT |
|-----------------|-----------------|
| Baseline        | 43.34           |
| Combined Method | <b>47.62</b>    |

486  
487 **Further discussions.** We also provide a sensitivity analysis of parameters in Section A.4 and conduct  
488 a detailed analysis of results in Table 5 and Table 6 in Section A.5. Furthermore, discussions about  
489 which features are advantageous for selecting difficult examples are also presented in Section A.5. In  
490 Section A.5, we have also included the experimental results on ImageNet-1K, the trending of the  
491 derived bounds with Mixed CIFAR-10 dataset and the significance analysis of  $\gamma$  and  $\beta$ .  
492

## 6 CONCLUSION

493  
494 In this paper, we construct a theoretical framework to specifically analyze the impact of difficult  
495 examples on contrastive learning. We prove that difficult examples hurt the performance of contrastive  
496 learning from the perspective of linear probing error bounds. We further demonstrate how techniques  
497 such as margin tuning, temperature scaling, and the removal of these examples from the dataset can  
498 improve performance from the perspective of enhancing the generalization bounds. The experimental  
499 results demonstrate the reliability of our theoretical analysis.  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539

540 ETHICS STATEMENT  
541542 This work makes use of publicly available datasets and models. No private or sensitive data are  
543 involved, and no harmful content is included. Therefore, we believe this paper does not raise any  
544 ethical concerns.  
545546 REPRODUCIBILITY STATEMENT  
547548 We provide detailed descriptions of the training and evaluation procedures used in our experiments.  
549 The code will be released upon the publication of this paper.  
550551 REFERENCES  
552553 Aviad Aberdam, Ron Litman, Shahar Tsiper, Oron Anschel, Ron Slossberg, Shai Mazor, R Manmatha,  
554 and Pietro Perona. Sequence-to-sequence contrastive learning for text recognition. In *CVPR*, 2021.  
555556 Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi. A  
557 theoretical analysis of contrastive unsupervised representation learning. In *ICML*, 2019.  
558559 Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Dipendra Misra. Investigating the role of  
560 negatives in contrastive representation learning. In *AISTATS*, 2022.  
561562 Randall Balestrieri and Yann LeCun. Contrastive and non-contrastive self-supervised learning  
563 recover global and local spectral embedding methods. In *NeurIPS*, 2022.  
564565 Han Bao, Yoshihiro Nagano, and Kento Nozawa. On the surrogate gap between contrastive and  
566 supervised losses. In *ICML*, 2022.  
567568 Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.  
569 Unsupervised learning of visual features by contrasting cluster assignments. In *NeurIPS*, 2020.  
570571 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for  
572 contrastive learning of visual representations. In *ICML*, 2020a.  
573574 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *CVPR*, 2021.  
575576 Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum  
577 contrastive learning. *arXiv preprint arXiv:2003.04297*, 2020b.  
578579 Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision  
580 transformers. *arXiv preprint arXiv:2104.02057*, 2021.  
581582 Romain Cosentino, Anirvan M. Sengupta, Salman Avestimehr, Mahdi Soltanolkotabi, Antonio Ortega,  
583 Theodore L. Willke, and Mariano Tepper. Toward a geometrical understanding of self-supervised  
584 contrastive learning. *arXiv preprint arXiv:2205.06926*, 2022.  
585586 Jingyi Cui, Weiran Huang, Yifei Wang, and Yisen Wang. Rethinking weak supervision in helping  
587 contrastive learning. In *ICML*, 2023.  
588589 Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-peeled  
590 model: Minority collapse in imbalanced training. *Proceedings of the National Academy of Sciences*,  
591 118(43):e2103091118, 2021.  
592593 William Fulton. Eigenvalues, invariant factors, highest weights, and schubert calculus. *Bulletin of the  
594 American Mathematical Society*, 37(3):209–249, 2000.  
595596 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena  
597 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,  
598 et al. Bootstrap your own latent-a new approach to self-supervised learning. In *NeurIPS*, 2020.  
599600 Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised  
601 deep learning with spectral contrastive loss. In *NeurIPS*, 2021.  
602

594 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for  
 595 unsupervised visual representation learning. In *CVPR*, 2020.

596

597 Tianyang Hu, Zhili Liu, Fengwei Zhou, Wenjia Wang, and Weiran Huang. Your contrastive learning  
 598 is secretly doing stochastic neighbor embedding. In *ICLR*, 2023.

599

600 Weiran Huang, Mingyang Yi, Xuyang Zhao, and Zihao Jiang. Towards the generalization of  
 601 contrastive self-supervised learning. In *ICLR*, 2023.

602

603 Daniel D Johnson, Ayoub El Hanchi, and Chris J Maddison. Contrastive learning can find an optimal  
 604 basis for approximately view-invariant functions. In *ICLR*, 2022.

605

606 Siddharth Joshi and Baharan Mirzasoleiman. Data-efficient contrastive self-supervised learning:  
 607 Most beneficial examples for supervised learning contribute the least. In *ICML*, 2023.

608

609 Yannis Kalantidis, Mert Bulent Sarayildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard  
 610 negative mixing for contrastive learning. In *NeurIPS*, 2020.

611

612 Bulat Khaertdinov, Esam Ghaleb, and Stylianos Asteriadis. Contrastive self-supervised learning for  
 613 sensor-based human activity recognition. In *IJCB*, 2021.

614

615 Bulat Khaertdinov, Stylianos Asteriadis, and Esam Ghaleb. Dynamic temperature scaling in con-  
 616 trastive self-supervised learning for sensor-based human activity recognition. *IEEE Transactions*  
 617 *on Biometrics, Behavior, and Identity Science*, 4(4):498–507, 2022.

618

619 Ching-Yun Ko, Jeet Mohapatra, Sijia Liu, Pin-Yu Chen, Luca Daniel, and Lily Weng. Revisiting  
 620 contrastive learning through the lens of neighborhood component analysis: an integrated framework.  
 621 In *ICML*, 2022.

622

623 Anna Kukleva, Moritz Böhle, Bernt Schiele, Hilde Kuehne, and Christian Rupprecht. Temperature  
 624 schedules for self-supervised contrastive methods on long-tail data. In *ICLR*, 2023.

625

626 Sumin Lee, Hyunjun Eun, Jinyoung Moon, Seokeon Choi, Yoonhyung Kim, Chanho Jung, and  
 627 Changick Kim. Learning to discriminate information for online action detection: Analysis and  
 628 application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5918–5934,  
 629 2022.

630

631 Kento Nozawa and Issei Sato. Understanding negative samples in instance discriminative self-  
 632 supervised representation learning. In *NeurIPS*, 2021.

633

634 Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with  
 635 hard negative samples. *arXiv preprint arXiv:2010.04592*, 2020.

636

637 Dvir Samuel and Gal Chechik. Distributional robustness loss for long-tail learning. In *ICCV*, 2021.

638

639 Kendrick Shen, Robbie M Jones, Ananya Kumar, Sang Michael Xie, Jeff Z HaoChen, Tengyu Ma,  
 640 and Percy Liang. Connect, not collapse: Explaining contrastive learning for unsupervised domain  
 641 adaptation. In *ICML*, 2022.

642

643 Zhiqian Tan, Yifan Zhang, Jingqin Yang, and Yang Yuan. Contrastive learning is spectral clustering  
 644 on similarity graph. In *ICLR*, 2024.

645

646 Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A new  
 647 theoretical understanding of contrastive learning via augmentation overlap. In *ICLR*, 2021.

648

649 Yifei Wang, Qi Zhang, Tianqi Du, Jiansheng Yang, Zhouchen Lin, and Yisen Wang. A message  
 650 passing perspective on learning dynamics of contrastive learning. In *ICLR*, 2023.

651

652 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised  
 653 learning via redundancy reduction. In *ICML*, 2021.

654

655 Oliver Zhang, Mike Wu, Jasmine Bayrooti, and Noah Goodman. Temperature as uncertainty in  
 656 contrastive learning. *arXiv preprint arXiv:2110.04403*, 2021.

648 Qi Zhang, Yifei Wang, and Yisen Wang. On the generalization of multi-modal contrastive learning.  
649 In *ICML*, 2023.  
650

651 Xiong Zhou, Xianming Liu, Feilong Zhang, Gang Wu, Deming Zhai, Junjun Jiang, and Xiangyang Ji.  
652 Zero-mean regularized spectral contrastive learning. In *ICLR*, 2024.  
653

654 Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.  
655 Contrastive learning inverts the data generating process. In *ICML*, 2021.  
656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL  
703704 A.1 RELATED WORKS  
705

706 **Self-supervised contrastive learning.** Self-supervised contrastive learning (Chen et al., 2020a;b;  
707 2021; He et al., 2020) aims to learn an encoder that maps augmentations (e.g. flips, random crops, etc.)  
708 of the same input to proximate features, while ensuring that augmentations of distinct inputs yield  
709 divergent features. The encoder, once pre-trained, is later fine-tuned on a specific downstream dataset.  
710 The effectiveness of contrastive learning methods are typically evaluated through the performances  
711 of the downstream tasks such as linear classification. Depending on the reliance of negative samples,  
712 contrastive learning methods can be broadly categorized into two kinds. The first kind (Chen et al.,  
713 2020a;b; He et al., 2020) learns the encoder by aligning an anchor point with its augmented versions  
714 (positive samples) while at the same time explicitly pushing away the others (negative samples). On  
715 the other hand, the second kind do not depend on negative samples. They often necessitate additional  
716 components like projectors (Grill et al., 2020), stop-gradient techniques (Chen & He, 2021), or  
717 high-dimensional embeddings (Zbontar et al., 2021). Nevertheless, the first kind of methods continue  
718 to be the mainstream in self-supervised contrastive learning and have been expanded into numerous  
719 other domains (Aberdam et al., 2021; Khaertdinov et al., 2021; Lee et al., 2022). The analysis and  
720 discussions of this paper focus mainly on the first kind of contrastive learning methods that relies on  
721 both positive and negative samples.

721 **Contrastive Learning Theory.** The early studies of theoretical aspects of contrastive learning  
722 manage to link contrastive learning to the supervised downstream classification. Arora et al. (2019)  
723 proves that representations learned by contrastive learning algorithms can achieve small errors in  
724 the downstream linear classification task. Ash et al. (2022); Bao et al. (2022); Nozawa & Sato  
725 (2021) incorporate the effect of negative samples and further extend surrogate bounds. Later on,  
726 HaoChen et al. (2021) focuses on the unsupervised nature of contrastive learning by modeling the  
727 feature similarities between augmented samples and provides generalization guarantee for linear  
728 evaluation through borrowing mathematical tools from spectral clustering. The idea of modeling  
729 similarities is later extended to analyzing contrastive learning for unsupervised domain adaption  
730 (Shen et al., 2022) and weakly supervised learning (Cui et al., 2023). In a similar vein, Wang et al.  
731 (2021) put forward the idea of *augmentation overlap* to explain the alignment of positive samples.  
732 Besides, contrastive learning is also interpreted through various other theoretical frameworks in  
733 unsupervised learning, such as nonlinear independent component analysis (Zimmermann et al., 2021),  
734 neighborhood component analysis (Ko et al., 2022), stochastic neighbor embedding (Hu et al., 2023),  
735 geometric analysis of embedding spaces (Huang et al., 2023), and message passing techniques (Wang  
736 et al., 2023). In this paper, our basic assumptions are based on HaoChen et al. (2021) and focus on  
737 modeling the similarities between difficult example pairs.

738 **Difference between difficult examples and hard negative samples.** Difficult examples and hard  
739 negative samples both significantly affect the performance of self-supervised learning. However,  
740 while difficult examples are associated with the classification boundary, hard negative samples  
741 (Kalantidis et al., 2020; Robinson et al., 2020) are defined in relation to the anchor point. Previous  
742 research on hard negative sampling typically modifies contrastive learning models to emphasize  
743 these challenging samples so as to achieve better performance. In contrast, our findings indicate that  
744 unmodified contrastive learning models experience performance degradation due to the existence  
745 of difficult samples. Aside from ad hoc modifications, a straightforward removal of these difficult  
746 samples can also boost performance. As a systematic explanation of this finding is lacking, we  
747 establish a unified theoretical framework that addresses this challenge.

748 A.2 LOSS FUNCTIONS OF SAMPLE REMOVAL, MARGIN TUNING, AND TEMPERATURE  
749 SCALING

750 Based on the sample selection matrix  $\mathbf{P}$  defined in equation 12, we adapt the InfoNCE loss into  
751 versions of sample removal, margin tuning, and temperature scaling, respectively.

752 **Sample Removal.** We define the removal loss as follows:

$$753 \ell_R(i, j) := -\log \frac{\exp((s_{i,j}(1 - p_{i,j}))/\tau)}{\sum_{k=1}^{2N} \mathbf{1}_{[k \neq i]} \exp((s_{i,k}(1 - p_{i,k}))/\tau)}, \quad (13)$$

756 where  $s_{i,j}$  denotes the similarity between augmented instances  $x_i$  and  $x_j$ . If  $p_{i,j} = 0$ , the sample  
 757 pair  $x_i$  and  $x_j$  does not include difficult samples, so  $(s_{i,j}(1 - p_{i,j}))/\tau = s_{i,j}/\tau$ , retaining the  
 758 original form of the InfoNCE loss. If  $p_{i,j} = 1$ , the sample pair  $x_i$  and  $x_j$  are difficult pairs, so  
 759  $(s_{i,j}(1 - p_{i,j}))/\tau = 0$ , effectively removing them.

760 **Margin Tuning.** We start with the basic form of the widely used InfoNCE loss and define the margin  
 761 tuning loss for each positive pair. Specifically, within each minibatch of size  $N$ , we generate  $2N$   
 762 samples through data augmentation. Given the margin tuning factor  $\sigma > 0$ , for an anchor sample  $x_i$   
 763 and its corresponding positive sample  $x_j$ , we define the margin tuning loss as follows:  
 764

$$\ell_M(i, j) := -\log \frac{\exp((s_{i,j} + p_{i,j}\sigma)/\tau)}{\sum_{k=1}^{2N} \mathbf{1}_{[k \neq i]} \exp((s_{i,k} + p_{i,k}\sigma)/\tau)}, \quad (14)$$

767 where  $s_{i,j}$  denotes the similarity between augmented instances  $x_i$  and  $x_j$ , and  $\tau > 0$  denotes the  
 768 temperature parameter. After the above operation, we assign the same margin value to all selected  
 769 difficult sample pairs, achieving the goal of margin tuning for specific sample pairs.  
 770

771 **Temperature Scaling.** To apply temperature scaling consistent with our theoretical analysis, we start  
 772 with the basic form of the InfoNCE loss and define the temperature scaling loss for each positive pair.  
 773 Specifically, within each minibatch, given the temperature scaling factor  $\rho$ , for an anchor sample  $x_i$   
 774 and its corresponding positive sample  $x_j$ , we define the temperature scaling loss as follows:  
 775

$$\ell_T(i, j) := -\log \frac{\exp(\frac{s_{i,j}}{[p_{i,j}\rho + (1 - p_{i,j})]\tau})}{\sum_{k=1}^{2N} \mathbf{1}_{[k \neq i]} \exp(\frac{s_{i,k}}{[p_{i,k}\rho + (1 - p_{i,k})]\tau})}, \quad (15)$$

778 where  $s_{i,j}$  denotes the similarity between augmented instances  $x_i$  and  $x_j$ .  
 779

780 **Combined Method.** The combined loss function as  
 781

$$\ell(i, j) := -\log \frac{\exp(\frac{s_{i,j} + p_{i,j}\sigma}{[p_{i,j}\rho + (1 - p_{i,j})]\tau})}{\sum_{k=1}^{2N} \mathbf{1}_{[k \neq i]} \exp(\frac{s_{i,k} + p_{i,k}\sigma}{[p_{i,k}\rho + (1 - p_{i,k})]\tau})}, \quad (16)$$

784 where  $s_{i,j}$  denotes the similarity between augmented instances  $x_i$  and  $x_j$ . The whole training  
 785 procedure of the combined method is shown in Algorithm 1.  
 786

---

#### Algorithm 1 Training procedure of Combined method

787 **Input:** batch size  $N$ , base temperature  $\tau$ ,  $posHigh$  and  $posLow$  for determining the size of the interval, margin  
 788 tuning factor  $\sigma$ , temperature scaling factor  $\rho$ , encoder  $f(\cdot)$ , projector  $g(\cdot)$  and data augmentation  $T$ .  
 789 **Output:** encoder network  $f(\cdot)$ , and throw away  $g(\cdot)$ .  
 790 1: **for** sampled minibatch  $\{\bar{x}_k\}_{k=1}^N$  **do**  
 791 2:   **for** all  $k \in \{1, \dots, N\}$  **do**  
 792     3:     Draw two augmentation functions  $t, t' \sim T$ ;  
 793     4:      $x_{2k-1} = t(\bar{x}_k)$  and  $x_{2k} = t'(\bar{x}_k)$ ;  
 794     5:      $h_{2k-1} = f(x_{2k-1})$  and  $h_{2k} = f(x_{2k})$ ;  
 795     6:      $z_{2k-1} = g(h_{2k-1})$  and  $z_{2k} = g(h_{2k})$ .  
 796     7:     **end for**  
 797     8:     **for** all  $k \in \{1, \dots, 2N\}$  **do**  
 798       9:       Calculate  $P_i = (p_{i,j})_{j=1}^{2N}$  by using  $h_j, j \in \{1, \dots, 2N\}$  according to Eq. 12;  
 799     10:     **end for**  
 800     11:     The matrix  $P$  is obtained by splicing  $P_i, i \in \{1, \dots, 2N\}$  by rows.  
 801     12:     **for** all  $i \in \{1, \dots, 2N\}$  and all  $j \in \{1, \dots, 2N\}$  **do**  
 802       13:        $s_{i,j} = z_i^\top z_j / (\|z_i\| \|z_j\|)$ .  
 803     14:     **end for**  
 804     15:     Calculate  $\ell(i, j)$  according to Eq. 16;  
 805     16:     Calculate  $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^N [\ell(2k-1, 2k) + \ell(2k, 2k-1)]$ ; Update networks  $f$  and  $g$  to minimize  $\mathcal{L}$ .  
 806 17: **end for**  
 807

---

#### A.3 TRAINING DETAILS

808 We run all experiments on an NVIDIA GeForce RTX 3090 24G GPU and we run experiments with  
 809 ResNet-18 on the CIFAR-10, CIFAR-100 and STL-10 dataset and ResNet-50 on the TinyImagenet  
 dataset. We only deal with the difficult examples during training time.

810 For CIFAR-10 we set batch size as 512, learning rate as 0.25 and base temperature as 0.5. We choose  
 811 0.15 as the  $posHigh$  and 0.22 as the  $posLow$ . We set  $\sigma$  as 0.03 and  $\rho$  as 0.6 for CIFAR-10. For both  
 812 our method and SimCLR, we evaluate the models using linear probing, when evaluating we set batch  
 813 size as 512 and learning rate as 1. This experimental setup is also applicable to the Mixed CIFAR-10  
 814 dataset.

815 For CIFAR-100 we set batch size as 512, learning rate as 0.5 and base temperature as 0.1. We choose  
 816 0.013 as the  $posHigh$  and 0.5 as the  $posLow$ . We set  $\sigma$  as 0.1 and  $\rho$  as 0.7 for CIFAR-100. For both  
 817 our method and SimCLR, we evaluate the models using linear probing, when evaluating we set batch  
 818 size as 512 and learning rate as 0.1.

819 For STL-10 we set batch size as 256, learning rate as 0.5 and base temperature as 0.1. We choose  
 820 0.15 as the  $posHigh$  and 0.22 as the  $posLow$ . We set  $\sigma$  as 0.1 and  $\rho$  as 0.7 for STL-10. For both our  
 821 method and SimCLR, we evaluate the models using linear probing, when evaluating we set batch  
 822 size as 256 and learning rate as 0.1.

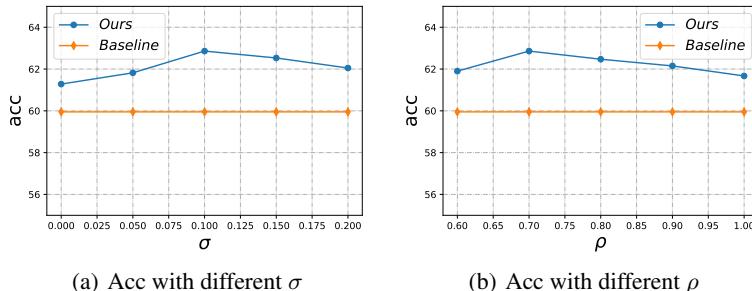
823 For TinyImagenet we set batch size as 512, learning rate as 0.5 and base temperature as 0.5. We  
 824 choose 0.013 as the  $posHigh$  and 0.5 as the  $posLow$ . We set  $\sigma$  as 0.1 and  $\rho$  as 0.7 for TinyImagenet.  
 825 For both our method and SimCLR, we evaluate the models using linear probing, when evaluating we  
 826 set batch size as 512 and learning rate as 0.1.

827 For the experimental results presented in Figure 1, we selected 20% SAS coresets for CIFAR-10, 95%  
 828 SAS coresets for CIFAR-100, 80% SAS coresets for STL-10, and 60% SAS coresets for TinyImagenet,  
 829 following the filtering method mentioned in (Joshi & Mirzasoleiman, 2023).

#### 831 A.4 PARAMETER SENSITIVITY ANALYSIS

832 **Evaluating different  $\sigma$  used in margin tuning part.** The intention of  $\sigma$  is to add margins to the  
 833 similarity terms between difficult example pairs. We show the performance with different  $\sigma$  in  
 834 Figure 5(a), and the results show that when  $\sigma = 0.1$  the proposal achieves the best performance on  
 835 CIFAR-100, and the performance does not degrade significantly with  $\sigma$  changes. This demonstrates  
 836 that our proposal is quite robust with the selection of  $\sigma$ .

837 **Evaluating different  $\rho$  used in temperature scaling part.**  $\rho$  is used for scaling downwards the  
 838 temperatures on the difficult example pairs so that we can eliminate the negative effects of difficult  
 839 examples. We show the performance with different  $\rho$  in Figure 5(b), and the results show that when  
 840  $\rho = 0.7$  the proposal achieves the best performance on CIFAR-100, and the performance does  
 841 not degrade significantly with  $\rho$  changes. We figure out that different values of  $\rho$  can all result in  
 842 performance improvements.



856 Figure 5: (a) Parameter analysis of margin tuning factor  $\sigma$ , (b) temperature scaling factor  $\rho$ , all of the  
 857 above results are implemented on CIFAR-100.

#### 858 A.5 FURTHER DISCUSSION

859 **Which feature is better for difficult examples selection?** In SimCLR, the authors found that  
 860 the proposal of projector  $g(\cdot)$  allows the model to learn the auxiliary task better thus having better  
 861 downstream generalization. However, as mentioned in (Cosentino et al., 2022) they suggest the  
 862 problem of representation dimensional collapse after using projector, therefore, we here explore

whether it is better to use features before projector  $f(x)$  for difficult examples selection or  $g(f(x))$  after projector.

Table 7: Classification accuracy by using Combined method on CIFAR-10 and CIFAR-100. Features before projector means that we use  $f(x)$  for difficult examples selection and features after projector means that we use  $g(f(x))$  for difficult examples selection.

| Features  | Baseline | After projector | Before projector |
|-----------|----------|-----------------|------------------|
| CIFAR-10  | 88.26    | 87.86           | <b>89.68</b>     |
| CIFAR-100 | 59.95    | 60.63           | <b>62.86</b>     |

As shown in Table 7, We find that when using  $f(x)$  rather than  $g(f(x))$  for difficult examples selection we can gain a 2.1% performance improvement on CIFAR-10 and a 3.7% performance improvement on CIFAR-100. These results suggest that utilizing features before projector is more beneficial for difficult examples selection.

#### The combined method is also effective for the Mixed CIFAR-10 datasets.

As we discussed earlier, the Mixed CIFAR-10 datasets contain a large number of mixed difficult samples, making the learning difficulty of this dataset significantly greater than that of the original dataset. Based on this fact, this section explores whether our proposed method can achieve performance improvements on the Mixed CIFAR-10 datasets that are consistent with those on CIFAR-100, Tiny ImageNet, and other datasets. We use the 10%- and 20%-Mixed CIFAR-10 datasets as our baselines, while the 0%-Mixed CIFAR-10 datasets serve as our standard CIFAR-10 baseline. The experimental results are shown in Figure 6. We found that using either margin tuning or temperature scaling alone can improve performance over the original baseline, while the combined method yields better results than using either approach individually. This finding is consistent with the experimental results on other datasets and further validates the effectiveness of our method.

**The proposal is effective for real-world datasets.** We evaluated our method on the Imagenet-1k dataset, which contains 1,000 categories and 1,281,167 training samples. We used ResNet18 as our backbone, set the batch size to 1024, and resized each image to 96x96. We set the learning rate to 0.1 and the base temperature to 0.07. We chose 0.01 as the posHigh and 0.5 as the posLow. We set  $\sigma$  to 0.1 and  $\rho$  to 0.7. We also evaluated the models using linear probing. When evaluating, we set the batch size to 1024 and the learning rate to 1. The specific results are shown in Table 8.

Table 8: Classification accuracy on Imagenet-1k.

| Methods  | Baseline | Removing | Temperature Scaling | Margin Tuning | Combined |
|----------|----------|----------|---------------------|---------------|----------|
| Accuracy | 37.62    | 37.79    | 38.48               | 38.59         | 38.98    |

From the results on the real-world dataset, Imagenet-1k, which contains more categories, We can see that even after running for only 400 epochs, our method achieves a performance improvement trend consistent with the results mentioned in the paper, compared to the baseline method. These results strengthen the findings and demonstrate broader applicability of this paper.

**Focusing on difficult examples and removing them are both effective methods.** We use temperature scaling as an example to illustrate how we should handle difficult examples. We note that placing greater emphasis on difficult examples (by selecting a smaller temperature) and discarding this sample (which is effectively equivalent to setting the temperature to infinity (we use a large value of 1,000,000,000 to approximate infinity here)) may seem contradictory. However, as shown in Table 9, both approaches are indeed valid. This means that effectively handling difficult samples is possible under sufficiently good conditions, while in the absence of such mechanisms, simply discarding them can also be effective.

**The scalability of our proposal under other contrastive learning paradigms.** As mentioned in (Johnson et al., 2022), InfoNCE and Spectral contrastive loss share the same population minimum with variant kernel derivations. By using similar techniques of positive-pair kernel, our conclusions

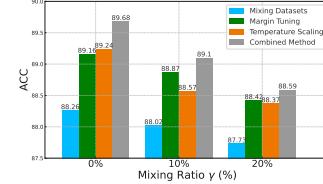


Figure 6: Detailed experimental results on the Mixed CIFAR datasets.

918 Table 9: Classification accuracy with various temperature scaling factors on CIFAR-100 datasets.  
 919 Setting the Temperature Scaling Factor to 0.7 represents using our proposed theoretical framework  
 920 to specifically address difficult samples, while setting the Temperature Scaling Factor to 1e9 means  
 921 discarding these difficult samples. Results are averaged over three runs.

| Temperature Scaling Factor | 0.7   | 1     | 10    | 100   | 1000  | 1e9   |
|----------------------------|-------|-------|-------|-------|-------|-------|
| Accuracy                   | 61.67 | 59.95 | 59.63 | 59.82 | 60.05 | 60.31 |

925  
 926 can also be further generalized to other self-supervised learning frameworks. To demonstrate the  
 927 scalability of the combined method, we supplement the comparative experiments based on the MoCo  
 928 (Chen et al., 2020b) algorithm. The experimental results demonstrate consistent improvements of  
 929 our method over both MoCo and SimCLR and show the scalability of our proposal under different  
 930 contrastive learning paradigms.

931 **Connection between difficult examples and long-tailed distribution.** Under the definition that  
 932 difficult examples contribute least to contrastive learning and that are consequently difficult to  
 933 distinguish by contrastive learning models, we can easily draw the following conclusion: difficult  
 934 examples can lead to unclear classification boundaries for the classes they belong to.

935 Due to the significant difference in the number of samples in the head and tail classes, the boundary  
 936 of tail classes is difficult to be accurately estimated due to the tail classes are prone to collapse when  
 937 the data is distributed with long-tailed distribution, as mentioned in (Samuel & Chechik, 2021). In  
 938 other words, tail classes can lead to unclear classification boundaries for the classes they belong to as  
 939 mentioned in (Fang et al., 2021).

940 So in this view, tail classes samples can also be seen as difficult samples. To better illustrate this point,  
 941 we will further validate the connection between them through the following experiments. We validate  
 942 our proposed Combined method on the classical long-tailed distribution dataset tiny-Imagenet-LT to  
 943 explore whether our proposed algorithm can achieve a performance improvement over the comparison  
 944 method SimCLR when distributional imbalance as another form of difficult samples also exists. The  
 945 results in Table 6 show that we can achieve better performance when distributional imbalance also  
 946 exists.

947 **Analysis of the trending of the derived bounds.** We analyze the trending of the derived bounds  
 948 on the Mixed CIFAR-10 dataset. Specifically, we vary the mixing ratios from 0% to 30%, where  
 949 0% represents the standard CIFAR-10 without mixing. The experimental parameter settings can  
 950 be referenced to A.3. For each class of samples, we sort them based on the difference between the  
 951 maximum and second-largest values after applying softmax to the outputs, and select the 8% (the  
 952 ratio is consistent with what is reported in the paper) smallest differences as the difficult examples,  
 953 as described in the paper. For the calculation of  $\alpha$ , we take the mean of the similarity between all  
 954 samples of the same class. For the calculation of  $\beta$ , we take the mean of the similarity for the sample  
 955 pairs from different classes that do not contain the difficult examples. For the calculation of  $\gamma$ , we  
 956 take the mean of the similarity for the sample pairs from different classes that contain the difficult  
 957 examples.

958 Table 10: The trends of  $\alpha$ ,  $\beta$ ,  $\gamma$ , and other metrics as the Mixing Ratio changes.

| Mixing Ratio                    | 0%   | 10%  | 20%  | 30%  |
|---------------------------------|------|------|------|------|
| acc (%)                         | 88.3 | 88.0 | 87.7 | 86.2 |
| $\alpha$                        | 47.2 | 44.0 | 41.2 | 38.7 |
| $\beta$                         | 19.1 | 19.5 | 20.1 | 20.8 |
| $\gamma$                        | 20.9 | 22.1 | 23.1 | 24.1 |
| $\gamma - \beta$                | 1.80 | 2.60 | 3.00 | 3.30 |
| Eigenvalue ( $\times 10^{-5}$ ) | 2.93 | 3.36 | 3.58 | 3.72 |

967  
 968 In Table 10, we show that as the mixing ratio increases, the linear probing accuracy drops, and the  
 969  $(K + 1)$ -th eigenvalue increases. Note that the classification error (left hand side of Eq.4) is 1-acc,  
 970 and the error bound (right hand side of Eq.4) increases with the eigenvalue increasing. This result  
 971 indicates that as the difficult examples increases, the classification error and the bound share the same  
 972 variation trend, thus validating theorem 3.4 that larger  $\gamma - \beta$  results in worse error bound.

972 **Significance analysis of  $\gamma$  and  $\beta$ .** To verify the significance of  $\gamma$  and  $\beta$ , we tested  $\gamma$  and  $\beta$ , as  
 973 well as  $\gamma - \beta$ , on more real datasets. From the first three rows of Table 11, we found that on the  
 974 CIFAR-100 dataset (which has 10 times more classes than CIFAR-10), the difference between  $\gamma$  and  
 975  $\beta$  remained consistent with that on the CIFAR-10 dataset. On the ImageNet-1k dataset (which has 100  
 976 times more classes than CIFAR-10, for specific experimental details and results on ImageNet-1k), the  
 977 difference between  $\gamma$  and  $\beta$  was even larger than on CIFAR-10. As a possible intuitive explanation,  
 978 we conjecture that the higher  $\gamma - \beta$  might result from the higher complexity of imangenet images,  
 979 e.g. different-class images with similar backgrounds can share higher similarity (higher  $\gamma$ ), whereas  
 980 CIFAR images have relatively simple and consistent backgrounds. These results demonstrate that  
 981 even on real-world datasets, the difference between  $\gamma$  and  $\beta$  is significant.

982  
983  
984 Table 11: Comparison of  $\beta$ ,  $\gamma$ ,  $\gamma - \beta$ , t-statistic and P value across different datasets.

| 985 Datasets         | 986 CIFAR-10 | 987 CIFAR-100 | 988 Imagenet-1k |
|----------------------|--------------|---------------|-----------------|
| 989 $\beta$          | 990 19.1     | 991 35.6      | 992 39.8        |
| 993 $\gamma$         | 994 20.9     | 995 37.4      | 996 42.9        |
| 997 $\gamma - \beta$ | 998 1.8      | 999 1.8       | 1000 3.1        |
| 1001 $t$ -statistic  | 1002 -502.63 | 1003 -539.36  | 1004 -3844.21   |
| 1005 $P$ value       | 1006 0.0     | 1007 0.0      | 1008 0.0        |

993 To better illustrate the significant difference between  $\gamma$  and  $\beta$ , we conducted an independent samples  
 994 t-test to support our conclusion. Specifically, we first collected all the  $\beta$  and  $\gamma$  values, and due to the  
 995 large sample size, we chose to use Welch's t-test, which does not assume equal variances between the  
 996 two groups and is suitable for cases where the variances may differ. In the experiment, we focus on  
 997 two key statistics:

998 t-statistic: This measures the difference between the means of the two groups relative to the variance  
 999 within the samples. The t-statistic is a standardized measure used to determine whether the mean  
 1000 difference between the two groups is significant or could be attributed to random fluctuations. The  
 1001 larger the t-statistic, the more significant the difference between the two groups.

1002 P value: The p-value indicates the probability of observing the current difference or more extreme  
 1003 results under the assumption that the null hypothesis (i.e., no significant difference between the two  
 1004 groups) is true. If the p-value is less than 0.05, it suggests that the observed difference is highly  
 1005 unlikely under the null hypothesis, and we can reject the null hypothesis, concluding that there is a  
 1006 significant difference between the two groups.

1007 As shown in the last two rows of Table 11, on all datasets (CIFAR-10, CIFAR-100, Imagenet-1k), the  
 1008 absolute value of the T-statistic is very large, and the P-value is close to zero. This indicates that the  
 1009 mean difference between  $\gamma$  and  $\beta$  is highly statistically significant.

1010  
1011  
1012  
1013 

## B PROOFS

1014 Recall that in Section 3.2, we introduce the adjacency matrix of the similarity graph based on a  
 1015 4-sample subset. Here we give the formal definition of the adjacency matrix of a generalized similarity  
 1016 graph containing  $|\mathcal{X}| = n(r + 1)$  samples, with  $n$  denoting the number of augmented samples per  
 1017 class, and  $r + 1$  denoting the number of classes.

1018 Denote  $\mathbb{D} = x_1, \dots, x_{n(r+1)}$  as the dataset, where  $x_{n(i-1)+1}, \dots, x_{ni}$  belong to Class  $i$  for  $i \in$   
 1019  $1, \dots, r + 1$ . Denote  $n_d$  as the number of difficult examples per class and  $\mathbb{D}_d$  as the set of difficult  
 1020 examples. Naturally, we denote  $n_e := n - n_d$  as the number of easy-to-learn examples per class.  
 1021 Without loss of generality, we assume that the last  $n_d$  examples in each class are difficult examples.  
 1022 Let  $\beta < \gamma < \alpha < 1$ . Then we define the elements of the adjacency matrix  $\mathbf{A} = (w_{x,x'})_{x,x' \in \mathcal{X}}$   
 1023 as  $w_{x,x'} := 1$  for  $x = x'$ ;  $w_{x,x'} := \alpha$  for  $x \neq x'$ ,  $y(x) = y(x')$ ;  $w_{x,x'} := \gamma$  for  $x, x' \in \mathbb{D}_d$ ,  
 1024  $y(x) \neq y(x')$ , and  $w_{x,x'} := \beta$  otherwise.

1026 Specifically, we have the adjacency matrix of a similarity graph without difficult examples as  
 1027

$$1028 \quad \mathbf{A}_{\text{w.o.}} = \begin{bmatrix} \mathbf{A}_{\text{same-class}} & \mathbf{A}_{\text{different-class}} & \cdots & \mathbf{A}_{\text{different-class}} \\ \mathbf{A}_{\text{different-class}} & \mathbf{A}_{\text{same-class}} & \cdots & \mathbf{A}_{\text{different-class}} \\ \vdots & \vdots & & \vdots \\ \mathbf{A}_{\text{different-class}} & \mathbf{A}_{\text{different-class}} & \cdots & \mathbf{A}_{\text{same-class}} \end{bmatrix}_{(r+1) \times (r+1)} \quad (17)$$

1033 and the adjacency matrix of a similarity graph with difficult examples as

$$1034 \quad \mathbf{A}_{\text{w.d.}} = \begin{bmatrix} \mathbf{A}_{\text{same-class}} & \mathbf{A}'_{\text{different-class}} & \cdots & \mathbf{A}'_{\text{different-class}} \\ \mathbf{A}'_{\text{different-class}} & \mathbf{A}_{\text{same-class}} & \cdots & \mathbf{A}'_{\text{different-class}} \\ \vdots & \vdots & & \vdots \\ \mathbf{A}'_{\text{different-class}} & \mathbf{A}'_{\text{different-class}} & \cdots & \mathbf{A}_{\text{same-class}} \end{bmatrix}_{(r+1) \times (r+1)} \quad (18)$$

1039 where

$$1041 \quad \mathbf{A}_{\text{same-class}} = \begin{bmatrix} 1 & \alpha & \cdots & \alpha \\ \alpha & 1 & \cdots & \alpha \\ \vdots & & & \vdots \\ \alpha & \alpha & \cdots & 1 \end{bmatrix}_{n \times n}, \quad (19)$$

$$1046 \quad \mathbf{A}_{\text{different-class}} = \begin{bmatrix} \beta & \cdots & \beta \\ \vdots & & \vdots \\ \beta & \cdots & \beta \end{bmatrix}_{n \times n}, \quad (20)$$

1050 and

$$1052 \quad \mathbf{A}'_{\text{different-class}} = \begin{bmatrix} \beta & \cdots & \beta & \beta & \cdots & \beta \\ \vdots & & \vdots & \vdots & & \vdots \\ \beta & \cdots & \beta & \beta & \cdots & \beta \\ \beta & \cdots & \beta & \gamma & \cdots & \gamma \\ \vdots & & \vdots & \vdots & & \vdots \\ \beta & \cdots & \beta & \gamma & \cdots & \gamma \end{bmatrix}_{(n_e+n_d) \times (n_e+n_d)}. \quad (21)$$

## 1060 B.1 PROOFS RELATED TO SECTION 3.3

1061 *Proof of Theorem 3.3.* For a dataset without difficult examples, the similarity between a sample and  
 1062 itself is 1, the similarity between same-class samples is  $\alpha$ , and the similarity between different-class  
 1063 samples is  $\beta$ . Then the adjacent matrix of the similarity graph can be decomposed into the sum of  
 1064 several matrix Kronecker products:

$$1066 \quad \mathbf{A} = (1 - \alpha)\mathbf{I}_{r+1} \otimes \mathbf{I}_n + (\alpha - \beta)\mathbf{I}_{r+1} \otimes (\mathbf{1}_n \cdot \mathbf{1}_n^\top) + \beta(\mathbf{1}_{r+1} \cdot \mathbf{1}_{r+1}^\top) \otimes (\mathbf{1}_n \cdot \mathbf{1}_n^\top), \quad (22)$$

1067 where  $\mathbf{I}_{r+1}$  and  $\mathbf{I}_n$  denote the  $(r+1) \times (r+1)$  and  $n \times n$  identity matrices respectively, and  
 1068  $\mathbf{1}_{r+1} := (1, \dots, 1)^\top \in \mathbb{R}^{r+1}$  and  $\mathbf{1}_n := (1, \dots, 1)^\top \in \mathbb{R}^n$  denote the all-one vectors.

1070 First, we calculate the eigenvalues and eigenvectors of  $\mathbf{A}$ . Note that  $\mathbf{I}_{r+1}$  and  $\mathbf{I}_n$  have eigenvalues 1  
 1071 with arbitrary eigenvectors,  $\mathbf{1}_n \cdot \mathbf{1}_n^\top$  has eigenvalue  $n$  with eigenvector  $\bar{\mathbf{1}}_n := \frac{1}{\sqrt{n}}\mathbf{1}_n$  and eigenvalues  
 1072 0 with eigenvectors  $\{\mu : \mu^\top \mathbf{1}_n = 0\}$ , and  $\mathbf{1}_{r+1} \cdot \mathbf{1}_{r+1}^\top$  has eigenvalue  $r+1$  with eigenvector  
 1073  $\bar{\mathbf{1}}_{r+1} := \frac{1}{\sqrt{r+1}}\mathbf{1}_{r+1}$  and eigenvalues 0 with eigenvectors  $\{\nu : \nu^\top \mathbf{1}_{r+1} = 0\}$ . Therefore,  $\mathbf{A}$  has the  
 1074 following sets of eigenvalues and eigenvectors:

$$1076 \quad \begin{aligned} \lambda_1 &= (1 - \alpha) + n(\alpha - \beta) + n(r+1)\beta, & \text{with eigenvector } \bar{\mathbf{1}}_{r+1} \otimes \bar{\mathbf{1}}_n; \\ 1077 \quad \lambda_2 &= \dots = \lambda_{r+1} = (1 - \alpha) + n(\alpha - \beta), & \text{with eigenvectors } \nu \otimes \bar{\mathbf{1}}_n; \\ 1078 \quad \lambda_{r+2} &= \dots = \lambda_{n+r} = 1 - \alpha, & \text{with eigenvectors } \bar{\mathbf{1}}_{r+1} \otimes u; \\ 1079 \quad \lambda_{n+r+1} &= \dots = \lambda_{n(r+1)} = 1 - \alpha, & \text{with eigenvectors } u \otimes v. \end{aligned}$$

1080 Next, we calculate the eigenvalues of  $\bar{\mathbf{A}} := \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ . By definition, we have  $\mathbf{D} =$   
 1081  $\text{diag}(w_1, \dots, w_{n(r+1)}) = [(1 - \alpha) + n\alpha + nr\beta] \mathbf{I}_{n(r+1)}$ . Therefore, we have the eigenvalues  
 1082 of  $\mathbf{A}$  as

1083

1084

$$1085 \quad \lambda_1 = 1,$$

$$1086 \quad \lambda_2 = \dots = \lambda_{r+1} = \frac{(1 - \alpha) + n(\alpha - \beta)}{(1 - \alpha) + n\alpha + nr\beta},$$

$$1087 \quad \lambda_{r+2} = \dots = \lambda_{n(r+1)} = \frac{1 - \alpha}{(1 - \alpha) + n\alpha + nr\beta}.$$

1090

1091

1092 Then according to Theorem B.3 in HaoChen et al. (2021), when  $k > r$ , there holds

1093

$$1094 \quad \mathcal{E}_{\text{w.o.}} \leq \frac{4\delta}{1 - \lambda_{k+1}} + 8\delta = \frac{4\delta}{1 - \frac{1-\alpha}{(1-\alpha)+n\alpha+nr\beta}} + 8\delta. \quad (23)$$

1095

1096

1097

□

1098

1099

1100

1101

1102

1103

1104

1105

1106 *Proof of Theorem 3.4.* For a dataset with  $n_d$  difficult examples per class, the similarity between  
 1107 a sample and itself is 1, the similarity between same-class samples is  $\alpha$ , the similarity between  
 1108 different-class easy-to-learn samples is  $\beta$ , and the similarity between different-class hard-to-learn  
 1109 samples is  $\gamma$ . Without loss of generality, we assume that  $n$  is an integral multiple of  $n_d$ , i.e. there exist  
 1110 a  $\kappa \in \mathbb{Z}^+$  such that  $n = \kappa n_d$ . Then the adjacent matrix of the similarity graph can be decomposed  
 1111 into the sum of several matrix Kronecker products:

1112

$$1113 \quad \mathbf{A} = (1 - \alpha) \mathbf{I}_{r+1} \otimes \mathbf{I}_n + (\alpha - \beta) \mathbf{I}_{r+1} \otimes (\mathbf{1}_n \cdot \mathbf{1}_n^\top) + \beta (\mathbf{1}_{r+1} \cdot \mathbf{1}_{r+1}^\top) \otimes (\mathbf{1}_n \cdot \mathbf{1}_n^\top) \\ 1114 \quad + (\gamma - \beta) (\mathbf{1}_{r+1} \cdot \mathbf{1}_{r+1}^\top) \otimes (\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top) \otimes \mathbf{I}_{n_d} - (\gamma - \beta) \mathbf{I}_{r+1} \otimes (\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top) \otimes \mathbf{I}_{n_d}, \quad (24)$$

1115

1116

1117

1118 where  $\mathbf{I}_{r+1}$ ,  $\mathbf{I}_n$ , and  $\mathbf{I}_{n_d}$  denote the  $(r + 1) \times (r + 1)$ ,  $n \times n$ , and  $n_d \times n_d$  identity matrices  
 1119 respectively,  $\mathbf{1}_{r+1} := (1, \dots, 1)^\top \in \mathbb{R}^{r+1}$  and  $\mathbf{1}_n := (1, \dots, 1)^\top \in \mathbb{R}^n$  denote the all-one vectors,  
 1120 and  $\mathbf{e}_\kappa := (0, \dots, 0, 1)^\top \in \mathbb{R}^\kappa$ .

1121 Similarly, we can decompose  $\mathbf{D}$  into

1122

1123

$$1124 \quad \mathbf{D} = \mathbf{I}_{r+1} \otimes \left[ [(1 - \alpha) + n\alpha + nr\beta] \mathbf{I}_n + n_d r (\gamma - \beta) (\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top) \otimes \mathbf{I}_{n_d} \right], \quad (25)$$

1125

1126

1127 and therefore we have

1128

1129

1130

1131

1132

1133

1134 where we denote  $c_1 := (1 - \alpha) + n\alpha + nr\beta + n_d r (\gamma - \beta)$  and  $c_2 := (1 - \alpha) + n\alpha + nr\beta$ .

1134 Then we have the decomposition of the normalized similarity matrix as  
 1135

$$\begin{aligned}
 1136 \bar{\mathbf{A}} &= \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \\
 1137 &= (1 - \alpha) \mathbf{I}_{r+1} \otimes \left[ \frac{1}{c_2} [\mathbf{I}_\kappa - (\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top)] + \frac{1}{c_1} (\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top) \right] \otimes \mathbf{I}_{n_d} \\
 1138 &\quad + (\gamma - \beta) (\mathbf{1}_{r+1} \cdot \mathbf{1}_{r+1}^\top) \otimes \frac{1}{c_1} (\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top) \otimes \mathbf{I}_{n_d} \\
 1139 &\quad - (\gamma - \beta) \mathbf{I}_{r+1} \otimes \frac{1}{c_1} (\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top) \otimes \mathbf{I}_{n_d} \\
 1140 &\quad + (\alpha - \beta) \mathbf{I}_{r+1} \otimes \left[ \left[ \frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa \right] \cdot \left[ \frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa \right]^\top \right] \otimes (\mathbf{1}_{n_d} \cdot \mathbf{1}_{n_d}^\top) \\
 1141 &\quad + \beta (\mathbf{1}_{r+1} \cdot \mathbf{1}_{r+1}^\top) \otimes \left[ \left[ \frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa \right] \cdot \left[ \frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa \right]^\top \right] \otimes (\mathbf{1}_{n_d} \cdot \mathbf{1}_{n_d}^\top) \\
 1142 &\quad = \frac{1}{c_2} (1 - \alpha) \mathbf{I}_{r+1} \otimes \mathbf{I}_\kappa \otimes \mathbf{I}_{n_d} \\
 1143 &\quad + \frac{1}{c_1} (\gamma - \beta) (\mathbf{1}_{r+1} \cdot \mathbf{1}_{r+1}^\top) \otimes (\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top) \otimes \mathbf{I}_{n_d} \\
 1144 &\quad - \left[ \frac{1}{c_1} (\gamma - \beta) + \left( \frac{1}{c_2} - \frac{1}{c_1} \right) (1 - \alpha) \right] \mathbf{I}_{r+1} \otimes (\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top) \otimes \mathbf{I}_{n_d} \\
 1145 &\quad + (\alpha - \beta) \mathbf{I}_{r+1} \otimes \left[ \left[ \frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa \right] \cdot \left[ \frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa \right]^\top \right] \otimes (\mathbf{1}_{n_d} \cdot \mathbf{1}_{n_d}^\top) \\
 1146 &\quad + \beta (\mathbf{1}_{r+1} \cdot \mathbf{1}_{r+1}^\top) \otimes \left[ \left[ \frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa \right] \cdot \left[ \frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa \right]^\top \right] \otimes (\mathbf{1}_{n_d} \cdot \mathbf{1}_{n_d}^\top). \\
 1147 &\quad \tag{27}
 \end{aligned}$$

1161 Now we calculate the eigenvalues and eigenvectors of  $\bar{\mathbf{A}}$ . For notational simplicity, we denote the  
 1162 first three terms of equation 27 as  $\bar{\mathbf{A}}_1$  and the last two terms as  $\bar{\mathbf{A}}_2$ . Note that  $\mathbf{I}_{r+1}$ ,  $\mathbf{I}_\kappa$ , and  $\mathbf{I}_{n_d}$   
 1163 have eigenvalues 1 with arbitrary eigenvectors,  $\mathbf{1}_{r+1} \cdot \mathbf{1}_{r+1}^\top$  has eigenvalue  $r+1$  with eigenvector  
 1164  $\bar{\mathbf{1}}_{r+1} := \frac{1}{\sqrt{r+1}} \mathbf{1}_{r+1}$  and eigenvalues 0 with eigenvectors  $\{\nu : \nu^\top \mathbf{1}_{r+1} = 0\}$ , and  $\mathbf{e}_\kappa \cdot \mathbf{e}_\kappa^\top$  has  
 1165 eigenvalue 1 with eigenvector  $\mathbf{e}_1 = (1, 0, \dots, 0)^\top \in \mathbb{R}^\kappa$  and eigenvalues 0 with eigenvectors  
 1166  $\{\mathbf{e}_2, \dots, \mathbf{e}_\kappa\}$ . Let  $\xi \in \mathbb{R}^{n_d}$  denote an arbitrary vector. Then  $\bar{\mathbf{A}}_1$  has the following sets of eigenvalues  
 1167 and eigenvectors:  
 1168

$$\begin{aligned}
 1169 \lambda_{1,1} = \dots = \lambda_{1,n_d} &= \frac{1}{c_2} (1 - \alpha) + \frac{1}{c_1} (\gamma - \beta) (r+1) - \left[ \frac{1}{c_1} (\gamma - \beta) + \left( \frac{1}{c_2} - \frac{1}{c_1} \right) (1 - \alpha) \right], \\
 1170 &= \frac{1}{c_1} (1 - \alpha) + \frac{r}{c_1} (\gamma - \beta), & \text{with eigenvectors } \bar{\mathbf{1}}_{r+1} \otimes \mathbf{e}_1 \otimes \xi; \\
 1171 \lambda_{1,n_d+1} = \dots = \lambda_{1,n} &= \frac{1}{c_2} (1 - \alpha), & \text{with eigenvectors } \bar{\mathbf{1}}_{r+1} \otimes \mathbf{e}_i \otimes \xi, i = 2, \dots, \kappa; \\
 1172 \lambda_{1,n+1} = \dots = \lambda_{1,(r+1)n-rn_d} &= \frac{1}{c_2} (1 - \alpha), & \text{with eigenvectors } \nu \otimes \mathbf{e}_i \otimes \xi, i = 2, \dots, \kappa; \\
 1173 \lambda_{1,(r+1)n-rn_d+1} = \dots = \lambda_{1,(r+1)n} &= \frac{1}{c_2} (1 - \alpha) - \left[ \frac{1}{c_1} (\gamma - \beta) + \left( \frac{1}{c_2} - \frac{1}{c_1} \right) (1 - \alpha) \right], \\
 1174 &= \frac{1}{c_1} (1 - \alpha) - \frac{1}{c_1} (\gamma - \beta), & \text{with eigenvectors } \nu \otimes \mathbf{e}_1 \otimes \xi. \\
 1175 & \tag{28}
 \end{aligned}$$

1183 On the other hand, note that  $\mathbf{1}_{n_d} \cdot \mathbf{1}_{n_d}^\top$  has eigenvalue  $n_d$  with eigenvector  $\bar{\mathbf{1}}_{n_d} := \frac{1}{\sqrt{n_d}} \mathbf{1}_{n_d}$  and  
 1184 eigenvalues 0 with eigenvectors  $\{\eta : \eta^\top \mathbf{1}_{n_d} = 0\}$ , and that by calculations,  $[\frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa] \cdot$   
 1185  $[\frac{1}{\sqrt{c_2}} (\mathbf{1}_\kappa - \mathbf{e}_\kappa) + \frac{1}{\sqrt{c_1}} \mathbf{e}_\kappa]^\top$  has eigenvalue  $\frac{\kappa-1}{c_2} + \frac{1}{c_1}$  with eigenvector  $\{\eta : \sum_{i=1}^{\kappa-1} \eta_i = 0, \eta_\kappa =$   
 1186  $(\kappa-1)\sqrt{c_1/c_2}\}$  and eigenvalues 0 with eigenvectors  $\{\theta : \sum_{i=1}^{\kappa-1} \theta_i = 0, \eta_\kappa = 0\}$ . Then  $\bar{\mathbf{A}}_2$  has the

1188 following sets of eigenvalues and eigenvectors:  
1189  
1190  $\lambda_{2,1} = (\alpha - \beta) \left[ \frac{\kappa - 1}{c_2} + \frac{1}{c_1} \right] n_d + \beta(r + 1) \left[ \frac{\kappa - 1}{c_2} + \frac{1}{c_1} \right] n_d,$   
1191  $= (\alpha + r\beta) \left[ \frac{\kappa - 1}{c_2} + \frac{1}{c_1} \right] n_d,$  with eigenvectors  $\bar{\mathbf{1}}_{r+1} \otimes \eta \otimes \bar{\mathbf{1}}_{n_d};$   
1192  
1193  $\lambda_{2,2} = \dots = \lambda_{2,r+1} = (\alpha - \beta) \left[ \frac{\kappa - 1}{c_2} + \frac{1}{c_1} \right] n_d,$  with eigenvectors  $\nu \otimes \eta \otimes \bar{\mathbf{1}}_{n_d};$   
1194  
1195  $\lambda_{2,r+2} = \dots = \lambda_{2,(r+1)n} = 0,$  with other combinations of eigenvectors.  
1196  
1197  
1198

1199 By Equation 13 in Fulton (2000), for two real symmetric  $n(r + 1) \times n(r + 1)$  matrices  $\bar{\mathbf{A}}_1$  and  $\bar{\mathbf{A}}_2,$   
1200 we have the  $k + 1$ -th largest eigenvalue of  $\bar{\mathbf{A}} := \bar{\mathbf{A}}_1 + \bar{\mathbf{A}}_2$  satisfies

1201  
1202  $\lambda_{k+1} \leq \min_{i+j=k+2} \lambda_{1,i} + \lambda_{2,j}$   
1203  
1204  $= \begin{cases} \frac{1}{c_1}(1 - \alpha) + \frac{r}{c_1}(\gamma - \beta) + (\alpha - \beta) \left[ \frac{\kappa - 1}{c_2} + \frac{1}{c_1} \right] n_d, & \text{for } k < r + 1, \\ \min \left\{ \frac{1}{c_1}(1 - \alpha) + \frac{r}{c_1}(\gamma - \beta), \frac{1}{c_2}(1 - \alpha) + (\alpha - \beta) \left[ \frac{\kappa - 1}{c_2} + \frac{1}{c_1} \right] n_d \right\} \\ = \frac{1}{c_1}(1 - \alpha) + \frac{r}{c_1}(\gamma - \beta), & \text{for } r + 1 \leq k < n_d + r + 1. \end{cases}$   
1205  
1206  
1207  
1208  
1209

1210 Then according to Theorem B.3 in HaoChen et al. (2021), when  $r + 1 \leq k < n_d + r + 1$ , there holds  
1211

1212  
1213  $\mathcal{E}_{\text{w.d.}} \leq \frac{4\delta}{1 - \lambda_{k+1}} + 8\delta = \frac{4\delta}{1 - \frac{1}{c_1}(1 - \alpha) - \frac{r}{c_1}(\gamma - \beta)} + 8\delta = \frac{4\delta}{1 - \frac{(1-\alpha)+r(\gamma-\beta)}{(1-\alpha)+n\alpha+nr\beta+n_d r(\gamma-\beta)}} + 8\delta.$   
1214  
1215 (28)

□

## 1219 B.2 PROOFS RELATED TO SECTION 4

1220 *Proof of Corollary 4.1.* By removing the difficult examples, we have the adjacency matrix as  
1221

1222  
1223  $\mathbf{A} = \begin{bmatrix} \mathbf{A}_{\text{same-class}} & \mathbf{A}_{\text{different-class}} & \cdots & \mathbf{A}_{\text{different-class}} \\ \mathbf{A}_{\text{different-class}} & \mathbf{A}_{\text{same-class}} & \cdots & \mathbf{A}_{\text{different-class}} \\ \vdots & \vdots & & \vdots \\ \mathbf{A}_{\text{different-class}} & \mathbf{A}_{\text{different-class}} & \cdots & \mathbf{A}_{\text{same-class}} \end{bmatrix}_{(r+1) \times (r+1)},$  (29)  
1224  
1225  
1226  
1227

1228 where  
1229

1230  
1231  $\mathbf{A}_{\text{different-class}} = \begin{bmatrix} \beta & \cdots & \beta \\ \vdots & & \vdots \\ \beta & \cdots & \beta \end{bmatrix}_{n_e \times n_e}.$  (30)  
1232  
1233

1234 Then the matrix  $\mathbf{A}$  reduces to  $\mathbf{A}_{\text{w.o.}}$  and the error bound reduces to that in Theorem 3.3 with  $n$   
1235 replaced with  $n_e = n - n_d.$  □  
1236

1237  
1238 The spectral contrastive loss with a margin  $\mathbf{M} = (m_{x,x'})$  is defined as  
1239

1240  
1241  $\mathcal{L}_{\mathbf{M}}(\mathbf{x}; \mathbf{f}) = -2\mathbb{E}_{x,x^+} \mathbf{f}(x)^\top \mathbf{f}(x^+) + \mathbb{E}_{x,x'} \left[ \mathbf{f}(x)^\top \mathbf{f}(x') + m_{x,x'} \right]^2.$  (31)

1242 *Proof of Theorem 4.2.*

$$\begin{aligned}
\mathcal{L}_M &= -2\mathbb{E}_{x,x^+} f(x)^\top f(x^+) + \mathbb{E}_{x,x'} \left[ f(x)^\top f(x') + m_{x,x'} \right]^2 \\
&= -2 \sum_{x,x^+} w_{x,x'} f(x)^\top f(x^+) + \sum_{x,x'} w_x w_{x'} \left[ f(x)^\top f(x') + m_{x,x'} \right]^2 \\
&= \sum_{x,x'} \left\{ -2w_{x,x'} f(x)^\top f(x') + w_x w_{x'} \left[ f(x)^\top f(x') \right]^2 + 2w_x w_{x'} m_{x,x'} f(x)^\top f(x') + w_x w_{x'} m_{x,x'}^2 \right\} \\
&= \sum_{x,x'} \left\{ w_x w_{x'} \left[ f(x)^\top f(x') \right]^2 - 2[w_{x,x'} - w_x w_{x'} m_{x,x'}] f(x)^\top f(x') + w_x w_{x'} m_{x,x'}^2 \right\} \\
&= \sum_{x,x'} \left\{ \left[ [\sqrt{w_x} f(x)]^\top [\sqrt{w_{x'}} f(x')] \right]^2 - 2 \left[ \frac{w_{x,x'}}{\sqrt{w_x} \sqrt{w_{x'}}} - \sqrt{w_x} \sqrt{w_{x'}} m_{x,x'} \right] [\sqrt{w_x} f(x)]^\top [\sqrt{w_{x'}} f(x')] \right. \\
&\quad \left. + \left[ \frac{w_{x,x'}}{\sqrt{w_x} \sqrt{w_{x'}}} - \sqrt{w_x} \sqrt{w_{x'}} m_{x,x'} \right]^2 + 2w_x w_{x'} m_{x,x'} - \frac{w_{x,x'}^2}{w_x w_{x'}} \right\} \\
&= \sum_{x,x'} \left[ \frac{w_{x,x'}}{\sqrt{w_x} \sqrt{w_{x'}}} - \sqrt{w_x} \sqrt{w_{x'}} m_{x,x'} - [\sqrt{w_x} f(x)]^\top [\sqrt{w_{x'}} f(x')] \right]^2 + \sum_{x,x'} \left( 2w_x w_{x'} m_{x,x'} - \frac{w_{x,x'}^2}{w_x w_{x'}} \right) \\
&:= \|(\bar{\mathbf{A}} - \bar{\mathbf{M}}) - FF^\top\|_F^2 + \sum_{x,x'} \left( 2w_x w_{x'} m_{x,x'} - \frac{w_{x,x'}^2}{w_x w_{x'}} \right), \tag{32}
\end{aligned}$$

1268 where we denote  $\bar{\mathbf{A}} := \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ ,  $\bar{\mathbf{M}} := \mathbf{D}^{1/2} \mathbf{M} \mathbf{D}^{1/2}$ ,  $\mathbf{A} := (w_{x,x'})_{x,x' \in \{x_i\}_{i=1}^{n(r+1)}}$ ,  $\mathbf{M} :=$   
1269  $(m_{x,x'})_{x,x' \in \{x_i\}_{i=1}^{n(r+1)}}$ ,  $\mathbf{D} := \text{diag}(w_1, \dots, w_{n(r+1)})$ , and  $F = (\sqrt{w_x} f(x))_{x \in \{x_i\}_{i=1}^{n(r+1)}}$ .

1270 Note that given the adjacency matrix of the similarity graph  $\mathbf{A}$  and the margin matrix  $\mathbf{M}$ , the second  
1271 term in equation 32 is a constant. Therefore, minimizing the margin tuning loss  $\mathcal{L}_M$  over  $f(x)$  is  
1272 equivalent to minimizing the matrix factorization loss  $\mathcal{L}_{\text{mf-M}} := \|(\bar{\mathbf{A}} - \bar{\mathbf{M}}) - FF^\top\|_F^2$  over  $F$ .  $\square$

1280 *Proof of Theorem 4.3.* Recall that when difficult examples exist, we assume that

$$w_{x,x'} := \begin{cases} 1 & \text{for } x = x', \\ \alpha & \text{for } x \neq x', y(x) = y(x'), \\ \gamma & \text{for } x, x' \in \mathbb{D}_d, y(x) \neq y(x'), \\ \beta & \text{otherwise.} \end{cases} \tag{33}$$

1291 Then by definition we have

$$w_x = \sum_{x'} w_{x,x'} = \begin{cases} (1 - \alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta), & \text{for } x \in \mathbb{D}_d, \\ (1 - \alpha) + n\alpha + nr\beta, & \text{for } x \notin \mathbb{D}_d, \end{cases} \tag{34}$$

1296 and correspondingly  
1297

$$\begin{aligned}
1298 \quad & \frac{w_{x,x'}}{w_x w_{x'}} = \begin{cases} \frac{1}{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)}, & \text{for } x = x', x \in \mathbb{D}_d, \\ \frac{1}{(1-\alpha) + n\alpha + nr\beta}, & \text{for } x = x', x \notin \mathbb{D}_d, \\ \frac{\alpha}{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)}, & \text{for } x \neq x', y(x) = y(x'), x, x' \in \mathbb{D}_d, \\ \frac{\alpha}{\sqrt{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)} \sqrt{(1-\alpha) + n\alpha + nr\beta}}, & \text{for } x \neq x', y(x) = y(x'), x \in \mathbb{D}_d \text{ or } x' \in \mathbb{D}_d, \\ \frac{\alpha}{(1-\alpha) + n\alpha + nr\beta}, & \text{for } x \neq x', y(x) = y(x'), x, x' \notin \mathbb{D}_d, \\ \frac{\gamma}{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)}, & \text{for } y(x) \neq y(x'), x, x' \in \mathbb{D}_d, \\ \frac{\beta}{\sqrt{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)} \sqrt{(1-\alpha) + n\alpha + nr\beta}}, & \text{for } y(x) \neq y(x'), x \in \mathbb{D}_d \text{ or } x' \in \mathbb{D}_d, \\ \frac{\beta}{(1-\alpha) + n\alpha + nr\beta}, & \text{for } y(x) \neq y(x'), x, x' \notin \mathbb{D}_d, \end{cases} \\
1314 & \end{aligned} \tag{35}$$

1315 If we let

$$\begin{aligned}
1318 \quad & m_{x,x'} = \begin{cases} -\frac{n_d r(\gamma - \beta)}{[(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)]^2 [(1-\alpha) + n\alpha + nr\beta]}, & \text{for } x = x', x \in \mathbb{D}_d, \\ -\frac{n_d r(\gamma - \beta)}{[(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)]^2 [(1-\alpha) + n\alpha + nr\beta]} \alpha, & \text{for } x \neq x', y(x) = y(x'), x, x' \in \mathbb{D}_d, \\ -\frac{\frac{\sqrt{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)}}{\sqrt{(1-\alpha) + n\alpha + nr\beta}} - 1}{[(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)] [(1-\alpha) + n\alpha + nr\beta]} \alpha, & \text{for } x \neq x', y(x) = y(x'), x \in \mathbb{D}_d \text{ or } x' \in \mathbb{D}_d, \\ -\frac{[(1-\alpha) + n\alpha + (n - n_d) r\beta] (\gamma - \beta)}{[(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)]^2 [(1-\alpha) + n\alpha + nr\beta]}, & \text{for } y(x) \neq y(x'), x, x' \in \mathbb{D}_d, \\ -\frac{\frac{\sqrt{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)}}{\sqrt{(1-\alpha) + n\alpha + nr\beta}} - 1}{[(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)] [(1-\alpha) + n\alpha + nr\beta]} \beta, & \text{for } y(x) \neq y(x'), x \in \mathbb{D}_d \text{ or } x' \in \mathbb{D}_d, \\ 0 & \text{otherwise,} \end{cases} \\
1331 & \end{aligned} \tag{36}$$

1332 then we have

$$\begin{aligned}
1335 \quad & \sqrt{w_x} \sqrt{w_{x'}} m_{x,x'} \\
1336 & = \begin{cases} -\frac{n_d r(\gamma - \beta)}{[(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)] [(1-\alpha) + n\alpha + nr\beta]}, & \text{for } x = x', x \in \mathbb{D}_d, \\ -\frac{n_d r(\gamma - \beta)}{[(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)] [(1-\alpha) + n\alpha + nr\beta]} \alpha, & \text{for } x \neq x', y(x) = y(x'), x, x' \in \mathbb{D}_d, \\ -\frac{\sqrt{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)} - \sqrt{(1-\alpha) + n\alpha + nr\beta}}{\sqrt{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)} [(1-\alpha) + n\alpha + nr\beta]} \alpha, & \text{for } x \neq x', y(x) = y(x'), x \in \mathbb{D}_d \text{ or } x' \in \mathbb{D}_d, \\ -\frac{[(1-\alpha) + n\alpha + (n - n_d) r\beta] (\gamma - \beta)}{[(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)] [(1-\alpha) + n\alpha + nr\beta]}, & \text{for } y(x) \neq y(x'), x, x' \in \mathbb{D}_d, \\ -\frac{\sqrt{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)} - \sqrt{(1-\alpha) + n\alpha + nr\beta}}{\sqrt{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)} [(1-\alpha) + n\alpha + nr\beta]} \beta, & \text{for } y(x) \neq y(x'), x \in \mathbb{D}_d \text{ or } x' \in \mathbb{D}_d, \\ 0 & \text{otherwise,} \end{cases} \\
1349 & \end{aligned} \tag{37}$$

1350 and accordingly  
1351

$$1352 \quad \frac{w_{x,x'}}{w_x w_{x'}} - \sqrt{w_x} \sqrt{w_{x'}} m_{x,x'} = \begin{cases} \frac{1}{(1-\alpha) + n\alpha + nr\beta} & \text{for } x = x', \\ \frac{\alpha}{(1-\alpha) + n\alpha + nr\beta} & \text{for } x \neq x', y(x) = y(x'), \\ \frac{\beta}{(1-\alpha) + n\alpha + nr\beta} & \text{otherwise.} \end{cases} \quad (38)$$

1359 In this case,  $\bar{\mathbf{A}} - \bar{\mathbf{M}}$  is equivalent to the normalized similarity matrix of data without difficult  
1360 examples. That is, we have

$$1361 \quad \mathcal{E}_M = \mathcal{E}_{w.o.} \quad (39)$$

1363  $\square$

1364  
1365 The spectral contrastive loss with temperature  $\mathbf{T} = (\tau_{x,x'})$  is defined as  
1366

$$1367 \quad \mathcal{L}_T(\mathbf{x}; f) = -2\mathbb{E}_{x,x^+} \frac{f(x)^\top f(x^+)}{\tau_{x,x^+}} + \mathbb{E}_{x,x'} \left[ \frac{f(x)^\top f(x')}{\tau_{x,x'}} \right]^2. \quad (40)$$

1370 *Proof of Theorem 4.4.*  
1371

$$1372 \quad \mathcal{L}_T = \mathbb{E}_{x,x^+} f(x)^\top f(x^+) / \tau_{x,x^+} + \mathbb{E}_{x,x'} \left[ f(x)^\top f(x') / \tau_{x,x'} \right]^2 \\ 1373 \quad = -2 \sum_{x,x^+} w_{x,x'} f(x)^\top f(x^+) / \tau_{x,x^+} + \sum_{x,x'} w_x w_{x'} \left[ f(x)^\top f(x') / \tau_{x,x'} \right]^2 \\ 1374 \quad = \sum_{x,x'} \left\{ -2w_{x,x'} / \tau_{x,x'} f(x)^\top f(x^+) + w_x w_{x'} / \tau_{x,x'}^2 \left[ f(x)^\top f(x') / \tau_{x,x'} \right]^2 \right\} \\ 1375 \quad = \sum_{x,x'} \left\{ -2 \frac{1}{\tau_{x,x'}} \frac{w_{x,x'}}{\sqrt{w_x} \sqrt{w_{x'}}} [\sqrt{w_x} f(x)]^\top [\sqrt{w_{x'}} f(x')] + \frac{1}{\tau_{x,x'}^2} \left[ [\sqrt{w_x} f(x)]^\top [\sqrt{w_{x'}} f(x')] \right]^2 \right\} \\ 1376 \quad = \sum_{x,x'} \frac{1}{\tau_{x,x'}^2} \left\{ \left[ [\sqrt{w_x} f(x)]^\top [\sqrt{w_{x'}} f(x')] \right]^2 - 2 \frac{\tau_{x,x'} w_{x,x'}}{\sqrt{w_x} \sqrt{w_{x'}}} [\sqrt{w_x} f(x)]^\top [\sqrt{w_{x'}} f(x')] + \frac{\tau_{x,x'}^2 w_{x,x'}^2}{w_x w_{x'}} - \frac{\tau_{x,x'}^2 w_{x,x'}^2}{w_x w_{x'}} \right\} \\ 1377 \quad = \sum_{x,x'} \frac{1}{\tau_{x,x'}^2} \left[ \tau_{x,x'} \frac{w_{x,x'}}{\sqrt{w_x} \sqrt{w_{x'}}} - [\sqrt{w_x} f(x)]^\top [\sqrt{w_{x'}} f(x')] \right]^2 - \frac{1}{\tau_{x,x'}^2} \sum_{x,x'} \frac{\tau_{x,x'}^2 w_{x,x'}^2}{w_x w_{x'}} \\ 1378 \quad := \|\mathbf{T} \odot \bar{\mathbf{A}} - FF^\top\|_{wF}^2 - \frac{1}{\tau_{x,x'}^2} \sum_{x,x'} \frac{\tau_{x,x'}^2 w_{x,x'}^2}{w_x w_{x'}}, \quad (41)$$

1379 where we denote  $\mathbf{T} := (\tau_{x,x'})_{x,x' \in \{x_i\}_{i=1}^{n(r+1)}}$ ,  $\bar{\mathbf{A}} := \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ ,  $\mathbf{A} := (w_{x,x'})_{x,x' \in \{x_i\}_{i=1}^{n(r+1)}}$ ,  
1380  $\mathbf{D} := \text{diag}(w_1, \dots, w_{n(r+1)})$ ,  $F = (\sqrt{w_x} f(x))_{x \in \{x_i\}_{i=1}^{n(r+1)}}$ ,  $\mathbf{T} \odot \bar{\mathbf{A}}$  as the element-wise product of  
1381 matrices  $\mathbf{T}$  and  $\bar{\mathbf{A}}$ , and  $\|\cdot\|_{wF}$  as the weighted Frobenius norm where  $\|\mathbf{B}\|_{wF}^2 := \sum_{x,x'} \frac{1}{\tau_{x,x'}^2} b_{x,x'}^2$   
1382 for arbitrary matrix  $\mathbf{B} = (b_{x,x'}) \in \mathbb{R}^{n(r+1) \times n(r+1)}$ .

1383 Note that given the adjacency matrix of the similarity graph  $\mathbf{A}$  and the temperature matrix  $\mathbf{T}$ , the  
1384 second term in equation 41 is a constant. Therefore, minimizing the temperature scaling loss  $\mathcal{L}_T$  over  
1385  $f(x)$  is equivalent to minimizing the matrix factorization loss  $\mathcal{L}_{\text{mf-T}} := \|\mathbf{T} \odot \bar{\mathbf{A}} - FF^\top\|_{wF}^2$  over  
1386  $F$ .  
1387  $\square$

1388 Before we proceed to the proof of Theorem 4.5, we first extend Theorem B.3 in HaoChen et al. (2021)  
1389 to the temperature scaling loss by deriving the matrix factorization error bound under the weighted  
1390 Frobenius norm.

1404  
 1405 **Lemma B.1.** Let  $f_{\text{pop}}^* \in \arg \min_{f: \mathcal{X} \rightarrow \mathbb{R}^k} \mathcal{L}_T(f)$  be a minimizer of the population temperature-  
 1406 scaling loss  $\mathcal{L}_T(f)$ . Then for any labeling function  $\hat{y} : \mathcal{X} \rightarrow [r]$ , there exists a linear probe  
 1407  $B^* \in \mathbb{R}^{r \times k}$  with norm  $\|B^*\|_F \leq 1/(1 - \lambda_k)$  such that

$$1408 \mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{X}}, x \sim \mathcal{A}(\cdot | \bar{x})} \left[ \|\vec{y} - B^* f_{\text{pop}}^*(x)\|_2^2 \right] \leq \frac{\tilde{\phi}^{\hat{y}}}{1 - \lambda_{k+1}} + 4\Delta(y, \hat{y}), \quad (42)$$

1410 where  $\vec{y}(\bar{x})$  is the one-hot embedding of  $y(\bar{x})$ , and

$$1412 \tilde{\phi}^{\hat{y}} = \sum_{x, x' \sim \mathcal{X}} \frac{w_{x, x'}}{\tau_{x, x'}^2} \mathbf{1}[\hat{y}(x) \neq \hat{y}(x')]. \quad (43)$$

1414 Furthermore, the error can be bounded by

$$1416 \mathcal{E}_T = \Pr_{\bar{x} \sim \mathcal{P}_{\bar{X}}, x \sim \mathcal{A}(\cdot | \bar{x})} \left( g_{f_{\text{pop}}^*, B^*}(x) \neq y(\bar{x}) \right) \leq \frac{2\tilde{\phi}^{\hat{y}}}{1 - \lambda_{k+1}} + 8\Delta(y, \hat{y}). \quad (44)$$

1418 We also need the following two supporting lemmas to prove Lemma B.1.

1419 **Lemma B.2.** Let  $L$  be the normalized Laplacian matrix of some graph  $G$ ,  $v_i$  be the  $i$ -th smallest  
 1420 unit-norm eigenvector of  $L$  with eigenvalue  $1 - \lambda_i$ , and  $\tilde{R}(u) := \frac{\tilde{u}^\top L \tilde{u}}{u^\top u}$  for a vector  $u \in \mathbb{R}^N$ , where  
 1421  $\tilde{u} = (u_i/\tau_i)_{i=1}^N$ . Then for any  $k \in \mathbb{Z}^+$  such that  $k < N$  and  $1 - \lambda_{k+1} > 0$ , there exists a vector  
 1422  $b \in \mathbb{R}^k$  with norm  $\|b\|_2 \leq \|u\|_2$  such that

$$1424 \left\| u - \sum_{i=1}^k b_i v_i \right\|_w^2 \leq \frac{\tilde{R}(u)}{1 - \lambda_{k+1}} \|u\|_2^2, \quad (45)$$

1427 where  $\|\cdot\|$  denotes the weighted  $l^2$ -norm with weights  $\tau^{-2} = (1/\tau_i^2)_{i=1}^N$ .

1429 *Proof of Lemma B.2.* We can decompose the vector  $u$  in the eigenvector basis as

$$1431 u = \sum_{i=1}^N \zeta_i v_i. \quad (46)$$

1433 Let  $b \in \mathbb{R}^k$  be the vector such that  $b_i = \zeta_i$ . Then we have  $\|b\|_2^2 \leq \|u\|_2^2$  and

$$1435 \left\| u - \sum_{i=1}^k b_i v_i \right\|_w^2 = \left\| \sum_{i=k+1}^N \zeta_i v_i \right\|_w^2 \\ 1436 = \sum_{i=k+1}^N \zeta_i^2 / \tau_i^2 \\ 1438 \leq \frac{1}{1 - \lambda_{k+1}} \sum_{i=k+1}^N (1 - \lambda_i) \zeta_i^2 / \tau_i^2 \\ 1440 = \frac{1}{1 - \lambda_{k+1}} \sum_{i=k+1}^N \zeta_i^2 / \tau_i^2 v_i^\top L v_i \\ 1442 = \frac{1}{1 - \lambda_{k+1}} \sum_{i=k+1}^N \zeta_i^2 / \tau_i^2 v_i^\top L v_i \\ 1444 = \frac{1}{1 - \lambda_{k+1}} \sum_{i=k+1}^N (\zeta_i / \tau_i \cdot v_i)^\top L (\zeta_i / \tau_i \cdot v_i). \quad (47)$$

1453 Denote  $\tilde{u} = \sum_{i=1}^N \zeta_i / \tau_i \cdot v_i$  and  $\tilde{R}(u) := \frac{\tilde{u}^\top L \tilde{u}}{u^\top u}$ . Then we have

$$1455 \left\| u - \sum_{i=1}^k b_i v_i \right\|_w^2 \leq \frac{\tilde{R}(u)}{1 - \lambda_{k+1}} \|u\|_2^2. \quad (48)$$

1457  $\square$

1458 **Lemma B.3.** *In the setting of Lemma B.2, let  $\hat{y}$  be an extended labeling function. Fix  $i \in [r]$ . Define*  
 1459 *function  $u_i^{\hat{y}}(x) := \sqrt{w_x} \cdot \mathbf{1}[\hat{y}(x) = i]$  and  $u_i^{\hat{y}}$  is the corresponding vector in  $\mathbb{R}^N$ . Also define the*  
 1460 *following quantity*

$$1462 \quad \tilde{\phi}_i^{\hat{y}} := \frac{\sum_{x, x' \in \mathcal{X}} w_{x, x'} / \tau_{x, x'}^2 \cdot \mathbf{1}[(\hat{y}(x) = i \wedge \hat{y}(x') \neq i) \text{ or } (\hat{y}(x) \neq i \wedge \hat{y}(x') = i)]}{\sum_{x \in \mathcal{X}} w_x \cdot \mathbf{1}[\hat{y}(x) = i]}. \quad (49)$$

1464 *Then we have*

$$1465 \quad \tilde{R}(u_i^{\hat{y}}) = \frac{1}{2} \tilde{\phi}_i^{\hat{y}}. \quad (50)$$

1468 *Proof of Lemma B.3.* Let  $f$  be any function  $\mathcal{X} \rightarrow \mathbb{R}$ , define function  $u(x) := \sqrt{w_x} \cdot f(x)$ . Let  
 1469  $u \in \mathbb{R}^N$  be the vector corresponding to  $u$ . Then by definition of Laplacian matrix, we have

$$\begin{aligned} 1470 \quad \tilde{u}^\top \mathbf{L} \tilde{u} &= \|\tilde{u}\|_2^2 - \tilde{u}^\top \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \tilde{u} \\ 1471 &= \sum_{x \in \mathcal{X}} w_x / \tau_x^2 f(x)^2 - \sum_{x, x' \in \mathcal{X}} w_{x, x'} / \tau_{x, x'}^2 f(x) f(x') \\ 1472 &= \frac{1}{2} \sum_{x, x' \in \mathcal{X}} w_{x, x'} / \tau_{x, x'}^2 [f(x) - f(x')]^2. \end{aligned} \quad (51)$$

1476 Therefore we have

$$1478 \quad \tilde{R}(u_i^{\hat{y}}) = \frac{1}{2} \frac{\sum_{x, x' \in \mathcal{X}} w_{x, x'} / \tau_{x, x'}^2 [f(x) - f(x')]^2}{\sum_{x \in \mathcal{X}} w_x f(x)^2}. \quad (52)$$

1480 Setting  $f(x) = \mathbf{1}[\hat{y}(x) = i]$  finishes the proof.  $\square$

1482 *Proof of Lemma B.1.* Let  $F_{\text{sc}} = [v_1, v_2, \dots, v_k]$  be the matrix that contains the smallest  $k$  eigenvectors  
 1483 of  $\mathbf{L} = \mathbf{I} - \bar{\mathbf{A}}$  as columns, and  $f_{\text{sc}}$  is the corresponding feature extractor. By Lemma B.2, there  
 1484 exists a vector  $b_i \in \mathbb{R}^k$  with norm bound  $\|b_i\|_2 \leq \|u_i^{\hat{y}}\|_2$  such that

$$1486 \quad \|u_i^{\hat{y}} - F_{\text{sc}} b_i\|_w^2 \leq \frac{\tilde{R}(u_i^{\hat{y}})}{1 - \lambda_{k+1}} \|u_i^{\hat{y}}\|_2^2. \quad (53)$$

1488 Combined with Lemma B.3, we have

$$\begin{aligned} 1489 \quad \|u_i^{\hat{y}} - F_{\text{sc}} b_i\|_w^2 &\leq \frac{\tilde{\phi}_i^{\hat{y}}}{2(1 - \lambda_{k+1})} \cdot \sum_{x \in \mathcal{X} : \mathbf{1}[\hat{y}(x) = i]} \\ 1490 &= \frac{1}{2(1 - \lambda_{k+1})} \sum_{x, x' \in \mathcal{X}} w_{x, x'} / \tau_{x, x'}^2 \cdot \mathbf{1}[(\hat{y}(x) = i \wedge \hat{y}(x') \neq i) \text{ or } (\hat{y}(x) \neq i \wedge \hat{y}(x') = i)]. \end{aligned} \quad (54)$$

1495 Let matrix  $U := (u_i^{\hat{y}})_{i=1}^k$ , and let  $u : \mathcal{X} \rightarrow \mathbb{R}^k$  be the corresponding feature extractor. Define matrix  
 1496  $B \in \mathbb{R}^{N \times k}$  such that  $B^\top = (b_1, \dots, b_k)$ . Summing equation 54 over all  $i \in [k]$  and by definition of  
 1497  $\tilde{\phi}^{\hat{y}}$  we have

$$1499 \quad \|U - F_{\text{sc}} B^\top\|_{wF}^2 \leq \frac{1}{2(1 - \lambda_{k+1})} \sum_{x, x' \in \mathcal{X}} w_{x, x'} / \tau_{x, x'}^2 \cdot \mathbf{1}[\hat{y}(x) \neq \hat{y}(x')] = \frac{\tilde{\phi}^{\hat{y}}}{2(1 - \lambda_{k+1})}. \quad (55)$$

1502 By Theorem 4.4, for a feature extractor  $f_{\text{pop}}^*$  that minimizes the temperature scaling loss  $\mathcal{L}_{\tilde{T}}$ , the  
 1503 function  $f_{\text{mf}}^*(x) := \sqrt{w_x} \cdot f_{\text{pop}}^*(x)$  is a minimizer of the matrix factorization loss  $\mathcal{L}_{\text{mf-T}}$ . Then we have

$$\begin{aligned} 1504 \quad \mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{X}}, x \sim \mathcal{A}(\cdot | \bar{x})} \|\vec{y}(x) - B^* f_{\text{pop}}^*(x)\|_2^2 &\leq 2\mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{X}}, x \sim \mathcal{A}(\cdot | \bar{x})} \|\vec{y}(x) - B^* f_{\text{pop}}^*(x)\|_2^2 + 2\mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{X}}, x \sim \mathcal{A}(\cdot | \bar{x})} \|\vec{y}(x) - \vec{y}(x)\|_2^2 \\ 1505 &= 2 \sum_{x \in \mathcal{X}} w_x \cdot \|\vec{y}(x) - B^* f_{\text{pop}}^*(x)\|_2^2 + 4\Delta(y, \hat{y}) \\ 1506 &= 2\|U - F_{\text{sc}} B^\top\|_{wF}^2 + 4\Delta(y, \hat{y}) \\ 1507 &\leq \frac{\tilde{\phi}^{\hat{y}}}{1 - \lambda_{k+1}} + 4\Delta(y, \hat{y}). \end{aligned} \quad (56)$$

$\square$

1512 Then we move on to the formal proof of Theorem 4.5.  
 1513

1514  
 1515 *Proof of Theorem 4.5.* According to equation 35 the proof of Theorem 4.3, if we let

$$1516 \quad \tau_{x,x'} = \begin{cases} \frac{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)}{(1-\alpha) + n\alpha + nr\beta}, & \text{for } y(x) = y(x'), x, x' \in \mathbb{D}_d, \\ 1517 \quad \frac{\sqrt{(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)}}{\sqrt{(1-\alpha) + n\alpha + nr\beta}}, & \text{for } x \in \mathbb{D}_d \text{ or } x' \in \mathbb{D}_d, \\ 1518 \quad \frac{[(1-\alpha) + n\alpha + nr\beta + n_d r(\gamma - \beta)]\beta}{[(1-\alpha) + n\alpha + nr\beta]\gamma} & \text{for } y(x) \neq y(x'), x, x' \in \mathbb{D}_d, \\ 1519 \quad 1, & \text{otherwise,} \end{cases} \quad (57)$$

1520 then we have  
 1521

$$1522 \quad \tau_{x,x'} \cdot \frac{w_{x,x'}}{w_x w_{x'}} = \begin{cases} \frac{1}{(1-\alpha) + n\alpha + nr\beta} & \text{for } x = x', \\ 1523 \quad \frac{\alpha}{(1-\alpha) + n\alpha + nr\beta} & \text{for } x \neq x', y(x) = y(x'), \\ 1524 \quad \frac{\beta}{(1-\alpha) + n\alpha + nr\beta} & \text{otherwise.} \end{cases} \quad (58)$$

1525 In this case,  $\mathbf{T} \odot \bar{\mathbf{A}}$  is equivalent to the normalized similarity matrix of data without difficult examples.  
 1526

1527 By Lemma B.1, we have  
 1528

$$1529 \quad \mathcal{E}_T \leq \frac{2\tilde{\phi}^{\hat{y}}}{1 - \lambda_{k+1}} + 8\Delta(y, \hat{y}). \quad (59)$$

1530 By Assumption 3.1, we have  $\Delta(y, \hat{y}) \leq \delta$ . Besides, since  $\tau_{x,x'} \leq 1$  for  $y(x) \neq y(x')$ ,  $x, x' \in \mathbb{D}_c$ ,  
 1531 and otherwise  $\tau_{x,x'} \geq 1$ , we have  
 1532

$$1533 \quad \begin{aligned} \tilde{\phi}^{\hat{y}} &= \sum_{x, x' \in \mathcal{X}} w_{x,x'} / \tau_{x,x'}^2 \mathbf{1}[\hat{y}(x) \neq \hat{y}(x')] \\ 1534 \quad &\leq \sum_{x, x' \in \mathcal{X} \setminus \{x, x': x, x' \in \mathbb{D}_c\}} w_{x,x'} \mathbf{1}[\hat{y}(x) \neq \hat{y}(x')] + \sum_{y(x) \neq y(x'), x, x' \in \mathbb{D}_c} (\gamma/\beta)^2 w_{x,x'} \mathbf{1}[\hat{y}(x) \neq \hat{y}(x')] \\ 1535 \quad &= \sum_{x, x' \in \mathcal{X} \setminus \{x, x': x, x' \in \mathbb{D}_c\}} \mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{\mathcal{X}}}} [\mathcal{A}(x|\bar{x}) \mathcal{A}(x'|\bar{x}) \cdot \mathbf{1}[\hat{y}(x) \neq \hat{y}(x')]] \\ 1536 \quad &\quad + (\gamma/\beta)^2 \sum_{x, x' \in \mathbb{D}_c} \mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{\mathcal{X}}}} [\mathcal{A}(x|\bar{x}) \mathcal{A}(x'|\bar{x}) \cdot \mathbf{1}[\hat{y}(x) \neq \hat{y}(x')]] \\ 1537 \quad &\leq \sum_{x, x' \in \mathcal{X} \setminus \{x, x': x, x' \in \mathbb{D}_c\}} \mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{\mathcal{X}}}} [\mathcal{A}(x|\bar{x}) \mathcal{A}(x'|\bar{x}) \cdot (\mathbf{1}[\hat{y}(x) \neq \hat{y}(\bar{x})] + \mathbf{1}[\hat{y}(x') \neq \hat{y}(\bar{x})])] \\ 1538 \quad &\quad + (\gamma/\beta)^2 \sum_{x, x' \in \mathbb{D}_c} \mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{\mathcal{X}}}} [\mathcal{A}(x|\bar{x}) \mathcal{A}(x'|\bar{x}) \cdot (\mathbf{1}[\hat{y}(x) \neq \hat{y}(\bar{x})] + \mathbf{1}[\hat{y}(x') \neq \hat{y}(\bar{x})])] \\ 1539 \quad &= 2[1 - (n_d/n)^2] \mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{\mathcal{X}}}} [\mathcal{A}(x|\bar{x}) \cdot \mathbf{1}[\hat{y}(x) \neq \hat{y}(\bar{x})]] + 2(\gamma/\beta)^2 (n_d/n)^2 \mathbb{E}_{\bar{x} \sim \mathcal{P}_{\bar{\mathcal{X}}}} [\mathcal{A}(x|\bar{x}) \cdot \mathbf{1}[\hat{y}(x) \neq \hat{y}(\bar{x})]] \\ 1540 \quad &= 2[1 - (n_d/n)^2 + (\gamma/\beta)^2 (n_d/n)^2] \delta. \end{aligned} \quad (60)$$

1541 Therefore we have  
 1542

$$1543 \quad \mathcal{E}_T \leq \frac{2\tilde{\phi}^{\hat{y}}}{1 - \lambda_{k+1}} + 8\Delta(y, \hat{y}) \leq [1 - (n_d/n)^2 + (\gamma/\beta)^2 (n_d/n)^2] \cdot \frac{4\delta}{1 - \frac{1-\alpha}{(1-\alpha)+n\alpha+nr\beta}} + 8\delta. \quad (61)$$

1544  $\square$   
 1545

1566

## B.3 RELAXATION ON THE IDEAL ADJACENCY MATRIX

1567

1568 To enhance the connection of the theoretical modeling of difficult examples (Section 3.2) to real-world  
 1569 scenarios, we hereby discuss a possible relaxation on the ideal adjacency matrix of the similarity  
 1570 graph.

1571

1572 The adjacency matrix could be relaxed by adding random terms to the similarity values. Specifically,  
 1573 we replace  $\mathbf{A}$  with  $\tilde{\mathbf{A}} = (\tilde{a}_{ij})$ , where  $\tilde{a}_{ii} = 1$ , and  $\tilde{a}_{ij} = \tilde{a}_{ij} + \epsilon \cdot \varepsilon_{ij}$  for  $i \neq j$ ,  $a_{ij}$  takes values in  
 1574  $\{\alpha, \beta, \gamma\}$ ,  $\varepsilon_{ij} = \varepsilon_{ji}$  are i.i.d. random variables with mean 0 and variance 1,  $\epsilon > 0$  is a small constant.  
 1575 Then  $\tilde{\mathbf{A}}$  can be decomposed into

1576

$$\tilde{\mathbf{A}} = \mathbf{A} + \epsilon \cdot \mathbf{W} - \epsilon \cdot \text{diag}(\varepsilon_{ii}), \quad (62)$$

1577

1578 where  $\mathbf{W}$  turns out to be a real Wigner matrix. Note that as  $\mathbb{E}\varepsilon_{ij} = 0$ , the normalization matrix  
 1579  $\tilde{\mathbf{D}} \rightarrow \mathbb{E}\tilde{\mathbf{D}} = \mathbf{D}$ , as  $n(r+1) \rightarrow \infty$ , and therefore we have  $\tilde{\mathbf{A}} = \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} \approx \mathbf{D}^{-1/2} \tilde{\mathbf{A}} \mathbf{D}^{-1/2}$ .

1580

1581 For mathematical convenience, in the following analysis, we instead perform the relaxation on the  
 1582 normalized adjacency matrix  $\bar{\mathbf{A}}$ , and investigate

1583

$$\tilde{\bar{\mathbf{A}}} = \bar{\mathbf{A}} + \epsilon' \cdot \mathbf{W}' - \epsilon' \cdot \text{diag}(\varepsilon_{ii}), \quad (63)$$

1584

1585 where  $\epsilon > 0$  and  $\mathbf{W}'$  is a Wigner's matrix.

1586

1587 **Theorem B.4** (Generalized version of Theorem 3.3). *Denote  $\mathcal{E}_{\text{w.o.}}$  as the linear probing error of a  
 1588 contrastive learning model trained on a dataset without difficult examples. Under the generalized  
 1589 assumption that  $\mathbf{A}' = \mathbf{A} + \epsilon \mathbf{W}$ , where  $\mathbf{W}$  is a Wigner matrix with  $\varepsilon_{ii}$  following the Dirac distribution,  
 1590 then if  $n(r+1)$  is large enough, we have*

1591

$$\mathcal{E}_{\text{w.o.}} \leq \frac{4\delta}{1 - \frac{1-\alpha}{(1-\alpha)+n\alpha+nr\beta} - \frac{1}{(1-\alpha)+n(\alpha+r\beta)} x_0 \cdot \epsilon} + 8\delta,$$

1592

1593 where  $x_0 \in (0, 2)$  is the unique solution to the following Kepler's equation

1594

$$\frac{1}{2} x_0 \sqrt{4 - x_0^2} + 2 \arg \sin(x_0/2) = \left[ 1 - \frac{2}{r+1} \frac{n_d}{n} \right] \pi.$$

1595

1596 **Theorem B.5** (Generalized version of Theorem 3.4). *Denote  $\mathcal{E}_{\text{w.d.}}$  as the linear probing error of  
 1597 a contrastive learning model trained on a dataset with  $n_d$  difficult examples per class. Under the  
 1598 generalized assumption that  $\mathbf{A}' = \mathbf{A} + \epsilon \mathbf{W}$ , where  $\mathbf{W}$  is a Wigner matrix with  $\varepsilon_{ii}$  following the  
 1599 Dirac distribution, if  $n(r+1)$  is large enough and  $r+1 \leq k < n_d + r + 1$ , we have*

1600

$$\mathcal{E}_{\text{w.d.}} \leq \frac{4\delta}{1 - \frac{(1-\alpha)+r(\gamma-\beta)}{(1-\alpha)+n\alpha+nr\beta+n_d r(\gamma-\beta)} - \frac{1}{(1-\alpha)+n(\alpha+r\beta)} x_0 \cdot \epsilon} + 8\delta.$$

1601

1602 **Remark 1.** (Value of  $x_0$ ) We derive the value of  $x_0$  through numerical methods for multiple datasets,  
 1603 by using the empirical values of  $\alpha$ ,  $\beta$ , and  $\gamma$  calculated on the proxy augmentation graph. We have  
 1604  $x_0 = 1.894$  for CIFAR-10,  $x_0 = 1.976$  for CIFAR-100, and  $x_0 = 1.995$  for Imagenet-1k. Intuitively,  
 1605 according to Wigner's Semicircle Law, because  $n_d \ll n(r+1)$ , the value of  $x_0$  is near 2.

1606

1607 **Remark 2.** (Range of  $\epsilon$ ) The bounds are valid if  $\frac{1-\alpha}{(1-\alpha)+n\alpha+nr\beta} + \frac{1}{(1-\alpha)+n(\alpha+r\beta)} x_0 \cdot \epsilon < 1$   
 1608 and  $\frac{(1-\alpha)+r(\gamma-\beta)}{(1-\alpha)+n\alpha+nr\beta+n_d r(\gamma-\beta)} + \frac{1}{(1-\alpha)+n(\alpha+r\beta)} x_0 \cdot \epsilon < 1$ . As  $\frac{(1-\alpha)+r(\gamma-\beta)}{(1-\alpha)+n\alpha+nr\beta+n_d r(\gamma-\beta)} >$   
 1609  $\frac{1-\alpha}{(1-\alpha)+n\alpha+nr\beta}$ , we require  $\epsilon < \epsilon_{\text{bound}} = \frac{1 - \frac{(1-\alpha)+r(\gamma-\beta)}{(1-\alpha)+n\alpha+nr\beta+n_d r(\gamma-\beta)}}{\frac{1}{(1-\alpha)+n(\alpha+r\beta)} x_0 \cdot \epsilon}$ .

1610

1611 **Remark 3.** (Existing conclusions still hold) Note that the effect of the random similarity  $\epsilon \cdot \varepsilon_{ij}$  is to add  
 1612 an additional term to the upper bound of the eigenvalue, and the effect is the same with and without  
 1613 the existence of difficult examples. When  $\epsilon = 0$ , Theorems B.4 and B.5 degenerates to Theorems 3.3  
 1614 and 3.4. . Moreover, as Corollary 4.1 can be directly derived by Theorem 3.3, the generalized version  
 1615 becomes  $\mathcal{E}_R \leq \frac{4\delta}{1 - \frac{1-\alpha}{(1-\alpha)+(n-n_d)\alpha+(n-n_d)r\beta} - \frac{1}{(1-\alpha)+(n-n_d)(\alpha+r\beta)} x_0 \cdot \epsilon} + 8\delta$ . Similarly, as the bounds in  
 1616 Theorems 4.3 and 4.5 are based on a modified similarity matrix, we have  $\mathcal{E}_M = \mathcal{E}_{\text{w.o.}}$  (Theorem 4.3)  
 1617 and  $\mathcal{E}_T \leq \frac{4[1-(n_d/n)^2 + (\gamma/\beta)^2(n_d/n)^2]\delta}{1 - \frac{1-\alpha}{(1-\alpha)+n\alpha+nr\beta} - \frac{1}{(1-\alpha)+n(\alpha+r\beta)} x_0 \cdot \epsilon} + 8\delta$  (Theorem 4.5), where the theoretical insights of  
 1618 these two theorems remain unchanged. That is, even under the generalized assumptions, we still have  
 1619 the conclusion that sample removal, margin tuning, and temperature scaling improve the error bound  
 under the existence of difficult examples.

1620 *Proof.* Because  $\mathbb{E}\mathbf{W} = \mathbf{0}$ , when  $n(r+1)$  is large enough, after normalization, we have  $\bar{\mathbf{A}}' =$   
 1621  $\bar{\mathbf{A}} + \frac{1}{(1-\alpha)+n(\alpha+r\beta)} \cdot \epsilon\mathbf{W}$ . By Equation 13 in Fulton (2000), when  $r+1 \leq k < n_d + r+1$ , we  
 1622 have the  $k+1$ -th largest eigenvalue of  $\bar{\mathbf{A}}'$  satisfying  
 1623

$$1624 \lambda'_{k+1} \leq \min_{i+j=k+2} \lambda_i + \frac{1}{(1-\alpha)+n(\alpha+r\beta)} \cdot \epsilon\nu_j \leq \lambda_{r+2} + \frac{1}{(1-\alpha)+n(\alpha+r\beta)} \cdot \epsilon\nu_{n_d},$$

1625 where  $\lambda_i$  is the  $i$ -th largest eigenvalue of  $\bar{\mathbf{A}}$  and  $\nu_j$  is the  $j$ -th largest eigenvalue of  $\mathbf{W}$ .  
 1626

1627 On the one hand, according to the proofs of Theorems 3.3 and 3.4, we have  $\lambda_{r+2} = \frac{1-\alpha}{(1-\alpha)+n(\alpha+r\beta)}$   
 1628 (Theorem 3.3) and  $\lambda_{r+2} \leq \frac{(1-\alpha)+r(\gamma-\beta)}{(1-\alpha)+n(\alpha+r\beta)+n_d r(\gamma-\beta)}$  (Theorem 3.3).  
 1629

1630 On the other hand, Because  $\mathbf{W}$  is a Wigner matrix, we have its empirical spectral measure  $\nu =$   
 1631  $\frac{1}{n(r+1)} \sum_{i=1}^{n(r+1)} \delta_{\nu_i}$  converging weakly almost surely to the quarter-circle distribution on  $[0, 2]$ , with  
 1632 density  $f(\nu) = \frac{1}{2\pi} \sqrt{4 - \nu^2} \mathbf{1}[|\nu| \leq 2]$ . When  $j \leq n(r+1)/2$  and  $n(r+1)$  large enough, by  
 1633 symmetry of  $f(\nu)$ , we have  
 1634

$$1635 \frac{1}{2} \left[ 1 - \frac{2j}{n(r+1)} \right] = \int_{x=0}^{\nu_j} f(\nu), d\nu = \frac{1}{2\pi} \left[ \frac{1}{2} \nu_j \sqrt{4 - \nu_j^2} + 2 \arg \sin(\nu_j/2) \right]. \quad (64)$$

1636 Then combine the above calculations, we have  $\lambda'_{k+1} \leq \frac{1-\alpha}{(1-\alpha)+n(\alpha+r\beta)} + \nu_j$  for the generalized  
 1637 Theorem 3.1 and  $\lambda'_{k+1} \leq \frac{(1-\alpha)+r(\gamma-\beta)}{(1-\alpha)+n(\alpha+r\beta)+n_d r(\gamma-\beta)} + \frac{1}{(1-\alpha)+n(\alpha+r\beta)} \cdot \epsilon\nu_j$ , where  $\nu_j$  is the solution  
 1638 to equation 64. Then we complete the proof by deriving the error bounds using the upper bounds of  
 1639  $\lambda'_{k+1}$ .  $\square$   
 1640

## 1641 C USAGE OF LLM

1642 We commit to using LLMs for text polishing based on prompts. All polished text are double-checked  
 1643 by authors to ensure accuracy, avoid over-claims, and prevent confusion.  
 1644

1645  
 1646  
 1647  
 1648  
 1649  
 1650  
 1651  
 1652  
 1653  
 1654  
 1655  
 1656  
 1657  
 1658  
 1659  
 1660  
 1661  
 1662  
 1663  
 1664  
 1665  
 1666  
 1667  
 1668  
 1669  
 1670  
 1671  
 1672  
 1673