
	 TiC-CLIP: Continual Training of CLIP Models

Saurabh Garg;˚ Mehrdad Farajtabar: Hadi Pouransari: Raviteja Vemulapalli:

Sachin Mehta: Oncel Tuzel: Vaishaal Shankar: Fartash Faghri:

:Apple ;Carnegie Mellon University
sgarg2@andrew.cmu.edu, fartash@apple.com

Abstract
Keeping large foundation models up to date on latest data is inherently expensive.
To avoid the prohibitive costs of constantly retraining, it is imperative to contin-
ually train these models. This problem is exacerbated by the lack of any large
scale continual learning benchmarks or baselines. We introduce the first set of web-
scale Time-Continual (TiC) benchmarks for training vision-language models: TIC-
DataComp, TIC-YFCC, and TIC-RedCaps. TIC-DataComp, our largest dataset,
contains over 12.7B timestamped image-text pairs spanning 9 years (2014–2022).
We first use our benchmarks to curate various dynamic evaluations to measure tem-
poral robustness of existing models. We show OpenAI’s CLIP (trained on data up
to 2020) loses « 8% zero-shot accuracy on our curated retrieval task from 2021–
2022 compared with more recently trained models in OpenCLIP repository. We
then study how to efficiently train models on time-continuous data. We demon-
strate that a simple rehearsal-based approach that continues training from the last
checkpoint and replays old data reduces compute by 2.5ˆ when compared to the
standard practice of retraining from scratch. A longer version of the paper is avail-
able at https://arxiv.org/abs/2310.16226.

1 Introduction
Large multimodal foundation models [9] have offered unprecedented advancements in image-
generation and zero-shot generalization, and have led to a paradigm shift in multimodal learning, e.g.,
CLIP [76], Flamingo [2], and Stable Diffusion [83]. These foundation models are typically trained
on large web-scale datasets which are fixed and static in nature. For example, CLIP’s training data
contains 400 million image-text pairs, and Stable Diffusion was trained on LAION-2B dataset [85].
In reality, however, these models must operate in a dynamic environment, where the world is in a
state of constant change. For instance, the internet continually evolves, with petabytes of new data
being added daily [104, 105]. It remains unclear how legacy models, e.g., OpenAI’s CLIP models
which were trained on internet-scale data up until 2020, work on future data and whether they even
require any re-training to adapt to time-evolving data.

We begin by comparing robustness of OpenAI’s CLIP models to others in OpenCLIP repository that
are trained on more recently curated web-datasets (e.g., LAION-5B, DataComp) containing data
up until 2022 [44]. Since there is no existing benchmark to understand robustness to time-evolving
vision-language data, we curate dynamic classification and retrieval tasks for years 2014–2022 and
evaluate different CLIP models (see Sec. A.2 for our evaluation tasks). We make an intriguing
observation that OpenAI models exhibit a significant gap in retrieval performance on data from 2021–
2022 compared with 2014–2016 whereas OpenCLIP models retain their performance. In contrast,
standard evaluations such as accuracy on ImageNet distribution shifts paint an incomplete picture that
OpenAI’s CLIP models are slightly more robust than OpenCLIP models (Fig. 1). Our findings not

˚Work done during an internship at Apple.

Workshop on Distribution Shifts, 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://arxiv.org/abs/2310.16226

25 50 75
Imagenet accuracy

20

40

60

80

Im
ag

en
et

di
st

.
sh

if
t

ac
cu

ra
cy

Standard Evaluation Paradigm

40 60 80
Retrieval recall on 2014–2016

40

50

60

70

80

R
et

ri
ev

al
re

ca
ll

on
20

21
–2

02
2

Performance
gap

Our Proposed Evaluation Paradigm

OpenAI models trained on data before 2020 OpenClip models trained on data before 2022
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Total Compute (MACs) ×1020

20

25

30

35

40

45

50

Im
ag

en
et

an
d

it
s

di
st

.
sh

if
ts

ac
cu

ra
cy

2.7x

TiC-Datacomp (L)

Train from scratch with new +
old data (standard practice)

Warm start + new data
+ replay old data

Figure 1: (Left, Middle) OpenAI models show less zero-shot robustness on retrieval task from
2021–2022. OpenCLIP models and OpenAI models have similar robustness on standard benchmarks.
However, OpenAI models show less robustness on our retrieval task when compared with recent
models in OpenCLIP repository, highlighting susceptibility to a time-evolving data distribution (Right)
Simple continual training baseline is computationally efficient and competitive to retraining
from scratch. Different points denote models trained sequentially on our TIC-DataComp (L) as data
arrives over time. Warm start training with previous checkpoint and replaying all old data, performs
similar to Oracle which trains from scratch every time new data arrives, by using 2.7ˆ less compute.

only demonstrate the critical need for models to adapt and evolve alongside dynamic data distributions,
but also underscores the limitations of relying solely on static benchmarks (e.g. ImageNet).

One naive but common practice for adapting to time-evolving data is to train a new CLIP model from
scratch every time we obtain a new pool of image-text data. This practice has its rationale: initiating
training from a pre-existing model can make it difficult to change the model’s behavior in light of new
data [3, 1, 61]. However, training foundation models from scratch demands significant computational
resources and is often infeasible to repeat frequently. For example, ViT-g-14 in Schuhmann et al.
[85], Cherti et al. [17] was trained for 240K A100 GPU hours which is approximately one month on
400 GPUs. The prevailing training guidelines centered around scaling laws for CLIP training have
only looked at training from scratch [18]. This leads to a pivotal question: How can we continuously
update models as the data distribution evolves over time given computational constraints?

There exists a vast literature on continual learning, with a focus on adapting models to dynamic
environments [72, 37, 23]. Traditionally, this field concentrated on synthetic incremental benchmarks
that lack natural evolution between tasks, and hence, continual learning methods are seldom used
in real-world scenarios [22, 59]. In contrast, recent works focusing on continual learning methods
for CLIP models, primarily target improving performance on a single or a sequence of disjoint
downstream tasks [27, 112, 111, 43]. While some recent works have started to address these problems,
existing benchmarks are comparatively much smaller in scale, or lack paired image-text data [70, 59].
Simply put, there is a scarcity of work focusing on continual training of CLIP models on naturally
evolving data with time at web-scale.

We take the first step towards Time-Continual (TIC) training of CLIP models where data distribution
evolves naturally over time (overview in Fig. 2). We introduce TIC-DataComp, a new benchmark for
Time-Continual training of CLIP models, which we create by appending “crawl time” information
to existing CommonPool dataset [34]. We also repurpose other web-scale datasets gathered from
diverse sources, such as Reddit and Flickr. Specifically, we curate TIC-YFCC and TIC-RedCaps
by leveraging time information available in YFCC [94] and Redcaps [25] respectively. The primary
objective of our study on this benchmark is to develop continual learning methods that operate within
a constrained computational budget (say C) each time a fresh batch of data becomes available. These
methods compete with an Oracle, which starts training from scratch every time new data arrives,
utilizing a cumulative computational budget.

To assess models trained in our TIC-CLIP framework, we evaluate models on our proposed dynamic
evaluation tasks that evolve with time along with 28 standard classification and retrieval tasks
including ImageNet [55], ImageNet distributions shifts, and Flickr [74], in a zero-shot manner
following the work of Gadre et al. [34], Radford et al. [76].

Finally, we develop continual learning methods on our benchmarks and perform over two hundred
experiments with different baselines that utilize previous checkpoints (e.g., warm start, patching,

2

Model at time t -1

Data at time t

Data at time 1

Data at time t - 2
Data at time t -1

…

Replay buffer 
 with constraints

New  
data

Train a CLIP model with compute budget
constraints

Random init

OR

A. Aggregate Data B. Continual Training C. Static and Dynamic Evaluation

Standard Static Evaluation Tasks

 Proposed Dynamic Evaluation Tasks

Task at
Time 1

Task at
Time t-1

… Task at
Time t

Task at
Time t + 1

Task at
Time T

…

Backward Transfer Forward Transfer
ID  

Evaluation

ImageNet (IN), ObjectNet,
IN-v2, IN-R, IN-S, IN-A, IN-O,

VTAB, Wilds, etc.

Flickr30k, MSCOCO

Classification Retrieval

Figure 2: Experimental protocol on our benchmarks. (A) Combine new and old data given buffer
constraints. (B) Continually train a model with a compute budget (say C) either by starting with the
previous checkpoint or from scratch. (C) Evaluate on standard tasks and our proposed dynamic tasks.

and distillation), replay buffers, and learning rate schedules. Our findings highlight a key takeaway:
Cumulative method that warm starts training with the latest checkpoint and replays all old data,
achieves performance competitive to an Oracle while being 2.7ˆ computationally more efficient.
Additionally, our experiments demonstrate interesting trade-offs between buffer sizes for static
and dynamic performance and provide valuable insights into learning rate schedules for sequential
training. Our results span over various dataset scales (from 11M samples to 3B) and highlight trends
with different methods that are largely consistent across scales.

To make our benchmarks accessible, we are commited to publicly releasing the time information
we collect on top of existing datasets. Our work is just an initial step towards continual training of
foundation models, and we believe our research would spur more attention to this understudied area.

2 TiC-CLIP: Benchmarks, Experimental Protocol and Methods
We train on image-text data that arrives sequentially unlike the conventional image-text datasets
which are static (e.g. WiT in CLIP, DataComp in Gadre et al. [34]). The goal of a learner is to train a
deployable model at each step as new data becomes available with a fixed compute budget.

Benchmark Design: How we Create Time-Continual Datasets? To instantiate continual training
of CLIP, we extend existing image-text datasets with time information collected from the original
source of the datasets. Our largest dataset is TIC-DataComp which contains 12.7 billion image-text
pairs with “crawl-time” metadata created on top of the existing DataComp benchmark [34]. The
source of DataComp is Common Crawl, which periodically releases web-crawled data snapshots,
typically on a monthly basis since 2014 with new and updated webpages. To construct TIC-DataComp,
we augment each image-text pair in DataComp with the timestamp of the first snapshot containing
that pair. We also create TIC-YFCC and TIC-RedCaps on top of existing YFCC15M [94, 76] and
Redcaps [25] datasets to highlight the broad applicability of our findings to diverse datasets. While
time-related metadata is absent in the DataComp, it is available in the original releases of YFCC and
Redcaps. Nevertheless, to the best of our knowledge, no prior work utilizes such time information
for continual training of CLIP models. Although our benchmark contains time information at the
granularity of months, we limit our experiments to the granularity of years. See App. A.1 for details.

Evaluation Testbed We leverage the temporal information in our benchmarks to create dynamic
evaluation tasks. For TIC-DataComp, we create dynamic tasks for both retrieval and classification
(examples in Figure 3). We sample a batch of IID image-text pairs from different timestamps to create
TIC-DataComp-Retrieval and evaluate text retrieval performance given the corresponding image
and vice-versa. We also create a classification dataset TIC-DataComp-Net with ImageNet classes
from CommonPool and augmented with timestamps. Our construction is inspired by LAIONNet [88]
with one difference. Unlike LAIONNet, we do not filter the image-text pairs with CLIP similarity
scores to avoid biasing the selection process. We describe the construction process in detail in
App. A.2. Evaluations are done in a zero-shot manner. We also evaluate models on 28 standard static
classification and retrieval tasks as in Gadre et al. [34]. We list all the datasets in App. G.2.

Evaluation metrics For static datasets (e.g., ImageNet), we report performance of T -th model. When
dealing with dynamic evaluation datasets, we assess the performance of models trained at all time steps

3

Table 2: Zero shot performance on our time-continual benchmarks. ˚ and ˚˚ denote methods that
violate the compute budget. For static tasks, we tabulate accuracy of the models obtained on the final
timestamp. For dynamic tasks, we tabulate forward/backward transfer and ID performance on retrieval
tasks (Sec. A.3). Results with all datasets are in Table 4 (see App. C). For TIC-DataComp (XL), we
include results with Bestpool filtering (basic filtering in Table 7). For all metrics, higher is better.

Benchmark Method Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-YFCC

Restart 3.4 ˆ 1018 5.2 3.6 3.0 4.0 13.2 41.4 18.6
Sequential 3.4 ˆ 1018 17.3 10.5 15.9 11.6 42.2 48.4 23.7
Patching 3.4 ˆ 1018 18.9 11.3 18.5 12.1 44.7 53.4 24.5

Cumulative-Exp 3.4 ˆ 1018 24.1 14.3 20.4 15.4 60.4 60.1 27.1
Cumulative-Equal 3.4 ˆ 1018 23.9 13.8 20.5 14.7 60.4 60.4 27.1

Cumulative-All 3.4 ˆ 1018 29.3 17.6 26.8 18.0 66.4 60.2 27.6
LwF˚ 4.1 ˆ 1018 16.9 9.8 14.7 10.5 36.6 56.0 23.2

Cumulative-All˚ 3.6 ˆ 1018 29.2 17.5 27.4 18.1 66.8 60.3 27.6
Oracle˚˚ 8.5 ˆ 1018 29.2 17.0 25.9 18.0 66.1 61.8 26.9

TIC-RedCaps

Restart 3.4 ˆ 1018 11.7 8.5 3.7 7.6 21.3 25.4 22.4
Sequential 3.4 ˆ 1018 19.3 13.7 6.2 11.9 33.0 33.6 27.5
Patching 3.4 ˆ 1018 21.3 15.2 7.7 14.0 34.8 34.8 27.8

Cumulative-Exp 3.4 ˆ 1018 27.3 19.1 10.5 16.3 44.5 42.0 32.6
Cumulative-Equal 3.4 ˆ 1018 27.8 19.4 10.0 16.7 44.4 42.0 32.6

Cumulative-All 3.4 ˆ 1018 32.2 18.7 14.5 19.7 48.9 43.2 33.4
LwF˚ 4.1 ˆ 1018 21.6 14.8 8.2 13.5 35.4 36.0 28.4

Cumulative-All˚ 3.6 ˆ 1018 32.9 23.7 14.1 20.1 49.0 43.4 33.4
Oracle˚˚ 8.5 ˆ 1018 32.7 22.7 14.3 20.6 48.5 43.1 33.4

TIC-DataComp (L)

Sequential 2.7 ˆ 1019 44.7 37.4 48.4 32.7 52.6 58.4 41.1
Patching 2.7 ˆ 1019 45.8 38.9 49.7 33.6 55.2 57.5 40.9

Cumulative-Exp 2.7 ˆ 1019 47.3 39.6 50.8 35.0 60.4 58.4 41.4
Cumulative-Equal 2.7 ˆ 1019 47.7 40.3 51.8 36.0 60.9 58.2 41.4

Cumulative-All 2.7 ˆ 1019 48.9 41.3 50.9 36.3 62.1 57.3 41.2
Cumulative-All˚ 4.1 ˆ 1019 53.0 44.3 54.4 39.0 63.0 57.8 41.2

Oracle˚˚ 1.1 ˆ 1020 53.6 44.0 53.9 38.0 64.3 58.6 41.8

TIC-DataComp (XL)
Sequential 2.7 ˆ 1020 66.5 54.2 61.2 51.7 63.1 68.9 56.8

Cumulative-All 2.7 ˆ 1020 71.6 58.8 65.1 55.7 70.7 68.5 57.1
Cumulative-All˚ 3.5 ˆ 1020 72.8 60.4 66.5 57.7 71.0 68.6 57.1

Oracle˚˚ 1.1 ˆ 1021 73.3 61.3 68.0 58.1 - - -

and report three aggregate metrics: In-domain performance, backward transfer and forward transfer
(see App. A.2). While the static tasks capture performance on standard benchmarks, dynamic tasks
capture problems due to distribution shift (for forward transfer) and forgetting (for backward transfer).

Experimental Protocol For Training We follow a streaming protocol, where data is progressively
revealed to the learner in large batches with the objective of achieving a deployable model as early as
possible after each batch arrives. We allow methods to use the last model checkpoint at each step as
the cost of keeping one checkpoint per month is often negligible. In contrast, the cost of retaining
old data can be high and might not be permitted due to data expiration policies. Thus, along with
studying methods that retain all old data, we also explore strategies that restrict data persistence .
To ensure a fair comparison between methods, we establish a consistent total compute budget, and
allocate it evenly for training at every time step. Unless specified otherwise, for all methods except
Oracle and LwF, we use the same compute budget.

Table 1: Table summarizing our methods. D: data
size in each step, T total time steps, t: current time
step, C: compute budget (iterations).

Method Each Step Total
Train Size Init. Compute Compute

Cumulative-All tD Last C TC
Cumulative-Exp 2D Last C TC
Cumulative-Equal 2D Last C TC
Sequential D Last C TC
Restart tD Rand C TC
Patching D Last Patch C TC
LwF D Last 1.2 ˆ C 1.2 ˆ TC

Oracle˚˚ tD Rand tC pT`1qT
2 C

How to Continually Train Models? We
lay out different methods specifically focus on
the following questions (Tab. 1): (i) How to
utilize/replay data from previous time steps;
(ii) How to leverage previously trained model
checkpoints? (iii) What should be the train-
ing/optimization procedure? In our compar-
isons, Oracle methods Oracle represents a pro-
hibitively expensive method that is the most com-
mon practice in training large-scale foundation
models. The goal of other methods is to perform
as close as possible to the Oracle within their
limited budget. See App. B for details on these methods and discussion around learning rate schedules.

3 Main Results
Here, we only summarize key takeaways due to space constraints (see App. C for detailed results).

4

Cumulative-All saves up to 4ˆ the cost. On dynamic evaluation tasks, we observe that Cumulative-
All where we replay all the past data, achieves performance close to the Oracle (within 1%) using
significantly less compute (4ˆ less on TIC-DataComp and 2.5ˆ less on TIC-YFCC and TIC-
RedCaps). On static tasks, the gap remains small at small scales but grows to 4.7% on large, 1.8%
on xlarge Bestpool, and 4% on xlarge Basic (see Table 4 and Table 7). In these cases, training
Cumulative models with slightly extra compute bridges the gap while remaining at least 2.7ˆ more
computationally efficient (see rows with ˚ in Table 4). This highlights that with unconstrained access
to past data, we can simply train sequentially and save significant computational resources.

At scale, Sequential has strong forward transfer but lacks on static tasks. On TIC-YFCC and TIC-
RedCaps, which are at the smallest scale, we observe a significant gap (ą 10%) between Sequential
(with no data replay) and Oracle on all tasks. On the other hand, on all scales in TIC-DataComp,
Sequential shows strong performance on forward transfer and ID dynamic evaluations. However, on
static tasks and backward transfer evaluations, Sequential significantly underperforms the Oracle.

Patching and LwF improve over Sequential but lag behind Cumulative-All. On static tasks, LwF
improves over Sequential by 2%, while on dynamic tasks, LwF improves backward transfer by 7%
on TIC-DataComp (M). However, its computation cost is higher than even Cumulative-All˚ which
outperforms LwF on all tasks. Patching improves over Sequential on backward transfer on all datasets
(e.g., 5% boost on TIC-DataComp L) highlighting that Patching combines benefits of previously
patched model and the new Sequential model without additional computation cost. However, such
benefits do not show up on static tasks.

-Exp and -Equal significantly reduce replay buffer size and maintain static task performance
and backward transfer. Recall, that -Exp and -Equal reduce the replay buffer size to a maximum 2D
of old data. In particular, at the last time step, -Exp and -Equal reduce the buffer size by 3.5ˆ for TIC-
DataComp datasets. While reducing the buffer sizes, these methods still achieve performance close
to Cumulative-All (within 2%) on both static and dynamic tasks, with -Equal consistently better than
-Exp strategy. As we go to large scale, e.g., from medium to large, the gap between these methods
and Cumulative-All reduces. These findings demonstrate that even a small amount of replay data from
old time steps stays competitive with replaying all data and significantly improves over no replay at all.

Warm up helps training on data from first time step, but hurts on subsequent time steps. We
investigate the effectiveness of warmup in first versus subsequent time steps. Surprisingly, we observe
that not using warmup for subsequent training runs is strictly more beneficial than using warmup on
both static and dynamic tasks. In particular, on TIC-DataComp (L), we observe about 2.5% increase
in accuracy on ImageNet when not using warmup with Cumulative (see App. F.3). Moreover, we
also ablate over not using warm up for the first training run and observe a drop of approximately
4.7% accuracy in the first time step on TIC-DataComp (L). Hence, we default to using warmup when
training on the first time step and not using it on the subsequent time steps with all methods.

Same maximum LR works best across all runs when using cosine schedule. We ablate on TIC-
DataComp (M) to investigate how to change LR after training on data from the first time step. Unlike
conventional pretraining and finetuning settings where LR is typically decreased for subsequent
training, we observe that decaying maximum LR for subsequent steps in our setup hurts on static and
dynamic tasks and consequently, we use same maximum LR across our runs (see App. F.3).

Filtering strategy changes the ordering of performance on static and dynamic retrieval tasks. We
observe that while bestpool filtering models outperform basic filterining models on TIC-DataComp
(XL) by 6% on static tasks, they underperform by over 5% on dynamic retrieval task (see Fig. 9).

4 Conclusion and Future Work
In conclusion, we view TIC-DataComp as the initial stride toward the continual training of large-scale
vision-language foundation models. We aspire to empower the research on large-scale continual-
learning through our new benchmark and preliminary results obtained using simple baselines.

There are several pivotal directions for future work: (i) Reduce the replay buffer size while maintain-
ing the performance on static evaluation tasks and backward-transfer; (ii) Compare our baselines on
continually streaming data at finer granularity, e.g., streaming data at the monthly level; (iii) Investi-
gate alternate learning rate schedules (e.g., Const-Cosine) that are forward looking, and are better
suited to continual learning; (iv) Better data filtering techniques that are more inclusive of future data;
(v) Expand our problem setup to encompass the training of other large-scale foundation models.

5

References
[1] Achille, A., Rovere, M., and Soatto, S. (2018). Critical learning periods in deep networks. In International

Conference on Learning Representations.

[2] Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A., Millican, K.,
Reynolds, M., et al. (2022). Flamingo: a visual language model for few-shot learning. Advances in Neural
Information Processing Systems, 35:23716–23736.

[3] Ash, J. and Adams, R. P. (2020). On warm-starting neural network training. Advances in neural information
processing systems, 33:3884–3894.

[4] Balaji, Y., Farajtabar, M., Yin, D., Mott, A., and Li, A. (2020). The effectiveness of memory replay in large
scale continual learning. arXiv preprint arXiv:2010.02418.

[5] Bandi, P., Geessink, O., Manson, Q., Van Dijk, M., Balkenhol, M., Hermsen, M., Bejnordi, B. E., Lee,
B., Paeng, K., Zhong, A., et al. (2018). From detection of individual metastases to classification of lymph
node status at the patient level: the camelyon17 challenge. IEEE Transactions on Medical Imaging. https:
//pubmed.ncbi.nlm.nih.gov/30716025/.

[6] Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., Tenenbaum, J., and Katz, B. (2019). Ob-
jectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems (NeurIPS), volume 32. Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf.

[7] Beery, S., Cole, E., and Gjoka, A. (2020). The iwildcam 2020 competition dataset. https://arxiv.
org/abs/2004.10340.

[8] Bitton, Y., Guetta, N. B., Yosef, R., Elovici, Y., Bansal, M., Stanovsky, G., and Schwartz, R. (2022).
WinoGAViL: Gamified association benchmark to challenge vision-and-language models. https://arxiv.
org/abs/2207.12576.

[9] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J.,
Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258.

[10] Bornschein, J., Galashov, A., Hemsley, R., Rannen-Triki, A., Chen, Y., Chaudhry, A., He, X. O., Douillard,
A., Caccia, M., Feng, Q., et al. (2022). Nevis’22: A stream of 100 tasks sampled from 30 years of computer
vision research. arXiv preprint arXiv:2211.11747.

[11] Bossard, L., Guillaumin, M., and Van Gool, L. (2014). Food-101–mining discriminative components
with random forests. In European Conference on Computer Vision (ECCV). https://link.springer.
com/chapter/10.1007/978-3-319-10599-4_29.

[12] Cai, Z., Sener, O., and Koltun, V. (2021). Online continual learning with natural distribution shifts: An
empirical study with visual data. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 8281–8290.

[13] Cermelli, F., Mancini, M., Bulo, S. R., Ricci, E., and Caputo, B. (2020). Modeling the background for
incremental learning in semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9233–9242.

[14] Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny, M. (2018). Efficient lifelong learning with
a-gem. arXiv preprint arXiv:1812.00420.

[15] Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H., and Ranzato, M.
(2019). On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486.

[16] Cheng, G., Han, J., and Lu, X. (2017). Remote sensing image scene classification: Benchmark and
state of the art. Proceedings of the Institute of Electrical and Electronics Engineers (IEEE). https:
//ieeexplore.ieee.org/abstract/document/7891544.

[17] Cherti, M., Beaumont, R., Wightman, R., Wortsman, M., Ilharco, G., Gordon, C., Schuhmann, C.,
Schmidt, L., and Jitsev, J. (2022). Reproducible scaling laws for contrastive language-image learning.
https://arxiv.org/abs/2212.07143.

[18] Cherti, M., Beaumont, R., Wightman, R., Wortsman, M., Ilharco, G., Gordon, C., Schuhmann, C., Schmidt,
L., and Jitsev, J. (2023). Reproducible scaling laws for contrastive language-image learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2818–2829.

6

https://pubmed.ncbi.nlm.nih.gov/30716025/
https://pubmed.ncbi.nlm.nih.gov/30716025/
https://proceedings.neurips.cc/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf
https://arxiv.org/abs/2004.10340
https://arxiv.org/abs/2004.10340
https://arxiv.org/abs/2207.12576
https://arxiv.org/abs/2207.12576
https://link.springer.com/chapter/10.1007/978-3-319-10599-4_29
https://link.springer.com/chapter/10.1007/978-3-319-10599-4_29
https://ieeexplore.ieee.org/abstract/document/7891544
https://ieeexplore.ieee.org/abstract/document/7891544
https://arxiv.org/abs/2212.07143

[19] Christie, G., Fendley, N., Wilson, J., and Mukherjee, R. (2018). Functional map of the world. In Conference
on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/1711.07846.

[20] Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and Vedaldi, A. (2014). De-
scribing textures in the wild. In Conference on Computer Vision and Pattern Recogni-
tion (CVPR). https://openaccess.thecvf.com/content_cvpr_2014/html/Cimpoi_
Describing_Textures_in_2014_CVPR_paper.html.

[21] Coates, A., Ng, A., and Lee, H. (2011). An analysis of single-layer networks in unsupervised feature
learning. In International Conference on Artificial Intelligence and Statistics (AISTATS). https://
proceedings.mlr.press/v15/coates11a.html.

[22] Cossu, A., Graffieti, G., Pellegrini, L., Maltoni, D., Bacciu, D., Carta, A., and Lomonaco, V. (2022). Is
class-incremental enough for continual learning? Frontiers in Artificial Intelligence, 5:829842.

[23] De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G., and Tuytelaars, T.
(2021). A continual learning survey: Defying forgetting in classification tasks. IEEE transactions on pattern
analysis and machine intelligence, 44(7):3366–3385.

[24] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In Conference on Computer Vision and Pattern Recognition (CVPR). https:
//ieeexplore.ieee.org/abstract/document/5206848.

[25] Desai, K., Kaul, G., Aysola, Z., and Johnson, J. (2021). Redcaps: Web-curated image-text data created by
the people, for the people. arXiv preprint arXiv:2111.11431.

[26] Díaz-Rodríguez, N., Lomonaco, V., Filliat, D., and Maltoni, D. (2018). Don’t forget, there is more than
forgetting: new metrics for continual learning. arXiv preprint arXiv:1810.13166.

[27] Ding, Y., Liu, L., Tian, C., Yang, J., and Ding, H. (2022). Don’t stop learning: Towards continual learning
for the clip model. arXiv preprint arXiv:2207.09248.

[28] Dohare, S., Hernandez-Garcia, J., Rahman, P., Sutton, R., and Mahmood, A. R. (2023). Loss of plasticity
in deep continual learning.

[29] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929.

[30] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning Representations
(ICLR). https://openreview.net/forum?id=YicbFdNTTy.

[31] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2007). The PASCAL
Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-network.org/
challenges/VOC/voc2007/workshop/index.html.

[32] Farajtabar, M., Azizan, N., Mott, A., and Li, A. (2020). Orthogonal gradient descent for continual learning.
In International Conference on Artificial Intelligence and Statistics, pages 3762–3773. PMLR.

[33] Fei-Fei, L., Fergus, R., and Perona, P. (2004). Learning generative visual models from few training
examples: An incremental Bayesian approach tested on 101 object categories. Conference on Computer
Vision and Pattern Recognition (CVPR) Workshop. https://ieeexplore.ieee.org/document/
1384978.

[34] Gadre, S. Y., Ilharco, G., Fang, A., Hayase, J., Smyrnis, G., Nguyen, T., Marten, R., Wortsman, M., Ghosh,
D., Zhang, J., et al. (2023). Datacomp: In search of the next generation of multimodal datasets. arXiv preprint
arXiv:2304.14108.

[35] Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? the kitti vision bench-
mark suite. In Conference on Computer Vision and Pattern Recognition (CVPR). https://ieeexplore.
ieee.org/abstract/document/6248074.

[36] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2013). An empirical investigation of
catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211.

[37] Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. (2020). Embracing change: Continual learning in deep
neural networks. Trends in cognitive sciences, 24(12):1028–1040.

7

https://arxiv.org/abs/1711.07846
https://openaccess.thecvf.com/content_cvpr_2014/html/Cimpoi_Describing_Textures_in_2014_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2014/html/Cimpoi_Describing_Textures_in_2014_CVPR_paper.html
https://proceedings.mlr.press/v15/coates11a.html
https://proceedings.mlr.press/v15/coates11a.html
https://ieeexplore.ieee.org/abstract/document/5206848
https://ieeexplore.ieee.org/abstract/document/5206848
https://openreview.net/forum?id=YicbFdNTTy
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
https://ieeexplore.ieee.org/document/1384978
https://ieeexplore.ieee.org/document/1384978
https://ieeexplore.ieee.org/abstract/document/6248074
https://ieeexplore.ieee.org/abstract/document/6248074

[38] Hayes, T. L., Cahill, N. D., and Kanan, C. (2019). Memory efficient experience replay for streaming
learning. In 2019 International Conference on Robotics and Automation (ICRA), pages 9769–9776. IEEE.

[39] Helber, P., Bischke, B., Dengel, A., and Borth, D. (2019). Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. Journal of Selected Topics in Applied Earth Observations
and Remote Sensing. https://arxiv.org/abs/1709.00029.

[40] Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T., Parajuli, S.,
Guo, M., Song, D., Steinhardt, J., and Gilmer, J. (2021a). The many faces of robustness: A critical analysis
of out-of-distribution generalization. ICCV. https://arxiv.org/abs/2006.16241.

[41] Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and Song, D. (2021b). Natural adversarial examples. In
Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/1907.
07174.

[42] Hsu, Y.-C., Liu, Y.-C., Ramasamy, A., and Kira, Z. (2018). Re-evaluating continual learning scenarios: A
categorization and case for strong baselines. arXiv preprint arXiv:1810.12488.

[43] Ilharco, G., Wortsman, M., Gadre, S. Y., Song, S., Hajishirzi, H., Kornblith, S., Farhadi, A., and Schmidt,
L. (2022). Patching open-vocabulary models by interpolating weights. Advances in Neural Information
Processing Systems, 35:29262–29277.

[44] Ilharco, G., Wortsman, M., Wightman, R., Gordon, C., Carlini, N., Taori, R., Dave, A., Shankar, V.,
Namkoong, H., Miller, J., Hajishirzi, H., Farhadi, A., and Schmidt, L. (2021). Openclip. If you use this
software, please cite it as below.

[45] Jang, J., Ye, S., Lee, C., Yang, S., Shin, J., Han, J., Kim, G., and Seo, M. (2022). Temporalwiki: A lifelong
benchmark for training and evaluating ever-evolving language models. arXiv preprint arXiv:2204.14211.

[46] Jang, J., Ye, S., Yang, S., Shin, J., Han, J., Kim, G., Choi, S. J., and Seo, M. (2021). Towards continual
knowledge learning of language models. arXiv preprint arXiv:2110.03215.

[47] Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H., Le, Q., Sung, Y.-H., Li, Z., and Duerig,
T. (2021). Scaling up visual and vision-language representation learning with noisy text supervision. In
International conference on machine learning, pages 4904–4916. PMLR.

[48] Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., and Girshick, R. B. (2017).
CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. Conference on
Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/1612.06890.

[49] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2017). Bag of tricks for efficient text classification.
In Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–431. Association for Computational Linguistics.

[50] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J.,
and Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.

[51] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526.

[52] Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W., Yasunaga,
M., Phillips, R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W., Earnshaw, B. A., Haque, I. S.,
Beery, S., Leskovec, J., Kundaje, A., Pierson, E., Levine, S., Finn, C., and Liang, P. (2021). WILDS: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning (ICML).
https://arxiv.org/abs/2012.07421.

[53] Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). 3d object representations
for fine-grained categorization. In International Conference on Computer Vision Workshops
(ICML). https://www.cv-foundation.org/openaccess/content_iccv_workshops_
2013/W19/html/Krause_3D_Object_Representations_2013_ICCV_paper.html.

[54] Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images. https:
//www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[55] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25.

8

https://arxiv.org/abs/1709.00029
https://arxiv.org/abs/2006.16241
https://arxiv.org/abs/1907.07174
https://arxiv.org/abs/1907.07174
https://arxiv.org/abs/1612.06890
https://arxiv.org/abs/2012.07421
https://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W19/html/Krause_3D_Object_Representations_2013_ICCV_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W19/html/Krause_3D_Object_Representations_2013_ICCV_paper.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[56] LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann.lecun.com/exdb/
mnist/.

[57] Li, J., Li, D., Savarese, S., and Hoi, S. (2023). Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. arXiv preprint arXiv:2301.12597.

[58] Li, Z. and Hoiem, D. (2017). Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947.

[59] Lin, Z., Shi, J., Pathak, D., and Ramanan, D. (2021). The clear benchmark: Continual learning on real-
world imagery. In Thirty-fifth conference on neural information processing systems datasets and benchmarks
track (round 2).

[60] Liška, A., Kočiský, T., Gribovskaya, E., Terzi, T., Sezener, E., Agrawal, D., de Masson d’Autume, C.,
Scholtes, T., Zaheer, M., Young, S., Austin, E. G.-M. S., Blunsom, P., and Lazaridou, A. (2022). Streamingqa:
A benchmark for adaptation to new knowledge over time in question answering models. arXiv preprint
arXiv:2205.11388.

[61] Liu, X., Leonardi, A., Yu, L., Gilmer-Hill, C., Leavitt, M., and Frankle, J. (2023). Knowledge distillation
for efficient sequences of training runs. arXiv preprint arXiv:2303.06480.

[62] Lomonaco, V. and Maltoni, D. (2017). Core50: a new dataset and benchmark for continuous object
recognition. In Conference on robot learning, pages 17–26. PMLR.

[63] Lomonaco, V., Pellegrini, L., Rodriguez, P., Caccia, M., She, Q., Chen, Y., Jodelet, Q., Wang, R., Mai,
Z., Vazquez, D., et al. (2022). Cvpr 2020 continual learning in computer vision competition: Approaches,
results, current challenges and future directions. Artificial Intelligence, 303:103635.

[64] Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic memory for continual learning. Advances in
neural information processing systems, 30.

[65] Maji, S., Kannala, J., Rahtu, E., Blaschko, M., and Vedaldi, A. (2013). Fine-grained visual classification of
aircraft. https://arxiv.org/abs/1306.5151.

[66] Michieli, U. and Zanuttigh, P. (2019). Incremental learning techniques for semantic segmentation. In
Proceedings of the IEEE/CVF international conference on computer vision workshops, pages 0–0.

[67] Mirzadeh, S. I., Farajtabar, M., and Ghasemzadeh, H. (2020a). Dropout as an implicit gating mechanism for
continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 232–233.

[68] Mirzadeh, S. I., Farajtabar, M., Pascanu, R., and Ghasemzadeh, H. (2020b). Understanding the role of
training regimes in continual learning. Advances in Neural Information Processing Systems, 33:7308–7320.

[69] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Read-
ing digits in natural images with unsupervised feature learning. In Advances in Neural In-
formation Processing Systems (NeurIPS) Workshops. https://storage.googleapis.com/
pub-tools-public-publication-data/pdf/37648.pdf.

[70] Ni, Z., Wei, L., Tang, S., Zhuang, Y., and Tian, Q. (2023). Continual vision-language representaion
learning with off-diagonal information. arXiv preprint arXiv:2305.07437.

[71] Nilsback, M.-E. and Zisserman, A. (2008). Automated flower classification over a large number of classes.
In Indian Conference on Computer Vision, Graphics and Image Processing. https://ieeexplore.
ieee.org/document/4756141.

[72] Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual lifelong learning with
neural networks: A review. Neural networks, 113:54–71.

[73] Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C. V. (2012). Cats and dogs. In Conference on
Computer Vision and Pattern Recognition (CVPR). https://ieeexplore.ieee.org/document/
6248092.

[74] Plummer, B. A., Wang, L., Cervantes, C. M., Caicedo, J. C., Hockenmaier, J., and Lazebnik, S. (2015).
Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In
Proceedings of the IEEE international conference on computer vision, pages 2641–2649.

[75] Prabhu, A., Torr, P. H., and Dokania, P. K. (2020). Gdumb: A simple approach that questions our progress
in continual learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part II 16, pages 524–540. Springer.

9

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1306.5151
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37648.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37648.pdf
https://ieeexplore.ieee.org/document/4756141
https://ieeexplore.ieee.org/document/4756141
https://ieeexplore.ieee.org/document/6248092
https://ieeexplore.ieee.org/document/6248092

[76] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin,
P., Clark, J., et al. (2021). Learning transferable visual models from natural language supervision. In
International conference on machine learning, pages 8748–8763. PMLR.

[77] Ramaswamy, V. V., Lin, S. Y., Zhao, D., Adcock, A. B., van der Maaten, L., Ghadiyaram, D., and
Russakovsky, O. (2023). Beyond web-scraping: Crowd-sourcing a geodiverse datase. https://arxiv.
org/abs/2301.02560.

[78] Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). icarl: Incremental classifier and
representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 2001–2010.

[79] Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. (2019). Do ImageNet classifiers generalize to
ImageNet? In International Conference on Machine Learning (ICML). http://proceedings.mlr.
press/v97/recht19a.html.

[80] Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics.

[81] Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):123–
146.

[82] Rojas, W. A. G., Diamos, S., Kini, K. R., Kanter, D., Reddi, V. J., and Coleman, C. (2022). The
dollar street dataset: Images representing the geographic and socioeconomic diversity of the world. In
Advances in Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track. https:
//openreview.net/forum?id=qnfYsave0U4.

[83] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695.

[84] Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R.,
and Hadsell, R. (2016). Progressive neural networks. arXiv preprint arXiv:1606.04671.

[85] Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M., Coombes, T., Katta, A.,
Mullis, C., Wortsman, M., et al. (2022). Laion-5b: An open large-scale dataset for training next generation
image-text models. Advances in Neural Information Processing Systems, 35:25278–25294.

[86] Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu, R., and Hadsell, R.
(2018). Progress & compress: A scalable framework for continual learning. In International conference on
machine learning, pages 4528–4537. PMLR.

[87] Seitzer, M. (2020). pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid. Version 0.3.0.

[88] Shirali, A. and Hardt, M. (2023). What makes imagenet look unlike laion. arXiv preprint arXiv:2306.15769.

[89] Srinivasan, T., Chang, T.-Y., Pinto Alva, L., Chochlakis, G., Rostami, M., and Thomason, J. (2022). Climb:
A continual learning benchmark for vision-and-language tasks. Advances in Neural Information Processing
Systems, 35:29440–29453.

[90] Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. (2011). The german traffic sign recognition
benchmark: a multi-class classification competition. In International Joint Conference on Neural Networks
(IJCNN). https://ieeexplore.ieee.org/document/6033395.

[91] Stoica, G., Bolya, D., Bjorner, J., Hearn, T., and Hoffman, J. (2023). Zipit! merging models from different
tasks without training. arXiv preprint arXiv:2305.03053.

[92] Sutton, R. S. (1986). Two problems with backpropagation and other steepest-descent learning procedures
for networks. In Proc. of Eightth Annual Conference of the Cognitive Science Society, pages 823–831.

[93] Thengane, V., Khan, S., Hayat, M., and Khan, F. (2022). Clip model is an efficient continual learner. arXiv
preprint arXiv:2210.03114.

[94] Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., and Li, L.-J.
(2016a). Yfcc100m: The new data in multimedia research. Communications of the ACM, 59(2):64–73.

10

https://arxiv.org/abs/2301.02560
https://arxiv.org/abs/2301.02560
http://proceedings.mlr.press/v97/recht19a.html
http://proceedings.mlr.press/v97/recht19a.html
https://openreview.net/forum?id=qnfYsave0U4
https://openreview.net/forum?id=qnfYsave0U4
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://ieeexplore.ieee.org/document/6033395

[95] Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., and Li, L.-
J. (2016b). YFCC100M: The new data in multimedia research. Communications of the ACM. https:
//arxiv.org/abs/1503.01817.

[96] Van de Ven, G. M. and Tolias, A. S. (2019). Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734.

[97] Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., and Welling, M. (2018). Rotation equivariant CNNs
for digital pathology. https://arxiv.org/abs/1806.03962.

[98] Veniat, T., Denoyer, L., and Ranzato, M. (2020). Efficient continual learning with modular networks and
task-driven priors. arXiv preprint arXiv:2012.12631.

[99] Verwimp, E., Yang, K., Parisot, S., Hong, L., McDonagh, S., Pérez-Pellitero, E., De Lange, M., and
Tuytelaars, T. (2023). Clad: A realistic continual learning benchmark for autonomous driving. Neural
Networks, 161:659–669.

[100] Wang, H., Ge, S., Lipton, Z., and Xing, E. P. (2019). Learning robust global representations by
penalizing local predictive power. In Advances in Neural Information Processing Systems (NeurIPS).
https://arxiv.org/abs/1905.13549.

[101] Wang, J., Wang, X., Shang-Guan, Y., and Gupta, A. (2021). Wanderlust: Online continual object detection
in the real world. In Proceedings of the IEEE/CVF international conference on computer vision, pages 10829–
10838.

[102] Wang, Z., Zhang, Z., Ebrahimi, S., Sun, R., Zhang, H., Lee, C.-Y., Ren, X., Su, G., Perot, V., Dy, J.,
et al. (2022). Dualprompt: Complementary prompting for rehearsal-free continual learning. In European
Conference on Computer Vision, pages 631–648. Springer.

[103] Wen, Y., Tran, D., and Ba, J. (2020). Batchensemble: an alternative approach to efficient ensemble and
lifelong learning. arXiv preprint arXiv:2002.06715.

[104] Wenzek, G., Lachaux, M.-A., Conneau, A., Chaudhary, V., Guzmán, F., Joulin, A., and Grave, E. (2019).
Ccnet: Extracting high quality monolingual datasets from web crawl data. arXiv preprint arXiv:1911.00359.

[105] Wiener, J. and Bronson, N. (2014). Facebook’s top open data problems. https://research.
facebook.com/blog/2014/10/facebook-s-top-open-data-problems/. Accessed:
2023-09-28.

[106] Wortsman, M., Ilharco, G., Kim, J. W., Li, M., Kornblith, S., Roelofs, R., Lopes, R. G., Hajishirzi, H.,
Farhadi, A., Namkoong, H., et al. (2022). Robust fine-tuning of zero-shot models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7959–7971.

[107] Xiao, J., Ehinger, K. A., Hays, J., Torralba, A., and Oliva, A. (2016). Sun database: Exploring a
large collection of scene categories. International Journal of Computer Vision (IJCV). https://link.
springer.com/article/10.1007/s11263-014-0748-y.

[108] Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014). From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Transactions of the
Association for Computational Linguistics. https://aclanthology.org/Q14-1006/.

[109] Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic intelligence. In
International conference on machine learning, pages 3987–3995. PMLR.

[110] Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P., Riquelme, C., Lucic, M., Djolonga, J., Pinto, A. S.,
Neumann, M., Dosovitskiy, A., Beyer, L., Bachem, O., Tschannen, M., Michalski, M., Bousquet, O., Gelly,
S., and Houlsby, N. (2019). The visual task adaptation benchmark. http://arxiv.org/abs/1910.
04867.

[111] Zheng, Z., Ma, M., Wang, K., Qin, Z., Yue, X., and You, Y. (2023). Preventing zero-shot transfer
degradation in continual learning of vision-language models. arXiv preprint arXiv:2303.06628.

[112] Zhou, D.-W., Zhang, Y., Ning, J., Ye, H.-J., Zhan, D.-C., and Liu, Z. (2023). Learning without forgetting
for vision-language models. arXiv preprint arXiv:2305.19270.

11

https://arxiv.org/abs/1503.01817
https://arxiv.org/abs/1503.01817
https://arxiv.org/abs/1806.03962
https://arxiv.org/abs/1905.13549
https://research.facebook.com/blog/2014/10/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/2014/10/facebook-s-top-open-data-problems/
https://link.springer.com/article/10.1007/s11263-014-0748-y
https://link.springer.com/article/10.1007/s11263-014-0748-y
https://aclanthology.org/Q14-1006/
http://arxiv.org/abs/1910.04867
http://arxiv.org/abs/1910.04867

A TiC-CLIP: Benchmarks and Experimental Protocol

In this section, we introduce our benchmark (Fig. 2) focusing on the training of a vision-language
foundation model with the objective of Contrastive Language Image Pretraining (CLIP) [76]). Notably,
we train on image-text data that arrives sequentially unlike the conventional image-text datasets
which are static (e.g. WiT in CLIP, DataComp in Gadre et al. [34]). We curate TIC-DataComp, TIC-
YFCC, and TIC-RedCaps that are image-text pairs sourced from the internet which we augment with
auxiliary time information. We also introduce dynamic evaluation tasks to assess performance of our
continually trained models on data evolving with time. The goal of a learner is to train a deployable
model at each step as new data becomes available with a fixed compute budget.

A.1 Benchmark Design: How we Create Time-Continual Datasets?

To instantiate continual training of CLIP, we extend existing image-text datasets with time information
collected from the original source of the datasets. Our largest dataset is TIC-DataComp which
contains 12.7 billion image-text pairs with “crawl-time” metadata. We create this dataset on top of
the existing DataComp benchmark [34]. We also create TIC-YFCC and TIC-RedCaps on top of
existing YFCC15M [94, 76] and Redcaps [25] datasets to highlight that our findings are broadly
applicable to carefully curated datasets from diverse sources such as Reddit and Flickr. While time-
related metadata is absent in the DataComp benchmark, it is available in the original releases of
YFCC and Redcaps. Nevertheless, to the best of our knowledge, no prior work utilizes such time
information for continual training of CLIP models. We show dataset statistics for all datasets, e.g.,
number of examples in each year in App. G.3.

TIC-DataComp We collect timestamps for the CommonPool dataset introduced in DataComp
which contains 12.7B image-text pairs (not including 0.1B inaccessible ones). This dataset stands
as the largest public image-text dataset to date. The source of DataComp is Common Crawl, which
periodically releases web-crawled data snapshots, typically on a monthly basis since 2014 with new
and updated webpages. To construct TIC-DataComp, we augment each image-text pair in DataComp
with their first timestamp. We followed the same construction process as DataComp but retained only
the image-text pair found in the earliest snapshot during the deduplication stage. This process provides
timestamps at the granularity of months, spanning years 2014–2022. See App. G.7 for details on the
construction process. We note that while this augmented time information may contain some noise, on
average, we find it to be a reasonably accurate proxy for the upload time of web pages (see App. G.7).

Although our benchmark contains time information at the granularity of months, we limit our
experiments to granularity of years by consolidating data for all months in a year. Similar to
DataComp, our benchmark has an inclusive design, accommodating participants with varying levels
of computational resources. In particular, we experiment with medium, large, and xlarge sizes
from CommonPool. [34] leverage different filtering strategies to select the training subset. We are
concerned that filtering techniques bias the selected training data. In App. G.1, we provide preliminary
evidence that “Bestpool” filtering that uses off-the-shelf CLIP models, indeed biases the selected data
to old time steps. Nevertheless, to highlight significance of our findings even for state-of-the filtering
techniques, we experiment with both Bestpool and Basic filtering (no CLIP filtering) at xlarge
scale. For large and medium scales, we only experiment with Basic filtering.

TIC-YFCC We experiment with the 15M subset of YFCC100M [94], namely YFCC15M, selected
by OpenAI [76]. This filtering retains only images with natural text in captions. YFCC100M
contains data from years 2008–2014 and was originally released with upload timestamps. We use
this information to create continual splits at the granularity of years.

TIC-RedCaps RedCaps contains 12M image-caption pairs from manually curated set of subreddits
across 2011–2020 [25]. We use the creation timestamps of the posts to create splits for continual
learning. Similar to the other two datasets, we experiment at the granularity of years.

A.2 Evaluation Testbed

Dynamic tasks We leverage the temporal information in our benchmarks to create dynamic
evaluation tasks. Here, the test data comprises samples varying over years as the world evolved.
For our largest dataset which is TIC-DataComp, we create dynamic tasks for both retrieval and
classification as described below. (examples in Figure 3 and additional examples in App. G.5):

12

I. Dynamic retrieval task: To create a retrieval task, we sample a batch of IID image-text pairs from
different timestamps and evaluate text retrieval performance given the corresponding image (similarly,
image retrieval given the corresponding text). We refer to the dataset as TIC-DataComp-Retrieval.

II. Dynamic classification task: We also create a classification dataset TIC-DataComp-Net with
ImageNet classes from CommonPool and augmented with timestamps. Inspired by LAIONNet [88],
we first filter examples where the corresponding caption contains one and only one of the synsets of
ImageNet. Then we only retain examples where the similarity between ImageNet synset definition
and the caption exceeds a threshold of 0.5. We evaluate the similarity using an off-the-shelf sentence
embedding model [80]. Crucially, unlike LAIONNet, we do not filter the image-text pairs with CLIP
similarity scores to avoid biasing the selection process. We describe the construction process in more
details in App. G.5. On TIC-DataComp-Net, we report average accuracy over all classes and over
selected nodes (e.g., motor vehicles) at each time step.

Similarly, we create retrieval tasks for TIC-YFCC and TIC-RedCaps. Note that we remove the
extracted image-text pairs for dynamic retrieval and classification tasks from the training sets.
Evaluations on dynamic tasks are done in a zero shot manner.

Static tasks We also evaluate models on numerous classification and retrieval tasks in a zero-shot
manner as in Radford et al. [76]. In particular, we consider 28 standard tasks: 27 image classification
tasks, e.g., ImageNet and its 6 distribution shifts (e.g., ImageNetv2, ImageNet-R, ImageNet-Sketch,
and Objectnet), datasets from VTAB and Flickr30k retrieval task. We refer to these as static evaluation
tasks. We list all the datasets in App. G.2.

Evaluation metrics We define metrics for classification tasks and retrieval tasks based on accuracy
and Recall@1, respectively. Let T represent the number of time steps for which we have data. For
each training method, we generate a total of T models, each corresponding to the end of training
at a particular time step. For static datasets (e.g., ImageNet), we report average performance of T
models. However, when dealing with dynamic evaluation datasets, we assess the performance of
each of the T models on evaluation datasets collected at all time steps. Consequently, for each model
and a dynamic evaluation task, we obtain T performance values. We represent these values using the
performance matrix E , where each entry Ei,j signifies the performance of the model obtained after
observing training data at time step i when evaluated on a dataset from time step j. The performance
matrix E can also be succinctly summarized using three standard metrics commonly employed in
continual learning evaluations [59, 64, 26]:
• In-domain performance: average performance at each training time step (i.e., the diagonal of E)
• Backward transfer: average on time steps before each training step (i.e., the lower triangular of E)
• Forward transfer: average on time steps following each training step (i.e., the upper triangular of E)
While the static tasks capture performance on standard benchmarks, dynamic tasks capture problems
due to distribution shift (for forward transfer) and forgetting (for backward transfer). The goal in our
benchmark is to develop continual learning methods that maximize performance on static tasks while
simultaneously optimizing for performance on dynamic tasks.

A.3 Experimental Protocol For Training

Streaming protocol We follow a streaming protocol, where data is progressively revealed to the
learner in large batches with the objective of achieving a deployable model as early as possible after
each batch arrives. We conduct experiments with data streaming at the granularity of years and our
benchmark supports future research at the granularity of months. Additionally, as the amount of
data from earlier time steps is limited (see App. G.3), we aggregate data from the earlier time steps
into a single larger batch and timestamp it by the latest year in the range. After this aggregation, we
have 7 time steps for TIC-DataComp (2016–2022) and 4 for both TIC-YFCC (2011–2014) and TIC-
RedCaps (2017–2020). While the number of image-text pairs revealed at each time step are of similar
orders of magnitude, the exact number does vary across steps and we do not artificially alter the sizes.

Memory budget We allow methods to use the last model checkpoint at each step as the cost of
keeping one checkpoint per month is often negligible. In contrast, the cost of retaining old data can be
high and might not be permitted due to data expiration policies. Thus, along with studying methods
that retain all old data, we also explore strategies that restrict data persistence (see Sec. B for details).

Compute budget To ensure a fair comparison between methods, we establish a consistent total
compute budget, quantified in terms of Multiply-Accumulate Operations (MACs), and allocate it

13

Apple Confidential–Internal Use Only

2014

2022

.

.

.

Previously unseen
topics, e.g.,
COVID-19

emerge with time

Mount Rainier and Towers

First Snow Storm of
the Season

image of virus that
causes sickness

coronavirus covid-19

A. Dynamic Retrieval Task B. Dynamic Classification Task
Mask Sports Car Phone Computer

Figure 3: Distribution of examples changes from 2014 to 2022 in our dynamic evaluation tasks.
(Left) Samples for text to image retrieval. For new timestamps, images from novel concepts appear
(e.g., COVID-19). (Right) Samples from our classification task for 4 categories. We observe that not
only objects evolve over time but also images from recent timestamps are captured more in the wild.

evenly for training at every time step. Unless specified otherwise, for all methods except Oracle and
LwF, we use the same compute budget. For experiments on TIC-DataComp, we refer to compute
configurations in DATACOMP for overall compute. For TIC-RedCaps and TIC-YFCC, we use
compute of order medium scale in TIC-DataComp. Compute budget details are in App. G.4.

A.4 Analyzing Distribution Shifts in the Constructed Benchmarks

TIC-DataComp analysis through the lens of constructed evaluation tasks First, we qualitatively
analyze the examples in our retrieval and classification dataset (Fig. 3). We observe that over time,
in the retrieval task, new concepts like COVID-19 emerge. Likewise, certain ImageNet classes
evolve, such as the shift from “masquerad” masks to “surgical/protective” masks in their definitions.
Moreover, as time evolves, we observe that image quality improves and more images tend to appear in
the wild in contrast to centered white background images. Next, we compare performance of OpenAI
and OpenCLIP models on our datasets. Here, we only present the main findings, and delegate a
detailed discussion to App. G.6. We observe a significant performance gap between OpenAI and
OpenCLIP models on our dynamic retrieval task (Fig. 1). This gap widens notably on retrieval queries
where captions mention COVID-19. On the other hand, OpenAI and OpenCLIP models exhibit
similar robustness for retrieval on data coming from Flickr highlighting that data from some domains
do not exhibit shifts that cause performance drops. For our classification task, we observe a very
small drop (« 1%) when averaged across all categories. However, we observe a substantial gap on
specific subtrees in ImageNet. For example, classes in “motor vehicle” subtree show an approximate
4% performance drop, when comparing OpenAI and OpenCLIP models. These findings highlight
that while overall ImageNet classes may remain timeless, certain categories tend to evolve faster than
others. Our qualitative and quantitative analysis on TIC-DataComp clearly highlights evolution of
distributions and captures different properties than standard benchmarks.

Quantitative analysis on TIC-YFCC We analyze TIC-YFCC using off-the-shelf sentence and
image encoders. We first embed images from different time steps with an OpenAI CLIP encoder
and then compute Frechet Inception Distance (FID; Seitzer [87]). As time progresses, we observe
that FID distance increases with respect to data from first time step (Fig. 15 in App. G.6). Similarly,
we use pretrained sentence transformer to extract top-5 categories from Wordnet Nouns for each
caption. We observe that the TV distance over distribution of WordNet Nouns evolves over time
when compared to data from the first time step. More details in App. G.6.

B TiC-CLIP: How to Continually Train CLIP Models?

In this section, we lay out different methods specifically focus on the following questions (Tab. 3): (i)
How to utilize/replay data from previous time steps; (ii) How to leverage previously trained model
checkpoints? (iii) What should be the training/optimization procedure?

14

Table 3: Table summarizing our methods. D: data size in each step, T total time steps, t: current
time step, C: compute budget (iterations).

Method Each Step Total
Train Size Init. Compute Compute

Cumulative-All tD Last C TC
Cumulative-Exp 2D Last C TC
Cumulative-Equal 2D Last C TC
Sequential D Last C TC
Restart tD Rand C TC
Patching D Last Patch C TC
LwF D Last 1.2 ˆ C 1.2 ˆ TC

Oracle˚˚ tD Rand tC pT`1qT
2 C

Data replay methods initialized from the last checkpoint demonstrate strong performance on standard
continual learning benchmarks (Appendix D.1). We consider replay methods with/without initializa-
tion from last checkpoint(s):

I. Oracle: Train a CLIP model from scratch (i.e., random initialization) on all image-text data
received till time t using a large compute budget of tˆC. Oracle represents a prohibitively expensive
method that is the most common practice in training large-scale foundation models. The goal of other
methods is to perform as close as possible to the Oracle within their limited budget.

II. Cumulative: Train each model initialized from last checkpoint on the union of all data up to t
with compute budget C. This method is analogous to Experience Replay (ER; [81, 38]) but with
substantially larger buffers than common in the continual learning literature. Given a fixed buffer
size for each past step, we observe minimal to no difference between random subsampling and other
strategies. After sampling the replay data, we randomly shuffle it together with new data for training.
We consider the following strategies for sampling buffer sizes per step:

• -All: Replay all previous data.

• -Exp: Replay a buffer of size D and reduce the amount of old data by half at each step. For example,
at 4-th time step, we retain D{2, D{2, D of old data and at 4-th, we retain D{8, D{8, D{4, D{2 of
old data. Along with D data from current step, this method trains on at most 2D data in each step.

• -Equal: Replay a buffer of size D but split the buffer equally among all previous years. For
example, at 4-th step, we retain D{3, D{3, D{3 of old data. Along with D data from current time
step, this method trains on at most 2D data in each step.

III. Sequential: Train only on the new data starting from the best checkpoint of the previous time
step. Sequential is similar to Cumulative but without any replay buffer.

IV. Restart: Train each model from scratch (i.e., random initialization) on all the data till time t for
compute budget C. Restart is similar to the Oracle but with compute budget C at each time step and
similar to Sequential but with random initialization. As such, Restart helps us understand the forward
transfer and loss of plasticity in our benchmark [3, 28].

V. LwF: Train only on the new data with an additional loss that regularizes the model by KL
divergence between the image-text similarity matrix of last checkpoint and current model on each
mini-batch [58, 27].

VI. Patching: We use sequential patching from Ilharco et al. [43] and initialize from a patched model
of last step and train only on the new data. To obtain patched model at each time step, we apply weight
interpolation with the patched model (if any) trained at time step t ´ 1 and model trained at time step
t. We tune the mixing coefficients by optimizing average retrieval performance on previous tasks.

Learning rate schedule The defacto Learning Rate (LR) schedule for training CLIP models is
an initial linear increase to a maximum value, i.e., warm up, followed by a cosine decay [76, 34].
We default to using cosine LR schedule for each sequential run, resulting in a cyclic schedule and
observe a significant increase in training loss early in subsequent runs when the LR is high. However,
as training progresses, we observe that the increased loss decreases at a faster rate (when compared
to training from scratch) allowing us to train with cyclic schedules.

Other Training details and hyperparameters Unless specified otherwise, we closely follow the
original CLIP training recipe [76]. We train the CLIP variant with ViT-B/16 as the image encoder [29].
All training and hyperparameters can be found in App. H.2.

15

Table 4: Zero shot performance on our time-continual benchmarks. ˚ and ˚˚ denote methods
that violate the compute budget. For static tasks, we tabulate accuracy of the models obtained on the
final timestamp. For dynamic tasks, we tabulate forward/backward transfer and ID performance on
retrieval tasks (Sec. A.3). For TIC-DataComp (XL), we include results with Bestpool filtering (basic
filtering in Table 7). For all metrics, higher is better.

Benchmark Method Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-YFCC

Restart 3.4 ˆ 1018 5.2 3.6 3.0 4.0 13.2 41.4 18.6
Sequential 3.4 ˆ 1018 17.3 10.5 15.9 11.6 42.2 48.4 23.7
Patching 3.4 ˆ 1018 18.9 11.3 18.5 12.1 44.7 53.4 24.5

Cumulative-Exp 3.4 ˆ 1018 24.1 14.3 20.4 15.4 60.4 60.1 27.1
Cumulative-Equal 3.4 ˆ 1018 23.9 13.8 20.5 14.7 60.4 60.4 27.1

Cumulative-All 3.4 ˆ 1018 29.3 17.6 26.8 18.0 66.4 60.2 27.6
LwF˚ 4.1 ˆ 1018 16.9 9.8 14.7 10.5 36.6 56.0 23.2

Cumulative-All˚ 3.6 ˆ 1018 29.2 17.5 27.4 18.1 66.8 60.3 27.6
Oracle˚˚ 8.5 ˆ 1018 29.2 17.0 25.9 18.0 66.1 61.8 26.9

TIC-RedCaps

Restart 3.4 ˆ 1018 11.7 8.5 3.7 7.6 21.3 25.4 22.4
Sequential 3.4 ˆ 1018 19.3 13.7 6.2 11.9 33.0 33.6 27.5
Patching 3.4 ˆ 1018 21.3 15.2 7.7 14.0 34.8 34.8 27.8

Cumulative-Exp 3.4 ˆ 1018 27.3 19.1 10.5 16.3 44.5 42.0 32.6
Cumulative-Equal 3.4 ˆ 1018 27.8 19.4 10.0 16.7 44.4 42.0 32.6

Cumulative-All 3.4 ˆ 1018 32.2 18.7 14.5 19.7 48.9 43.2 33.4
LwF˚ 4.1 ˆ 1018 21.6 14.8 8.2 13.5 35.4 36.0 28.4

Cumulative-All˚ 3.6 ˆ 1018 32.9 23.7 14.1 20.1 49.0 43.4 33.4
Oracle˚˚ 8.5 ˆ 1018 32.7 22.7 14.3 20.6 48.5 43.1 33.4

TIC-DataComp (M)

Sequential 3.0 ˆ 1018 19.2 16.4 16.4 15.0 25.7 26.4 14.9
Patching 3.0 ˆ 1018 19.3 16.8 18.5 14.7 26.9 25.4 14.5

Cumulative-Exp 3.0 ˆ 1018 22.1 18.4 20.4 16.7 31.7 27.1 15.2
Cumulative-Equal 3.0 ˆ 1018 22.1 18.4 19.2 17.1 31.8 26.8 15.1

Cumulative-All 3.0 ˆ 1018 24.0 20.2 20.9 17.9 33.8 26.4 15.1
LwF˚ 3.8 ˆ 1018 19.2 16.5 17.7 14.3 25.6 26.6 14.9

Cumulative-All˚ 3.9 ˆ 1018 30.0 25.0 28.6 22.3 36.7 28.3 15.5
Oracle˚˚ 1.2 ˆ 1019 25.5 21.2 23.3 19.0 34.9 27.8 15.6

TIC-DataComp (L)

Sequential 2.7 ˆ 1019 44.7 37.4 48.4 32.7 52.6 58.4 41.1
Patching 2.7 ˆ 1019 45.8 38.9 49.7 33.6 55.2 57.5 40.9

Cumulative-Exp 2.7 ˆ 1019 47.3 39.6 50.8 35.0 60.4 58.4 41.4
Cumulative-Equal 2.7 ˆ 1019 47.7 40.3 51.8 36.0 60.9 58.2 41.4

Cumulative-All 2.7 ˆ 1019 48.9 41.3 50.9 36.3 62.1 57.3 41.2
Cumulative-All˚ 4.1 ˆ 1019 53.0 44.3 54.4 39.0 63.0 57.8 41.2

Oracle˚˚ 1.1 ˆ 1020 53.6 44.0 53.9 38.0 64.3 58.6 41.8

TIC-DataComp (XL)
Sequential 2.7 ˆ 1020 66.5 54.2 61.2 51.7 63.1 68.9 56.8

Cumulative-All 2.7 ˆ 1020 71.6 58.8 65.1 55.7 70.7 68.5 57.1
Cumulative-All˚ 3.5 ˆ 1020 72.8 60.4 66.5 57.7 71.0 68.6 57.1

Oracle˚˚ 1.1 ˆ 1021 73.3 61.3 68.0 58.1 - - -

C Experiments and Results

Our main results are in Table 4 and more detailed plots on each dataset are in App. F.1. Recall, our
goal is compete with an Oracle that re-trains from scratch every time new data is observed, both on
dynamic and static tasks, while being computationally efficient. Here, we summarize our key findings:

Cumulative-All saves up to 4ˆ the cost. On dynamic evaluation tasks, we observe that Cumulative-
All where we replay all the past data, achieves performance close to the Oracle (within 1%) using
significantly less compute (4ˆ less on TIC-DataComp and 2.5ˆ less on TIC-YFCC and TIC-
RedCaps). On static tasks, the gap remains small at small scales but grows to 4.7% on large, 1.8%
on xlarge Bestpool, and 4% on xlarge Basic (see Table 4 and Table 7). In these cases, training
Cumulative models with slightly extra compute bridges the gap while remaining at least 2.7ˆ more
computationally efficient (see rows with ˚ in Table 4). This highlights that with unconstrained access
to past data, we can simply train sequentially and save significant computational resources.

At scale, Sequential has strong forward transfer but lacks on static tasks. On TIC-YFCC and TIC-
RedCaps, which are at the smallest scale, we observe a significant gap (ą 10%) between Sequential
(with no data replay) and Oracle on all tasks. On the other hand, on all scales in TIC-DataComp,
Sequential shows strong performance on forward transfer and ID dynamic evaluations. However, on
static tasks and backward transfer evaluations, Sequential significantly underperforms the Oracle.

Patching and LwF only improve slightly over Sequential but significantly lag behind Cumulative-
All. On static tasks, LwF improves over Sequential by <1.5%. However, its computation cost is higher
than even Cumulative-All˚ which outperforms LwF on all tasks. Similarly, Patching improves over
Sequential on backward transfer on all datasets (e.g., 3% boost on TIC-DataComp L) highlighting
that Patching combines benefits of the previously patched model and the new Sequential model.

16

0.0 0.5 1.0
Total Compute (MACs) ×1020

20

30

40
Im

ag
en

et
(&

di
st

.
sh

if
ts

)
ac

cu
ra

cy

Similar

Static Evaluation

0.0 0.5 1.0

Total Compute (MACs) ×1020

30

40

50

60

70

R
et

ri
ev

al
R

ec
al

l@
1

on
20

21
–2

02
2

Gap

Dynamic Evaluation

Cumulative-All Oracle
2016 2017 2018 2019 2020 2021 2022

Evaluation time step

2016

2017

2018

2019

2020

2021

2022

T
ra

in
in

g
ti

m
e

st
ep

47.09 32.46 28.98 25.04 23.10 22.67 22.82

59.39 54.99 47.50 41.57 38.93 38.19 36.98

63.07 60.23 60.11 53.13 47.08 45.79 45.29

64.23 62.00 59.78 57.68 51.65 50.27 50.01

65.38 63.92 64.72 64.89 61.35 58.67 56.61

66.90 64.57 65.11 66.38 64.00 63.73 61.12

66.92 65.38 65.91 67.23 64.33 65.42 65.36

Dynamic evaluation of Oracle

25

30

35

40

45

50

55

60

65

Figure 4: (Left) Dynamic and static evaluations rank models differently. Models with similar per-
formance on static datasets, have ą 6% difference on retrieval task from 2021-2022 TIC-DataComp
(L). Different points denote models trained sequentially over time. (Right) Performance of Oracle
on future time steps drops highlighting distribution shift in dataset. Each row evaluates the Ora-
cle trained on TIC-DataComp (L) at a particular time step across all dynamic retrieval tasks.

However, the benefits on static tasks are relatively modest. These results hint that to continuously
improve on static tasks with time, replaying old data as in Cumulative-All plays a crucial role.

-Exp and -Equal significantly reduce replay buffer size and maintain static task performance
and backward transfer. Recall, that -Exp and -Equal reduce the replay buffer size to a D of old data
and overall reduce the buffer size by 3.5ˆ for TIC-DataComp datasets. While reducing the buffer
sizes, these methods still achieve performance close to Cumulative-All (within 2%) on both static
and dynamic tasks, with -Equal often better than -Exp. As we go to large scale, e.g., from medium
to large, the gap between these methods and Cumulative-All reduces. These findings demonstrate
that even a small amount of replay data from old time steps stays competitive with replaying all data
and significantly improves over no replay at all.

Warm up helps training on data from first time step, but hurts on subsequent time steps. Cosine
LR is commonly coupled with an initial warm-up that linearly increases the LR from zero to maximum
LR. We investigate the effectiveness of warm-up in first versus subsequent time steps. Surprisingly,
we observe that not using warmup for subsequent training runs is strictly more beneficial than using
warm up on both static and dynamic tasks. In particular, on TIC-DataComp (L), we observe about
2.5% improvement in accuracy on ImageNet when not using warmup with Cumulative (see App. F.3).
Moreover, we also ablate over not using warm up for the first training run and observe a drop of
approximately 4.7% accuracy in the first time step on TIC-DataComp (L). Hence, we default to using
warmup when training on the first time step and not using it on the subsequent time steps with all
methods except for training on TIC-DataComp (XL) where we add a smaller warm up (10% of the
warm up iterations used in first step) to stabilize training.

Same maximum LR works best across all runs when using cosine schedule. We ablate on TIC-
DataComp (M) to investigate how to change LR after training on data from the first time step. Unlike
conventional pretraining and finetuning settings where LR is typically decreased for subsequent
training, we observe that decaying maximum LR for subsequent steps in our setup hurts on static and
dynamic tasks and consequently, we use same maximum LR across our runs (see App. F.3).

Filtering strategy changes the ordering of performance on static and dynamic retrieval tasks. We
observe that while bestpool filtering models outperform basic filterining models on TIC-DataComp
(XL) by 6% on static tasks, they underperform by over 5% on dynamic retrieval task (see Fig. 9).

Dynamic tasks provide complimentary information for model selection compared to static
tasks. Choosing models solely based on static task performance may inadvertently select models
that underperform on dynamic tasks. For example, Cumulative models that show relatively modest
improvements on static tasks continue to improve by ą 6% for retrieval on 2021-2022 (Fig. 4).

Table 5: ImageNet continual training
with up to 8 splits. Cumulative-All re-
mains close to Oracle.

Method Number of splits
1 (Oracle) 2 4 8

Cumulative-All 80.9 80.8 80.6 80.0

Cumulative-All remains competitive to Oracle even on
ImageNet on up to 8 splits. CLIP models are often trained
for fewer epochs and are typically not trained until they
reach an “overfitting” regime. Moreover, CLIP models
are trained with noisy supervision of web data with a
contrastive loss. Here, we investigate how Cumulative-All

17

(with no extra budget) performs when compared to Oracle
when training is done for longer with high-quality data.
Specifically, we assess Cumulative-All on 2, 4 and 8 IID splits including the full dataset (see App. H.1
for details). Table 5 summmarizes our key findings. Notably, even with up to 8 splits, the difference in
accuracy between Oracle and Cumulative-All remains below 0.9% on the ImageNet holdout test set.
These results underscore the feasibility of continual training with Cumulative-All even on ImageNet.

D Continual Learning benchmarks

We introduce a large-scale image-text benchmark with web scale streaming image text pairs especially
developed for studying how efficiently one can get a fresh CLIP model with new incoming batches of
data. Table 6 compares the proposed benchmark with the existing ones. It’s noteworthy to say that
this table is not aimed to be an exhaustive list of all CL datasets, but, is only intended to present the
most popular benchmarks in each domain for the sake of comparison with our curated benchmarks.
We note that for language modeling tasks the number of examples/documents and for detection tasks
the number of labeled objects/bounding boxes is reported as the number of samples.

Table 6: Comparison with continual learning benchmarks.
Benchmark # Samples Years Time-Continual Image-Text Task

Split-MNIST [36] 60K 1998 ✗ ✗ Classification
Perm-MNIST [36] 60K 1998 ✗ ✗ Classification
Rot-MNIST [64] 60K 1998 ✗ ✗ Classification
Split-CIFAR-100 [109] 50K 2008 ✗ ✗ Classification
Split-MINI-ImageNet [15] 50K 2009 ✗ ✗ Classification
Split-ImageNet [103] 1.2M 2009 ✗ ✗ Classification
Split-ImageNet-R [102] 30K 2019 ✗ ✗ Classification
CORe50 [62] 165K 2017 ✗ ✗ Detection
CLAD [99] 23K 2021 ✗ ✗ Detection
WANDERLUST [101] 326K 2021 ✓ ✗ Detection
Inc-PASCAL [66] 11K 2012 ✗ ✗ Segmentation
Inc-ADE20K [13] 20K 2012 ✗ ✗ Segmentation
StreamingQA [60] 100K 2007–2020 ✓ ✗ Question Answering
TemporalWiki [45] 32M 2021 ✓ ✗ Language Modeling
CKL [46] 30K 2019-2021 ✗ ✗ Language Modeling
CTrL [98] 300K 1998-2017 ✗ ✗ Classification
CLOC [12] 39M 2006-2014 ✓ ✗ Classification
CLEAR [59] 7.8M 2004-2014 ✓ ✗ Classification
NEVIS [10] 8M 1992-2021 ✓ ✗ Classification
Mod-X [70] 156K 2014 ✗ ✓ Retrieval
CLiMB [89] 1.3M 2013-2021 ✗ ✓ Classification

TIC-YFCC 15M 2008-2014 ✓ ✓ Retrieval / ZS Classification
TIC-RedCaps 12M 2011-2020 ✓ ✓ Retrieval / ZS Classification
TIC-DataComp 100M/1B/12B 2014-2022 ✓ ✓ Retrieval / ZS Classification

D.1 Other Related Work

Neural networks trained on new data suffer from catastrophic forgetting of prior knowledge [92, 36].
Continual learning literature has focused on benchmarks and methods to address this challenge [37]
while concentrating on domain, class, or task incremental benchmarks [42, 96] with artificial task
boundaries (e.g., Split-CIFAR, Perm-MNIST). This results into benchmarks with minimal or no
meaningfully evolution between adjacent tasks. Continual learning methods can be categorized
broadly into i) regularization ii) replay, and iii) architecture-based methods. Regularization methods
push the model to change slowly in the directions of prior knowledge and often incur additional
memory/compute costs [51, 67, 68, 32]. Data replay methods retain all or a subset of the prior data
for either retraining or regularization [64, 78, 14]. Simple replay-based baselines can surpass various
methods on standard benchmarks [63, 4, 75]. Lastly, architecture-based methods expand the model
as new tasks arrive which limits their applicability in continually evolving environments [86, 84].

Real-world machine learning has recently been dominated by training of large-scale foundation
models that flourish with scale [50, 18]. Particularly, vision-language models have demonstrated
scalability with data size leading to growing compute requirements [76, 47, 57]. Continual learning
of foundation models would significantly reduce the costs and increase quick adaptability. While

18

some recent works have started to introduce large-scale continual learning benchmarks, they are not
naturally time-continual and are comparatively much smaller in scale [70, 89]. Proposing methods,
[93] use the zero-shot capability of CLIP to evaluate on standard continual learning benchmarks
without any training. [27] focus on continual fine-tuning of CLIP models on classification tasks
and proposes an adaptation of LwF. Model averaging methods aim at interpolating between the
performance of multiple contrastively pretrained models and classification-finetuned copies [106, 43,
91].

E Takeaways and Future Work

In conclusion, we view TIC-DataComp as the initial stride toward the continual training of large-scale
vision-language foundation models. We aspire to empower the research on large-scale continual-
learning through our new benchmark and preliminary results obtained using simple baselines.

There are several pivotal directions for future work: (i) Reduce the replay buffer size while maintain-
ing the performance on static evaluation tasks and backward-transfer; (ii) Compare our baselines on
continually streaming data at finer granularity, e.g., streaming data at the monthly level; (iii) Investi-
gate alternate learning rate schedules (e.g., Const-Cosine) that are forward looking, and are better
suited to continual learning; (iv) Better data filtering techniques that are more inclusive of future data;
(v) Expand our problem setup to encompass the training of other large-scale foundation models.

F Additional Experimental Results

F.1 Detailed Results on Our Benchmarks

0 1 2 3
Train Timestamp

10

20

30

Im
ag

en
et

+
di

st
.

sh
if

ts
ac

cu
ra

cy Static Evaluation on TiC-YFCC15M

0 1 2
Train Timestamp

20

40

R
et

ri
ev

al
R

ec
al

l

Forward Transfer on Tic-YFCC15M

Oracle** Cumulative-All* Cumulative-All Cumulative-Exp Sequential

1 2 3
Train Timestamp

20

40

60

R
et

ri
ev

al
R

ec
al

l
Backward Transfer on TiC-YFCC15M

Figure 5: Static and dynamic evaluation with selected methods on TIC-YFCC. As we get more data,
models (with all methods) improve on both static and forward transfer on dynamic tasks but methods
with limited replay buffer start performing slightly worse for backward transfer.

2017 2018 2019 2020
Train Timestamp

10

20

30

Im
ag

en
et

+
di

st
.

sh
if

ts
ac

cu
ra

cy Static Evaluation on TiC-Redcaps

2017 2018 2019
Train Timestamp

20

30

40

50

R
et

ri
ev

al
R

ec
al

l

Forward Transfer on Tic-Redcaps

Oracle** Cumulative-All* Cumulative-All Cumulative-Exp Sequential

2018 2019 2020
Train Timestamp

20

40

R
et

ri
ev

al
R

ec
al

l

Backward Transfer on TiC-Redcaps

Figure 6: Static and dynamic evaluation with selected methods on TIC-RedCaps. As we get more
data, models (with all methods) improve on both static and forward transfer on dynamic tasks but
methods with limited replay buffer start performing slightly worse for backward transfer.

19

2016 2018 2020 2022
Train Timestamp

10

20

30

Im
ag

en
et

+
di

st
.

sh
if

ts
ac

cu
ra

cy Static Evaluation on TiC-Datacomp (M)

2016 2018 2020
Train Timestamp

10

20

30

40

R
et

ri
ev

al
R

ec
al

l

Forward Transfer on TiC-Datacomp (M)

Oracle** Cumulative-All* Cumulative-All Cumulative-Exp Sequential

2018 2020 2022
Train Timestamp

10

20

30

40

R
et

ri
ev

al
R

ec
al

l

Backward Transfer on TiC-Datacomp (M)

Figure 7: Static and dynamic evaluation with selected methods on TIC-DataComp (medium). As we
get more data, models (with all methods) improve on both static and forward transfer on dynamic
tasks but methods with limited replay buffer start performing slightly worse for backward transfer.

2016 2018 2020 2022
Train Timestamp

20

30

40

Im
ag

en
et

+
di

st
.

sh
if

ts
ac

cu
ra

cy Static Evaluation on TiC-Datacomp (L)

2016 2018 2020
Train Timestamp

20

40

60

R
et

ri
ev

al
R

ec
al

l

Forward Transfer on TiC-Datacomp (L)

Oracle** Cumulative-All* Cumulative-All Cumulative-Exp Sequential

2018 2020 2022
Train Timestamp

40

50

60

R
et

ri
ev

al
R

ec
al

l

Backward Transfer on TiC-Datacomp (L)

Figure 8: Static and dynamic evaluation with selected methods on TIC-DataComp (large). As we get
more data, models (with all methods) improve on both static and forward transfer on dynamic tasks
but methods with limited replay buffer start performing slightly worse for backward transfer.

F.2 Results with Basic Filtering on TIC-DataComp XL

Table 7: Zero shot performance on our time-continual benchmarks. ˚ and ˚˚ denote methods
that violate the compute budget and use extra compute. For static tasks, we tabulate accuracy of the
models obtained on the final timestamp. For dynamic tasks, we tabulate forward transfer, backward
transfer and ID performance. For all metrics, higher is better.

Benchmark Method Compute
(MACs)

Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-DataComp (XL)
Cumulative-All 2.7 ˆ 1020 63.5 52.0 62.8 47.5 64.6 55.5 47.6

Sequential 2.7 ˆ 1020 60.2 48.9 62.4 44.4 51.6 50.3 45.0
Oracle˚˚ 1.1 ˆ 1021 66.0 54.0 63.8 49.6 - - -

Comparing basic and bestpool filtering. We observe that while bestpool filtering models outperform
basic filterining models on TIC-DataComp (XL) by 6% on static tasks, they underperform by over
5% on dynamic retrieval task (see Fig. 9).

20

2016 2018 2020 2022
Evaluation Timestamp

60

65

70

75

R
et

ri
ev

al
P

er
fo

rm
an

ce

Dynamic Evaluation on TiC-Datacomp (XL)

Bestpool filtering

Basic filtering

Figure 9: Comparing Oracle models trained on Bestpool and Basic filtering. Our results clearly high-
light that Basic filtering performs better than Bestpool filtering on dynamic retrieval task. However,
on static tasks, the order is reversed.

F.3 Ablations over learning rate warmup and Max LR

Table 8: Zero shot performance on our time-continual benchmarks with and without initial LR
wamrup for subsequent runs. For all metrics, higher is better.

Benchmark Method
Static Tasks Dynamic Retrieval Tasks

ImageNet ImageNet
dist. shift Flickr30k Average over

28 datasets
Backward
Transfer

ID Perfor-
mance

Forward
Transfer

TIC-DataComp (M) Cumulative-All (w/o warmup) 24.0 20.2 20.9 17.9 33.8 26.4 15.1
Cumulative-All (w warmup) 23.0 19.5 19.2 17.4 33.1 26.1 14.8

TIC-DataComp (L) Cumulative-All (w/o warmup) 48.9 41.3 50.9 36.3 62.1 57.3 41.2
Cumulative-All (w warmup) 46.4 39.3 47.8 34.9 60.4 56.3 39.6

Table 9: Cumulative experiments on TIC-DataComp (M) with different maximum learning rates.
Our default choice is 0.00025. Performance reported on ImageNet. At maximum learning rate 0.001,
the runs crashed with Nan in loss.

Method Max LR
0.00005 0.0001 0.00025 0.0005 0.001

Cumulative-All 16.3 19.0 24.0 10.1 –

21

F.4 OpenCLIP models obtained by retraining after removing any duplicate examples from
the test set

40 50 60 70 80
Retrieval recall on 2014–2016

40

50

60

70

80
R

et
ri

ev
al

re
ca

ll
on

20
21

–2
02

2

Our Proposed Evaluation Paradigm

OpenAI models trained on data before 2020

OpenClip models trained on data before 2022

Our Models

Figure 10: We replicate Open CLIP models by training from scratch and removing duplicates from
the evaluation dataset. We observe that trends continue to hold.

G Additional Benchmark Details

G.1 Filtering ablations on TIC-DataComp

For Basic Filtering, Gadre et al. [34] performs the following three steps: filter by English language
(using fasttext [49]), filter by caption length over two words and 5 characters, and filter by image sizes
with smallest dimension over 200 pixels and aspect ratio above 3. We do not default to other filtering
techniques that use off-the-shelf CLIP models from Gadre et al. [34] to avoid biasing dataset selection
from each time step. In Fig. 11 we show that “Bestpool” filtering (which filters image-text pairs with
CLIP scores and ImageNet image embeddings) biases dataset selection to preferring old time step
data over new timestamp data. Moreover, we also show that models trained with Bestpool filtering
are less robust when evaluated on our dynamic tasks from 2021-2022. Nevertheless, for completeness
and to highlight significance of our findings even for state-of-the-art filtering techniques, we perform
one set of continual learning experiments with Bestpool filtering at xlarge scale.

60 65 70 75 80 85
Retrieval Performance on 2014-2016

60

65

70

75

80

85

90

Re
tri

ev
al

 P
er

fo
rm

an
ce

 o
n

20
21

-2
02

2

OpenClip models (Bestpool/Image/CLIP filtering)
OpenClip models (basic/no filtering)

2014 2016 2018 2020 2022
Year

0.1

0.2

0.3

0.4

F
ra

ct
io

n
of

sa
m

pl
es

re
ta

in
ed

fr
om

ea
ch

ye
ar

Basic

CLIP

BestPool

Figure 11: (Left) Gap in retrieval performance for different OpenCLIP models that use different
filtering techniques. (Right) Reduction in TIC-DataComp data at different times with different
filtering techniques. This clearly highlights that there is a selection bias towards retaining more old
data for CLIP/BestPool filtering. No such bias exists for basic filtering.

22

G.2 Static Datasets considered for evaluation

Table 10: Evaluation tasks borrowed from Gadre et al. [34].
Task type Dataset Task Test set size Number of classes Main metric

Caltech-101 [33] Object recognition 6,085 102 mean per class
CIFAR-10 [54] Visual recognition 10,000 10 accuracy
CIFAR-100 [54] Visual recognition 10,000 100 accuracy
CLEVR Counts [48, 110] Counting 15,000 8 accuracy
CLEVR Distance [48, 110] Distance prediction 15,000 6 accuracy
Country211 [76, 95] Geolocation 21,100 211 accuracy
DTD [20] Texture classification 1,880 47 accuracy
EuroSAT [39, 110] Satellite imagery recognition 5,400 10 accuracy
FGVC Aircraft [65] Aircraft recognition 3,333 100 mean per class
Food-101 [11] Food recognition 25,250 101 accuracy
GTSRB [90] Traffic sign recognition 12,630 43 accuracy
ImageNet 1k [24] Visual recognition 50,000 1,000 accuracy
ImageNet Sketch [100] Visual recognition 50,889 1,000 accuracy
ImageNet V2 [79] Visual recognition 10,000 1,000 accuracy
ImageNet-A [41] Visual recognition 7,500 200 accuracy
ImageNet-O [41] Visual recognition 2,000 200 accuracy
ImageNet-R [40] Visual recognition 30,000 200 accuracy
KITTI distance [35, 110] Distance prediction 711 4 accuracy
MNIST [56] Digit recognition 10,000 10 accuracy
ObjectNet [6] Visual recognition 18,574 113 accuracy
Oxford Flowers-102 [71] Flower recognition 6,149 102 mean per class
Oxford-IIIT Pet [73, 110] Pet classification 3,669 37 mean per class
Pascal VOC 2007 [31] Object recognition 14,976 20 accuracy
PatchCamelyon [97, 110] Metastatic tissue cls. 32,768 2 accuracy
Rendered SST2 [110] Sentiment classification 1,821 2 accuracy
RESISC45 [16, 110] Satellite imagery recognition 6,300 45 accuracy
Stanford Cars [53] Vehicle recognition 8,041 196 accuracy
STL-10 [21] Visual recognition 8,000 10 accuracy
SUN-397 [107] Scene recognition 108,754 397 accuracy
SVHN [69, 110] Digit recognition 26032 10 accuracy
iWildCam [7, 52] Animal recognition 42,791 182 macro F1 score
Camelyon17 [5, 52] Metastatic tissue cls. 85,054 2 accuracy
FMoW [19, 52] Satellite imagery recognition 22,108 62 worst-region acc.
Dollar Street [82] Object recognition 3,503 58 worst-income top-5 acc.

Classification

GeoDE [77] Object recognition 12,488 40 worst-region acc.

Flickr30k [108] Image and text retrieval 31,014 N/A R@1Retrieval
WinoGAViL [8] Commonsense association 3,563 N/A Jaccard score

G.3 Our Benchmark Statistics

Table 11: Number of examples in TIC-RedCaps in each year.

Dataset Year
2017 2018 2019 2020

TIC-RedCaps 4220262 1660003 2526575 3115715

Table 12: Number of examples in TIC-YFCC in each year.

Dataset Year
2004–2008 2009–2010 2011–2012 2012–2014

TIC-YFCC 4337727 4050166 3976339 2312753

Table 13: Number of examples in TIC-DataComp in each year before filtering.
Dataset Year

2014 2015 2016 2017 2018 2019 2020 2021 2022

TIC-DataComp (no filter) 244802598 175648045 666019511 1906357755 1877561875 2016011588 1778751066 2044463701 1442233121
TIC-DataComp (basic filter) 52764775 50757898 133333267 400225598 501347511 519575760 417067014 494038122 371748613

23

Figure 12: Number of examples in each year in original YFCC 15M. X-axis the upload month and
y-axis is the number of examples in that month.

G.4 Compute Constraints for Different Datasets

We closely follow compute budget constraints from Gadre et al. [34]. In particular, on TIC-DataComp,
we restrict to using exactly the same amount of overall compute as fixed in Gadre et al. [34]. Below
we list exact total MACs on each dataset:

• TIC-YFCC: Total MACs: 3.4 ˆ 1018

• TIC-RedCaps: Total MACs: 3.4 ˆ 1018

• TIC-DataComp medium: Total MACs: 3.0 ˆ 1018

• TIC-DataComp large: Total MACs: 2.7 ˆ 1019

• TIC-DataComp xlarge: Total MACs: 2.7 ˆ 1020

For a ViT-B architecure, these values correspond to 20k iterations on TIC-YFCC (batch size: 8192),
TIC-RedCaps (batch size: 8192), 35k iterations on TIC-DataComp (M) (batch size: 4096), 157k
iterations on TIC-DataComp (L) (batch size: 8192), and 143.5k iterations on TIC-DataComp (XL)
(batch size: 90100).

G.5 Creation Pipeline for Evaluation Datasets

We create our dynamic classification dataset TIC-DataComp-Net with ImageNet classes from the
CommonPool data augmented with temporal information. Our construction process draws inspiration
from the LAIONNet construction process described in Shirali and Hardt [88]. In particular, we first
filter examples where the corresponding caption contains one and only one of the synsets of ImageNet.
We also apply additional basic filtering [34] to make sure that images are atleast 200 in smalltest
dimension and the caption contains atleast 2 words. After filtering for examples with ImageNet
synsets, we only retain examples where the similarity—as evaluated by an off-the-shelf sentence
embedding model [80]—between imagenet synset definition and the caption exceeds a threshold of
0.5. The goal of this filtering step is to restrict examples with ‘high’ alignment between caption and
imagenet synset definition. Crucially, unlike LAIONNet, we do not filter the image-text pairs with
CLIP similarity scores to avoid biasing the dataset selection process.

24

G.6 Distribution Shift Analysis on Proposed benchmarks

20 30 40 50 60
Retrieval Performance on Flickr 2014-2015

20

30

40

50

60

Re
tri

ev
al

 P
er

fo
rm

an
ce

 o
n

Co
vi

d
20

21
-2

02
2 OpenAI models trained on data before 2020

OpenClip models trained on data before 2022

10 20 30 40 50 60 70
Retrieval Performance on Flickr 2014-2015

10

20

30

40

50

60

70

Re
tri

ev
al

 P
er

fo
rm

an
ce

 o
n

Fl
ick

r 2
02

1-
20

22 OpenAI models trained on data before 2020
OpenClip models trained on data before 2022

Figure 13: (Left) Comparison of retrieval performance on COVID queries versus Flickr queries.
(Right) Comparison on old Flickr versus new Flickr data. Clearly, we observe that while gap on old
versus new flickr data is small, the gap is significantly larger on Covid queries.

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Tic-DataComp-Net Performance on 2014-2015

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ti
c-

Da
ta

Co
m

p-
Ne

t P
er

fo
rm

an
ce

 o
n

20
21

-2
02

2

OpenAI models trained on data before 2020
OpenClip models trained on data before 2022

0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800
Tic-DataComp-Net Performance on 2014-2015

0.55

0.60

0.65

0.70

0.75

0.80

Ti
c-

Da
ta

Co
m

p-
Ne

t P
er

fo
rm

an
ce

 o
n

20
21

-2
02

2 Motor Vehicles Subtree
OpenAI models trained on data before 2020
OpenClip models trained on data before 2022

Figure 14: (Left) Comparison on old versus new data from TIC-DataComp-Net. (Right) Comparison
on motor vehicles node from TIC-DataComp-Net. For our classification task, we observe a very
small drop (« 1%) when averaged across all categories. However, we observe a substantial gap on
classes in “motor vehicle” subtree, when comparing OpenAI and OpenCLIP models. These findings
highlight that while overall ImageNet classes may remain timeless, certain categories tend to evolve
faster than others.

TIC-DataComp analysis through the lens of constructed evaluation tasks Here, we compare
performance of OpenAI and OpenCLIP models on our datasets. We observe a significant performance
gap between OpenAI and OpenCLIP models on our dynamic retrieval task (Fig. 1). This gap widens
notably on retrieval queries where captions mention COVID-19. On the other hand, OpenAI and
OpenCLIP models exhibit similar robustness for retrieval on data coming from Flickr highlighting
that data from some domains do not exhibit shifts that cause performance drops. For our classification
task, we observe a very small drop (« 1%) when averaged across all categories. However, we observe
a substantial gap on specific subtrees in ImageNet. For example, classes in “motor vehicle” subtree
show an approximate 7% performance drop, when comparing OpenAI and OpenCLIP models. These
findings highlight that while overall ImageNet classes may remain timeless, certain categories tend
to evolve faster than others. Our qualitative and quantitative analysis on TIC-DataComp clearly
highlights evolution of distributions and captures different properties than standard benchmarks.

Quantitative analysis on TIC-YFCC We analyze TIC-YFCC using off-the-shelf sentence and
image encoders. We first embed images from different time steps with an OpenAI CLIP encoder and
then compute Frechet Inception Distance (FID; Seitzer [87]). As time progresses, we observe that
FID distance increases with respect to data from first time step (Fig. 15). Similarly, we use pretrained
sentence transformer to extract top-5 categories from Wordnet Nouns for each caption. We observe
that the TV distance over distribution of WordNet Nouns evolves over time when compared to data
from the first time step.

25

Figure 15: YFCC15M distribution shift results. Analyze on TIC-YFCC using off-the-shelf sentence
and image encoders. We first embed images from different time steps with an OpenAI CLIP
encoder and then compute Frechet Inception Distance (FID; Seitzer [87]). As time progresses, we
observe that FID distance increases with respect to data from first time step. Similarly TV distance
over categorical distribution on Wordnet Noun synsets also increases with time when compared to
categorical distribution on first timestep.

G.7 Creation Pipiline for TIC-DataComp

We collect timestamps for the CommonPool dataset introduced in DataComp. We repeat the crawling
process described in Gadre et al. [34] to download WARC files from Common Crawl. After down-
loading the WARC files, we perform a join with the datacomp 12.8B examples. During this join, we
lost approximately 0.1B of examples that are no longer available online. Moreover, while perform-
ing this join, we only retain examples with their first occurance. This is done before running any de
duplication on image-text pairs for exact matches as done in Gadre et al. [34].

The source of DataComp is Common Crawl, which periodically releases web-crawled data snapshots,
typically on a monthly basis since 2014 with new and updated webpages. This process provides
timestamps at the granularity of months, spanning years 2014–2022.

We note that while this augmented time information may contain some noise, on average, we find
it to be a reasonably accurate proxy for the upload time of web pages. To perform an initial check,
we note that our data contains images from flickr which provides an API to query for true upload
timestamp. So we extract 10k examples from our benchmark TIC-DataComp and query Flickr for
their true timestamp. Fig. 16 summarizes true timestamps with timestamps extracted from CC.

H Additional Experimental Details

H.1 Additional details on ImageNet IID split continual learning experiment

With ImageNet data, we consider 2, 4 and 8 splits including the full dataset. This design is inspired
by Ash and Adams [3]. We consider ViT-B/16 architecture trained for 300 epochs on full data and
split the iterations corresponding to 300 epochs equally among k splits when training on k splits
sequentially. We keep all other hyperparameters, such as learning rate, optimizer, and batch size, set
to the standard values typically employed for training ViT-B/16 on the ImageNet dataset [29]. We
also employ ℓ2 regularization and augmentation on ImageNet training data. We evaluate the models
on IID ImageNet test set.

H.2 Training and Hyperparameter Details

We create a common experimental setup by fixing the training procedure for sequential runs. Unless
specified otherwise, we closely follow the CLIP training recipe proposed in [44, 76] where we train
models with a contrastive objective over images and captions. Given a set of image-text pairs, we
train an image encoder and a text encoder such that the similarity between the representations of
images and their corresponding text is maximized relative to unaligned pairs. Only LwF deviates
from this standard training procedure. For each benchmark, we pick Vision Transformers (ViTs) as

26

2014 2015 2016 2017 2018 2019 2020 2021 2022
CC time step

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

Tr
ue

 ti
m

e
st

ep

0.09 0.03 0.05 0.02 0.06 0.03 0.13 0.15 0.15
0.63 0.34 0.38 0.54 0.58 0.44 0.29 0.23 0.18
2.01 1.16 1.41 1.37 1.63 1.17 0.83 0.79 0.75
4.36 2.19 3.18 2.49 3.14 1.93 2.00 1.48 1.76
7.53 5.06 4.94 5.25 5.83 3.61 3.25 2.40 2.79

10.80 6.82 7.79 7.06 7.51 5.46 4.84 3.38 3.98
12.89 6.68 8.41 9.30 7.92 5.76 4.83 3.75 4.17
16.24 8.67 9.49 11.85 8.93 6.53 5.76 5.06 4.96
19.07 11.58 10.30 11.42 8.56 7.49 6.63 5.81 6.22
12.01 8.12 10.05 10.41 8.66 7.81 6.66 6.56 6.07
14.29 8.21 7.30 8.16 6.17 7.32 6.07 5.18 5.34
0.00 41.08 9.36 8.80 6.15 7.64 6.94 6.26 4.79
0.02 0.02 27.31 9.75 5.31 7.64 6.91 5.86 5.15
0.02 0.00 0.01 13.57 8.58 7.99 6.49 5.70 4.79
0.01 0.01 0.00 0.01 20.87 10.94 6.99 5.36 5.29
0.01 0.00 0.00 0.00 0.01 18.21 10.76 5.90 5.49
0.00 0.01 0.00 0.00 0.02 0.02 20.52 10.06 4.33
0.01 0.00 0.00 0.01 0.01 0.02 0.01 26.01 9.62
0.00 0.00 0.01 0.00 0.03 0.00 0.02 0.02 24.09

0

5

10

15

20

25

30

35

40

Figure 16: Comparison of Common Crawl assigned timestamp and true timestamp on a subset of 10k
examples containing image-text pairs from Flickr. We observe a clear trend where CC timestamps
correlate with true timestamps.

the image encoder, in particular, we fix the model architecture to ViT-B/16 [30]. We fix the Adam
optimizer and its hyperparameters to values suggested in [44].

We primarily ablate over only two things: maximum learning rate with cosine learning schedule
and warm up iterations for sequential training. For choosing other hyperparameters, we follow the
OpenCLIP library [44].

H.3 Replay sizes with Exp and Equal strategies

We default to using 2D size of data where D represents incoming data size from new time step. As
described in the main text, for -Exp, we reduce the buffer size by half of what we used at old time
step and use rest of the half as data from previous time step. App. G.3 lists the dataset sizes for each
benchmark which dictate the exact buffer sizes.

27

	Introduction
	TiC-CLIP: Benchmarks, Experimental Protocol and Methods
	Main Results
	Conclusion and Future Work
	TiC-CLIP: Benchmarks and Experimental Protocol
	Benchmark Design: How we Create Time-Continual Datasets?
	Evaluation Testbed
	Experimental Protocol For Training
	Analyzing Distribution Shifts in the Constructed Benchmarks

	TiC-CLIP: How to Continually Train CLIP Models?
	Experiments and Results
	Continual Learning benchmarks
	Other Related Work

	Takeaways and Future Work
	Additional Experimental Results
	Detailed Results on Our Benchmarks
	Results with Basic Filtering on TiC-DataComp XL
	Ablations over learning rate warmup and Max LR
	OpenCLIP models obtained by retraining after removing any duplicate examples from the test set

	Additional Benchmark Details
	Filtering ablations on TiC-DataComp
	Static Datasets considered for evaluation
	Our Benchmark Statistics
	Compute Constraints for Different Datasets
	Creation Pipeline for Evaluation Datasets
	Distribution Shift Analysis on Proposed benchmarks
	Creation Pipiline for TiC-DataComp

	Additional Experimental Details
	Additional details on ImageNet IID split continual learning experiment
	Training and Hyperparameter Details
	Replay sizes with Exp and Equal strategies

