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Abstract
Learning disentangled representations in an unsu-
pervised manner is a fundamental challenge with
significant promise for improving generalization,
interpretability, and fairness. While impossible in
general, recent work has shown that unsupervised
disentanglement is provably achievable under as-
sumptions of certain geometrical constraints such
as local isometry. Leveraging these insights, we
propose a novel perspective on disentangled rep-
resentation learning through the lens of quadratic
optimal transport (OT). We formulate the OT prob-
lem in the Gromov-Monge setting to make the
alignment of distributions in different spaces pos-
sible while preserving their intrinsic geometry.
For this, we propose the Gromov-Monge-Gap
(GMG), which regularizes a map to learn the most
geometry-preserving mapping satisfying a fixed
transportation constraint. We demonstrate its ef-
fectiveness for disentanglement on four standard
benchmarks. Moreover, we show that geometry
preservation can even encourage unsupervised dis-
entanglement without the standard reconstruction
objective - making the underlying model decoder-
free, and promising a more practically viable and
scalable perspective on disentanglement.

1. Introduction
Learning low-dimensional representations of high-
dimensional data is a fundamental challenge in unsuper-
vised deep learning (Bengio et al., 2014; Locatello et al.,
2019b). Emphasis is put on learning robustly generalizing
representations that allow for efficient adaptation across
a wide range of tasks (Bengio et al., 2014; Higgins et al.,
2018; Locatello et al., 2019b). Disentanglement (Bengio
et al., 2014; Higgins et al., 2017; 2018; Locatello et al.,
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2019b; Roth et al., 2023) has shown significant promise
in facilitating such generalization (Bengio et al., 2014;
Higgins et al., 2017; 2018; Locatello et al., 2019b; 2020;
Horan et al., 2021; Roth et al., 2023; Hsu et al., 2023;
Barin-Pacela et al., 2024), alongside interpretability and
fairness (Locatello et al., 2019a; Träuble et al., 2021). Most
works (Bengio et al., 2014; Higgins et al., 2017; Kim and
Mnih, 2018; Chen et al., 2018; Locatello et al., 2019b; Roth
et al., 2023) regard disentanglement as a one-to-one map
between learned representations and ground-truth latent
factors, effectively seeking to recover these factors from
data alone in an unsupervised fashion.

While unsupervised disentanglement is theoretically im-
possible (Locatello et al., 2019b), the inductive biases of
autoencoder architectures ensure effective disentanglement
in practice (Rolinek et al., 2019; Zietlow et al., 2021; Horan
et al., 2021). Most approaches operate on Variational au-
toencoder (VAE) frameworks (Kingma and Welling, 2014),
using objectives that match latent VAE posteriors to fac-
torized priors (Higgins et al., 2017; Kim and Mnih, 2018;
Kumar et al., 2018; Burgess et al., 2018; Chen et al., 2018).
Recent works (Horan et al., 2021; Nakagawa et al., 2023;
Huh et al., 2023) provide a new perspective, showing how
geometric constraints on representation spaces may enable
disentanglement. In particular, Horan et al. (2021) show
that unsupervised disentanglement is always possible under
the assumption of local isometry and non-Gaussianity of
generative factors motivating the desiredness of isometry.

In this work, we show how these geometric desiderata can be
effectively operationalized through the lens of optimal trans-
port (OT) theory (Santambrogio, 2015; Peyré and Cuturi,
2019), by treating mapping to or from the latent space as
transport maps T from or to the data manifold, respectively.
However, classic OT puts in correspondence distributions
defined in the same space X , using an inter-domain cost
c(x,y) for any two points x,y ∈ X . Naturally, this is
insufficient to map between latent and data space, where
both have in parts vastly different dimensionalities, result-
ing in the absence of a “natural” cost function c between
vectors of different sizes. This can be bypassed using the
Gromov-Wasserstein (GW) (Sturm, 2020; Mémoli, 2011;
Vayer, 2020; Sebbouh et al., 2023) formulation of OT, which
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Disentangled Representation Learning through Geometry Preservation with the Gromov-Monge Gap

instead considers intra-domain costs cX , cY in each space
seeking the most geometry-preserving alignment of two dis-
tributions. This mapping minimizes the distortion of the
geometries induced by the intra-domain costs defined on
each space separately. While this distortion itself can be
used as a regularization for a given map T as done in Nak-
agawa et al. (2023), it does not take into account whether
a perfect geometry preserving map exists between the data
and latent. In practice, such a map most likely does not ex-
ist, which means that the distortion loss will optimize away
from the target of T , in this case the accurate reconstruction
of the data. This raises the question of whether one can
account for the optimal possible geometry-preserving map.

Motivated by this formalism, we build upon the Monge gap
- a regularizer introduced in Uscidda and Cuturi (2023) that
measures whether a map T transports a reference distribu-
tion at minimal displacement cost - to propose the novel
Gromov-Monge gap (GMG) that allows us to measure if T
maps points while preserving geometric properties as much
as possible - such as (scaled) isometry (distance preserving)
or conformity (angle preserving). In contrast to the dis-
tortion, the GMG does take the most geometry preserving
maping into account. Furthermore, we support the GMG
with additional derivations that prove that the GMG and its
finite sample version are weakly convex. We lay out how
the GMG can serve as an effective regularizer to different
geometry-preserving desiderata.

Our experiments on four standard disentangled represen-
tation learning benchmarks show that the integration of
these geometry-preserving desiderate through the Gromov-
Monge Gap (GMG) significantly improves disentanglement
performance across various methods, from the standard
β-VAE to the combination of β-TCVAE with support factor-
ization (Roth et al., 2023), outperforming a distortion-based
regularization. Moreover, we demonstrate that these geomet-
ric regularizations can replace the standard reconstruction
loss, enabling measurable unsupervised disentanglement
even without a decoder, which is not feasible in standard
frameworks that rely on the decoder-based reconstruction
term to prevent collapse. This finding suggests the poten-
tial for more scalable unsupervised disentangled representa-
tion learning approaches and bridges to popular, weakly- or
self-supervised encoder-only representation learning meth-
ods (Chen et al., 2020b; Zbontar et al., 2021; Bardes et al.,
2022; Garrido et al., 2023).

2. Background and Related Works
2.1. Disentangled Representation Learning

The Disentanglement Formalism. Disentanglement has
varying operational definitions (Higgins et al., 2018; Lo-
catello et al., 2019b; Roth et al., 2023). In this work, we

follow the common understanding (Locatello et al., 2019b;
2020; Träuble et al., 2021; Roth et al., 2023) where data
x is generated by a process p(x|z) operating on ground-
truth latent factors z ∼ p(z), modeling underlying source of
variations (s.a. object shape, color, background. . . ). Given
a dataset D = {xi}Ni=1, unsupervised disentangled repre-
sentation learning aims to find a mapping eϕ s.t. eϕ(xi) ≈
E[z|xi], up to element-wise transformations. This is to be
achieved without prior information on p(z) and p(x|z).

Unsupervised Disentanglement through Prior Match-
ing. Most unsupervised disentanglement methods op-
erate on variational autoencoders (VAEs)(Kingma and
Welling, 2014), which define a generative model of the
form pθ(x, z) = p(z)pθ(x|z). Here, pθ(x|z) is a product
of exponential family distributions with parameters com-
puted by a decoder dθ(z). The latent prior p(z) is usually
chosen to be a normal Gaussian N (0, I), and the probabilis-
tic encoder qϕ(z|x) is realized through a neural network
eϕ(x) that predicts the parameters of the latent such that
qϕ(z|x) = N (z|eϕ(x)). The β-VAE(Higgins et al., 2017)

Lβ(θ, ϕ) := Ex∼pdata,z∼qϕ(z|x)[log pθ(x|z)]
− βEx∼pdata [DKL(qϕ(z|x)||p(z))]

(1)

achieves disentanglement by enforcing stronger, β-weighted
prior matching on top of the reconstruction objective, as-
suming statistical factor independence (Roth et al., 2023).
Several follow-ups refine latent prior matching through dif-
ferent objectives or prior choices (Chen et al., 2018; Kumar
et al., 2018; Burgess et al., 2018; Rolinek et al., 2019).

Disentanglement through a Geometric Lens. Recent
studies (Gropp et al., 2020; Chen et al., 2020a; Lee et al.,
2022; Nakagawa et al., 2023; Huh et al., 2023) indicate that
disentanglement can arise by encouraging learned repre-
sentations to preserve meaningful geometric features of the
data, such as scaled distances between samples. Notably,
Horan et al. (2021) demonstrated that disentanglement is
provably feasible when the generative factors are sufficiently
non-Gaussian and locally isometric to the data. In this work,
we explore how to promote geometry preservation using
quadratic OT between the latent and data spaces, which we
introduce in the next section.

2.2. Quadratic Optimal Transport

Gromov-{Monge, Wasserstein} Formulations.
OT (Peyré and Cuturi, 2019) involves transferring
one probability distribution to another while incorpo-
rating inductive biases. When these distributions lie on
incomparable domains, the task is addressed using the
Gromov-Monge and GW problems, also known as OT
quadratic formulations. Formally, consider two compact
X ⊂ RdX , Y ⊂ RdY , each of them equipped with an
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intra-domain cost cX : X × X → R and cY : Y × Y → R.
For p ∈ P(X ) and q ∈ P(Y)—two distributions supported
on each domain—the Gromov-Monge problem (Mémoli
and Needham, 2022) seeks a map T : X → Y that
push-forwards p onto q, while minimizing the distortion:

inf
T :T♯p=q

∫
X×X

dcX ,cY (x,x′, T (x), T (x′)) dp(x) dp(x′) .

(GMP)
where dcX ,cY (x,x′,y,y′) = 1

2 |cX (x,x′) − cY(y,y
′)|2.

When it exists, we call a solution T ⋆ to (GMP) a Gromov-
Monge map for costs cX , cY . However, solving this problem
is difficult, and existence is not guaranteed in general (Du-
mont et al., 2022). Moreover, this formulation is ill-suited
for discrete distributions p, q, as the constraint set might be
empty. Replacing replace maps by coupling π ∈ Π(p, q),
i.e. probability distributions on X ×Y with marginals p and
q, we define the Gromov-Wasserstein (GW) metric (Mémoli,
2011; Sturm, 2020) GWcX ,cY (p, q) :=

min
π∈Π(p,q)

∫
(X×Y)2

dcX ,cY (x,x′,y,y′) dπ(x,y) dπ(x′,y′) .

(GWP)
A solution π⋆ of (GWP) always exists, making
GWcX ,cY (p, q) a well-defined quantity. It quantifies the
minimal distortion of the geometries induced by cX and cY
achievable when coupling p and q.

Discrete Solvers. When both p and q are instantiated as
samples, the GW Prob. ((GWP)) translates to a quadratic
assignment problem, whose objective can be regularized
using entropy (Cuturi, 2013). For pn = 1

n

∑n
i=1 δxi

, qn =
1
n

∑n
j=1 δyj

and ε ≥ 0, we set GWcX ,cY
ε (pn, qn) :=

min
P∈Un

n∑
i,j,i′,j′=1

dcX ,cY (xi,xi′ ,yj ,yj′)PijPi′j′ − εH(P) ,

(EGWP)
where Un = {P ∈ Rn×n

+ ,P1n = PT1n = 1
n1n} and

H(P) = −
∑n

i,j=1 Pij log(Pij). As ε → 0, we recover
GWcX ,cY

0 = GWcX ,cY . In addition to yielding better statis-
tical (Zhang et al., 2023) and regularity (Rioux et al., 2023)
properties, entropic regularization also enhances compu-
tational performance. In practice, we can solve (EGWP)
using a mirror descent scheme that iterates the Sinkhorn
algorithm (Peyré et al., 2016; Scetbon et al., 2022).

Neural Solvers. While for classical OT, numerous neural
methods have been proposed (Makkuva et al., 2020; Korotin
et al., 2022; Eyring et al., 2022; Uscidda and Cuturi, 2023;
Tong et al., 2023), the GW setting has received less atten-
tion. To our knowledge, the only neural Gromov-Monge
formulation proposed thus far is (Nekrashevich et al., 2023),
which involves a min-max-min optimization procedure. On
the other hand, Klein et al. (2024) recently proposed an
approach to compute neural GW couplings.

3. The Gromov-Monge Gap (GMG)
This section details our novel optimal transport perspective
to achieve disentanglement from geometric considerations
(see § 2.1), using the VAE framework. To achieve this,
we first investigate how one can promote an arbitrary map
T : X → Y between two domains X and Y to preserve
predefined geometric features. In a VAE, T can represent
either the encoder eϕ, which produces latent codes from the
data, or the decoder dθ, which reconstructs the data from the
latent codes. As a result, in the former, the source domain X
is the data, and the target domain Y is the latent space, with
roles swapped in the latter. If we assume that dθ perfectly
reconstructs the data from the latents produced by eϕ, it
is equivalent whether eϕ preserves the geometric features
from data to latents or dθ preserves them from latents to
data. Consequently, in what follows, T can refer to either
the encoder or the decoder without distinction.

Outline. Leveraging this perspective, this section begins
by defining cost functions to encode geometric features and
the notion of distortions in §3.1. We leverage this con-
cept in §3.2 to introduce the Gromov-Monge Gap (GMG),
a regularizer that measures whether a map moves points
while preserving geometric features as much as possible,
i.e., minimizing distortion. §3.3 then shows how the GMG
can be estimated and computed from samples to be practi-
cally applicable in the VAE framework, which transitions
into §3.4 studying convexity properties of the GMG. Put
together, §3.1-§3.4 define the practical GMG which allows
us to learn a latent space that matches, as much as possible,
geometrical constraints in the data space. Finally in §3.5, we
leverage the GMG with different choices of costs to propose
effective disentangled representation learning objectives.

3.1. From the distortion...

We encode the geometric features of interest through two
cost functions defined on each domain: cX : X × X → R
and cY : Y × Y → R. We then want T to preserve these
costs, i.e., cX (x,x′) ≈ cY(T (x), T (x

′)) for x,x′ ∈ X .
Two types of cost functions are particularly meaningful:

[i] (Scaled) squared Euclidean distance: cX (x,x′) =
∥x − x′∥22 and cY = α2∥y − y∥22, with α > 0. A
map T preserving cX , cY preserves the scaled distances
between the points, i.e. it is a scaled isometry. When
α = 1, we recover the standard definition of an isometry.

[ii] Cosine similarity: cX (x,x′) = cos-sim(x,x′) :=

⟨ x
∥x∥2

, x′

∥x′∥2
⟩ and cY(y,y

′) = cos-sim(y,y′) similarly.
On has cos-sim(x,x′) = cos(θx,x′) where θx,x′ is the
angle between x and x′. A map T preserving cX , cY
then preserves the angles between the points, i.e. it is a
conformal map. Note that if T is (scaled) isometry (see
above), it is automatically a conformal map.

3
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In the following, we say that cX , cY are [i] or [ii] if they
belong to these families of costs. Introducing a reference
distribution r ∈ P(X ), weighting the areas of X where we
penalize deviations of cX (x,x′) from cY(T (x), T (x

′)), we
can quantify this property using the following criterion.

Definition 3.1 (Distortion). The distortion (DST) of a map
T is defined as DcX ,cY

r (T ) :=∫
X×X

dcX ,cY (x,x′, T (x), T (x′)) dr(x) dr(x′) (DST)

DcX ,cY
r (T ) quantifies how much T distorts the geometric

features induced by cX and cY on the support of r, i.e., when
DcX ,cY

r (T ) = 0, one has cX (x,x′) = cY(T (x), T (x
′)) for

x,x′ ∈ Spt(r). In disentangled representation learning,
it can be desirable to regularize the decoder to be isomet-
ric (Horan et al., 2021; Nakagawa et al., 2023; Huh et al.,
2023). However, a fully geometry-preserving mapping
might not necessarily exist between the latent space and
the data distribution. This means there usually exists an in-
herent trade-off between the accurate reconstruction of the
data distribution and this reconstruction being, e.g., a ”fully
isometric” map. If such a map does not exist, the reconstruc-
tion loss and the distortion term cannot be 0 simultaneously.
In practice, this means the distortion loss will optimize away
from the accurate reconstruction of the data. This raises the
question of how to formulate a geometric regularization that
takes the most geometry-preserving mapping into account.

3.2. . . . to The Gromov-Monge Gap

Recently, Uscidda and Cuturi (2023) introduced the Monge
gap, a regularizer that measures whether a map T transports
a reference distribution at the minimal displacement cost.
In practice, this regularizer is combined with fitting losses
to compute Monge maps, which are defined by two main
features: (i) they fit a marginal constraint with (ii) minimal
displacement cost. Building on this concept, we replace
”displacement” with ”distortion” to introduce the Gromov-
Monge gap, a regularizer that assesses whether a map T
transports a reference distribution at the minimal distortion
cost. In § 3.5, we use it, alongside fitting losses, to compute
Gromov-Monge maps, as defined in Eq. (GMP), which are
similarly defined by (i) fitting a marginal constraint with (ii)
minimal distortion cost.

Definition 3.2 (Gromov-Monge gap). The Gromov-Monge
gap (GMG) of a map T is defined as:

GMcX ,cY
r (T ) := DcX ,cY

r (T )−GWcX ,cY (r, T ♯r)
(GMG)

From Eq. (GWP), we recall that GWcX ,cY (r, T ♯r) is the
minimal distortion achievable when transporting r to T♯r.
Thus, GMcX ,cY

r (T ) quantifies the difference between the

distortion incurred when transporting r to T♯r via T , to
this minimal distortion. More formally, GMcX ,cY

r (T ) is the
optimality gap of T in the Gromov-Monge Prob. (GMP)
between r and T♯r, which is always feasible, even when r
is discrete, as T belongs to the constraint set. In light of this,
it is a well-defined and

• The GMG measures how close T is to be a Gromov-
Monge map for costs cX , cY . Indeed, GMcX ,cY

r (T ) ≥ 0
with equality i.f.f. T is a Gromov-Monge map solution
of Prob. (GMP) between r and T♯r, i.e., T moves r with
minimal (but eventually non zero) distortion.

• When transport without distortion is possible, the
GMG coincides with the distortion. When there
exists another map U : X → Y transporting r
to T♯r with zero distortion, i.e., U♯r = T♯r and
DcX ,cY

r (U) = 0, then GMcX ,cY
r (T ) = DcX ,cY

r (T ). In-
deed, GWcX ,cY (r, T ♯r) = 0 in that case, the coupling
π = (Id, U)♯r sets the GW objective to zero, thereby
minimizing it.

The last point (ii) is fundamental and illustrates how the
GMG functions as a debiased distortion. Indeed, it compares
the distortion induced by T to a baseline distortion, defined
as the minimal achievable distortion when transforming
the reference distribution into its image under T . Thus,
when transformation without any distortion is achievable,
the reference distortion becomes zero, and the GMG aligns
with the distortion itself, i.e., GMcX ,cY

r (T ) = DcX ,cY
r (T ).

In this context, the GMG offers the optimal compromise: it
avoids the over-penalization induced by the distortion when
fully preserving cX , cY is not feasible, yet it coincides with
it when such preservation is feasible.

The Influence of the Reference Distribution. A crucial
property of DcX ,cY

r is that if T transforms r without distor-
tion, it will also apply distortion-free to any distribution s
whose support is contained within that of r. Formally, if
DcX ,cY

r (T ) = 0 and s ∈ P(X ) with supp(s) ⊆ supp(r),
then DcX ,cY

s (T ) = 0. This raises a question for the GMG:
If T maps r with minimal distortion, does it similarly map
s with minimal distortion? We answer this question with
Prop. (3.3) when the costs are the (scaled) Euclidean dis-
tances or the cosine similarity. This means that if T moves
r while preserving (scaled) distances or angles as much as
possible, it will also preserve these properties as much as
possible when moving any ”smaller” distribution within r.

Proposition 3.3. When cX , cY are [i] or [ii] (see § 3.1), if
GMcX ,cY

r (T ) = 0, then for any s ∈ P(X ) s.t. Spt(s) ⊆
Spt(r), one has GMcX ,cY

s (T ) = 0.

3.3. Estimation and Computation from Samples

Plug-In Estimation. In practice, we estimate Eq. (DST)
and Eq. (GMG) using i.i.d. samples x1, ...,xn from the

4
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Figure 1: Learning of geometry-preserving maps with the (DST) and the (GMG). Provided a source distribution p, and a target
q defining a fitting constraint, we minimize L(θ) := Sε(Tθ♯p, q) + λR(Tθ), where Sε is the Sinkhorn divergence (Feydy
et al., 2019), an OT-based fitting loss. We compare the effect of each regularizer R = GMcX ,cY

p and R = DcX ,cY
p , and

additionally train a map without regularizer as a baseline. For all experiments with regularizer, we use λ = 1. On the top
line, we use [i] cX = cY = ∥ · − · ∥2, aiming to preserve the distances between the points. On the bottom line, we use [ii]
cX = cY = cos-sim(·, ·), aiming to preserve angles. Without tuning λ, the (GMG) provides the best compromise between
preserving geometric features and fitting the marginal constraint.

reference distribution r. We then consider the empirical
version rn := 1

n

∑n
i=1 δxi

of r and use a plug-in estimator
for both cases, i.e., we estimate the distortion via

DcX ,cY
rn (T ) = 1

n2

n∑
i,j=1

(cX (xi,xj)− cY(T (xi), T (xj)))
2 ,

and the GMG via GMcX ,cY
rn (T ) = DcX ,cY

rn (T ) −
GWcX ,cY (rn, T ♯rn), where T♯rn = 1

n

∑n
i=1 δT (xi). To

better understand what the discrete GMG quantifies, we can
reformulate it using the minimal distortion achieved by a
permutation σ ∈ Sn between the xi and the T (xi).
Proposition 3.4. When cX , cY are [i] or [ii] , the empirical
GMG reads:

GMcX ,cY
rn (T ) = DcX ,cY

rn (T )

− min
σ∈Sn

1
n2

n∑
i,j=1

(
cX (xi,xj)− cY(T (xσ(i)), T (xσ(j)))

)2
As a Monte Carlo estimator, DcX ,cY

rn (T ) is naturally con-
sistent. We can ask the same question for GMcX ,cY

rn (T ),
which requires studying the convergence of the empirical
GW distance GWcX ,cY (rn, T ♯rn). For the costs cX and cY
of interest, we show that consistency holds.
Proposition 3.5. When cX , cY are [i] or [ii],
GMcX ,cY

rn (T ) → GMcX ,cY
r (T ) almost surely.

Efficient Computation. Computing GMcX ,cY
rn (T ) re-

quires solving a discrete GW problem between rn and T♯rn
to obtain GWcX ,cY (rn, T ♯rn). To alleviate computational
challenges, we estimate this term using an entropic regular-
ization ε ≥ 0, as introduced in Eq. (EGWP):

GMcX ,cY
rn,ε (T ) := DcX ,cY

rn (T )−GWcX ,cY
rn,ε (rn, T ♯rn) .

Choosing ε = 0, we recover the unregularized one
GMcX ,cY

rn,0
= GMcX ,cY

rn . Moreover, the entropic esti-
mator preserves the positivity, as for ε ≥ 0, we have
GMcX ,cY

rn,ε ≥ 0 (see A.1). As described in § 2, we com-
pute GWcX ,cY

rn,ε (rn, T ♯rn) using Peyré et al. (2016)’s solver.
While it always has O(n2) memory complexity, when
cX = cY = ⟨·, ·⟩ or cX = cY = ∥ · − · ∥22, this solver
runs in O(n2d) time (Scetbon et al., 2022, Alg. 2). Since
the cosine similarity is equivalent to the inner product, up to
pre-normalization of xi and T (xi), the computation of the
GMG for the costs of interest [i] or [ii] scales as O(n2d) in
time. In practice, we use ott-jax’s (Cuturi et al., 2022)
implementation of this scheme.

3.4. (Weak) Convexity of the Gromov-Monge gap

As laid out, the GMG can be used as a regularization loss
to push any model T to be more geometry-preserving. A
natural question that arises when defining such a regular-
izer is: what are its regularity properties, and in particu-
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lar, is it convex? In the following, we study the convexity
of T 7→ GMcX ,cY

r (T ), and its finite-sample counterpart
T 7→ GMcX ,cY

rn (T ). We focus on the costs of interest [i]
or [ii]. For simplicity, we replace cosine similarity with
inner product—i.e., cX = cY = ⟨·, ·⟩—as they are equiv-
alent, up to normalization of r and T . We then study the
convexity of the GMG for (i) the (scaled) squared Euclidean
distances and (ii) the inner product, denoted respectively
by (i) GM2

r and (ii) GM⟨·,·⟩
r . To that end, we introduce

a weaker notion of convexity, previously defined for func-
tions on Rd (Davis et al., 2018), which we extend here to
L2(r) = {T | ∥T∥2L2(r)

:=
∫
X ∥T (x)∥22 dr(x) < +∞}.

Definition 3.6. With γ > 0, F : L2(r) → R is γ-weakly
convex if T 7→ F(T ) + γ

2 ∥T∥
2
L2(r)

is convex.

A weakly convex functional is convex up to an additive
quadratic perturbation. The weak convexity constant γ
quantifies the magnitude of this perturbation and indicates a
degree of non-convexity of F . A lower γ suggests that F
is closer to being convex, while a higher γ indicates greater
non-convexity.

Theorem 3.7. Both GM2
r and GM⟨·,·⟩

r , as well as their
finite sample versions, are weakly convex.

• Finite sample. We note X ∈ Rn×d the matrix that stores
the xi, i.e. the support of rn, as rows. Then, (i) GM2

rn

and (ii) GM⟨·,·⟩
rn are respectively (i) γ2,n and (ii) γinner,n-

weakly convex, where: γinner,n = λmax(
1
nXX⊤) −

λmin(
1
nXX⊤) and γ2,n = γinner,n +maxi=1...n ∥xi∥22.

• Asymptotic. (i) GM2
r and (ii) GM⟨·,·⟩

r are respec-
tively (i) γ2 and (ii) γinner-weakly convex, where:
γinner = λmax(Ex∼r[xx

⊤]) and γ2,n = γinner +
maxx∈Spt(r) ∥x∥22.

From a practitioner’s perspective, we analyze the insights
provided by Thm. (3.7) in three parts.

• First, we have γ2 ≥ γinner. Therefore, GM2
r is less

convex than GM⟨·,·⟩
r , making it harder to optimize, and

the same holds for their estimator. In other words, we
provably recover that, in practice, preserving the (scaled)
distances is harder than simply preserving the angles.

• Second, as γinner = λmax(Ex∼r[xx
⊤]) ≥

λmax(Covx∼r[x]), this exhibits a tradeoff w.r.t.
Prop. (3.3): by choosing a bigger reference distribution
r, we trade the convexity of the GMG. For γ2, the
dependency in r is even worse. In practice, we then
choose r with support as small as possible, precisely
where we want T to move points with minimal distortion.

• Third, and probably the most surprising, the finite sample
GMG is more convex in high dimension. Indeed, γinner,n
is the spectral width of 1

nXX⊤, containing the (rescaled)
inner-products between the xi ∼ r. When n > d,

λmin(XX⊤) = 0 as rank(XX⊤) = d. Then, γinner,n
increases, which in turn decreases the GMG’s convexity.
On the other hand, when d > n, λmin(XX⊤) > 0 if X
is full rank. Intuitively, GM⟨·,·⟩

rn is nearly convex when
XX⊤ is well conditioned. Assuming that the xi are nor-
malized, this might happen in high dimension, as those
points will be orthogonal with high probability. This
property suggests that, in practice, and contrary to the
insights provided by the statistical OT literature (Weed
and Bach, 2017; Genevay et al., 2019; Pooladian and
Niles-Weed, 2021; Zhang et al., 2023), the GMG might
not benefit a large sample size.

3.5. Learning with the Gromov-Monge gap

General Learning Procedure. Provided a source distribu-
tion p and a target q defining a marginal constraint, learning
with the GMG remains to optimize a loss of the form

L(θ) := ∆(Tθ, p, q) + λGMGGMcX ,cY
r (Tθ) (2)

where ∆ is a fitting loss, which can access paired, or un-
paired, samples of p and q. In theory, from Prop. (3.3),
we can choose any reference r s.t. Spt(p) ⊂ Spt(r). In
practice, given the insights of Thm. (3.6), we usually con-
sider r = p. Note that replacing GMcX ,cY

r by DcX ,cY
r in

Eq. (2), we similarly define the learning procedure with the
distortion. We compare their effect in Figure 1.

VAE Learning Procedure. In the VAE setting, (i) when
we apply the GMG (or the distortion) to the encoder eϕ, the
fitting loss is defined through the prior matching constraint,
as described in § 2.1. Conversely, (ii) when we apply the
GMG to the decoder dϕ, the fitting loss is defined through
the reconstruction loss. Additionally, in both cases, our goal
is to promote the latent space to preserve certain geometric
features of the data. Therefore, in (i) we use r = pdata the
data distribution as reference r, while in (ii) we use the latent
distribution r = qϕ. Introducing weightings λenc, λdec ≥ 0,
determining which mapping we regularize, this remains to
optimize the loss

Lβ-GMG(θ, ϕ) = Lβ(θ, ϕ)

+ λencGMcX ,cY
pdata

(eϕ) + λdecGMcX ,cY
qϕ

(dθ),
(3)

where Lβ is introduce in § 2.1. Note that this loss can
easily be extended to β-TCVAE and the combination of
other regularization terms. While previous work (Nakagawa
et al., 2023; Lee et al., 2022) chooses to apply the geometric
regularizations to the decoder, we investigate regularizing
both, separately or simultaneously. For completeness, we
also derive the VAE-loss when learning with the distortion:

Lβ-DST(θ, ϕ) = Lβ(θ, ϕ)

+λencDcX ,cY
pdata

(eϕ) + λdecDcX ,cY
qϕ

(dθ),
(4)
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The choice of cX , cY . Recently, Lee et al. (2022) eluci-
dated that fully isometric regularization—preserving cX =
cY = ∥ · − · ∥22—can be overly restrictive. They introduced
a Jacobian-based regularizer to learn scaled isometry–which
preserves the costs cX = ∥·−·∥22 and cY = α2∥·−·∥22 with
α2 > 0. Similarly, Nakagawa et al. (2023) proposed using
distortion (DST) with these costs and a learnable scaling α2.
In this work, we follow their direction and consider both
the distortion and the GMG for all the costs of interest [i]
and [ii] introduced in 3.1, defining a hierarchy of geometric
regularization. For cX = ∥ · − · ∥22 and cY = α2∥ · − · ∥22,
we refer to this as scaled isometric regularization (SIR)
for learnable α > 0 and isometric regularization (IR) with
fixed α = 1. We refer to it as conformal regularization (CR)
when cX = cY = cos-sim(·, ·). We emphasize that in each
setting, using the GMG does not aim to find a map that fully
preserves the (scaled) distances (SIR and IR) or the angles
(CR), but rather one that preserves them as much as possible
while matching the prior when regularizing the encoder or
reconstructing the data when regularizing the decoder.

4. Experiments
Experimental setup. We evaluate the effectiveness of the
(GMG) as regularizer in disentangled representation learn-
ing. We use the standard β-VAE and β-TCVAE as our base
models and incorporate the GMG on top of them. Moreover,
we consider the recently proposed HFS (Roth et al., 2023)
regularization on top of both β-VAE and β-TCVAE, totaling
four base models. Our primary goal is to investigate the
differences between using the GMG and the (DST) as regu-
larizers, specifically examining whether the (GMG) leads to
more disentangled representations compared to the raw dis-
tortion. Additionally, we aim to determine which geometric
regularization (IR, SIR, CR) is most beneficial for disentan-
glement and what part of the pipeline should be regularized.
Lastly, we investigate whether a geometric regularization
can help prevent the collapse of learned representation in the
Decoder-free setting. We evaluate the learned latents with
DCI-D (Eastwood and Williams, 2018) as it was found to
be the metric most suitable to measure disentanglement (Lo-
catello et al., 2020; Dittadi et al., 2021). We benchmark over
multiple datasets commonly used in disentangled represen-
tation learning datasets: Shapes3D (Kim and Mnih, 2018),
DSprites (Higgins et al., 2017), SmallNORB (LeCun et al.,
2004), and Cars3D (Reed et al., 2015).

4.1. Evaluating Different Geometric Regularizations

Regularizing the Decoder. First, we focus on the differ-
ence between optimizing for different geometry-preserving
regularizations. We compare between IR, SIR, and CR (Lee
et al., 2022) realized through either the (DST), or (GMG).
Additionally, we include the Jacobian-based SIR as in-

Table 1: Effect of different geometric regularization on
disentanglement (DCI-D, Shapes3D (Kim and Mnih, 2018)).
We highlight the best method per regularization, and the
best/second best per column.

β-VAE β-TCVAE β-VAE + HFS β-TCVAE + HFS

Base 65.8 ±15.6 75.0 ±3.4 88.1 ±7.4 90.2 ±7.5

Isometric (IR)

+ (DST) 71.5 ±3.6 75.8 ±6.6 92.1 ±9.7 90.9 ±7.6
+ (GMG) 72.0 ±12.5 78.9 ±5.0 92.5 ±4.4 91.7 ±6.0

Scaled Isometric (SIR)

+ Jacobian 61.4 ±12.8 76.7 ±4.5 90.5 ±3.8 91.5 ±5.6
+ (DST) 67.4 ±7.1 77.9 ±4.5 93.2 ±9.7 94.5 ±6.9
+ (GMG) 70.0 ±5.9 81.0 ±3.2 93.3 ±8.6 96.1 ±3.8

Conformal (CR)

+ (DST) 76.8 ±4.1 81.3 ±4.7 87.5 ±3.3 91.9 ±9.4
+ (GMG) 82.1 ±4.5 83.7 ±8.8 95.7 ±5.8 96.9 ±4.9

troduced in Lee et al. (2022). We report full results on
Shapes3D (Burgess and Kim, 2018) over 5 seeds in Table 1.
We observe that the GMG outperforms the sole distortion
loss for all levels of regularization and baselines. Moreover,
we find that a CR performs best with respect to disentangle-
ment compared to both IR and SIR. Note, that employing
a CR has not been benchmarked for disentangled repre-
sentation learning before. These results elucidate the clear
benefit of using the GMG in its CR implementation in terms
of learning more disentangled representations significantly
improving upon previously proposed regularizations.

Thus, next we benchmark the GMG in its CR form against
its distortion counterpart across three more datasets again
over four different baselines. We report full results in Ta-
ble 2. Again we observe that the GMG outperforms or per-
forms equally well to its distortion equivalent, confirming
the benefits of accounting for the optimal possible map-
ping in the regularization. Note that for SmallNORB and
Cars3D, we found no benefits with respect to DCI-D in
adding an HFS regularization and obtained the best results
without it. We emphasize that using the GMG as CR signif-
icantly improves results for all datasets versus not using any
isometric regularization. This establishes the GMG as an
effective regularization method beneficial for disentangled
representation learning.

Regularizing the Encoder. Lastly, we also analyze a CR
on eϕ, as well as regularizing both dθ and eϕ together. We
report full results over two datasets in Table 4. Again, the
GMG on dθ achieves best DCI-D over all baselines. This
result is expected in the light of Theorem 3.7. Interestingly,
regularizing solely dθ outperforms regularizing both eϕ and
dθ. We hypothesize this is due to the regularization of
the decoder also offering a stronger signal as its gradients
impact both the decoder and the encoder, as in this case, the
reference r is the distribution of encoded images.
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Table 2: Effect of (GMG) and (DST) leveraged as a confor-
mal regularization (CR) on the disentanglement of learned
representations as measured by DCI-D over four datasets.
We highlight the best, and second best result for each
dataset and method.

CR β-VAE β-TCVAE β-VAE + HFS β-TCVAE + HFS

Shapes3D (Kim and Mnih, 2018)

Base 65.8 ±15.6 75.0 ±3.4 88.1 ±7.4 90.2 ±7.5
+ (DST) 76.8 ±4.1 81.3 ±4.7 87.5 ±3.3 91.9 ±9.4
+ (GMG) 82.1 ±4.5 83.7 ±8.8 95.7 ±5.8 96.9 ±4.9

DSprites (Higgins et al., 2017)

Base 26.2 ±18.5 32.3 ±19.3 33.6 ±17.9 48.7 ±10.2
+ (DST) 28.6 ±19.3 32.4 ±8.5 39.3 ±18.1 49.0 ±11.2
+ (GMG) 39.5 ±15.2 42.2 ±3.6 46.7 ±2.0 50.1 ±8.5

SmallNORB (LeCun et al., 2004)

Base 26.8 ±0.2 29.8 ±0.4 26.8 ±0.2 29.8 ±0.4
+ (DST) 28.2 ±0.3 29.9 ±0.4 28.2 ±0.3 29.9 ±0.4
+ (GMG) 28.3 ±0.6 29.9 ±0.5 28.3 ±0.6 29.9 ±0.5

Cars3D (Reed et al., 2015)

Base 29.6 ±5.7 32.3 ±4.6 29.6 ±5.7 32.3 ±4.6
+ (DST) 26.8 ±3.6 33.7 ±4.2 26.8 ±3.6 33.7 ±4.2
+ (GMG) 30.1 ±5.6 36.4 ±5.7 30.1 ±5.6 36.4 ±5.7

4.2. Towards Decoder-free Disentanglement

Recently, works such as (Burns et al., 2021; von Kügelgen
et al., 2021; Eastwood et al., 2023; Matthes et al., 2023;
Aitchison and Ganev, 2024) have shown the possibility of
disentanglement through self-supervised, contrastive learn-
ing objectives in an effort to align with the scalability of
encoder-only representation learning (Chen et al., 2020b;
Zbontar et al., 2021; Bardes et al., 2022; Garrido et al.,
2023). However, these encoder-only approaches still re-
quire weak supervision or access to multiple views of an
image to encourage meaningful data representations.

As the goal of geometry preservation connects the data man-
ifold and the latent domain through a minimal distortion
objective and is applicable to both the encoder and decoder
of a VAE (§3, Table 4), we posit that its application may
provide sufficient training signal to learn meaningful repre-
sentations and encourage disentanglement, eliminating the
need for a reconstruction loss and decoder. Table 3 shows
preliminary results on unsupervised decoder-free disentan-
gled representation learning on the Shapes3D benchmark,
where the decoder and associated reconstruction objective
have been removed.

Standard approaches such as β-VAE or β-TCVAE collapse
and do not achieve measurable disentanglement (DCI-D
of 0.0). However, the inclusion of either DST or GMG
significantly raises achievable disentanglement and, com-
bined with the β-TCVAE matching objective, can achieve
DCI-D scores of up to 53.5 without needing any decoder or
reconstruction loss. While these are preliminary insights,
we believe they offer promise for more scalable approaches

Table 3: Disentanglement (DCI-D) without a decoder
trained with various regularizations on Shapes3D. We high-
light the best/second best per column.

Decoder-free β-VAE β-TCVAE

Base 0.0 ±0.0 0.0 ±0.0

Isometric (IR)

+ (DST) 38.2 ±0.8 42.7 ±1.6
+ (GMG) 13.9 ±0.4 20.5 ±0.5

Scaled Isometric (SIR)

+ (DST) 45.6 ±1.2 53.5 ±1.0
+ (GMG) 15.2 ±0.3 25.2 ±0.6

Conformal (CR)

+ (DST) 37.0 ±0.4 46.1 ±1.5
+ (GMG) 37.0 ±0.9 38.8 ±1.1

to unsupervised disentangled representation learning and
potential bridges to popular and scalable self-supervised
representation learning approaches. Note that the distor-
tion loss significantly outperforms the GMG here. This is
expected due to the nature of the GMG, as the distortion
loss offers a more restrictive and, thus, stronger signal for
learning representations, which is necessary in the absence
of a reconstruction objective. This highlights that while in
most scenarios (§ 4.1, Figure 1), the GMG is preferable over
the distortion loss, there also exist settings where a more
restrictive optimization signal is desirable.

5. Conclusion
In this work, we introduce an optimal transport (OT) per-
spective on unsupervised disentangled representation learn-
ing to incorporate general latent geometrical constraints. We
derive the Gromov-Monge gap (GMG), a provably weakly
convex OT regularizer that measures the preservation of ge-
ometrical properties by a transport map T . By formulating
disentangled representation learning as a transport problem,
we integrate the GMG into standard training objectives, al-
lowing for incorporating and studying various geometric
constraints on the disentanglement of learned representation
spaces. Including these geometry preserving regularization
offers significant performance benefits across four standard
disentanglement benchmarks when applied to existing disen-
tanglement methods. Moreover, we show promising results
on decoder-free unsupervised disentanglement. We demon-
strate that optimizing for geometric constraints through the
OT lens can provide sufficient training signal and regular-
ization on the model encoder to achieve measurable disen-
tanglement without explicit reconstruction objectives. This
opens a possible door towards more scalable unsupervised
disentanglement and bridges to weakly- & self-supervised
encoder-only representation learning efforts.
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Singh, editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607. PMLR,
13–18 Jul 2020b. URL https://proceedings.
mlr.press/v119/chen20j.html.

Marco Cuturi. Sinkhorn Distances: Lightspeed Computa-
tion of Optimal Transport. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 26, 2013.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian,
Charlotte Bunne, Geoff Davis, and Olivier Teboul. Opti-
mal Transport Tools (OTT): A JAX Toolbox for all things
Wasserstein. arXiv Preprint arXiv:2201.12324, 2022.

Damek Davis, Dmitriy Drusvyatskiy, Kellie J. MacPhee,
and Courtney Paquette. Subgradient methods for sharp
weakly convex functions, 2018.

Andrea Dittadi, Frederik Träuble, Francesco Locatello,
Manuel Wuthrich, Vaibhav Agrawal, Ole Winther, Ste-
fan Bauer, and Bernhard Schölkopf. On the transfer
of disentangled representations in realistic settings. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=8VXvj1QNRl1.

Théo Dumont, Théo Lacombe, and François-Xavier Vialard.
On the existence of monge maps for the gromov-
wasserstein problem. 2022.

Cian Eastwood and Christopher K. I. Williams. A frame-
work for the quantitative evaluation of disentangled rep-
resentations. In International Conference on Learning

9

https://openreview.net/forum?id=chbRsWwjax
https://openreview.net/forum?id=chbRsWwjax
http://github.com/deepmind
https://openreview.net/forum?id=xm6YD62D1Ub
https://openreview.net/forum?id=xm6YD62D1Ub
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521833787
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521833787
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521833787
http://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1804.03599
https://proceedings.neurips.cc/paper/2018/file/1ee3dfcd8a0645a25a35977997223d22-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1ee3dfcd8a0645a25a35977997223d22-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1ee3dfcd8a0645a25a35977997223d22-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1ee3dfcd8a0645a25a35977997223d22-Paper.pdf
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=8VXvj1QNRl1
https://openreview.net/forum?id=8VXvj1QNRl1


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Disentangled Representation Learning through Geometry Preservation with the Gromov-Monge Gap

Representations, 2018. URL https://openreview.
net/forum?id=By-7dz-AZ.

Cian Eastwood, Julius von Kügelgen, Linus Ericsson, Di-
ane Bouchacourt, Pascal Vincent, Mark Ibrahim, and
Bernhard Schölkopf. Self-supervised disentanglement
by leveraging structure in data augmentations. In Causal
Representation Learning Workshop at NeurIPS 2023,
2023. URL https://openreview.net/forum?
id=JoISqbH8vl.

Luca Vincent Eyring, Dominik Klein, Giovanni Palla,
Soeren Becker, Philipp Weiler, Niki Kilbertus,
and Fabian J. Theis. Modeling single-cell dynam-
ics using unbalanced parameterized monge maps.
bioRxiv, 2022. doi: 10.1101/2022.10.04.510766.
URL https://www.biorxiv.org/content/
early/2022/10/05/2022.10.04.510766.
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Appendix

A. Proofs
A.1. Positivity of the Entropic GMG

Recall that

GMcX ,cY
rn,ε (T ) := 1

nD
cX ,cY
rn (T )−GWcX ,cY

ε (rn, T ♯rn)

= DcX ,cY
rn (T )− min

P∈Un

n∑
i,j,i′,j′=1

(cX (xi,xj)− cY(yi,yj))
2PijPi′j′ − εH(P) ,

For any coupling P ∈ Un, since −εH(P) = −ε
∑n

i,j=1 Pij log(Pij) < 0, one has:

n∑
i,j,i′,j′=1

(cX (xi,xj)− cY(yi,yj))
2PijPi′j′ − εH(P) <

n∑
i,j,i′,j′=1

(cX (xi,xj)− cY(yi,yj))
2PijPi′j′

As a result, applying minimization on both sides yields that GWcX ,cY
ε (rn, T ♯rn) < GWcX ,cY

0 (rn, T ♯rn), and therefore:

GWcX ,cY
ε (T ) > GWcX ,cY

0 (T ) = GWcX ,cY (T ) ≥ 0.

A.2. Reminders on Monge and Kantorovich OT

In this section, we recall the Monge and Kantorovich formulations of OT, which we will use to prove various results. These
are the classical formulations of OT. Although we introduce them here after discussing the Gromov-Monge and Gromov-
Wasserstein formulations, it should be noted that they are generally introduced beforehand. Indeed, the Gromov-Monge and
Gromov-Wasserstein formulations were historically developed to derive OT formulations for comparing measures supported
on incomparable spaces.

Monge Formulation. Instead of intra-domain cost functions, we consider here an inter-domain continuous cost function
c : X × Y → R. This assumes that we have a meaningful way to compare elements x,y from the source and target
domains. The Monge (1781) problem (MP) between p ∈ P(X ) and p ∈ P(Y) consists of finding a map T : X → Y that
push-forwards p onto p, while minimizing the average displacement cost quantified by c

inf
T :T♯p=p

∫
X
c(x, T (x)) dp(x) . (MP)

We call any solution T ⋆ to this problem a Monge map between p and q for cost c. Similarly to the Gromov-Monge
Problem (GMP), solving the Monge Problem (MP) is difficult, as the constraint set is not convex and might be empty,
especially when p, q are discrete.

Kantorovich Formulation. Instead of transport maps, the Kantorovich problem (KP) seeks a couplings π ∈ Π(p, q):

Wc(p, q) := min
π∈Π(p,q)

∫
X×Y

c(x,y) dπ(x,y) . (KP)

An optimal coupling π⋆ solution of (KP), always exists. Studying the equivalence between (MP) and (KP) is easier
than in the Gromov-Monge and Gromov-Wasserstein cases. Indeed, when (MP) is feasible, the Monge and Kantorovich
formulations coincide and π⋆ = (Id, T ⋆)♯p.

A.3. Conditionally Positive Kernels

In this section, we recall the definition of a conditionally positive kernel, which is involved in multiple proofs relying on the
linearization of the Gromov-Wasserstein problem as a Kantorovich problem.
Definition A.1. A kernel k : Rd × Rd → R is conditionally positive if it is symmetric and for any x1, ...,xn ∈ Rd and
a ∈ Rn s.t. a⊤1n = 0, one has

n∑
i,j=1

aiaj k(xi,xj) ≥ 0
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Conditionally positive kernels include all positive kernels, such as the inner-product k(x,y) = ⟨x,y⟩, the cosine similarity
k(x,y) = cos-sim(x,y) = ⟨ x

∥x∥2
, y
∥y∥2

⟩, but also the negative squared Euclidean distance k(x,y) = −∥x−y∥22. Therefore,
each of the costs of interest is either a conditionally positive kernel - for the inner product and the cosine distance - or its
opposite is - the squared Euclidean distance.

B. Proofs of § 3.2
Proposition 3.3. When cX , cY are [i] or [ii] (see § 3.1), if GMcX ,cY

r (T ) = 0, then for any s ∈ P(X ) s.t. Spt(s) ⊆ Spt(r),
one has GMcX ,cY

s (T ) = 0.

Proof. Let T, r, s as described and suppose that GMc
r(T ) = 0. Then, πr := (Id, T )♯r is an optimal Gromov-Wasserstein

coupling, solution of Problem (GWP) between r and T♯r for costs cX and cY . Therefore, from (Séjourné et al., 2023,
Theorem. 3), πr is an optimal Kantorvich coupling, solution of Problem (KP) between r and T♯r for the linearized cost:

c̃ : (x,y) ∈ X × Y 7→
∫
X×Y

1
2 |cX (x,x′)− cY(y,y

′)|2 dπr(x′,y′) (5)

Additionally, X ×Y is a compact set as a product of compact sets, so since (x,y) 7→ |cX (x,x′)− cY(y,y
′)|2 is continuous

as cX and cY are continuous, it is bounded on X × Y . Afterward, since πr has finite mass, by Lebesgue’s dominated
convergence Theorem, it follows that c̃ is continuous, and hence uniformly continuous, again since X × Y is compact.

Afterwards, by virtue of (Santambrogio, 2015, Theorem 1.38), Spt (πr) is a c̃-cyclically monotone (CM) set (see (Santam-
brogio, 2015, Definition. 1.36)). From the definition of cyclical monotonicity, this property translates to subsets. Then,
by defining πs = (Id, T )♯s, as Spt(p) ⊂ Spt(r), one has Spt(πs) = Spt((Id, T )♯s) ⊂ Spt((Id, T )♯r) = Spt(πr), so
Spt(πs) is c̃-CM. Finally, since X and Y are compact, and c̃ is uniformly continuous, the c̃-cyclical monotonicity of
its support implies that the coupling πp is a Kantorovich optimal coupling between its marginals for cost c̃, thanks to
(Santambrogio, 2015, Theorem 1.49). By re-applying (Séjourné et al., 2023, Theorem. 3), we get that πs solves the Gromov-
Wasserstein problem between its marginals for costs cX and cY . In other words, πs = (Id, T )♯s is Gromov-Wasserstein
optimal coupling between s and T♯s so T is a Gromov-Monge map between s and T♯s and GMcX ,cY

s (T ) = 0.

C. Proofs of § 3.3
Proposition 3.4. When cX , cY are [i] or [ii] , the empirical GMG reads:

GMcX ,cY
rn (T ) = DcX ,cY

rn (T )

− min
σ∈Sn

1
n2

n∑
i,j=1

(
cX (xi,xj)− cY(T (xσ(i)), T (xσ(j)))

)2

Proof. We start by showing a more general results, stating that when cX , cY are conditionally positive kernels (see A.1), the
discrete GW couplings between uniform, empirical distributions supported on the same number of points, ae permutation
matrices.

Proposition C.1 (Equivalence between Gromov-Monge and Gromov-Wasserstein problems in the discrete case.). Let
pn = 1

n

∑n
i=1 δxi

and qn = 1
n

∑n
i=1 δyi

two uniform, empirical measures, supported on the same number of points. We
denote by Pn = {P ∈ Rn×n,∃σ ∈ Sn,Pij := δj,σ(i)} the set set of permutation matrices. Assume that cX and cY (or
−cX and −cY ) are conditionally positive kernels (see A.1). Then, the GM and GW formulations coincide, in the sense that
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we can restrict the GW problem to permutations, namely

GWcX ,cY (pn, pn) = min
P∈Un

n∑
i,j,i′,j′=1

(cX (xi,xi′)− cY(yj ,yj′))
2PijPi′j′

= 1
n2 min

P∈Pn

n∑
i,j,i′,j′=1

(cX (xi,xi′)− cY(yj ,yj′))
2PijPi′j′

= 1
n2 min

σ∈Sn

n∑
i,j=1

(cX (xi,xj)− cY(yσ(i),yσ(j)))
2

(6)

Proof. Let P⋆ ∈ Un solution of the Gromov-Wasserstein between pn and pn, i.e.

P⋆ ∈ argmin
P∈Un

n∑
i,j,i′,j′=1

(cX (xi,xi′)− cY(yj ,yj′))
2PijPi′j′

that always exists by continuity of the GW objective function on the compact Un. We show that P⋆ can be chosen as a
(rescaled) permutation matrix without loss of generality.

As we assume that cX and cY (or −cX and −cY ) are conditionally positive kernels, from (Séjourné et al., 2023, Theorem.
3), P⋆ also solves:

P⋆ ∈ argmin
Q∈Un

n∑
i,j,i′,j′=1

(cX (xi,xi′)− cY(yj ,yj′))
2P⋆

ijQi′j′ (7)

We then define the linearized cost matrix C̃ ∈ Rn×n, s.t.

C̃ij =

n∑
i′,j′=1

(cX (xi,xi′)− cY(yj ,yj′))
2P⋆

ij

which allows us to reformulate Eq. (7) as
P⋆ ∈ argmin

Q∈Un

⟨C̃,Q⟩ (8)

Birkhoff’s theorem states that the extremal points of Un are equal to the permutation matrices Pn. Moreover, a seminal
theorem of linear programming (Bertsimas and Tsitsiklis, 1997, Theorem 2.7) states that the minimum of a linear objective
on a bounded polytope, if finite, is reached at an extremal point of the polyhedron. Therefore, as P⋆ solves Eq. (8), it is an
extremal point of Un, so it can always be chosen as a permutation matrix. Therefore, the equivalence between GW and GM
follows.

To conclude the proof of Prop. 3.4, we simply remark that:

• rn = 1
n

∑n
i=1 δxi and T♯rn = 1

n

∑n
i=1 δT (xi) are uniform, empirical distribution, and supported on the same number of

points;

• The costs of interests [i] or [ii] are either conditionally positive, or their opposite is, as detailed below Def (A.1).

Proposition C.2. When cX , cY are [i] or [ii], GMcX ,cY
rn (T ) → GMcX ,cY

r (T ) almost surely.

Proof. We first note that the empirical estimator of the distortion is consistent, as both costs [i] or [ii] are continuous, and X
is compact. We then need to study, in both cases, the convergence of GWcX ,cY (rn, T ♯rn) to GWcX ,cY (rn, T ♯r).

To that end, we first remark that as, almost surely, rn → r in distribution, one also has that, almost surely, T♯rn → T♯r in
distribution. Indeed, since Y is compact, T is bounded so for any bounded and continuous f : Y → R and X ∼ r, f ◦T (X)
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is well defined and bounded so integrable. Afterwards, one can simply adapt the proof of the almost sure weak convergence
of empirical measure based on the strong law of large numbers to show that, almost surely, T♯rn → T♯r in distribution. See
for instance (Le Gall, Theorem 10.4.1).

[i] We start by the (scaled) squared euclidean distances. Up to replacing r by α2♯r and T by T ◦ ( 1
α2 ), and similarly for rn,

we can assume without loss of generality that α = 1. As, almost surely, both rn → r and T♯rn → T♯r in distribution, the
results follows from (Mémoli, 2011, Thm 5.1, (e)).

[ii] We continue with the cosine similarity. To that end, we first consider the inner product, i.e., cX = cY = ⟨·, ·⟩, and
show that if pn → p and qn → q in distribution, then GW⟨·,·⟩(pn, qn) → GW⟨·,·⟩(p, q). As noticed by Rioux et al. (2023,
Lemma 2)–in the first version of the paper– the GW for inner product costs can be reformulated as:

GW⟨·,·⟩(p, q) =

∫
X×X

⟨x,x′⟩dp(x) dp(x′) +

∫
Y×Y

⟨y,y′⟩dq(y) dq(y′)

+ min
M∈M

min
π∈Π(p,q)

∫
X×Y

−4⟨Mx,y⟩dπ(x,y) + 4∥M∥22 ,
(9)

where we define M = [−M/2,M/2]dX×dY with M =
√∫

X ∥x∥22 dp(x)
∫
Y ∥y∥22 dq(y). In particular, they show this

result for the entropic GW problem with ε > 0, but their proof is also valid for ε = 0. The above terms only involving
the marginal, i.e., not involved in the minimization, are naturally stable under convergence in distribution, as X and Y are
compact, so as X × X and Y × Y . As a result, we only need to study the stability of this quantity under the convergence in
distribution of the following functional:

F(p, q) = min
M∈M

min
π∈Π(p,q)

∫
X×Y

−4⟨Mx,y⟩dπ(x,y) + 4∥M∥22 , (10)

We first remark that:

|F(p, q)−F(pn, qn)|

≤ sup
M∈M

| min
π∈Π(p,q)

∫
X×Y

−4⟨Mx,y⟩dπ(x,y)− min
π∈Π(p,q)

∫
X×Y

−4⟨Mx,y⟩dπ(x,y)|

≤ sup
M∈M

| min
π∈Π(p,q)

∫
X×Y

2∥Mx− y∥22 dπ(x,y)− min
π∈Π(pn,qn)

∫
X×Y

2∥Mx− y∥22 dπ(x,y)2|

+2 · sup
M∈M

|
∫
X
∥Mx∥22 dp(x)−

∫
X
∥Mx∥22 dpn(x)|

+2 · |
∫
Y
∥y∥22 dq(y)−

∫
Y
∥y∥22 dqn(y)|

(11)

Then, we show the convergence of each term separately.

• For the first term, we remark that (up to a constant factor) it can be reformulated:

sup
M∈M

|W2
2(M♯p, q)−W2

2(M♯pn, qn)|

where we remind that that W2
2 is the (squared) Wasserstein distance, solution of Eq. (KP) induced by c(x,y) = ∥x−y∥22.

By virtue of (Manole and Niles-Weed, 2024, Theorem 2), there exists a constant C > 0, s.t. we can uniformly bound

sup
M∈M

|W2
2(M♯p, q)−W2

2(M♯pn, qn)| ≤ Cn−1/d

and the convergence follows.

• For the second one, this follows from from the convergence in distribution of pn to p along with the Ascoli-Arzela
theorem, since both M and X are compact sets, so the {fM | fM : x 7→ ∥Mx∥22} are uniformly bounded and
equi-continuous.

• For the third one, this follows from the convergence in distribution of qn to q.
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As a result, we finally get GW⟨·,·⟩(pn, qn) → GW⟨·,·⟩(p, q). Finally, we remark that for any p, q, GWcos-sim(p, q) =

GW⟨·,·⟩(projSd−1♯p,projSd−1♯q), where projSd−1(x) = x/∥x∥2. Using similar arguments invoked previously, as pn → p
in distribution p, projSd−1♯pn → projSd−1♯p in distribution, and similarly projSd−1♯qn → projSd−1♯q in distribution. As
a result:

GWcos-sim(pn, qn) = GW⟨·,·⟩(projSd−1♯pn,projSd−1♯qn)

→ GW⟨·,·⟩(projSd−1♯p,projSd−1♯q)

= GWcos-sim(p, q)

(12)

which yields the desired convergence by using pn = rn and qn = T♯rn.

D. Proofs of § 3.4
Theorem 3.7. Both GM2

r and GM⟨·,·⟩
r , as well as their finite sample versions, are weakly convex.

• Finite sample. We note X ∈ Rn×d the matrix that stores the xi, i.e. the support of rn, as rows. Then, (i) GM2
rn and (ii)

GM⟨·,·⟩
rn are respectively (i) γ2,n and (ii) γinner,n-weakly convex, where: γinner,n = λmax(

1
nXX⊤)− λmin(

1
nXX⊤) and

γ2,n = γinner,n +maxi=1...n ∥xi∥22.

• Asymptotic. (i) GM2
r and (ii) GM⟨·,·⟩

r are respectively (i) γ2 and (ii) γinner-weakly convex, where: γinner =
λmax(Ex∼r[xx

⊤]) and γ2,n = γinner +maxx∈Spt(r) ∥x∥22.

We start by recalling the standard definition of weakly convex function on Rd, along with technical lemmas that we will in
the proof of Thm. (3.7).

Definition D.1. A function f : Rd → R is γ-weakly convex if f + γ∥ · ∥22 is convex.

Lemma D.2. Let A ∈ Sd(R) a symmetric matrix and define the quadratic form fA : x ∈ Rd 7→ x⊤Ax. Then, fA is
max(0,−λmin(A))-weakly convex.

Proof. We use the fact that a twice continuously differentiable function is convex i.f.f. its hessian is positive semi-
definite (Boyd and Vandenberghe, 2004, §(3.1.4)). Therefore, fA is convex i.f.f. ∇2fA = A ≥ 0. If λmin(A) ≥ 0, then
A ≥ 0 so fA is convex, i.e. 0-weakly convex. Otherwise, fA − 1

2λmin(A)∥ · ∥22 has hessian A − λmin(A) ≥ 0, so it is
convex, which yields that fA is −λmin(A)-weakly convex.

Lemma D.3. Let (fi)i∈I a family of γ-weakly convex functions, with potentially infinite I . Then, f : x ∈ Rd 7→ supi∈I fi(x)
is γ-weakly convex.

Proof. As the fi are γ-weakly convex, fi + 1
2γ is convex, so x 7→ supi∈I fi(x) +

1
2γ∥x∥

2
2 = (supi∈I fi(x)) +

1
2γ∥x∥

2
2 is

convex (Boyd and Vandenberghe, 2004, Eq. (3.7)). Therefore, the γ-weak convexity of f follows

Proof of Thm. (3.7). Finite sample. We first study the weak convexity of GM⟨·,·⟩
rn , i.e. the Gromov-Monge gap for the inner

product. For a map T ∈ L2(r), it reads

GM⟨·,·⟩
rn (T ) = 1

n2

n∑
i,j=1

1
2 |⟨xi,xj⟩ − ⟨T (xi), T (xj)⟩|2

− min
P∈Un

n∑
i,j,i′,j′=1

1
2 |⟨xi,xi′⟩ − ⟨T (xj), T (xj′)⟩|2PijPi′j′

As rn and T♯rn are uniform empirical supported on the same number of points, using Prop. C.1, we can reformulate the
RHS with permutation matrices, which yields
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GM⟨·,·⟩
rn (T ) = 1

n2

n∑
i,j=1

1
2 |⟨xi,xj⟩ − ⟨T (xi), T (xj)⟩|2

− 1
n2 min

P∈Pn

n∑
i,j,i′,j′=1

1
2 |⟨xi,xi′⟩ − ⟨T (xj), T (xj′)⟩|2PijPi′j′

From this expression, GM⟨·,·⟩
rn can be reformulated as a matrix input function. Indeed, it only depends on the map T via its

values on the support of rn, namely x1, ...,xn. Therefore, we write ti := T (xi), and define X,T ∈ Rn×d which contain
observations xi and ti respectively, stored as rows. Then, studying GM⟨·,·⟩

rn remains to study

f(T) := 1
n2

n∑
i,j=1

1
2 |⟨xi,xj⟩ − ⟨ti, tj⟩|2 − 1

n2 min
P∈Pn

n∑
i,j,i′,j′=1

1
2 |⟨xi,xi′⟩ − ⟨tj , tj′⟩|2PijPi′j′

By developing each term and exploiting that for any P ∈ Pn, P1n = P⊤1n = 1
n1n, we derive

f(T) = 1
n2

n∑
i,j=1

−⟨xi,xj⟩ · ⟨ti, tj⟩ − min
P∈Pn

1
n2

n∑
i,j,i′,j′=1

−⟨xi,xi′⟩ · ⟨tj , tj′⟩PijPi′j′

= max
P∈Pn

1
n2

n∑
i,j,i′,j′=1

⟨xi,xi′⟩ · ⟨tj , tj′⟩PijPi′j′ − 1
n2

n∑
i,j=1

⟨xi,xj⟩ · ⟨ti, tj⟩

= max
P∈Pn

⟨ 1
n2P

⊤XX⊤P,TT⊤⟩ − ⟨ 1
n2XX⊤,TT⊤⟩

= max
P∈Pn

⟨ 1
n2 (P

⊤XX⊤P−XX⊤),TT⊤⟩

= max
P∈Pn

⟨ 1
n2 (P

⊤XX⊤P−XX⊤)T,T⟩

= max
P∈Pn

⟨AX,PT,T⟩

where we define AX,P := 1
n2 (P

⊤XX⊤P −XX⊤) ∈ Rn×n. To study the convexity of this matrix input function, we
vectorize it. From (Petersen and Pedersen, 2008, Eq. (520)), we note that, for any M ∈ Rn×n

⟨MT,T⟩ = vec(T)⊤vec(MT) = vec(T)⊤(M⊗ In)vec(T)

where vec is the vectorization operator, raveling a matrix along its rows, and ⊗ is the Kronecker product. Applying this
identity, we reformulate:

f(T) = max
P∈Un

vec(T)⊤(AX,P ⊗ In)vec(T) (13)

To study the convexity of r, we study the convexity of each rAX,P
(T) := vec(T)⊤(AX,P ⊗ In)vec(T), which are

quadratic forms induced by the AX,P ⊗ In. This remains to study the (semi-) positive definiteness of the matrices
AX,P ⊗ In. As each AX,P ∈ Rn×n is symmetric and square, AX,P ⊗ In is also symmetric and from (Petersen and
Pedersen, 2008, Eq. (519)) its eigenvalues are the outer products of the eigenvalues of AX,P and In, namely

eig(AX,P ⊗ In) = {λi(AX,P) · λj(In)}1≤i,j≤n

= {λ1(AX,P), . . . , λ1(AX,P)︸ ︷︷ ︸
n times

, . . . , λn(AX,P), . . . , λn(AX,P)︸ ︷︷ ︸
n times

} (14)

It follows that the minimal eigenvalue of AX,P ⊗ In is λmin(AX,P ⊗ In) = λmin(AX,P). Utilizing the expression of
AX,P

λmin(AX,P) =
1
n2λmin(P

⊤XX⊤P−XX⊤)

≥ 1
n2 (λmin(P

⊤XX⊤P) + λmin(−XX⊤))

= 1
n2 (λmin(P

⊤XX⊤P)− λmax(XX⊤))

(15)
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Reminding that P ∈ Un, one has P⊤ = P−1, so P⊤XX⊤ and XX⊤ are similar, and they have the same eigenvalues. In
particular λmin(P

⊤XX⊤P) = λmin(XX⊤). Combining these results, it follows that

λmin(AX,P ⊗ In) = λmin(AX,P) ≥ 1
n2 (λmin(XX⊤)− λmax(XX⊤)) (16)

We then remind that each rAX,P
is the quadratic form defined by AX,P ⊗ In, so by applying Prop. D.2, it is AX,P ⊗

In-weakly convex, and hence 1
n2 (λmax(XX⊤) − λmin(XX⊤))-weakly convex. Therefore, applying Prop. (D.3), r is

1
n2 (λmax(XX⊤)− λmin(XX⊤))-weakly convex, in Rd. Reminding that γinner = 1

n (λmax(XX⊤)− λmin(XX⊤)), r is
1
nγinner weakly convex. This implies that T 7→ f(T) + 1

nγinner∥T∥22 is convex. By reminding that T stores the T (xi) as
rows, 1

n∥T∥22 = ∥T∥L2(rn). Consequently, GM⟨·,·⟩
rn is γinner in L2(rn).

We then study the convexity of GM2
rn . We follow exactly the same approach. One has:

GM2
rn(T ) =

1
n2

n∑
i,j=1

1
2 |∥xi − xj∥22 − ∥T (xi)− T (xj)∥22|2

− 1
n2 min

P∈Pn

n∑
i,j,i′,j′=1

1
2 |∥xi − xj∥22 − ∥T (xi)− T (xj)∥22|2|2PijPi′j′

Similarly, studying the convexity of GM2
rn(T ) remains to study the convexity of the matrix input function:

g(T) := 1
n2

n∑
i,j=1

1
2 |∥xi − xj∥22 − ∥ti − tj∥22|2

− 1
n2 min

P∈Pn

n∑
i,j,i′,j′=1

1
2 |∥xi − xj∥22 − ∥ti − tj∥22|2PijPi′j′

As before, by developing each term, one has:

g(T) = max
P∈Pn

1
n2

n∑
i,j,i′,j′=1

⟨xi,xi′⟩ · ⟨tj , tj′⟩PijPi′j′ +
1
2n

n∑
i,j=1

Pij∥xi∥22∥ti∥22

−

 1
n2

n∑
i,j=1

⟨xi,xj⟩ · ⟨ti, tj⟩+ 1
2n

n∑
i,j=1

∥xi∥22∥ti∥22


The quadratic terms in P can be factorized as before using AX,P. For the new terms w.r.t. the inner product case, we
introduce DX := diag(∥x1∥22, . . . , ∥xn∥22), and remark that we can rewrite:

1
2n

n∑
i,j=1

Pij∥xi∥22∥ti∥22 − 1
2n

n∑
i,j=1

∥xi∥22∥ti∥22 = vec(T )⊤
(

1
2n (P

⊤ − In)⊗DX

)
vec(T )

As we can always symetrize the matrix when considering its associated quadratic form, we have:

1
2n

n∑
i,j=1

Pij∥xi∥22∥ti∥22 − 1
2n

n∑
i,j=1

∥xi∥22∥ti∥22 = vec(T )⊤
(
1
2 (

1
2n (P

⊤ +P)− In)⊗DX

)
vec(T )

As a result, we denote BX,P = 1
n (

1
2 (P

⊤ +P)− In)⊗DX and finally get:

g(T) = max
P∈Pn

vec(T )⊤ (AX,P ⊗ In +BX,P)vec(T )
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As we did for f , studying the weak convexity of f remains to lower bound the minimal eigenvalue of AX,P ⊗ In +BX,P.
First, one remark that:

λmin(AX,P ⊗ In +BX,P) ≥ λmin(AX,P ⊗ In) + λmin(BX,P)

As we we have already lower bounded λmin(AX,P ⊗ In) ≥ 1
n2 (λmin(XX⊤) − λmax(XX⊤)), we focus on the RHS.

Similarly, one has:

λmin(BX,P) = λmin

(
1
2n (

1
2 (P

⊤ +P)− In)⊗DX

)
≥ λmin

(
1
4n (P

⊤ +P)⊗DX

)
+ λmin

(
− 1

2nIn ⊗DX

)
≥ λmin

(
1
4n (P

⊤ +P)⊗DX

)
− λmax

(
1
2nIn ⊗DX

) (17)

For both terms, we apply again (Petersen and Pedersen, 2008, Eq. (519)). For the LHS, one has:

eig
(

1
4n (P

⊤ +P)⊗DX

)
= {λi(

1
4n (P

⊤ +P))λj(DX)}1≤i,j≤n (18)

We remark that 1
2 (P

⊤+P) is a symetric bi-stochastic matrix, so λmin(
1
2 (P

⊤+P)) ≥ −1. Therefore, λmin(
1
4n (P

⊤+P)) ≥
− 1

2n . As a result, since the eigenvalues of DX are the ∥xi∥22, this yields:

λmin

(
1
4n (P

⊤ +P)⊗DX

)
≥ − 1

2n max
i=1,...,n

∥xi∥22

Similarly, we have:
−λmax

(
1
2nIn ⊗DX

)
≥ − 1

2n max
i=1,...,n

∥xi∥22

from which we deduce that:
λmin(BX,P) ≥ − 1

n max
i=1,...,n

∥xi∥22

We can then lower bound:

λmin(AX,P ⊗ In +BX,P) ≥ 1
n2 (λmin(XX⊤)− λmax(XX⊤))− 1

n max
i=1,...,n

∥xi∥22

= − 1
nγ2,n

(19)

which yields the 1
nγ2,n-weak convexity of g, and finally the γ2,n-weak convexity of GM2

rn .

Asymptotic. For any T , we note that, almost surely, ∥T∥2L2(rn)
→ ∥T∥2L2(r)

. As a result, since convexity is preserved under
pointwise convergence and by virtue of Prop. (C.2), we study the (almost sure) convergence of γinner,n and γ2,n.

We start by γinner,n. We first remark that λmax(
1
nXX⊤) = λmax(

1
nX

⊤X). Moreover, as A ∈ S+
d (R) 7→ λmax(A)

is continuous and 1
nX

⊤X → Ex∼r[xx
⊤] almost surely, one has λmax(

1
nXX⊤) → λmax(Ex∼r[xx

⊤]) almost surely.
Moreover, for any n > d, λmin(

1
nXX⊤) = 0. As a result, γinner,n → λmax(Ex∼r[xx

⊤]) almost surely, which provides the
desired asymptotic result.

We continue with γ2,n. We first remark that maxi=1,...,n ∥xi∥22 ≤ supx∈Spt(r) ∥x∥22. As a result, by defining γ̃2,n =

γinner,n + maxx∈Spt(r) ∥x∥22, GM2
rn is also γ̃2,n-weakly convex. Moreover, maxx∈Spt(r) ∥x∥22 does not depends on n,

γ̃2,n → λmax(Ex∼r[xx
⊤]) + maxx∈Spt(r) ∥x∥22 almost surely, which also provides the desired asymptotic result.

E. Additional Empirical Results

F. Experimental Details
All our experiments build on python 3 and the jax-framework (Babuschkin et al., 2020), alongside ott-jax for
optimal transport utilities.
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Table 4: Disentanglement of regularizing the Encoder and the Encoder and Decoder as measured by DCI-D on two different
datasets. We highlight best, second best, and third best results for each method and dataset.

DCI-D β-VAE β-TCVAE β-VAE + HFS β-TCVAE + HFS

Shapes3D (Kim and Mnih, 2018)

Base 67.7 ±7.8 75.6 ±8.7 88.1 ±7.4 89.5 ±7.9
+ Enc-(DST) 69.2 ±9.1 77.2 ±7.5 87.7 ±7.7 90.5 ±5.9
+ Enc-(GMG) 70.9 ±9.5 79.6 ±6.6 92.5 ±5.9 93.5 ±6.9
+ Dec-(DST) 76.8 ±4.1 81.3 ±4.7 87.5 ±3.3 91.9 ±9.4
+ Dec-(GMG) 82.1 ±4.5 83.7 ±8.8 95.7 ±5.8 96.9 ±4.9
+ Enc-Dec-(GMG) 72.8 ±7.7 79.3 ±13.9 93.3 ±5.0 91.8 ±7.3

DSprites (Higgins et al., 2017)

Base 27.6 ±13.4 36.0 ±5.3 38.7 ±15.7 48.1 ±10.8
+ Enc-(DST) 32.8 ±15.0 36.5 ±5.9 33.9 ±15.9 48.9 ±11.1
+ Enc-(GMG) 27.5 ±14.3 37.4 ±5.8 31.0 ±14.3 45.9 ±10.9
+ Dec-(DST) 28.6 ±19.3 32.4 ±8.5 39.3 ±18.1 49.0 ±11.2
+ Dec-(GMG) 39.5 ±15.2 42.2 ±3.6 46.7 ±2.0 50.1 ±8.5
+ Enc-Dec-(GMG) 33.1 ±14.9 40.2 ±7.0 28.7 ±14.6 46.0 ±11.3

To effectively conduct comprehensive and representative research on disentangled representation learning, we convert the
public PyTorch framework proposed in (Roth et al., 2023) to an equivalent jax variant. We verify our implementation
through replications of baseline and HFS results in Roth et al. (2023), mainting relative performance orderings and close
absolute disentanglement scores (as measured using DCI-D, whose implementation directly follows from (Locatello et al.,
2019b) and leverages gradient boosted tree implementations from scikit-learn).

For exact and fair comparison, we utilize standard hyperparamater choices from Roth et al. (2023) (which lever-
ages hyerparameters directly from (Locatello et al., 2019b), (Locatello et al., 2020) and https://github.com/
google-research/disentanglement_lib). Consequently, the base VAE architecture utilized across all experi-
ment is the same as the one utilized in (Roth et al., 2023) and (Locatello et al., 2020): With image input sizes of 64×64×Nc

(with Nc the number of input image channels, usually 3). The latent dimensionality, if not otherwise specified, is set to 10.
The exact VAE model architecture is as follows:

• Encoder: [conv(32, 4× 4, stride 2) + ReLU] × 2, [conv(64, 4× 4, stride 2) + ReLU] × 2, MLP(256), MLP(2 × 10)

• Decoder: MLP(256), [upconv(64, 4×4, stride 2) + ReLU] × 2, [upconv(32, 4×4, stride 2) + ReLU], [upconv(nc, 4×4,
stride 2) + ReLU]

Similar, we retain all training hyperparameters from (Roth et al., 2023) and (Locatello et al., 2020): Using an Adam
optimizer ((Kingma and Ba, 2014), β1 = 0.9, β2 = 0.999, ϵ = 10−8) and a learning rate of 10−4. Similarly, we utilize a
batch-size of 64, for which we also ablate all baseline methods. The total number of training steps is set to 300000.

The exact hyperparameter grid searches used are highlighted in Tab. 5. All runs run on a RTX 2080TI GPU.
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Table 5: Hyperparameter grid searches for different baseline and proposed methods.

Method Parameter Values

β-VAE β [2, 4, 6, 8, 10, 16]
β-TCVAE β [2, 4, 6, 8, 10, 16]

+ HFS γ [1, 10]
+ DST λ [0.1, 1, 5, 10, 20]
+ GMG λ [0.1, 1, 5, 10, 20]
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