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ABSTRACT

Domain generalization is an important problem which has gain much attention
recently. While most existing studies focus on learning domain-invariant fea-
ture representations, some researchers try ensemble learning of multi experts and
demonstrate promising performance. However, in existing multi-expert learning
frameworks, the source domain knowledge has not yet been much explored, result-
ing in sub-optimal performance. In this paper, we propose to adapt Transformers
for the purpose of dynamically decoding source domain knowledge for domain
generalization. Specifically, we build one domain-specific local expert per source
domain, and one domain-agnostic feature branch as query. Then, all local-domain
features will be encoded by Transformer encoders, as source domain knowledge
in memory. While in the Transformer decoders, the domain-agnostic query will
interact with the memory in the cross-attention module, where similar domains
with the input will contribute more in the attention output. This way, the source
domain knowledge will be dynamically decoded for the inference of the current in-
put from unseen domain. Therefore, this mechanism makes the proposed method
well generalizable to unseen domains. The proposed method is evaluated on three
benchmarks in the domain generalization field. The comparison with the state-of-
the-art methods shows that the proposed method achieves the best performance,
outperforming the others with a clear gap.

1 INTRODUCTION

Due to increasing applications of artificial intelligent techniques to real life, the domain shift prob-
lem raises a big challenge to learned models in generalizing to unseen domains. In order to deal
with the domain shift problem, Domain Generalization (DG) has become a popular research topic
in recent years (Li et al., 2017). A lot of methods have been proposed and great improvements have
been achieved in domain generalization.

Among them, some approaches try to maintain both domain-specific parameters and domain-
agnostic parameters, or create domain experts, and then combine them during the inference of a
new image. For example, D-SAM is proposed in (D’Innocente & Caputo, 2018) to build a domain-
specific aggregation module for each source domain and try to combine both generic and specific
information for domain generalization. Mancini et al. (2018) also proposed to learn domain-specific
networks for each source domain, and further learn a classifier fusion module in a single end-to-end
trainable architecture. Recently, in the application of person re-identification of DG, (Dai et al.,
2021) proposed to build a domain expert for each source domain and integrate their features into an
adaptive voting process.

However, most of the existing methods with domain-specific parameters lack of knowledge transfer
or interactions between source domains. The domain relationships are usually not explored prop-
erly when generating features. Considering this, we propose a hybrid deep architecture of domain-
specific local experts and Transformer-based query-memory decoding for domain generalization, as
shown in Fig. 1. With domain-specific local experts and a domain-agnostic query feature branch,
a cross-domain Transformer is designed to dynamically decode source domain knowledge for the
inference of a new image from unseen domain. Intuitively, to infer a new image, though it is from
an unseen domain, this domain may still share some similarity to existing source domains. For ex-
ample, the photo domain is more similar to the art-painting domain than others in the PACS dataset
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Figure 1: Concise illustration of the proposed approach.

(Li et al., 2017). Therefore, if the domain relationships are properly discovered, the closely related
domain experts will be able to infer the new image well. Accordingly, in our design we apply
Transformer to model domain relationships and decode useful information from the encoded source
domain knowledge for the inference of unknown sample.

Specifically, the proposed method contains a shared Convolutional Neural Network (CNN) back-
bone, domain-specific local experts, and a global expert based on a cross-domain Transformer. A
shared CNN backbone is utilized for feature extraction to ensure computational efficiency, and also
enable learning of general features at low level. Then, we build a domain-specific expert for each
source domain, as well as a domain-agnostic query feature branch. Then a cross-domain Trans-
former is designed for deep feature learning and domain relationships exploring. The source domain
features are further encoded as memory, with self-attention to interact among different domains.
Then the domain-agnostic feature branch is used as query, and a Transformer decoder is applied
with both memory and query as inputs to explore the discriminant knowledge with source domains
and dynamically decode the source domain knowledge for the inference of the input image with
unseen domain. The final feature output by the cross-domain Transformer is used for classification.

The contribution of this work can be summarized as follows.

• An architecture is designed to encode source domain knowledge, by designing domain-
specific local experts, and applying Transformer encoders, where the self-attention mecha-
nism enables finding domain similarity and sharing generic and specific domain knowledge.

• A Transformer decoding scheme is designed, by interacting domain-agnostic query with
the encoded memory in the cross-attention module, where similar domains with the input
will contribute more in the attention output. This way, the source domain knowledge will
be dynamically decoded for the inference of new images from unseen domains.

• This mechanism makes the proposed method well generalizable to unseen domains. Ex-
perimental results prove that the proposed method clearly outperforms the state-of-the-art
methods.

2 RELATED WORK

The domain generalization is a generic problem that makes a great challenge when applying learned
models to work on unseen scenarios. Though it is a challenging problem, many efforts have been
made to deal with the domain shift problem thanks to the fast development of deep neural networks.
In the very recent years, many methods have been proposed and contributed great improvements to
DG (Wang et al., 2021).

Existing methods can be divided into different categories based on their approaches. One kind of
methods tries to improve the domain generalization ability by generating more and diverse data
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samples for training, which can be categorized into data augmentation. It is proved that data aug-
mentation strategies really help to increase the domain diversity of the source domains and hence
improve the domain generalization ability. One of the famous methods is the JiGen method pro-
posed by Carlucci et al. (2019), which used Jigsaw puzzle sample images along with the Jigsaw
classifier to capture more informative features. Besides, Shankar et al. (2018) perturbed the input
data with Bayesian Net and utilized adversarial strategy, Volpi et al. (2018) synthesized the ”hard”
data in training, Mancini et al. (2020) mixed up multiple source domains and categories to produce
unseen categories in unseen domain, and Zhou et al. (2021) mixed styles of training instances to
create new style samples.

Recently, the success of Learning to Learn or Meta Learning attracted many researchers’ attention,
especially for researchers in the DG field. Inspired by Meta Learning, some studies utilized the
core idea of Meta Learning optimization strategy to improve the domain generalization ability. For
example, Li et al. (2018) proposed the Meta-Learning for Domain Generalizaion (MLDG), Balaji
et al. (2018) used a regularization function to improve domain generalization ability with Meta
learning, named as MetaReg, Dou et al. (2019) introduced model-agnostic learning of semantic
features (MASF), and so on (Santoro et al., 2016)(Finn et al., 2017). The main idea of methods in this
category is to divide the given source domains to the meta-train and meta-test subsets and simulate
the domain shift problem during training, which can be summarized to utilizing the optimization
strategies.

Beyond the above approaches, another kind of methods can be concluded to the category of fo-
cusing on the feature levels across multiple source domains. For example, Muandet et al. (2013)
first tried to learn an invariant transformation for DG by minimizing the differences in the marginal
distributions across source domains and a kernel-based method was proposed. Then, Ghifary et al.
(2015) introduced Multi-Task Auto-Encoder (MTAE) to learn unbiased object features with the data
reconstruction. In order to minimize the distance between images from the same category but dif-
ferent domains, Motiian et al. (2017) imported the maximum mean discrepancy. Recently, inspired
by the adversarial training strategy, Ganin et al. (2016), Li et al. (2018), Zhao et al. (2020) and
Matsuura & Harada (2020) introduced this strategy in learning domain-invariant features. Some
methods employ model based approaches by combining domain-agnostic and domain-specific pa-
rameters. These methods also belong to the feature level category. For example, Khosla et al. (2012)
tried to represent parameters of each domain with domain-shared parameters and domain-specific
parameters with shallow model. With a similar objective, Li et al. (2017) developed a low-rank
parameterized deep model for end-to-end domain generalization learning.

Besides, Mancini et al. (2018) proposed to learn different domain-specific networks and classifiers
for source domains and fuse the classification predictions with learnable weights for the target sam-
ple. Furthermore, the D-SAM method by D’Innocente & Caputo (2018) also proposed to set separate
aggregation modules for each source domain with a shared backbone and combine probabilities of
the outputs of domain-specific aggregation modules. Similar to D-SAM, Seo et al. (2020) proposed
to maintain normalization parameters for each source domain and the final prediction is linearly
combined. Zhou et al. (2020) also suggested the domain adaptive ensemble learning method with
multiple domain-specific classifiers. However, these methods do not have a universal branch for
generalization. The test samples from unknown domains just go pass the known domain specific
networks for a fusion. Besides, they cannot model the relationships among source domains prop-
erly. Considering this, we would like to keep a domain-agnostic feature branch for the test image
from unknown domain. Furthermore, in the proposed architecture the domain-agnostic feature acts
as query and interacts with the local domain experts to discover useful knowledge across the source
domains by a cross-domain Transformer, which helps a lot for generalizing to unseen domains.

3 THE PROPOSED METHOD

The overall architecture of the proposed method is shown in Figure 2. From the figure, it can be
seen that multiple source domains share a CNN backbone at the beginning, and the feature output
is then taken to different domain-specific local experts for specialist feature learning. Each domain
expert is connected to a separate domain classifier, where the loss belonging to this domain only is
computed. Beyond domain experts, it also keeps a domain-agnostic feature branch as query. Then,
the learned domain expert features and the query feature are fed into a cross-domain Transformer for
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Figure 2: The architecture of the proposed method D2SDK.

further learning. To better present the proposed method, we introduce Transformer in the following
subsection.

3.1 MULTI-HEAD ATTENTION

Transformer is a global attention method proposed by Vaswani et al. (2017) to learn dependencies
for sentences with an encoder and decoder architecture. The core module in Transformer is the
Multi-Head Attention (MHA). Specifically, The scaled dot-product attention is the basic attention
function used in MHA, and the formulation is

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (1)

where Q ∈ RT×dk is the query feature matrix, K ∈ RM×dk is the key feature matrix, and V ∈
RM×dv is the value feature matrix. dk is the feature dimension of the keys and queries, and dv is
the feature dimension of the values. Besides, M is the sequence length of the keys and values, and
T is the sequence length of queries. Then, the multi-head attention concatenates h results of scaled
dot-product attention for the given data, denoted as:

Multi-Head(Q,K, V ) = Concat(H1, H2, ...,Hh)W
O, (2)

where Hi stands for the attention result for the i-th head, and WO ∈ Rhdv×d is a projection matrix
that is finally multiplied to the concatenation of h heads attention results. For Hi, the definition is

Hi = Attention(QWQ
i ,KW

K
i , V WV

i ), (3)

whereWQ
i ∈ Rd×dk , WK

i ∈ Rd×dk andWV
i ∈ Rd×dv are learned projection matrices for headHi.

3.2 CROSS-DOMAIN TRANSFORMER

The Transformer is built with two parts. One is the Encoder part which is stacked with the Trans-
former encoder modular, and the other one is Decoder part which is also stacked with the Trans-
former decoder modular. The Transformer encoder contains two main blocks, which are MHA
block and Multi Layer Perceptron (MLP) block, as shown in Fig. 2. It should be noted that the
encoder uses multi-head self attention (MHSA) in the MHA block, which means Q = K = V . The
MLP is a position-wise fully connected feed-forward network that contains two linear layers with a
RELU non-linearity between them. In each block, both layer normalization and residual connection
are utilized to stablize the learning of the deep architecture. As for Transformer decoder, it contains
two MHA blocks followed by one MLP block, as also shown in Fig. 2. The first MHA block is also
a self-attention block as in the encoder, while the following MHA block is a cross-attention block,
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where keys and values are from the encoded memory different from the input queries. The layer
normalization and residual connection are also utilized at the end of each block. Both Transformer
Encoder and Decoder could be self-stacked for N times to build deep encoders and deep decoders
for high-level feature learning.

The success of Transformer in natural language processing has attracted many researchers in the
computer vision field. For example, Dosovitskiy et al. (2021) proposed Visual Transformer (ViT)
by importing Transformer encoder to raw image patches for classification, and Srinivas et al. (2021)
proposed Bottleneck Transformer with MHSA in deep CNN. Both of them only utilized self atten-
tion. In the work of Carion et al. (2020), they proposed Detection Transformer (DETR) for object
detection using both Transformer encoder and decoder where the query input in decoder is learn-
able parameters. In contrast, we use both self attention and cross attention in the proposed method,
which takes general CNN features as the query input of Transformer decoder to find its close and
discriminant features from the learned memory according to the existing source domains.

Specifically, the domain-specific features from domain experts are concatenated and fed into the
Transformer encoders so that the Transformer is able to learn further dependency relationships and
build the knowledge of existing source domains. The domain-agnostic feature branch is directly
imported to the Transformer decoders as the query input. It will go through the self-attention block
firstly and then is fed into the cross-attention block as query features. At the same time, the outputs
of Transformer encoder are taken as memory, containing keys and values, to the cross-attention
block in the Transformer decoder. The relationships among different domains will be explored
in the Transformer decoder, and the newly learned feature is an ensemble feature across the seen
domains according to the dynamically learned domain relationships.

3.3 THE PROPOSED D2SDK

As shown in Fig. 2, the backbone is shared to all domain experts and the query feature branch. This
enables common CNN feature learning across different domains at low layers and avoids excessive
computational and memory consuming in building domain-specific backbone network. In order to
learn discriminant features for each domain, we further append a small CNN sub-network at the be-
ginning of each domain expert, as well as the query feature branch. Then, the learned domain expert
features are added with positional embeddings before they are fed into the Transformer encoders
for source domain knowledge learning. The query feature branch is also added with positional em-
beddings, and then is taken as query input to the Transformer decoders. The query feature interacts
with the domain expert features in the multi-head cross-attention block of the Transformer decoders,
where the source domain knowledge in the memory is decoded dynamically with respect to the query
input. The aggregated feature is finally go through a fully connected layer for classification.

Beyond the final classifier, we also add separate domain classifiers for each domain expert. This
includes an independent FC layer and a classification loss function for each domain. Therefore, the
final loss function is built with both domain expert loss and final classification loss as follows.

L(x, y;θ) = (1− λ)LG(x, y;θG ∪ θB) + λ

k∑
i=1

diLD
i (x, y;θDi ∪ θB), (4)

where θ stands for the whole network parameters, and θG stands for the query branch, Transformer,
and the final classifier parameters, θDi stands for the i-th domain expert network parameters, and θB

is the shared CNN backbone parameters. As for the loss functions, LG is the final classification loss
function, and LD

i is the local domain expert loss function for domain i. They are both cross-entropy
loss for general classification. Besides, di = 1 if the sample x belongs to the domain i, otherwise
di = 0. k is the number of source domains, and λ is the weight of the local domain experts.

4 EXPERIMENTS

To evaluate the performance of the proposed method, we test it on three popularly used datasets,
compared to existing state-of-the-art methods.
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Table 1: Experimental results on PACS with ResNet-18 as backbone.

Method Photo Art-paiting Cartoon Sketch Average
DSAM (D’Innocente & Caputo, 2018) 95.30 77.33 75.89 69.27 80.72
MLDG (Li et al., 2018) 94.00 78.70 73.30 65.10 80.70
Metareg (Balaji et al., 2018) 95.50 83.70 77.20 70.30 81.70
JiGen (Carlucci et al., 2019) 96.03 79.42 75.25 71.35 80.51
MASF (Dou et al., 2019) 94.99 80.29 71.17 71.69 81.03
AGG (Li et al., 2019) 94.4 77.6 73.9 70.3 79.1
Epifcr(Li et al., 2019) 93.9 82.1 77.0 73.0 81.5
Cumix (Mancini et al., 2020) 95.10 82.30 76.50 72.60 81.60
MMLD (Matsuura & Harada, 2020) 96.09 81.28 77.16 72.29 81.83
ER (Zhao et al., 2020) 96.65 80.70 76.40 71.77 81.38
DADG (Chen et al., 2020) 94.86 79.89 76.25 70.51 80.38
MixStyle (Zhou et al., 2021) 96.1 84.1 78.8 75.9 83.7
D2SDK 95.85 83.60 81.24 76.47 84.29

4.1 IMPLEMENTATION DETAILS

In the experiments, the ResNet proposed by He et al. (2016) is utilized, until layer3, as the shared
CNN backbone. The instance normalization is used in the CNN backbone. Then, the layer4 of
ResNet is deeply copied several times to be domain-specific expert and domain-agnostic query fea-
ture branch. Afterwards, we add 1-D learnable positional embeddings to the CNN features before
they are fed into the Transformers. In the cross-domain Transformer, two layers of the Transformer
encoders and two layers of the Transformer decoders are stacked. For the combined loss function
we set λ = 0.1 by default for the weight of domain expert loss on all the evaluated datasets. In
the optimization, an SGD solver with a learning rate of 0.001 and a batch size of 32 is used. The
training takes 80 epochs. The learning rate is decayed by a factor of 0.1 after reaching 80% of the
training epochs, according to Carlucci et al. (2019). During training, we follow the data augmenta-
tion strategy as in Carlucci et al. (2019) on all evaluated datasets. Besides, all of the results reported
are averaged among ten rounds of run to avoid random bias.

4.2 DATASETS

In the experiment, the proposed architecture is evaluated on PACS, Office-Home and VLCS datasets,
which are the most popular datasets in domain generalization. The PACS dataset is proposed by Li
et al. (2017) for DG. It contains 9,991 images coming from seven categories. It is built of four
domains, namely Photo (P), Art Painting (A), Cartoon (C) and Sketches (S). Till now, it is the
most popular DG dataset, which can be downloaded freely for research purpose1. The experimental
protocol on this benchmark (proposed in Li et al. (2017)) is followed to ensure fair comparison.

Besides of PACS, Office-Home (Venkateswara et al., 2017) is another widely used DG dataset,
which contains 65 categories coming from daily used objects. It also has four domains, which are
Art, Clipart, Product and Real World. More information can be found in the website2 and the data
is also free for research usage. In the experiment, the protocol of leaving one domain out for test as
introduced in PACS is followed.

At last, the proposed method is also evaluated on VLCS, which is also a classic domain generaliza-
tion benchmark (Torralba & Efros, 2011). It contains 10,729 images. The dataset contains only 5
categories that are shared by PASCAL VOC 2007 (V), Labelme (L), CALTECH (C) and SUN (S)
databases. We take the experimental protocol which is proposed by Ghifary et al. (2015) for a fair
comparison.

1https://domaingeneralization.github.io/#data
2https://www.hemanthdv.org/officeHomeDataset.html
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Table 2: Experimental results on Office-Home with ResNet-18 as backbone.

Methods Art Clipart Product RealWorld Average
DSAM (D’Innocente & Caputo, 2018) 58.03 44.37 69.22 71.45 60.77
MLDG (Li et al., 2018) 52.88 45.72 69.90 72.68 60.30
JiGen (Carlucci et al., 2019) 53.04 47.51 71.47 72.79 61.20
DADG (Chen et al., 2020) 55.57 48.71 70.90 73.70 62.22
D2SDK 60.34 52.23 75.05 77.64 66.32

Table 3: Experimental results on VLCS.

Method Caltech Labelme Pascal Sun Average
MMD-AEE (Li et al., 2018) 94.40 62.60 67.70 64.40 72.30
D-SAM (D’Innocente & Caputo, 2018) 91.75 56.95 58.59 60.84 67.03
MLDG (Li et al., 2018) 94.4 61.3 67.7 65.9 72.3
JiGen (Carlucci et al., 2019) 96.93 60.90 70.62 64.30 73.19
AGG (Li et al., 2019) 93.1 60.6 65.4 65.8 71.2
Epi-FCR (Li et al., 2019) 94.1 64.3 67.1 65.9 72.9
MASF (Dou et al., 2019) 94.78 64.90 69.14 67.64 74.11
DADG (Chen et al., 2020) 96.80 66.81 70.77 63.64 74.46
D2SDK 97.41 62.63 75.48 69.04 76.14

4.3 STATE-OF-THE-ART METHODS

To evaluate the proposed method, the following state-of-the-art methods are compared in the ex-
periments. MMD-AAE Li et al. (2018) imports the adversarial auto-encoders to learn an invariant
feature representation by aligning the data distributions with MMD. D-SAM D’Innocente & Caputo
(2018) wants to merge the generic and specific information with the domain-specific aggregation
modules to improve the model generalization ability. Recently, based on meta-learning, MLDG Li
et al. (2018) is proposed with a model-agnostic training procedure that trains any given model to
be more robust to domain shift. After MLDG, the owner studied the episodic training strategy and
proposed Epi-fcr and AGG methods Li et al. (2019). Similar to MLDG, MetaReg Balaji et al. (2018)
is proposed, which uses a regularizer to gain a general representation across domains with episodic
training procedure. Furthermore, MASF Dou et al. (2019) uses model-agnostic episodic learning
procedure with a triplet loss, and DADG Chen et al. (2020) utilizes both discriminant adversarial
learning and the train/test domain-shift meta-learning techniques to gain generalized features. Be-
yond episodic strategy, Carlucci et al. (2019) suggested to improve the deep learning generalization
ability by solving Jiggle puzzles, denoted as JiGen. The proposed method is also compared to the
Cumix in Mancini et al. (2020), which wants to deal with the zero-shot learning problem and do-
main generalization problem with the mixed up samples generated from multiple source domains
and categories during training. Besides, we also include MMLD in Matsuura & Harada (2020) and
ER in Zhao et al. (2020), which both belong to the domain-invariant feature learning approach.

4.4 RESULTS

PACS The compared results on the PACS data set are shown in Table 1. From the table, it is clear
that the proposed method achieves the best performance. It is impressive that the proposed method
outperforms the compared methods with a clear gap on target domains of Cartoon and Sketch.
Especially, on the cartoon test domain, the proposed method outperforms the second best one by
more than 2%.

Office-Home The experimental results are shown in Table 2 with the comparison to state-of-the-art
methods. From the table, it can be seen that the proposed method also achieves the best performance,
which outperforms the second best method DADG by more than 4% on average. On every sub task
with different target domains, the proposed method also achieves the best performance with a clear
improvement over the best existing results.
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Table 4: Experimental results with comparison to baselines. D2SDK18 is with ResNet-18 while
D2SDK50 is with ResNet-50.

PACS

Methods Photo Art-paiting Cartoon Sketch Average
ResNet-18 95.19 80.41 75.94 73.28 81.20
D2SDK18 95.85 83.60 81.24 76.47 84.29
ResNet-50 97.09 87.29 81.00 74.11 84.87
D2SDK50 97.47 88.67 84.96 78.78 87.47

Office-Home

Methods Art Clipart Product RealWorld Average
ResNet-18 54.06 47.56 72.17 74.22 62.00
D2SDK18 60.34 52.23 75.05 77.64 66.32
ResNet-50 62.09 53.29 76.67 78.67 67.68
D2SDK50 68.92 57.62 80.25 82.27 72.26

VLCS

Methods Caltech Labelme Pascal Sun Average
ResNet-18 96.55 62.50 72.19 66.52 74.44
D2SDK18 97.41 62.63 75.48 69.04 76.14
ResNet-50 98.34 63.13 74.50 69.93 76.47
D2SDK50 97.47 63.03 78.12 70.53 77.29

VLCS The evaluated results on this dataset are shown in Table 3 along with the compared methods.
It should be noted that we used ResNet-18 as the backbone for the proposed method for conve-
nience, while the compared methods used the AlexNet. Though the comparison is not very fair, we
would like to share a new set of results with a more widely used backbone on the classic dataset.
Considering this, it is no doubt that the proposed method achieves the best performance.

4.5 DISCUSSIONS

The experimental results demonstrate that the proposed method has a good generalization ability for
domain generalization to unseen domains, thanks to the mechanism in cross-domain Transformer
where the source domain knowledge is encoded and dynamically decoded for the inference of new
images from unseen domains.

Note that, all the results reported for the proposed method are based on the model learned at the last
epoch in training. They are close to the results with the best model validated on the validation set.
This means that we do not use early stopping or select the best results among the epochs with the
test set. Actually, we found that the performance with converged and stable model on training set
and validation set are not as good as the best-epoch performance on the test set monitored during
training. On the PACS and VLCS datasets, the gaps are larger than on the Office-Home dataset.
More results with the best epochs can be found in the Appendix.

More experimental results can be found in Table 4, where the proposed D2SDK is compared to the
baselines with ResNet-18 and ResNet-50 on the PACS, Office-Home and VLCS datasets. From the
comparison we can see that, the proposed method has a clear improvement to the baselines on all
evaluated datasets. Especially, on the Office-Home dataset, D2SDK outperforms the baselines by
more than 4% on average.

Besides, we also evaluated the influence of parameter λ for the weight of domain expert loss. This
evaluation is done on the PACS dataset with ResNet-18 as the backbone. The results are displayed
in Table 5. From the table, it can be seen that with descending values of parameter λ, the proposed
D2SDK has an increasing accuracy with the target domain of Photo. However, when λ is smaller
than 0.2, the performance is very close to each other. The same finding also holds with the Art-
painting as the target domain. As for the Cartoon, it seems like the λ has very little influence on
the performance. However, with the Sketch domain as target, the performance has a slow dropping
down corresponding to the descending of λ. As a result, the overall average results are close to
each other, except that when λ is too big, indicating that this parameter is not sensitive. Therefore,
considering the random influence, we simply set λ to 0.1 for all tasks in the experiments.
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Table 5: Experimental results with different λ of the proposed method.

λ Photo Art-paiting Cartoon Sketch Average
0.7 93.35 81.30 81.40 79.98 84.00
0.5 94.48 82.80 81.65 78.51 84.36
0.3 95.32 83.71 81.43 77.34 84.45
0.2 95.65 84.12 80.86 78.36 84.74
0.1 95.85 83.60 81.24 76.47 84.29
0.05 95.70 83.64 80.87 76.91 84.28
0.02 95.64 83.75 81.43 77.35 84.54
0.01 95.71 84.05 81.21 76.40 84.34

5 CONCLUSION

In this paper, we show that, given domain-specific local experts and query features of the current
input, Transformers are effective in discovering domain relationships and in turn help generalizing
the inference of images from unseen domains. This is possible thanks to the self-attention mech-
anism in Transformer encoders and cross-attention mechanism in Transformer decoders. In our
design, unknown samples are able to exploit the encoded source domain knowledge for the infer-
ence of their labels. With this mechanism, the proposed method is shown to be very promising in
addressing the domain generalization challenge. In the future, it is interesting to explore whether
the proposed method would be even powerful in addressing much more number of domains, where
domain relationships could be more diverse and fine-grained.
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A APPENDIX

In DG experimental setting, all the source domain images are divided into a training set and a vali-
dation set, and the learned model are tested on the unseen target domain as test set. No information
from the target domain is provided in the training. In practice, we found that the best model selected
on the validation set and the finally learned model at the last epoch have a similar performance on
the target domain. However, usually these results are not as good as the best performance among all
epochs monitored on the test set. We call this test-set best-epoch performance. As far as we know,
some existing methods report this kind of best-epoch results monitored on the test set, which is not
quite fair.

In the main text of this work, all the results reported for the proposed method are based on the
learned model at the last epoch. In the appendix, we would like to additionally provide the test-set
best-epoch performance as well, in case there is a need for such kind of comparison. However, we
strongly discourage doing so.

The results are displayed in Table 6. From the comparison of Table 6 to Table 4 in the main paper,
it can be seen that the test-set best-epoch results on PACS and VLCS are clearly better than our last-
epoch results, with about 2%-3% performance gap. As for the Office-Home dataset, the performance
of the finally learned model is close to the best-epoch results in Table 6. Furthermore, considering
that PACS contains only seven categories and VLCS contains only five categories, we think PACS
and VLCS have more chances to gain a better result on local minimums. In contrast, the Office-
Home has 65 categories, which contains more objects compared to PACS and VLCS. Thus, Office-
Home is a more challenging dataset, and thus it may be more reliable for the evaluation of DG
methods.
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Table 6: The test-set best-epoch performance on three datasets.

PACS
Methods Photo Art-paiting Cartoon Sketch Average
D2SDK18 96.69 85.99 84.30 79.90 86.72
D2SDK50 98.07 90.64 86.75 81.76 89.30

Office-Home
Methods Art Clipart Product RealWorld Average
D2SDK18 61.01 53.20 75.44 77.81 66.86
D2SDK50 69.53 59.11 80.55 82.56 72.94

VLCS
Methods Caltech Labelme Pascal Sun Average
D2SDK18 98.94 67.52 78.77 72.09 79.33
D2SDK50 99.43 67.65 81.36 74.93 80.84
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