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Abstract

Markov decision processes (MDPs) often suffer from the sensitivity issue under
model ambiguity. In recent years, robust MDPs have emerged as an effective
framework to overcome this challenge. Distributionally robust MDPs extend
the robust MDP framework by incorporating distributional information of the
uncertain model parameters to alleviate the conservative nature of robust MDPs.
This paper proposes a computationally efficient solution framework for solving
distributionally robust MDPs with Wasserstein ambiguity sets. By exploiting the
specific problem structure, the proposed framework decomposes the optimization
problems associated with distributionally robust Bellman updates into smaller
subproblems, which can be solved efficiently. The overall complexity of the
proposed algorithm is quasi-linear in both the numbers of states and actions when
the distance metric of the Wasserstein distance is chosen to be L1, Lo, or L, norm,
and so the computational cost of distributional robustness is substantially reduced.
Our numerical experiments demonstrate that the proposed algorithms outperform
other state-of-the-art solution methods.

1 Introduction

Markov Decision Processes (MDPs) provide a flexible and powerful modeling framework for sequen-
tial decision-making problems under uncertainty (Puterman, 2014; Sutton and Barto, 2018). However,
the standard MDP model assumes that the exact knowledge of the transition kernel is available, which
is not the case for most real-world applications. While these model parameters can be estimated from
data, it is well-known that the optimal policy of MDP is sensitive to estimation errors because of the
dynamic nature of the problem. In particular, small errors in estimating transition kernels could lead
to catastrophic failures in practice (Iyengar, 2005; Nilim and El Ghaoui, 2005; Le Tallec, 2007).

To overcome the aforementioned challenge in model ambiguity, robust MDPs assume that the
transition kernels belong to ambiguity sets (Iyengar, 2005; Nilim and El Ghaoui, 2005; Xu and
Mannor, 2006). Through optimizing the worst-case performance, robust MDPs compute robust
policies to avoid disappointing performance due to the sensitivity issue caused by inaccurate transition
kernels. However, robust MDPs are often too conservative because they always adopt the worst
possible transition kernels without any consideration of their likelihood. To mitigate this undesirable
side effect of robust MDPs, distributionally robust MDPs are proposed to incorporate distributional
information of model ambiguity and maximize the expected reward under the most adversarial
probability distribution (Xu and Mannor, 2010; Yu and Xu, 2015).

In a distributionally robust MDP, we assume that all the plausible distributions of the transition kernel
belong to a prescribed ambiguity set, which could be formalized in different types, such as moment
ambiguity sets (Delage and Ye, 2010) and Wasserstein ambiguity sets (Mohajerin Esfahani and
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Kuhn, 2018). In this paper, we focus on the Wasserstein ambiguity sets, which have been a popular
choice for distributionally robust data-driven optimization in recent years because of their outstanding
empirical performance as well as nice theoretical properties, such as consistency in optimality and
finite-sample bounds (Mohajerin Esfahani and Kuhn, 2018; Gao and Kleywegt, 2022). By using
Wasserstein distance to formulate the ambiguity set, Yang (2017) shows that there exists an optimal
policy that is stationary and Markovian for the corresponding Wasserstein distributionally robust
MDP.

While (distributionally) robust MDPs can be solved by extending standard solution methods in
classical MDPs to their (distributionally) robust counterparts, these solution methods become much
more computationally demanding. For example, each Bellman update for (distributionally) robust
MDPs can be formulated as a convex optimization problem. Without making use of any specific
problem structure, one would need to use generic convex optimization solvers to compute these
Bellman updates, which have to be evaluated numerous times for computing the (distributionally)
robust value function. This computational challenge restricted the application of (distributionally)
robust MDPs to small or medium size of problems. In recent years, many efficient algorithms are
proposed for solving robust MDPs to address this issue (Iyengar, 2005; Nilim and El Ghaoui, 2005;
Ho et al., 2018; Behzadian et al., 2021; Grand-Clément and Kroer, 2021b; Ho et al., 2022).

On the other hand, however, distributionally robust MDPs have received limited attention on their
computational efficiency. To the best of our knowledge, (Grand-Clément and Kroer, 2021a) is the
only pioneer work that proposes a first-order method to efficiently solve Wasserstein distributionally
robust MDPs. However, being restricted by the nature of first-order methods, the proposed algorithm
in (Grand-Clément and Kroer, 2021a) struggles when high accuracy is needed or when the discount
factor is close to one, as it would take unsatisfactorily many numbers of iterations to compute the
distributionally robust value function.

In this paper, we take an alternative approach to develop fast algorithms for solving Wasserstein
distributionally robust MDPs. In particular, we reformulate the optimization problem of the distribu-
tionally robust Bellman update to a structural form, and by exploiting the specific problem structure,
we propose decomposition schemes in which the problem of interest can be decomposed into smaller
subproblems, which can be solved by our customized algorithms in quasi-linear time. As we will
show later, the time complexities of the proposed algorithms are linear in the numbers of actions and
kernels and quasi-linear in the number of states, which are significantly better than the state-of-the-art
solution methods (Xu and Mannor, 2010; Grand-Clément and Kroer, 2021a).

The rest of this paper is organized as follows. Section 2 introduces the related work, and Section
3 describes the setting of Wasserstein distributionally robust MDPs. In Section 4, we illustrate
our decomposition scheme for computing the distributionally robust Bellman updates when the
Wasserstein distance in the ambiguity set is chosen to be L, norm. In Section 5, customized fast
algorithms and their time complexities are particularly provided for the three most well-known cases:
Ly, Ly, and L,. The numerical experiments in Section 6 verify that our methods outperform other
state-of-the-art algorithms.

Notations We use boldface lowercase and uppercase letters to denote vectors and matrices, re-
spectively. We denote by [N] the set of natural numbers from 1 to V; that is, [N] = {1,2,...,N}.
The vector e is denoted as the vector of all ones while the dimension depends on the context. The
vector e; represents the vector of all zeros except the j-th component is one. Probability simplex is
denoted as Ay = { zeRY el = 1l,x > 0}. The smallest component of a vector x is denoted
by min{x}. Given a set X, we call the set of all the Borel probability measures as P(X’). The

1/q
general L, norm for a vector ¢ € RY is denoted by ll, = (va:l |xi|q) for 1 < ¢ < oo, and

the Lo, norm is |||, = max;c[ny |#;]. The Dirac distribution at & € RY is denoted by 6. For
optimization problems with multiple constraints, we indicate the decision variables on the last line of
the constraints.

2 Related Work

Research on Markov decision processes under model ambiguity can be traced back to the seventies
(Satia and Lave Jr, 1973). In recent years, much progress has been made in the development of



robust MDPs. The most fundamental solution scheme to solve robust MDPs is robust value iteration,
which is the robust counterpart of the standard value iteration and is first developed in (Givan et al.,
2000; Iyengar, 2005; Nilim and El Ghaoui, 2005) for robust MDPs with (s, a)-rectangular ambiguity
sets. Wiesemann et al. (2013) introduce the s-rectangular ambiguity sets; the authors reformulate
the robust Bellman updates as convex optimization problems and solve them by using off-the-shelf
solvers that have polynomial-time complexity. Researchers have been investigating the theoretical
properties of robust MDPs, such as the error bound of applying robust MDPs with state aggregation
(Petrik and Subramanian, 2014), the relationship between robustness and regularization (Derman
et al., 2021), and the geometry of value function in robust MDPs (Wang et al., 2022). Other than the
s- and (s, a)-ambiguity sets, different types of ambiguity sets have been also proposed to mitigate the
side effect of conservatism, such as k-rectangularity (Mannor et al., 2016) and r-rectangularity (Goyal
and Grand-Clément, 2023). Different related models are also proposed to incorporate robustness
in different settings, such as robust baseline regret (Ghavamzadeh et al., 2016), imitation learning
(Brown et al., 2020), and soft-robust model (Lobo et al., 2020). In terms of algorithmic development,
Ho et al. (2018) propose fast algorithms for solving s-rectangular robust MDPs with weighted L,
norm ambiguity sets and propose to compute robust Bellman updates using the combination of
bisection method and homotopy method, and Behzadian et al. (2021) further extend the solution
scheme for the unweighted L., norm cases (Delgado et al., 2016). A first order method is introduced
in (Grand-Clément and Kroer, 2021b) to approximate robust Bellman updates for robust MDPs
with ellipsoidal and Kullback-Leibler (KL) s-rectangular ambiguity sets. Recently, Ho et al. (2022)
propose the ¢-divergence ambiguity set, which generalizes multiple popular choices of ambiguity
sets, and they propose an unified solution scheme to compute robust Bellman updates efficiently.
On the other hand, robust policy iteration alternates between robust policy evaluation and policy
improvement (Iyengar, 2005) and it has better empirical performance compared to robust value
iteration. Kaufman and Schaefer (2013) propose a modified policy iteration for (s, a)-rectangular
robust MDPs. Ho et al. (2021) introduce partial policy iteration for s- and (s, a)-rectangular robust
MDPs with L; norm ambiguity sets. Kumar et al. (2022) study the connection between robust MDPs
and regularized MDPs, and propose robust policy iteration for s-rectangular robust MDPs. Other
than robust policy iteration, Li et al. (2022) propose a policy gradient method for solving rectangular
robust MDPs. In order to solve large-scale problems, Tamar et al. (2014) apply value function
approximation and propose robust approximate dynamic programming for robust MDPs.

While this paper is focused on the model-based setting, recently there is an active line of research
focusing on robust reinforcement learning (RL) algorithms (Roy et al., 2017; Badrinath and Kalathil,
2021; Wang and Zou, 2021, 2022; Panaganti and Kalathil, 2022). Liu et al. (2022) propose a robust
Q-learning algorithm for (s, a)-rectangular robust MDPs. A function approximation approach is
proposed in (Panaganti et al., 2022) for (s, a)-rectangular robust MDPs with offline datasets. The
combination of robust RL and deep RL is also studied in (Pinto et al., 2017; Mankowitz et al., 2019;
Zhang et al., 2020) although they do not provide theoretical guarantees of the learned policies. We
would like to emphasize that both model-based and model-free methods have their own merits: while
model-free methods are powerful for applications where data could be generated without much risk
and cost, model-based methods are suitable for applications with very limited data or settings where
the (time and financial) cost of obtaining new data is high.

For distributionally robust MDPs with the nested-set structured parameter ambiguity sets, Xu and
Mannor (2010) propose a Bellman type backward induction to compute the optimal policy, and Yu
and Xu (2015) further extend it to a more general state-wise ambiguity set following the unified
framework proposed in (Wiesemann et al., 2014). The Wasserstein ambiguity sets are first introduced
for distributionally robust MDPs in (Yang, 2017), and a convex formulation is proposed based on
Kantorovich duality. Chen et al. (2019) propose a general formulation to combine both moment-based
and statistical-distance-based ambiguity sets together for distributionally robust MDPs. Derman and
Mannor (2020) study the connection between Wasserstein distributionally robust MDPs and regu-
larization. Abdullah et al. (2019) propose a reinforcement learning framework with distributionally
robustiness. As mentioned before, however, (Grand-Clément and Kroer, 2021a) is the only work that
focuses on the algorithmic development of solving Wasserstein distributionally robust MDPs, which
is also the focus of this paper.



3 Preliminaries

A distributionally robust MDP is a tuple (S, A, po, 7, A, M), where S and A are the sets of states
and actions, respectively. We assume that the state space S = {1,...,S} and the action space
A ={1,..., A} are finite. The initial state s, follows a given initial distribution py € Ag. When
the decision maker takes an action a € A in state s € S, the MDP will transit to the next state
randomly according to the probability distribution ps, € Ag, which is assumed to be unknown; the
transition from state s € S under action a € A to the next state s' € S will induce the reward 7,/ .
We use the vector r,, € R° to represent the connection of all rewards given state s and action a.
We denote by A € (0, 1) the discount factor. In distributionally robust MDPs, the transition kernel

SH Apsa € (AS)SXA is assumed to be uncertain, and it is governed by an unknown probability
sed,ac

distribution p which is assumed to reside in a prescribed ambiguity set M that is calibrated from
historical data. Note that we also use the notation p, = HApsa € (A S)A for the transition kernel
ac

given the state s € S.

The goal of a distributionally robust MDP is to maximize the worst-case expected return; that is,

o0
t .
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Here, the decision variable 7 € (A A)S is called a (randomized) policy where for any given s € S,
its sub-vector 75 € A 4 represents the probability distribution of taking action ¢ € A in state s.

It is worth mentioning that the above formulation of distributionally robust MDPs is a generalization
of both robust MDPs and standard MDPs. By specifying the ambiguity set M to be P(Uf) where U is
the ambiguity set of a robust MDP, the problem (1) is equivalent to the robust MDP with ambiguity
setU. If the set U is a singleton, then problem (1) with M = P(U{) is equivalent to the standard MDP
with transition kernel from the singleton U/.

Similar to the case of robust MDPs, we consider the common assumption of rectangularity for the
sake of tractability, as otherwise problem (1) is NP-hard (Wiesemann et al., 2013). In particular, we
consider the following s-rectangular g-Wasserstein ambiguity set (Grand-Clément and Kroer, 2021a)

M = {u eP((A9)7) + n=Qus nseMi C P ((As)"), Vs € s} ,
sES

where MY is the marginal ambiguity set for the distribution x5 that governs the transition kernel at
the state s € S. The superscript ¢ indicates that M? is defined by g-Wasserstein distance; that is,

M? = {us epP ((AS)A) s Wy (s, vs) < 9} for 1 < g < oo,

where v, is the reference distribution at the center of the Wasserstein ball and

W, (uss) = min {( E <dq<x,y>>Q)1/q :nerms,m}

kEP((Ag)* x(As)™) (@,y)~kK

for 1 < g < oo, where I'(us, v5) is the set of all the couplings of us and v, (Ambrosio and
Nicola Gigli, 2005), and d, is induced by the g-norm dy(z,y) = ||z — y|, throughout this work. We

define the oco-Wasserstein distance W, (s, vs) by taking ¢ — oo.

We adopt the usual setting in distributionally robust data-driven optimization where v, = % Zf;l Opi

is set to be the empirical distribution and estimated by the samples {p%}Y ;| where p’ € (A S)A for
every i € [N]. Then, the optimal value function of (1), v*, satisfies the following distributionally
robust Bellman equation (Yu and Xu, 2015; Yang, 2017; Grand-Clément and Kroer, 2021a)

vy = max min (Z Wsap;ra (rsa + Av*)) Vs €S, )

T EAA p,EBY e



where B? is the set of expected kernels (Yang, 2017; Bertsimas et al., 2018; Xie, 2020) of the
following forms

| X

]BZ {Nz;ps . NZHP& Ds
1ZN . . _

BX = {N;pit |p% — Pt

S 04, p. € (Ag)4, Vi e [N]} for 1 < g < oo,

| <0, ple(As)?, Vie [N]}.
)

4 The Decomposition Algorithm for Distributionally Robust Bellman Update

In this section, we focus on computing the distributionally robust Bellman update, which is the most
fundamental operator for solving the distributionally robust Bellman equation (2); we define the
distributionally robust Bellman operator ¥(-) where for any v € R,

[Z(v)]s = meanA pmlgq Z Tsa Py (Psa +Av) Vs € S. 4
Given the above definition of T(+), itis well—known that (2) can be solved by iteratively applying T,
which is a variant of standard value iteration for solving distributionally robust MDPs (Yu and Xu,
2015; Grand-Clément and Kroer, 2021a). For any initial guess v° € R¥, we have lim;_, o v' — v*
where v! = T(vi™!) fort = 1,2,... and v* satisfies (2). Therefore, the efficiency of evaluating
[Z(v)]; is crucial to the computation of solving distributionally robust MDPs.

However, computing [T(v)]s using generic convex optimization solvers is much more computationally
demanding compared to the case of classical MDPs, which only have time complexity O(SA) for
computing their Bellman updates. In this section, we exploit the specific problem structure in (4) and
reformulate the optimization problem to a form that could be decomposed into smaller problems. We
first focus on the case of ¢ € [1,00) in Section 4.1 and then consider the case of ¢ = oo in Section
4.2, where ¢ indicates the type of Wasserstein distance used in the ambiguity set. As we will show
later, combined with the customized fast algorithms in Section 5 for solving the subproblems, one can
compute [T(v)]; in time complexity that is quasi-linear in S and linear in A and N. All the proofs of
propositions and theorems in this section are provided in Appendix A.1.

4.1 Nested bisection method for ¢-Wasserstein ambiguity set with ¢ € [1, c0)

We consider the optimization problem in (4) for the case where ¢ € [1, c0). By applying the minimax
theorem, we obtain the following result.

Proposition 4.1. Consider the Bellman updates (4) with q € [1,00). Then,
[ minimize ~

| X
T L T
subject to N Z(rsa + ) p, <7, Vae A
[T(v)]s = e VseS. (5

NZZHpSa psa _9(]

i=1 acA
vER, pl, € Ag, Vi€ [N], Va € A. |

The above proposition reformulates the maximin optimization problem in (4) into a convex min-
imization problem, which can be solved by commercial convex optimization solvers. Moreover,
problem (5) can be solved via bisection on ~y; that is, we seek for the lowest possible v such that

LS (rsa + M) Tpi, < v for each a € A while pi, satisfies the other constraints in (5), for
every a € A. To this end, we introduce the following subproblem

minimize —g Hpsa psa

psa i=11 éa57 = . (6)
({ 1 ) subject to — Z bsapsa -

pweAS,VzE[ ]



By setting by, = 754 + Av, the above problem 13 ({psa}Z 13 bsa, 7) allows us to seek for decision

variable {p?,} V| that satisfies the first and the last line of constraints in (5) while minimizing the
“budget” used in the second line of constraint in (5). In particular, for any fixed 7' € R, we distinguish
among the following two cases:

@ I 4B ({Pla} s bsa, ') < 09, then v is feasible for (5) and it is an upper bound of
the optimal objective value in (5).

) Y caB ({Platiiy; bsa ) > 6, then ' must be infeasible for problem (5) and so it
is a lower bound of the optimal objective value in (5).

To apply the bisection method, we derive the initial upper and lower bounds of the optimal v* in (5).

Proposition 4.2. Consider the distributionally robust Bellman update (5). The optimal objective
value v* is bounded by

max {min{bss}} <v* < max{ Z bsa Sa} . @)

As opposed to (5), the size of problem (6) is independent of A. By using the aforementioned
bisection method, the overall time complexity is now only linear in A since we only need to solve (6)
O(Alogey) times, where €7 is the tolerance for the bisection method.

While one can solve problem (6) using off-the-shelf solvers and enjoy the reduced complexity by
using the above bisection method, this subproblem itself turns out to be another structural optimization
problem. As we will show in the following proposition, by applying duality on (6), the reformulation
could be further decomposed via another bisection method on the dual variable.

Proposition 4.3. Consider the problem B ({p%,}.1; bsa, ) in (6). If v > min {bsa}, then

({psa i=13 saa’Y) = mnax _O"Y‘FNZ@ psaa sas O )7 ®)

0<a<la
where & = max;e|n) ||€; — ﬁéaHZ /(v — min{bs,}) and

QQ(ﬁimbsaaa):pmelg ||psa ﬁéaH ta- bsapsa’ (€))

where j € argmin by,
s'eS

Notice that we focus on the case where v > min {b, } since min {b,, } is not larger than the lower
bound of v in (7), and the case v = min {bs, } will not occur because ~ is always taken to be the
average of the upper and lower bounds in our bisection method. We refer interested readers to
Appendix for more details.

Proposition 4.3 indicates that for any fixed feasible « in (8), the subproblems (9) can be solved
separately. Therefore, by applying the bisection method on « in problem (8), one can naturally
decompose the problem (8) into /N smaller problems that have S variables and S + 1 constraints. As
a consequence, the overall time complexity is linear in the number of kernels /V.

By combining both decomposition strategies above, we obtain the proposed nested bisection method,
whose pseudocode could be found in Algorithm 1. More details of the algorithm is provided in the
Appendix A.1.

Theorem 4.4. Suppose ' is the value returned by Algorithm 1, and ~* be the optimal value of (5).
With the inputs provided in Algorithm I and user-specified tolerances €1, €5 > 0, we have

Aées <1;1€ax max{bs,} — 7) <I;1€aj( max{bs,} + W)
0a '

Theorem 4.5. Algorithm 1 computes (5) in time O (hq(S)N Aloge; ' logey ' + AS), where hy(S)
is the time complexity for solving (9).

’ * €1
— < =
Y =S 5+



Algorithm 1: Nested bisection method to compute distributionally robust Bellman update (5)

Input: Tolerance €; for outer bisection method and e, for inner bisection method ;
Initialization: Set lower bound « and upper bound # that are specified in (7) ;
while 7 — v > ¢; do
Compute ¥ = (¥ +)/2and o = 0 ;
fora=1,...,Ado
Set lower bound o, = 0 and compute the upper bound &, in Proposition 4.3 ;
while &, — o, > €2 do
Compute & = (g +@,)/2;
Solve D, (p’,, bsa, &), for every i € [N}
Compute the slope of (8): m = —4 + + Zl L blpirs
if m < 0 then set @, = &, else set o, = &,
end
Setal = (aa +0,)/2;
Solve D, (P, , bsa, %), for every i € [N];

Set Tq =Tg—1— a7+ N Zl 19 (psa7 Saaa*)

end
if r4 > 0 then set y = 4 else set y = %;

end
Result: Optimal objective value of (5): v = (y + 7)/2;

As shown in the above theorem, the proposed nested bisection method has a time complexity that
is linear in both A and N, but the overall complexity depends on the subproblem (9) where its
complexity depends on the choice of ¢ and the number of states S. In Section 5, we will derive
h1(S) and ho(S), which are the two most common cases. The complexities associated with solving
equations (5) and (8) using general convex optimization methods are also provided in the Appendix B.

4.2 Decomposition scheme for co-Wasserstein ambiguity set

As opposed to the case where ¢ € [1,00), for co-Wasserstein ambiguity set, the corresponding
Bellman update can be naturally decomposed without using any bisection method.

Proposition 4.6. Consider the Bellman update (4) with ¢ = co. Then,

[T(v) *gleajzpmelg {blpls + Pl —Bla||. <6} Vses. (10)

The above reformulation requires solving N A inner minimization problems that have S variables and
S + 2 constraints. Hence, the time complexity of Bellman update (10) is linear in A and N. Similar
to Section 4.1, we will discuss the complexity of solving the inner minimization in the next section.

S Efficient Algorithms for Subproblems

Section 4 offers decomposition schemes for distributionally robust MDPs with g-Wasserstein am-
biguity set. As shown in Theorem 4.5 and Proposition 4.6, the overall complexity of computing
distributionally robust Bellman update is linear in both A and N but it depends on complexities of
solving the subproblem (9) and the inner minimization problem in (10). In this section, we consider
the common cases where g € {1,2, 0o} and discuss the time complexity of solving the subproblem
in each case.

As we will show below, the overall time complexities of our decomposition algorithms
are only O (SAlogS+ NASloge; 'loge; ") for ¢ = 1, O(NASlogSloge; 'loge; ") for
g = 2, and O(AS(logS + N)) when ¢ = oco. These complexities are much lower than
O(N3>A358535 Jog(e1)) and O(N A%582510g(S)e~15) from the state-of-the-art solution meth-
ods in (Xu and Mannor, 2010) and (Grand-Clément and Kroer, 2021a), respectively. The proofs of



the following propositions, theorems, and corollaries and the details of the proposed algorithms are
relegated to Appendix A.2.

5.1 1-Wasserstein ambiguity set

When g = 1, the corresponding subproblem (9) has an equivalent form as follows.

Proposition 5.1. Suppose ¢ = 1. The minimization problem (9) is equivalent to
min{v+a min bLp, ¢ [Pl — pialh v an
v>0 pi,EAs

While problem (11) does not appear to be trivial at first glance, it has nice mathematical properties
which allow us to solve this problem efficiently.

Theorem 5.2. The objective function in (11) is piecewise-linear in v, and it can be solved in time
O(SlogS).

Therefore, the proposed Algorithm 1 can compute the Bellman update with the time complexity
linear in A and N and quali-linear in S. We obtain the following result by combining Theorem 4.5
and Theorem 5.2.

Corollary 5.2.1. The distributionally robust Bellman update with 1-Wasserstein ambiguity set can
be computed in time O (SA log S + NASlog 61_1 log 62_1), where €, and ey are the user-specified
tolerances in Algorithm 1.

5.2 2-Wasserstein ambiguity set

When ¢ = 2, the following result shows that (9) could be transformed to an Euclidean projection
problem onto the probability simplex.

Theorem 5.3. Suppose q = 2. The minimization problem (9) is equivalent to

2 ~j 2
el b7, 4 min g, 2P b

, 12
4 sa. pgnEAs ( )

%
Dsq —

which can be solved in time O(S log S).

Euclidean projection problem onto the probability simplex can be solved via the existing algorithm
(Wang and Carreira-Perpindn, 2013). By combining the results in Theorem 4.5 and Theorem 5.3, we
obtain the following result.

Corollary 5.3.1. The distributionally robust Bellman update with 2-Wasserstein ambiguity set can be
computed in time O (NAS log S'log 61_1 log 62_1), where €1 and €y are the user-specified tolerances
in Algorithm 1.

5.3 oco-Wasserstein ambiguity set

When ¢ = oo, the corresponding subproblem
: T i . i pi <
p’fjlelgs {bsapsa . Hpsa psaHm — 9} (13)

can be reformulated to a linear program with box constraints and a linear equality constraint which
can be solved efficiently.

Theorem 5.4. The minimization problem (13) is solved in time O(S log S).

Therefore, we obtain the overall complexity as follows.

Corollary 5.4.1. The distributionally robust Bellman update with co-Wasserstein ambiguity set can
be computed in time O (AS (log S + N)).
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Figure 1: Comparisons of all algorithms for ¢ = 1, where (left) N = 50, (middle) A = 70, N = 50,
and (right) S = A =T70.
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Figure 2: Comparisons of all algorithms for ¢ = 2, where (left) N = 50, (middle) A = 70, N = 50,
and (right) S = A = 70.
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Figure 3: Comparisons of all algorithms for ¢ = oo, where (left) N = 50, (middle) A = 70, N = 50,
and (right) S = A = T70.

6 Numerical Results

We experiment on the performance of the proposed algorithms (Fast), Gurobi (Gurobi Optimization,
LLC, 2023), and the first-order method (FOM) proposed in (Grand-Clément and Kroer, 2021a) with
different sizes of the randomly generated distributionally robust MDPs. Due to page limit, we only re-
port the results of the experiments on a single Bellman update, and we provide additional experimental
results in the Appendix C, which also contains the detailed settings of all the experiments.

Figure 1 reports the average computation times of Bellman updates with 1-Wasserstein ambiguity
sets. For the first-order method (Grand-Clément and Kroer, 2021a), we report the computation times
of the third Bellman iteration, and these computation times increase at every Bellman iteration of
the first-order method. One can see that all three algorithms perform similarly when problem size is
small. However, as S, A, or N increases, the runtimes of both Gurobi and first-order method increase
rapidly, while the proposed algorithm remains scalable.

The results with 2-Wasserstein ambiguity sets and co-Wasserstein ambiguity sets are shown in Figure
2 and Figure 3, respectively. These results are similar to the case where ¢ = 1, which are consistent
to our theoretical results on complexities. As expected, the proposed algorithms are several orders of
magnitude faster than the existing state-of-the-art solution methods.



7 Conclusion

This paper studies distributionally robust MDPs with Wasserstein ambiguity sets. In particular,
we propose fast algorithms to compute distributionally robust Bellman updates. We show that the
proposed algorithms outperform other existing methods in both theory and experiments. Future work
could address the extensions to approximate dynamic programming for distributionally robust MDPs
as well as model-free settings.
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A Appendix: Proofs and Algorithms

A.1 Proofs of results in Section 4

Proof of Proposition 4.1. Plug B? in (3) into (4), and apply the minimax theorem, the original
problem [T(v)],, Vs € S is given by:

.
N
1 7
— A
S Z( ZJ“) e

’saEA

s.t. —Z Hps Dy

pWEAS, VZG[N] Yae A

= min max — E Tsa E rsa+)\v psa
s EAA
acA i=1

s.t. Z Hps Dy

p;aeAs,Vze[ |, Va e A

<9q

— 7

. T 4
=  min Igleai( N Z (rsa + M) p,

s.t. N ZZ Hps Dy

i=1 acA
pl, € Ag, Vie [N], Va € A.

Hence (5) is a direct consequence of above formulation by introducing the following epigraph variable
N

1 .
~ which satisfies v > max,e 4 N Z (Psa + Av) | P, =
i=1

— 7

Proof of Proposition 4.2. To prove the upper bound of ~*, we consider # =
mMaXge A ZZ 1 biPl,, which equals to ¥ > + ZZ ,bl.pl,, Va € A. This implies
{p, 1Y, satisfies every constraint in problem (6) with the lowest possible objective value 0, for
every a € A. Therefore, >, 4 B ({Pla} ;750 + Av,7) = 0 < 67, At this time, 7 is feasible

for (5). Hence, we provide an upper bound 4 = max,ec 4 % Zf\il bl pl,.

To prove the lower bound of 7*, we assume the contrary max,e 4 {min {bs,}} > +*. So there exists
a € Awith v* < min {bs;}. Then there is no p’, satisfies the first constraint in (5) for @ = a. This
contradiction verifies the lower bound v = max,c 4 {min {bsq }}.

Proof of Proposition 4.3 . By definition, for any fixed s € S and a € A, we have

m ({ﬁia}zNzl; bSG?’Y) = min NG Z Hpsa psa

s.t. stapsa >

pmeAS,vz‘e[ ]

Then, we introduce the dual variable o > 0 for the constraint 3 Zz 1 bl.pi, < and obtain

‘}3 ({ﬁ’éa}ij\il; bSUA’Y) = I(leg(})( {P’ EAS VzE[N] N Z Hpsa psa ( Z bsapsa - > }

= max —Ol’Y"‘r*Z@ psa» sa, )7

a>0
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where D, (P’ , bsa, @) is defined in the Proposition 4.3.

To show & defined in the proposition is indeed an upper bound of the optimal a*, we denote

N
1 ~i
f(Oé) =—ay+ N qu(psaabsa7a)~

i=1

. Pia
Notice that Voo > max;e |y J;T{b}’ where j € argmin b,y :

s'eS

N
f) < —av+ 5 - lles = Bl + ablie;

i=1

where the first inequality is from the definition of D, (p,, bsq, @), the second equality is due to the
selection of j, and the last inequality is due to the selection of a. Hence a* € [0, @] by f(«) is
concave w.r.t. « (otherwise Jo* > @ such that f(a*) > f(0) > f(&), where nonconcavity of f
follows), and (8) is true. One can further compute the subdifferential of f(«) by Danskin’s theorem
(Bertsekas, 1999). Typically,

77+7Zbeapsa € af )
where p%* is any minimizer of the inner minimization problem corresponding with given o > 0. [

Proof of Theorem 4.4. For simplicity of notations, throughout this proof we use

A€ A7 _
52 552 (magmax(v) +7)  and f6)2 T B () iibn) . € Dl

acA

By (6), we can get that B ({p%,}~1;bsa,7) and f(7) are non-increasing in [,%]. For each given

v € [1,7] and a € A, we denote P ({pi,},; bsa, ) the corresponding value calculated by the
Algorithm 1. Furthermore, we call

Z‘B {psa i=1> Sa’ry)v V’YG[ ;/]

acA

We can show that R
lf(y) = f(I <6, Yye [y (14)

We fix v € [v,7], and consider (8). Algorithm 1 provides the optimal solution for (8) with tolerance

€2/2, so we have |, A — Gigq,y| < €2/2, where o, ~ 1s the true optimal solution of (8) and &5 is
the solution Computed in the inner bisection in Algonthm 1. Thus we get

“B {ﬁsa}z 13 smV)“ig({ﬁia}iv:ﬁbsmV)’

N N
* 1 ~7 * ~ 1 ~7 ~
=07t N Z D¢(Pias bsas ay) — <_O‘sa7’ﬂ + N Z D4(Pia> bsa; 0‘8&«/))

i=1 i=1

S |a§a’7 asa ’y”y+ Z|© psa? Sll) sa 'y) gq(ﬁiaabsa»dsa,'y”

S%z <7 + max maX{bsa}> ;
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where the last step is due to that

Qq(ﬁéan bsa7 O‘:a,'y) - :Dq(ﬁiaﬂ bSa7 dSG,’Y)

:psrilelg ||psa ﬁi‘a” +asa'y bsapsa_<lmelg Hpsa ﬁZaH +aéa7’¥ baapsa>

< (a;a,'y - dsa,’y) bsapsa

€2
<—= maxmax{b,
— 2 acA { éa}’
and

f'gq(ﬁim bsaa &sa,’y) - gq(ﬁia7 bsa7 O‘:a,'y)

= melg Hpsa ﬁ;aHZ + OAlsa,'y . b;rapia - < mEHAl Hpsa ﬁéaHZ + a bsaPsa)

S (Oésa,'y Qgq, ’y) bsapsa

€
< 52 max max{bsq },

here pi® and pL,® " are the optimal solutions to (9) for & = drsq v and a = o, . respectively.

Hence, (14) is the direct consequence of above estimation, together with the definitions of f, f and 6.
And we have v* = inf{y € [y,7] : f(7) < 69}. We further define § £ inf{y € [y,7] : f(y) <69}
The outer bisection of Algorithm 1 implies that |[y" — 4| < 5, so to prove the claimed result in the
theorem, it suffices to show that

20 (mzﬁi max{bsq} — ’y)
" R ac -
=41 < o :

Notice that‘B ({psa}l 13 bsa,y ) <P ({psa}Z 1 Sa,w) , Vv € [7,7] by definitions, we get f('y) <

F(n)eso{y € 1,3 f(7) <09 € {y € [1,7] = £(7) < 67}, hence we get§ < 7*.

25 (maxqec 4 max{bsq}—7
We assume that v* — v > ( 3 2)

(15), we claim the following statement:

. 26 (I&aj{max{bsa} —’y>
= 0a

15)

, otherwise (15) is trivially satisfied. To achieve

> 074 6. (16)

If the statement is true, we have Vv € [y,7* — (maxq,e4 max{by,} —7) (20/67)]:

A 20 (gleajc max{bsq} — 7)
fN=zf)=6=f 7" - T

—-6>09

where the first inequality is from (14) and f(y) < f(7), the second inequality is due to that f(7) is
non-increasing, and the third inequality is from the above statement.

So{y € [1,7]: f(y) <67} C (v* — (maxge4 max{bs,} — ) (26/67),7], thus

26 (maxqe4 max{by,} — l)

Y- 04 <Y<Y
which implies the desired (15).
For the proof of the statement (16). We argue that
. 20 (max,eq max{bs,} — 'y 94
A L ) Y al, > . an
= maxaeA max{bs,} — l)
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- . 26(max, bsa}— .

by contradiction. Assume there is some 7"/ € [y* — (max EAg;ax{ ! l),fy*) with that
* 07 7 q o " *

D acd Vs < (moe e max(bra] 1) Clearly f(v") > 6% since v/ < v*. Then

07 > Z Qg (max max{bs,} — ’y)

acA
1 N
Z Z a;a,v” ( Z sapsa - >
acA =1
— Z Z Oésa ,),// saﬁia - ’Y)
aEA
>> N meég Pl = Bl + 0t (bLphe =)
aE.A

:Z asa’y”’y//—’_ ZQ psa’ sas 5(177”)

acA

=Y B (b )

acA
=f(v"),

which is contradicted with f(+") > 69. This contradiction implies that (17) is true.
25(maxa€A max{bsa}f'y)

I;i)r simplicity of notations, we call "/ = y* — i =/ and we fix any v* € (v, v*),
then
g1 _ 20 (maxaeA max{bs,} — 1)

<f(H-f@")
=3 (BEPLI 1 b)) = B ({Bha b1 b))

a€A
1 N N
’ v
o S 9 ST NONEIEY CURVERE S e Y rmew)
acA i=1 i=1
— Z asa o /// _ Z)
acA
q
<" =) :

(maxaeA max{bs,} — l) ’

where the first step is due to v* < v* and definition of 7", the second step is from the definition of
function f, the third step is from the definition of B({p’,} ¥ 1; bsa,y) and asa - and the last step is

due to (17) and 7* € (7", v*). Notice that above inequality is true for all v* € (v, ~7*), we could
let v — ~*, which leads to

61 ¢ (7* B 26 (maxaeA max{bs,} — '7)) <95 < —6.

04

Then (16) is the direct consequence of above inequality. This finishes the proof of statement, hence
finishes the proof of the theorem. O

Proof of Theorem 4.5 . The Algorithm 1 is the direct consequence of the procedures in the content,
except computing the slope, which has been explained at the end of the proof of Proposition 4.3.
For the time complexity, we can see that the bisection method on v and « uses complexity

O(loge; *loge; ). For the subproblem (9), which costs time complexity &, (S), we need to solve
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Algorithm 2: Fast algorithm to solve (9) with ¢ = 1
Input: Sorted b, with bsqrn, > bsan2 >..->b
Initialization: r < b] p’, and p’, < p .
fork=1,...,5—1do
if 25, + &(bsans — bsany, )Phan, = 0 then break
else
r4 = 2psank + a(bsans — bsany, )ﬁias"
psans+ psank andpsank =0.

sang-

end
Result: Optimal objective value 7 and optimal solution p’, of (9) with ¢ = 1.

it NA times. Besides, computing the upper bound claimed in Proposition 4.2 requires finding
min{by,} for each a € A, which is in time complexity O(AS). So we get the time complexity of
Algorithm 11is O (hy(S)NAloge; 'loge; ' + AS).

O

Proof of Proposition 4.6. Plug BZ° in (3) into (4), we get the Bellman update is given by

1

; i T . i i i ;
N e {mln%;wsapsa (Psa + Av) : ||PL, _p5a||oo <0, p,, € Ag, Vi € [N], Va € A}

= N Wnleag(A Z Tsa Zmln {psa TSU« + )\’U : sza - ﬁia”oo S 07 pia € AS}

= — Igleaj(zpmelg {bsa,psa . Hp;a _ﬁéaHoo S 9} :

The first equality is due to that the decision varaibles p’,, Vi € [N] and Va € A, are independent
from each other. Then we can divide the orignal problem into N A subproblems. The second equality
is from the fact that the objective function is affine w.r.t. 7,,, and the maximum is simply the greatest
coefficient of 7.

A.2 Proofs of results in Section 5

A.2.1 Proof of results in Section 5.1

Proof of Proposition 5.1. We introduce the variable v > ||p%, — p%, |1, so

gl(ﬁé(pbsa)a) = pmelg Hpsa ﬁéaHl +ta- b;rpsa
- Pt <
E}n;gpmelgs {v + O‘bqapsa Hpsa psaHl > v} (18)
= mlg v+ ameHAl bsapsa ||p;a - ﬁia”l < 'U} .
O]

Proof of Theorem 5.2. We denote the objective function in (11) as

i, EAS
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W.L.O.G., we assume that bg,1 > bgqo > -+ > bgas, and f)fm > 0. We claim that

bsa b&(l/ ~ . Aq
vta (_1}(125) +bTp ga) itve [0,2p0,,)
K41
Flv) = v+« Z Tibsak ifve [2 Zpsakﬂ Z psak> , for some K € [S — 2],
k=K+1
S— i
v+ abgag ifve |? Zﬁ;ak,, +oo> ,
k=1
where

K
ﬁ;a(K+1)7 <U2Zﬁ;ak> /2 ifk=K+1,
k=1

Pk ) FK+2<k<S—1,

Deas + 3 ifk=>5.

To prove the first case of the claim, it suffices to show that the optimal solution for the minimization
problem in F(v) is given by p*, whose components are pT = p},; — 5, Pj = Dugp, V2 <k < S —1
and pg = P, s+ 5. It can be easily verified that p* defined in this way satisfies the constraints of
the minimization problem in F'(v).

To see the optimality, we consider any optimal solution p. We first notice that p; > 0 and ps < 1.
Actually, Let

Tk =

N ={kelS] : P <Plar)s

P ={kelS] : Pk > Prar}s

£ ={kelS] : px = Plar}-
Thenbye'p=-e'p’, = 1and|p— p.,|1 < v, we get

Z Peak — Pk = Zﬁk — Prak

keN keP
Z (psak pk + Z psak <w
keN keP

Hence >, o Plak — Pk = Do pep Pk — Dhgry < 5 < Dhqy» S0 We get oy > 0 and pg < 1.
Next we show that py, = p’_,, V2 < k < S — 1. Otherwise we have some 2 < k < S — 1 such
that |p; — ﬁzakl > 0. If p;, > p. .. we define p with that p;, = p;, — € and ps = ps + ¢, here

0 < & < min{ W, 1=Ps} while keeping the other components of p same as p. We can

see that p achieves smaller objective value than p does due to b_ ; > bsqs, which contradicts the
optimality of p. If p; < p then we define p with that p; = p; + e and p1 = p1 — ¢, here

0<e< rmn{M ”1} while keeping the other components of p same as p. Similarly, p

achieves smaller ob_]ectwe Value and this implies the contradiction. '
Finally, we verify the rest two components. We introduce the variables d; = p; — p;,; and
ds = ps — P, then we get the equivalent reformulation of the inner minimization in F'(v):

min  bsqa1d1 + bsasds

dy,ds
st. dy+dg=0,|d| +|ds| <.

The optimal d; and dg are given by —v/2 and v/2 respectively. Hence we proved p* is indeed an
optimal solution.

To prove the second case of the claim, the optimal solution for the minimization problem in F'(v)
is given by p*, whose components are p; = 0, Vk € [K], and pp =71k, VK+1<k < S. The
decision variables p* defined in this way satisfies the constraints of the minimization problem in
F(v).

To see the optimality, we consider any optimal solution p. We first notice that px1 > 0 and pg < 1.
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To argue this by contradiction, we suppose the contrary px 1 = 0. Define the notations A/, P and &

same as before. Then there exists & < K with p; > 0, otherwise we assume that py, = 0, Vk € K],
which implies the contradiction as follows.

K+1 K+1

Zﬁ;ak > % > Z ﬁéak _pk > Zﬁiak'
k=1 k=1

keN

Here the first inequality is due to the selection of v, the second inequality has been deduced in the
first case and the third inequality is from py, = 0, Vk € [K 4 1]. So we are able to find £ < K with
p;, > 0. By moving probability e = min{%, pa(%”} from p;, to P 11, we can achieve smaller
objective value while keeping the feasibility, hence we get the contradiction, which implies that
DPr+1 > 0and ps < 1. By applying the similar procedures in the first case (moving some probability
from pg 41 or to ps), we can show that p, = pi . =rpfor K +2 <k <5 — 1.

Next we prove that pp, = r, = 0 for k € [K] . Suppose the contrary is true; that is, P >0
for some k < K. Then we are able to apply the same procedures as before which illustrate that
Pk = DLk Vk < k < S. Provided this, one can verified that the optimal strategy is putting all the

rest probability 1 — 35 1| ) t0 Bs SINCe baq1 > baaz > -+ > baas, and v > 23740 pl, >

2 Z:Zl P’ x> Which implies p__; = 0 and we get a contradiction. Hence py, = rj, = 0, Vk € [K].
Finally, we verify the rest two components. We introduce the variables dx 1 = pxy1 — ﬁia( K+1)
and dg = ps — p’, g, then we get the equivalent reformulation of the inner minimization in F'(v):

min bsa(K+1)dK+1 + bsanS
dr+1,ds
K

K
st dirr+ds =Y Plas i + |ds| < v = Plap
k=1 k=1

— K bt . .
The optimal dx 1 and dg are given by —1}22"%1”‘“‘ and 3 respectively. Hence we proved p* is
an optimal solution.

To prove the third case of the claim, we notice that the optimal solution e to ming: cag bl p, is

also feasible for the inner minimization problem in F'(v), hence it becomes the optimal solution we
desire, which implies F'(v) = v + abs,g at this time. This finishes the proof of our claim.

Our claim directly illustrates that F'(v) is a piecewise-linear function in v with breakpoints {0} U

{2 Z,i{: 1 Plax @ VK €[S — 1]}. Furthermore, based on the provided formulation of F'(v), we can
compute the difference of value for F'(-) between any two adjacent breakpoints, given by

F(vk) — F(vg-1) = 2f)fsaK + a(bsas — bsaK)ﬁfsaK VK €[S —1],

where vy = 2 Eszl Pl VK €[S —1]and vy = 0.

sak>

Hence we provide Algorithm 2 to compute (11), whose time complexity is O(S log S) generally and
can be reduced to O(.S) if the sorted by, is provided.

O

Proof of Corollary 5.2.1. We can see that Algorithm 2 is in time complexity O(S) if Uy 4bs, are
sorted, which can be done at the Initialization step in Algorithm 1 with time complexity O(AS log S).

So by Theorem 4.5, we get the overall complexity is O (NAS loge; *loge, ' + ASlog S).
O

20



Algorithm 3: Fast algorithm to solve the inner minimization problem in (10)

Input:v, r,,, and p’, € Ag.
Initialization: pt (;‘ =0.
Sort b, as bsgn, < -0 < bgang-

Find the smallest k such that Z’;:1 (ﬁianj + 19) >1

Setpsanj 7psan +0f01'] < k—1 andpeank =1- Zk ! ( ?an] +9>

7j=1
T - bsapsa . . . . . . . . . .
Result: Optimal objective value r and optimal solution p%,, of the inner minimization problem in
(10).

A.2.2 Proof of results in Section 5.2

Proof of Theorem 5.3. From problem (9), we can get the minimization problem for ¢ = 2

mln ||psa ﬁiaHQ +ab5{1péa

pi,EAs
. T i i 2 .
= min o], =26l Bl + 1B, + eblp,
T 12
= min [lptll; — (28 — abu) ol + Bl
o [|bsall3 e 28h, - abu]
= _% +abl,pt, + p;;lelgs pl, — Saf‘“ K
N 2
. . 1 QPZSG - CVbsa . . .
So it suffices to solve ming: cag |[Pyq — — 5 || which can be done by Euclidean projec-
2
tion algorithm (Wang and Carreira-Perpinén, 2013) with time complexity O(S log S). O

Proof of Corollary 5.3.1. The result is the direct consequence of Theorem 4.5 with ho(S) is
O(Slog S), provided by Theorem 5.3.

A.2.3 Proof of results in Section 5.3

Proof of Theorem 5.4. We claim that the Algorithm 3 solves problem (13) with time complexity
O(S'log S). By expanding the co-norm, we formulate (13) as the following box constraints problem.

min bsapsa

s.t. max {0 pl, —Oe} < p', <min{e pi, + e},
(= psa - 1
Pl € R

To get the optimal solution, we put the probability on the index where by, is small as much as possible.
Specifically, we assume bgq1 < bgez < -+ < bgqs W.l.0.g., and assume k is the smallest index such

that Z?Zl (pla; +0) > 1. We claim that

psaj+9 if1<j<k-1
k—1
Peaj =% 1= > (Plae+0) ifj=k
=1
0 otherwise .

is the optimal solution to the above formulation. To see this, suppose p is optimal and there is some
J € [k — 1] with p; # p,; + 0. By above box constraint, we get j; < ﬁ';ﬁ + 0, so there exists
j > k such that D; > pi’a*j. By moving the probability from p; to p;, we can achieve strictly smaller

objective value, which is a contradiction with that p is optimal. This gives us an optimal solution
with the first k — 1 components coincides p’;*. Then we can get p’* is indeed optimal by putting the
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extra 1 — ];;11 (P, + 0) probability on pit, since beak < -+ < baas.
The major time complexity of Algorithm 3 is sorting the vector b,, € R, which is O(S1og S).

O
Proof of Corollary 5.4.1. As for each a € A, we need to sort by,, which costs O(AS log S), then

we need to solve N A subproblems, which costs O(NN AS), so the whole problem is computed in time
O(ASlog S + NAS). O

B Appendix: Computational Complexity for General Convex Optimzation

To compare our algorithm with general convex optimization algorithm, we use general convex
optimization to compute the problem (5) and problem (8). The time complexities will be discussed in
different situations:

* Suppose ¢ = 1: For general convex optimization problem, problem (5) is equivalent with
the following problem:

minimize fy

N
subject to N Z Tsa +Av) TP, <7, Va € A
Vs e S.

A
=
I
zu

1
722 Z ‘psas psas’ —9
i=1 a€As'€S
L v €R, pi, € Ag, Vi € [N], Va € A. |

By introducing the variables ¢!, = |pi,., — pl,.|,
above problem is equivalent with

Vi € [N], Va € A, Vs’ € S, the
minimize ’y

Tea+ M) pl, <7, Vac A

DD thaw <

i=lacAs'eS . . .
t;as —pb{lé psas” tsa.s >p5l1& pi‘as” VZE [N]’ va€A7 VS/ES
veER, pi, €Ag, ti,, ER Vie [N],Vae A, Vs’ € 8.

There are 1 + NSA + NSA = O(NSA) decision variables, and the number of bits in the
inputis O(1) + O(NAS)+ O(NAS)+ O(NAS)+ O(NAS)+ O(NAS) = O(NAS).
So by (Karmarkar, 1984), the complexity of solving this LP is O(N*455%5 A%-5),

bject t —
subject to
1

V2
Ly

We utilize our outer bisection, solving (6) directly using convex optimization. Typically, for
each fixed a € A and =, (6) is equivalent with the LP that

minimize —E E tsas/

= 1565

subject to — Z bl pl, <
ti‘_as = psas i psas’7 tias’ Z 25ias’ _pias” Vi € [N]v VS/ € S
DL, € Ag, th,, €R, Vi€ [N], Vs €S.

There are 2NS decision variables, and the number of bits in the input is
O(NS + NS+ NS + NS) = O(NS). So the complexity of solving this LP is
O(N*58%5), Together with the outer bisection, the total complexity for each Bellman
update with ¢; tolerance is O(N*°5%°Alog e !).
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We utilize our nested bisection scheme, solving (9) using the general convex optimization
algorithm. Typically, for each fixed a € A, i € [N] and «, (9) is equivalent with

minimize Z o +a-blpl,
s’eS ) . )
subject to L, > Loy — Plag thas = Dhay — Pogsr» V8" €S
D, € Ag, th, €ER Vs €8S.
There are 25 decision variables, and the number of bits in the inputis O(S+S+5) = O(S5).
So the complexity of solving this LP is O(S%%). Together with the nested bisection, the
total complexity for each Bellman update where the tolerances of bisections are €; and €a, is
O(NS*®Aloge; loges ).
Suppose ¢ = 2: For general convex optimization problem, problem (5) is equivalent with
the following SOCP:

minimize 1
; 1 T

subject to N Z Tsq +AV) Py, <7, Yae A

[T(v)]s = & Vs € S.

N
XY Bl <

i=1acA

i v €R, pi, € Ag, Vi € [N], Va € A. |
There are 1 + NSA = O(NSA) decision variables, and the number of constraints are
A+14+NA(S+2) = O(NAS). So the complexity of solving the SOCP with e-accuracy is
O(VNASloge ' (NSA??(NAS+1+2(A+NA(5+2)))) = O(N355354351oge™1).

We utilize our outer bisection, solving (6) directly using convex optimization. Typically, for
each fixed a € A and ~, (6) is equivalent with the SOCP that

minimize §

subject to — Z bl.pi, <

. z Pl — B2 < 0

56R pl, € Ag, Vi€ [N].
There are 1 + NS = O(NS) decision variables, and the number of constraints
are O(NS). So the complexity of solving the above SOCP with e-accuracy is
O(VNSloge ! N2S?(NS + 1+ 2(1 + N(S + 2)))) = O(N355351loge1), hence
the total complexity of the Bellman update is O(N3°S$%5Aloge ' loge ).

We utilize our nested bisection scheme, solving problem (9) using the general convex
optimization algorithm. For each fixed a € A, i € [N] and «, problem (9) is equivalent with

minimize §+ - bsapsa
subject to Hpsa — psaH2 <d
p., € Ag, d €R.
There are 1 + S = O(S5) decision variables, and the number of constraints
are O(S). So the complexity of solving the above SOCP with e-accuracy is
O(VSloge™ - S2(S + 1+ 2(1 + 8))) = O(S*>loge™!), hence the total com-
plexity of the Bellman update is O(N S%>Aloge ' loge; ! loge, t).

Suppose ¢ = oo: We can also consider solving the inner problem in (10) using general
convex optimization, which is equivalent with

minimize bsapsa _
subject to  ploy — Phay <O, Ploy — Py <0, V' €S
Pl € As,
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Table 1: Comparisons of runtime (average and standard deviation)(second) of Bellman updates for
all algorithms in L; norm.

N=§=A
Algorithm 10 20 30 40
Fast 0.0253 (0.02) 0.1243 (0.02)  0.2794 (0.02) 0.5112 (0.02)
Gurobi 0.039 (0.02) 0.7084 (0.03) 4.3617 (0.05) 22.6013 (0.92)
FOM(3 its) 0.644 (1.0193) 4.0821 (1.05) 12.6608 (1.00) 29.22 (1.18)

Table 2: Comparisons of runtime (average and standard deviation)(second) of Bellman updates for
all algorithms in Ly norm.

N=S=4
Algorithm 50 60 70 80
Fast 73717 (0.11) 10.8293 (0.12) 16.8888 (0.12) 24.6080 (0.07)
Gurobi 5.1669 (0.09) 11.6760 (0.14) 23.6852 (0.34) 44.3305 (0.18)
FOM(3 its) 9.1936 (1.83) 14.5653 (2.01) 21.3651 (1.97) 31.1326 (1.79)

where ¢ € [N] and a € A are fixed.

There are S decision variables, and the number of bits in the input is O(S + .5+ 5) = O(S).
So the complexity of solving this LP is O(S*?). Then the total complexity for each Bellman
update is O(NS*5A).

C Appendix: Details for Numerical Experiments

We compare our fast algorithm with the state-of-the-art solver Gurobi with version v10.0.1rcO (Gurobi
Optimization, LLC, 2023) and the first-order method of (Grand-Clément and Kroer, 2021a). All
experiments are implemented in Python 3.8, and they are run on a 2.3 GHz 4-Core Intel Core i7 CPU
with 32 GB 3733 MHz DDR4 main memory. We will release our code to ensure reproducibility.
https://github.com/Chill-zd/Fast-Bellman-Updates-DRMDP

Our algorithms are tested on some random instances generated by the Generalized Average Reward
Non-stationary Environment Test-bench (Garnet MDPs) (Archibald et al., 1995; Bhatnagar et al.,
2009). The Garnet MDPs are a collection of assessment problems designed to assess the performance
of reinforcement learning algorithms in non-stationary environments. It is convenient to construct
and implement these problems. We utilize the parameter n; to regulate the proportion of the next
states accessible for each state-action pair (s, a). Following the same setting as (Grand-Clément and
Kroer, 2021a), we set n;, to be 0.2 and random uniform rewards to be in [0, 10]. The discount factor
A is fixed at 0.8, and parameter ¢ = 0.1. For each MDP instance, we generate the sampled kernels
p',...,p", considering N small random (Garnet) perturbations around the nominal kernel p°. We
set parameter 6 in Proposition 4.1 to be v/njA.

To test the speed of Bellman update, we run the random instances 50 times for all the algorithms, and
show the average time of them in tables 1, 2 and 3. We can see that our algorithm performs better
than Gurobi and the first-order method. When the states number increases, the running time of our
algorithm keeps a small standard deviation.

We also compare the speed of value iteration for all algorithms using the same convergence criteria:
lv — v < 2Xe(1 — A)~L, which follows (Grand-Clément and Kroer, 2021a). The results are
shown in tables 4, 5 and 6. The runtimes that exceed 4000s for L and L, case or exceed 10000s for

Table 3: Comparisons of runtime (average and standard deviation) (millisecond) of Bellman updates
for all algorithms in L, norm.

N=5=4
Algorithm 10 20 30 40
Fast 0.06 (0.1) 021(0.) 0.47 (0.2) 0.80 (0.4)
Gurobi 0.92 (0.1) 7.33(0.8) 26.50 (3.8) 65.22 (7.9)
FOM 144.92 (981.1)  166.19 (966.5) 237.24 (978.2)  366.74 (976.6)

24



Ly case will be shown as “—”. We can see from tables 4, 5 and 6 that our algorithm always performs
better than Gurobi and the first-order method. We point out that our algorithm generally becomes
better as the state number increases.

Table 4: Runtime (second) of value iteration for all algorithms in L; norm.

N=§=A4
Algorithm 10 20 30 40
Fast 3.6164 34.0930 116.4698  281.9007
Gurobi 5.7131 202.0723  1967.9552 —
FOM 202.4039 3578.1377 — —

Table 5: Runtime (second) of value iteration for all algorithms in Ly norm.

N=S=A
Algorithm 40 50 60 70
Fast 2198.5413 4847.4994 72237663 12387.5601
Gurobi 2543.9588 4861.4114 7949.4562 22096.7578
FOM — — — —

Table 6: Runtime (second) of value iteration for all algorithms in L., norm.

N=S§=A
Algorithm 10 20 30 40
Fast 0.0045 0.0348 0.1371 0.3181
Gurobi 0.0907 0.8746 3.9243 11.5589
FOM 16.4344 97.44293 1131.5260 3933.8585
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