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Abstract

Transformer is a new kind of calculation paradigm for deep learning which has
shown strong performance on a large variety of computer vision tasks. However,
compared with conventional deep models (e.g., convolutional neural networks),
vision transformers require more computational resources which cannot be easily
deployed on mobile devices. To this end, we present to reduce the energy con-
sumptions using adder neural network (AdderNet). We first theoretically analyze
the mechanism of self-attention and the difficulty for applying adder operation
into this module. Specifically, the feature diversity, i.e., the rank of attention map
using only additions cannot be well preserved. Thus, we develop an adder atten-
tion layer that includes an additional identity mapping. With the new operation,
vision transformers constructed using additions can also provide powerful feature
representations. Experimental results on several benchmarks demonstrate that
the proposed approach can achieve highly competitive performance to that of the
baselines while achieving an about 2˜3× reduction on the energy consumption.

1 Introduction

Transformers [27] have prevailed in natural language processing (NLP) due to its superior capability
in capturing long-distance dependencies based on self-attention mechanism. Some homologous
large-scale models, e.g., BERT [10] and GPT-3 [2] provide a significant performance improvement
on learning powerful language representations from unlabeled text. The great breakthrough of
transformers in NLP has sparked particular interest from the vision community in applying transformer
to computer vision (CV) tasks such as image recognition [11, 35, 25, 26], object detection [3, 38, 33],
and image generation [4, 12, 17, 15].

The high-power consumption of transformer-based models has blocked them from being deployed
on mobile devices, e.g., smart phone, camera, and micro-robots. Therefore, it is necessary to
study efficient transformers which can be embedded on mobile devices with affordable computation
resources. Wu et.al. [31] present an efficient Long-Short Range Attention with two groups of heads,
respectively for local context and long-distance relationship modeling. Wang et.al. [28] decompose
the original dot-product attention into smaller attentions through linear projections. Unfortunately,
previous arts mainly focus on compressing and accelerating transformers for language processing
tasks, which motivates us for building efficient transformers for computer vision applications.

Various attempts have been made on compressing CNN models, including quantization [13, 16],
pruning [19, 30, 23] and distillation [5, 25]. Beyond these methods, Chen et.al. [6] propose Adder
Neural Network (AdderNet) for building efficient deep learning models, which avoids massive
computational cost by replacing the convolutional operation by using `1-distance between input
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(a) vanilla AdderNet (b) vanilla Transformer (c) Adder Transformer

Figure 1: Visualization of features in different neural networks on MNIST dataset. From left to right
are vanilla AdderNet, vanilla Transformer and Adder Transformer, respectively.

signals and weights instead of correlation. Xu et.al. [32] further utilize knowledge distillation
technique to make AdderNet achieve better performance than CNN. Song et.al. [24] successfully
apply AdderNet on single image super-resolution (SISR) task by learning identity mapping with
self-shortcuts and implementing high-pass filter with a learnable power activation. Wang et.al. [29]
conduct practical implementations on hardware platform (FPGA), and verify its superior performance
in suppressing chip area and power consumption. Thus, we are motivated to investigate the feasibility
of replacing multiplications by additions in transformer architectures.

However, it is very hard to directly transport the existing success of AdderNet on CNNs to trans-
formers, since their basic calculation paradigm is completely different. In particular, the existing
works mainly focus on the additiveization of convolutional kernel filters which do not involve the
unique linear transformations and self-attention mechanisms in transformers. To this end, we propose
a general adder linear transformation operation and adder self-attention mechanism to replace the tra-
ditional multiplication version in both feed-forward modules and self-attention layers in transformer
model. Specifically, we utilize `1-distance between query and key instead of scaled dot-product to
measure the distance between them. For the attention module, we find that the directly using additions
could cause more information concentrating on a few largest singular values, leading to a decay of
the attention map rank, i.e., the functionality of the attention mechanism cannot be well preserved.
Thus, we propose to insert an extra identity mapping in the adder attention module to solve the
decay. This operation can also homogenize the information distribution of the adder attention map.
Meanwhile, we provide the detailed feed-forward and back-propagation for optimizing the adder
vision transformer with stable training process. As a result, we can obtain comparable performance
using the proposed adder transformer models to that of original baselines while reducing about 3× of
the overall energy consumption on various benchmark models and datasets.

2 Preliminaries and Motivation

In this section, we briefly revisit the basic related components, including AdderNet and transformer.

Adder Neural Networks (AdderNet). Denote filters in a convolutional layer of neural networks
as W ∈ Rk×k×cin×cout , the input feature map as X ∈ RH×W×cin , and the output feature map as
Y ∈ RH×W×cout , where k is the kernel size, cin and cout are the number of input channels and
output channels, respectively. The traditional convolutional operation is defined as:

Ym,n,q , X ∗ F =

D∑
i=1

D∑
j=1

cin∑
k=1

S (Xm+i,n+j,k, Fi,j,k,q) . (1)

where S(·, ·) is a pre-defined similarity measure (S(x, y) = x× y for the convolution multiplications
operation). AdderNet [6] maximizes the use of additions by treating the `1-distance between the
input feature map and filter as the similarity measure (i.e., S(x, y) = |x− y| in Eq. 1):

Ỹm,n,q , X ⊕ F = −
D∑
i=1

D∑
j=1

cin∑
k=1

|Xm+i,n+j,k − Fi,j,k,q|. (2)

However the pioneering work only focused on additiveization of CNNs, while ignoring transformers.

Vision Transformers. Vision transformer [11] mainly consists of MHSA (Multi-head Self-Attention),
FFN (Feed-Forward Network) and LN (Layer Normalization).

2



For multi-head self-attention, the inputs X ∈ RN×D are applied with three different linear trans-
formations and output queries Q ∈ RM×N×dq , keys K ∈ RM×N×dk and values V ∈ RM×N×dv ,
where M is total number of heads, dq, dq, dv is the dimension of queries, keys and values for each
head, respectively. Generally, D =Mdq =Mdk =Mdv =Mdh and the multi-head self-attention
is performed as follows:

Am,j,i =

exp

{
Qm,j,:K

T
m,i,:√

dt

}
Zj

, where Zj =

Nkv∑
i=1

exp

{
Qm,j,:K

T
m,i,:√

dt

}
, Om,j,v =

Nkv∑
i=1

Am,j,i · Vm,i,v,

O
′
j,d = Concat (O1,:,:, O2,:,:, · · · , OM,:,:)WO.

(3)
where dt = dh, WO ∈ RD×D denotes the weight matrix of a linear projection layer used to produce
the output values O

′ ∈ RN×D.

From the above statements, transformer has a different structure and computation paradigm compared
to CNNs. Thus, it is necessary to study how to use additions to fulfill the modules.

3 The Proposed Model: Adder Transformer

In this section, we present the Adder Transformer— which implement the multi-head attention module
and FFN module using adder operations. We will present the details in the following subsections and
an illustration of the proposed method can be found in Section A.1 of the supplementary material.

3.1 Adder Linear Transformation

We first consider the linear transformation and FFN layers in transformers. The calculation paradigm
of these two modules is based on fully connected layer, which is equivalent to a special 1x1 convolu-
tion. Therefore, we can use the original computation mechanism of adder convolutional kernel in
this module. Considering weight matrices WQ ∈ RM×dq×D, WK ∈ RM×dk×D, WV ∈ RM×dv×D
in a projection layer of the multi-head self-attention, we maximize the use of additions by taking `1
distance to measure the distance between the weight matrices and input embedding as:

Qm,j,q =

D∑
d=1

−|Xj,d −WQm,q,d |, Km,i,k =

D∑
d=1

−|Xi,d −WKm,k,d |, Vm,i,v =

D∑
d=1

−|Xi,d −WVm,v,d |,

(4)
wherein, m ∈ [1,M ] , j ∈ [1, Nq] , i ∈ [1, Nkv] , q ∈ [1, dq] , k ∈ [1, dk] , v ∈ [1, dv] and generally
we set N = Nq = Nkv as the resulting number of patches and D =Mdq =Mdk =Mdv =Mdh
as the model embedding dimension. The feed-forward network can also be modified directly:

FFNa(X) =W2 ⊕ (W1 ⊕X + b1) + b2, (5)

As mentioned in AdderNet [6], the adder layers output values with large magnitude and should
be followed by a batch normalization layer. Similarly, we apply layer normalization (LN) to scale
the output values of each layer, since LN is widely used in the transformer architecture. In fact,
although LN introduces multiplications, the magnitude of the multiplication can be omitted compared
to the total computation of a layer. The FLOPs of adder MHSA is DM(Nq + Nkv)(dk + dv) +
NqNkvM(dk + dv), and the FLOPs of adder FFN is 2NqDrD, where r is the dimension expansion
ratio. The overall FLOPs of a standard adder transformer block is O (2ND(6D +N)), for regular
setting r = 4, N = Nq = Nkv. The overall FLOPs of multiplication in Layer Normalization are
O(12ND). In practice, given D = 768 and N = 197, the ratio of a standard adder transformer block
with the LN could be estimated as 2ND(6D+N)

12ND ≈ 800, which shows that LN can be easily applied in
adder transformer with tiny extra energy cost.

For back-propagation, directly calculating the partial derivative of output w.r.t input and weight will
lead to a sign update of {−1, 0,+1} value, respectively. Back-propagation using the sign gradient is
detrimental to the efficient updating of the parameters because the direction of the gradient can never
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reach the steepest. Thus, we follow AdderNet [6] to compute the derivative of the `2-norm with a
HardTanh function to prevent gradients from exploding. Back-propagation process is formulated as:

∂Qm,j,q

∂Xj,d
= HT (WQm,q,d −Xj,d),

∂Km,i,k

∂Xi,d
= HT (WKm,k,d −Xi,d),

∂Vm,i,v

∂Xi,d
= HT (WVm,v,d −Xi,d)

(6)
where HT(·) denotes the HardTanh function, and adder linear transformation in FFN modules follows
the same inference and optimization process.

3.2 Adder Multi-Head Self-attention

3.2.1 Inference process in adder multi-head self-attention

Self-attention mechanism can be viewd as the measument of the similarity of input query and key
matrices. The output is usually positively correlated with the value and the correlation is determined
by the magnitude of the attention score after normalization. We design the adder multi-head self-
attention in strict compliance with the above principles which measure the similarity between vectors
with the help of the `1-norm, an effective measure to avoid multiplication operations. Hence, by
calculating `1-distance between each query and key vector, adder multi-head self-attention can be
formulated as:

Am,j,i =
exp

{
−‖Qm,j,:−Km,i,:‖1√

da

}
Zj

where Zj =

Nkv∑
i=1

exp

{
−‖Qm,j,: −Km,i,:‖1√

da

}
, da = 2dt

(
1− 2

π

)
,

(7)

wherein, Q ∈ RM×Nq×dq , K ∈ RM×Nkv×dk , A ∈ RM×Nq×Nkv , m ∈ [1,M ] indicates head index,
j ∈ [1, Nq] , i ∈ [1, Nkv] and generally we set N = Nq = Nkv as number of patches, dt = dh
indicates embedding dimension for each head. 1√

dt
and 1√

da
represent the scaling factor of the

dot-product attention function and adder attention function, respectively.
Theorem 1. Assuming that the components of Qm,j,: and Km,i,: are independent random variables
following normal distribution, the variance of dot-product and `1-distance between Qm,j,: and Km,i,:

can be formulated respectively as follows:

V ar(QT
m,j,:Km,i,:) = dt, V ar (−‖Qm,j,: −Km,i,:‖1) = 2dt

(
1− 2

π

)
, (8)

where the independent assumption is followed by [27] and the proof is provided in Section A.2 of the
supplementary material. According to Theorem. 1, scaling factor 1√

dt
in dot-product attention is to

counteract the variance explosion, and we adjust the scaling factor to match the adder circumstances.

For the process of yielding output values, the model jointly attend to information at different positions
according to the attention map. Specifically, transformer model multiply the attention map with the
value matrix directly to allocate each value with corresponding attention weights as in Eq. 9. For
the projection to the output, we still use additions descibed in Sec. 3.1, where WO ∈ RD×D is the
weight matrix of the projection adder linear layer.

Om,j,v =

Nkv∑
i=1

Am,j,i · Vm,i,v,

Ôm,j,v = LayerNorm(Om,j,v),

O
′
j,d = −

D∑
s=1

∣∣∣∣Concat
(
Ô1,:,:, Ô2,:,:, · · · , ÔM,:,:

)
j,s
−WOs,d

∣∣∣∣ .
(9)

3.2.2 Rank Analysis on Adder Attention

In this section, we analyze the feature representation capability of adder attention by the rank of
attention map. We first perform a spectral analysis of the normalized self-attention map matrix
Ht (Here we use H ∈ RN×N instead of A to represent 2-dimensional attention matrix) and adder
attention map matrix Ha.
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Difference=40

Figure 2: Spectrum analysis of the attention map
in DeiT-Tiny and Adder DeiT-Tiny with N = 197.
The Y-axis represents the cumulative normalized
singular value of the attention mapHt andHa, and
the X-axis represents the index of the eigenvalue.

Specifically, we use DeiT-Tiny model and adder
DeiT-Tiny model on CIFAR-10 dataset. In order
to explore the relationship between the rank of
the two matrices, we apply singular value de-
composition on Ht and Ha over different layer
and heads of the two models, and plot the nor-
malized cumulative singular value over 10000
images. As shown in Figure. 2, the cumulative
singular values of both attention matrices show
a clear long-tail distribution, which indicates
that a few singular values dominate the matrix.
Therefore, the original matrix can be replaced by
a low-rank matrix with small error. In fact, the
long-tail distribution effect of the adder atten-
tion matrix is more skewed than that in common
self-attention matrix, indicating that the rank of
the additive matrix is much lower. For example,
the normalized cumulative singular value of at-
tention matrix reached 0.9 at the 65-th largest
singular value for common self-attention while
at the 25-th largest singular value for adder at-
tention, i.e., main information is concentrated in
the less large singular values for adder attention
and the rank of Ha is lower than Ht. Here we make a theoretical analysis of the above results.
Theorem 2. The attention matrix of adder self-attention Ha can be approximated by a lower rank
matrix with a certain degree of confidence than that of common self-attention Ht, i.e., when:

LB
(
Pr
(
‖Ĥtv −Htv‖ ≤ εt

))
= LB

(
Pr
(
‖(Ĥa ⊕ w)− (Ha ⊕ w)‖ ≤ εa

))
(10)

where LB(·) denotes the lower bound, ⊕ denotes the adder operation in Eq.9, εt, εa > 0, for any
column vector w, v ∈ RN of the value matrix, we have:

Rank(H̃a) < Rank(H̃t) (11)

Proof. We base on the distributional Johnson–Lindenstrauss lemma [18, 1] to finish the proof.

Lemma 1. Let R be a random k ×N matrix, 1 ≤ k ≤ N , with i.i.d. entries from N(0, 1/k). For
any vector u, v ∈ RN , we have:

Pr (‖Ru‖ ≤ (1 + ε)‖u‖) > 1− e−(ε
2−ε3)k/4, (12)

Pr
(
‖uTRTRv − uT v‖ ≤ ε‖uT v‖

)
> 1− 2e−(ε

2−ε3)k/4. (13)

Given an approximation error ε > 0, we define matrices Ĥt, Ĥa to be the approximate low-rank
matrices of Ht, Ha respectively.

Ĥt = HtR
TR, Ĥa = STSHa, (14)

where R be a random k1 × N matrix, 1 ≤ k1 ≤ N , with i.i.d. entries from N(0, 1/k1), S be
a random k2 × N matrix, 1 ≤ k1 ≤ N , with i.i.d. entries from N(0, 1/k2). According to the
Sylvester’s Inequality [14], we have:

rank(Ĥt) ≤ rank(Ht) = k1, rank(Ĥa) ≤ rank(Ha) = k2, (15)

In common self-attention, for row vector x ∈ RN of matrix Ĥt and any column vector v ∈ RN of
the value matrix, according to the union bound [7], we have:

Pr
(
‖Ĥtv −Htv‖ ≤ ε‖Htv‖

)
=Pr

(
‖HtR

TRv −Htv‖ ≤ ε‖Htv
T ‖
)

≥1−
∑
x∈Ht

Pr
(
‖xRTRv − xv‖ > ε‖xv‖

)
,

(16)
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Then according to the second item of the Johnson–Lindenstrauss lemma, we reformulate Eq. 16 as:

Pr
(
‖Ĥtv −Htv‖ ≤ ε‖Htv‖

)
> 1− 2Ne−(ε

2−ε3)k1/4. (17)

Note that Eq. 17 can be viewed as a lower bound of the reliability when using low-rank matrix in
common self-attention to approximate the original attention matrix within a small error range ε, and
the lower bound is LBm = 1− 2Ne−(ε

2−ε3)k1/4 which is determined by k1.

In adder self-attention, for any column vector w ∈ RN of the value matrix, we have:

Pr
(
‖(Ĥa ⊕ w)− (Ha ⊕ w)‖ ≤ ε‖Hae‖

)
=Pr

(
‖(STSHa −Ha)e‖ ≤ ε‖ea‖

)
=Pr

(
‖eT (HT

a S
TS −HT

a )‖ ≤ ε‖ea‖
)

>Pr
(
‖eTa STS‖ − ‖eTa ‖ ≤ ε‖ea‖

)
.

(18)

where all elements in vector e ∈ RN are fixed to 1, and we define ea = Hae. Then according to the
first item of the Johnson–Lindenstrauss lemma, we reformulate Eq. 18 as:

Pr
(
‖(Ĥa ⊕ w)− (Ha ⊕ w)‖ ≤ ε‖Hae‖

)
> 1−Ne−(ε

2−ε3)k2/4. (19)

Note that Eq. 19 can also be viewed as a lower bound of the reliability when using low-rank matrix
in adder self-attention to approximate the original attention matrix within a small error range ε, and
the lower bound is LBa = 1−Ne−(ε2−ε3)k2/4 which is determined by k2. When LBm = LBa we
have k2 = k1 − 4 log 2

ε2−ε3 , which means that the approximate matrix in adder self-attention is much
lower rank than that of common self-attention, then the theorem follows.

According to Theorem 2 and the above analysis, the attention matrix of the adder self-attention
can be approximated by a lower rank matrix, resulting in a skewed distribution of information. To
address this problem, we propose to increase the rank of the attention matrix by a more balanced
distribution of singular values to attenuate the information bias in the attention map. Taking the
singular value index when the cumulative normalized singular value reaches 0.9 as the equivalent
rank of the attention matrix, in practice, we add an Identity matrix to each attention matrix, i.e.,

H̃a = Ha + I. (20)

where Identity matrix I ∈ RN×N . We further investigate the effect of adding an identity mapping.

Proposition 1. Denote the input attention matrix as H ∈ RN×N and an Identity mapping matrix as
I ∈ RN×N . The cumulative normalized singular value function f(·), linear function g(·) and their
difference D(·) are respectively defined as:

f(r) =

∑r
t=1 σt∑N
s=1 σs

, g(r) =
r

N
, D(r) = f(r)− g(r), (21)

where r = 1, 2, ..., N , and σ = [σ1, σ2, ..., σr, σr+1, ..., σN ] (σ1 ≥ σ2 ≥ ... ≥ σN ) represents the
singular value of H , and D(r) ≥ 0. Denote the difference function after performing the operation
H̃ = H + I as D̃(r), and we have the following assertions:

• The first-order difference of f(r) (r = 1, 2, ..., N) is non-negative and the second-order
difference is non-positive, which is consistent with the concave function.

• f(r) is closer to g(r) after performing the operation: D̃(r) ≤ D(r).

• The equivalent rank of H̃ is higher than that of H: Rank(H̃) ≥ Rank(H).

According to Proposition. 1 (The proof is provided in Section A.3 of the supplementary material), the
distribution of singular values is more homogenized through adding identity mapping, Therefore,
self-attention of each patch is reinforced to enable a more balanced distribution of information in
attention map, which increases the rank of the attention matrix. As a result, more information is
recovered in the attention matrix, and is correspondingly beneficial for the model to capture.
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3.2.3 Back-propagation in adder multi-head self-attention

Back-propagation of the attention layer needs to be done with two parts of gradients, namely the
partial derivative of the output w.r.t value and normalized attention score and the partial derivative
of attention w.r.t query and key, respectively. Denote A ∈ RM×Nq×Nkv as the attention map
derived from query and key and Â ∈ RM×Nq×Nkv as the attention map after softmax function. In
self-attention layers, the above partial derivatives are calculated as:
∂Am,j,i

∂Qm,j,q
=

1√
dh
Km,i,q,

∂Am,j,i

∂Km,i,k
=

1√
dh
Qm,j,k,

∂Om,j,v

∂Vm,i,v
= Âm,j,i,

∂Om,j,v

∂Âm,j,i

= Vm,i,v, (22)

For adder attention layer, we directly calculate the partial derivative of attention w.r.t query and
key to conduct to a sign update. We also tried the HardTanh gradient described in Sec. 3.1, but
the sign gradient showed better performance which is described in experiment part. Thus, the
back-propagation process is formulated as:

∂Am,j,i

∂Qm,j,q
=

1√
da
sign(Km,i,q −Qm,j,q),

∂Am,j,i

∂Km,i,k
=

1√
da
sign(Qm,j,k −Km,i,k),

∂Om,j,v

∂Vm,i,v
= Âm,j,i,

∂Om,j,v

∂Âm,j,i

= Vm,i,v,
(23)

4 Experiments

4.1 Experiments on MNIST

To illustrate the effectiveness of the proposed Adder Transformer, we first train a 6 block DeiT-
Tiny [25] on the MNIST dataset. The detailed network structure is shown in the supplemental
material. We use AdamW optimizer [21] with. The batch size is set as 256. The original Deit-
Tiny achieves a 99.46% accuracy with 0.62B multiplications and 0.62B additions. By replacing
the multiplications in linear transformation and self-attention layers with additions, the proposed
model achieves a 99.39% accuracy with 1.24B additions and minor multiplications. We visualize
features in different networks as shown in Figure. 1. In CNNs and vanilla AdderNet, the features are
classified according to their angles [6] or gathered into clusters, since the convolution operation can be
regarded as the cosine distance and adder operation takes `1-distance as the similarity measurement.
The features of vanilla transformer are distributed in an oval shape based on angles due to the
unique computational paradigm. Adder Transformer combines the advantages of both AdderNet and
transformer, and the features are gathered together while at the same time distributed in an oval shape.

4.2 Experiments on CIFAR

We then validate our method through the representative DeiT baselines [25] on CIFAR-10 and CIFAR-
100 dataset. CIFAR-10 (CIFAR-100) dataset is composed of 50k different 32× 32 training images
and 10k test images from 10 (100) categories. We adopt the same data augmentation strategy as that
in DeiT including random crop, random clip, Rand-Augment [8], Mixup [37] and CutMix [36] to
boost the performance of baseline models following. For both model we use AdamW optimizer [21]
and cosine learning rate decay policy with an initial learning rate of 0.000125. We use 5 epochs for
learning rate warm-up [20] with a 0.05 weight decay rate. For all experiments, the image size is set
to be 224×224. We use NVIDIA Telsa-V100 GPUs and train baseline model and corresponding
adder model for same epochs using PyTorch [22] library for fair comparison. Note that the models
are directly trained on CIFAR dataset from scratch instead of finetuning from a pretrained model
from a larger dataset like ImageNet. The experimental results are shown in Table. 1, MNN denotes
the original multiplicative network, while ANN denotes replacing the multiplications in linear
transformation and self-attention layers with additions by the proposed method.

For instance, the DeiT-Base model, the Adder Transformer achieve nearly the same results (94.47% in
CIFAR-10 and 74.49% in CIFAR-100) with MNN (94.83% in CIFAR-10 and 74.75% in CIFAR-100)
with little multiplications. We further calculate the energy consumptions of different models. Values
in both models are 32-bit floating numbers, and the energy consumptions for a 32-bit addition and
multiplication are 0.9pJ and 3.7pJ, respectively [9]. Adder Transformer can obtain an about 2.5×
reduction on energy consumption of the Deit-B model from 80.7BpJ to 32.9BpJ at the cost of little
performance loss. The results in DeiT-S and DeiT-T also suggest the proposed adder transformer can
also achieve comparable performance to those of their baselines with massive multiplications.
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Table 1: Classification results on CIFAR-10 and CIFAR-100 datasets (Training from scratch).
Model Method #Mul. #Add. Energy (pJ) CIFAR-10 CIFAR-100

DeiT-B MNN 17.56B 17.56B 80.7B 94.83% 74.75%
ANN 0.48B 34.64B 32.9B 94.47% 74.49%

DeiT-S MNN 4.60B 4.60B 21.2B 93.22% 73.06%
ANN 0.24B 8.96B 8.9B 92.91% 72.74%

DeiT-T MNN 1.25B 1.25B 5.8B 92.61% 72.58%
ANN 0.12B 2.38B 2.6B 92.38% 72.23%

Table 2: Classification results on ImageNet datasets (Training from scratch).
Model Method #Mul. #Add. Energy (pJ) Top-1 Acc Top-5 Acc

DeiT-B MNN 17.56B 17.56B 80.7B 81.8% 95.6%
ANN 3.32B 31.80B 40.9B 80.4% 94.3%

DeiT-S MNN 4.60B 4.60B 21.2B 79.9% 95.0%
ANN 0.96B 8.24B 11.0B 78.3% 93.6%

DeiT-T MNN 1.25B 1.25B 5.8B 72.2% 91.1%
ANN 0.30B 2.20B 3.1B 70.5% 89.9%

4.3 Experiments on ImageNet

We also conduct experiments on ImageNet dataset. ImageNet is a large scale vision dataset which
consists of 1.2M different 224× 224 pixel training images and 50k test images from 1000 different
categories. We use the same data augmentation and data pre-processing method as that of DeiT.
Networks are trained for 600 epochs with an initial learning rate of 0.0005 and a cosine learning
rate decay. We use 5 epochs for learning rate warm-up [20] with a 0.05 weight decay rate, and
the experiments are conducted on NVIDIA Tesla-V100 GPUs. The first and last block remain the
multiplication. Experimental results are shown in Table. 2. Adder Transformer on DeiT-S achieves
a 78.3% top-1 accuracy and 93.6% top-5 accuracy with 0.96B multiplications and 8.24B additions,
which is slightly lower than the DeiT-S baseline in terms of accuracy but substantially reduce the
energy-inefficient multiplications. The detailed energy costs are also reported in Table. 2. All models
trained on ImageNet can reduce the energy cost for processing a 224×224 image by a factor of about
2×, which demonstrates that our models using additions in intermediate blocks can also achieve
comparable accuracy to those of their baselines with massive multiplications.

4.4 Ablation Study

In this part, ablation studies are conducted to evaluate the effectiveness of the proposed adder linear
transformation and adder self-attention. All experiments in this part is done with DeiT-Tiny network
on the CIFAR dataset.

First we explore the effect of the different gradient calculation methods in back-propagation of
different parts and the identity mapping, as shown in Table. 3. A total of five different settings were
evaluated in this ablation study. The results shows that the optimal gradient calculation method is to
use Hardtanh gradient in linear transformation layer and sign gradient in calculating the attention
map. Besides, adding the identity matrix to the attention map brings more benefit to the performance,
indicating the low rank property of the adder self-attention matrix and the positive effect of identity
matrix on homogenizing the distribution of singular values, as shown in Figure. 2.The attention map
visulization of different models is shown in Figure. 3. It can be observed that for the original adder
transformer the rank of attention matrix is low. After adding the identity matrix, the rank can be well
preserved and is more close to the baseline.

To evaluate the fitness of the proposed adder linear transformation and adder self-attention with
the corresponding multiplicative versions, we take a reference to the mixed model which combines
different types of linear transformation and self-attention. Specifically, we study four combinations: i)
Linear Transformation + Self-attention (i.e., original DeiT-Tiny); ii) Linear Transformation + Adder
Self-attention; iii) Adder Linear Transformation + Self-attention; and iv) Adder linear Transformation
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Table 3: Impact of different components of the proposed adder transformer on CIFAR-10.

Sign update on LT X X
HT update on LT X X X

Sign update on A w.r.t Q and K X X X
HT update on A w.r.t Q and K X X

Identity mapping X
Accuracy(%) 90.17 88.63 89.98 90.31 92.38

(a) MNN, rank=65 (b) ANN, rank=25 (c) ANN with IM, rank=70

Figure 3: Visualization of attention map in different networks on CIFAR-10. From left to right are
Transformer, Adder Transformer w/o or with identity mapping, respectively. The equivalent rank is
denoted as the singular value index when the cumulative normalized singular value reaches 0.9.

+ Adder Self-attention (i.e., our Adder Transformer). For all models we train them on CIFAR-10
and CIFAR-100 to evaluate the performance and the energy cost, as shown in Table. 4. The results
reveal that after either replacing adder linear transformation with the corresponding multiplication
version, the performance on both datasets can have a slight improvement of 0.17% and 0.25% with
an additional 2.9BpJ of energy consumption. For the case in adder self-attention, the performance on
both datasets can also have a slight improvement of 0.07% and 0.08% with an additional 0.2BpJ of
energy consumption. The mixed model results illustrate a good adaptability of the proposed method.

Table 4: Mixed model results on CIFAR-10 and CIFAR-100.

Linear Transformation Self-attention CIFAR-10 CIFAR-100 Energy (pJ)
M M 92.61% 72.58% 5.8B
M A 92.55% 72.48% 5.5B
A M 92.45% 72.31% 2.8B
A A 92.38% 72.23% 2.6B

5 Conclusion

This paper investigates implementing transformers using cheap addition operations. We first theoret-
ically analyze the mechanism of self-attention and the difficulty for applying adder operation into
this module. Specifically, we demonstrate the low-rank property of the attention matrix of the adder
transformer models and propose to homogenize the distribution of singular values through adding an
identity mapping. With the new operation, vision transformers constructed using additions can also
provide powerful feature representations, which shows the potential of the addernet.

Funding Disclosure
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