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ABSTRACT

Diffusion-Based Purification (DBP) has emerged as an effective defense mechanism
against adversarial attacks. The efficacy of DBP has been attributed to the forward
diffusion process, which narrows the distribution gap between clean and adversarial
images through the addition of Gaussian noise. Although this explanation has
some theoretical support, the significance of its contribution to robustness remains
unclear. In this paper, we argue that the inherent stochasticity in the DBP process
is the primary driver of its robustness. To explore this, we introduce a novel
Deterministic White-Box (DW-box) evaluation protocol to assess robustness in the
absence of stochasticity and to analyze the attack trajectories and loss landscapes.
Our findings suggest that DBP models primarily leverage stochasticity to evade
effective attack directions, and their ability to purify adversarial perturbations
can be weak. To further enhance the robustness of DBP models, we introduce
Adversarial Denoising Diffusion Training (ADDT), which incorporates classifier-
guided adversarial perturbations into diffusion training, thereby strengthening the
DBP models’ ability to purify adversarial perturbations. Additionally, we propose
Rank-Based Gaussian Mapping (RBGM) to make perturbations more compatible
with diffusion models. Experimental results validate the effectiveness of ADDT. In
conclusion, our study suggests that future research on DBP can benefit from the
perspective of decoupling the stochasticity-based and purification-based robustness.

1 INTRODUCTION

Deep learning has achieved remarkable success in vari-
ous domains, including computer vision (He et al., 2016), .
natural language processing (OpenAl} 2023), and speech s Loss
recognition (Radford et al.,|2022). However, in this flour- s

ishing landscape, the persistent specter of adversarial at-

tacks casts a shadow over the reliability of these neural o T
models. Adversarial attacks for a vision model involve . White-box
injecting imperceptible perturbations into input images to s

trick models into producing false outputs with high con-
fidence (Goodfellow et al., 2015} [Szegedy et al., 2014]).
This inspires a large amount of research on adversarial de-

fense (Zhang et al., 2019} [Samangouei et al, 2018} [Shafahi Eigure 1: Cqmparison of attgck trajgcto-
et all 2019; [Wang et al|[2023). ries under different evaluation settings.

The attack trajectory in the standard
Diffusion-based purification (DBP) (Nie et al., [2022) has  White-box setting deviates significantly

recently gained recognition as a powerful defense mech-  from the DW-box trajectory and shows
anism against a range of adversarial attacks. EXisting [ower effectiveness.

literature suggests that the robustness provided by DBP is

primarily due to the forward diffusion process that narrows the distribution gap between clean and
adversarial images through the application of Gaussian noise (Nie et al.| [2022; |Wang et al.|[2022).
However, although the reduction of the distribution gap is theoretically proven, its contribution to
DBP robustness has not been sufficiently validated by empirical studies. Meanwhile, it is observed
that the stochasticity of DBP may also contribute to the robustness (Nie et al., |[2022)).
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In light of this, we introduce an alternative perspective that highlights the role of stochasticity
throughout the DBP process as a key contributor to its robustness, challenging the traditional focus
on the forward diffusion process. To evaluate the impact of stochasticity, we employ a Deterministic
White-box (DW-box) attack setting where the attacker has complete knowledge of both the model
parameters and the stochastic elements. Our findings reveal that DBP models significantly lose their
robustness when the process is entirely deterministic to the attacker, thereby emphasizing the critical
importance of stochasticity. Further investigations into attack trajectories and the loss landscape
demonstrate that DBP models do not counter adversarial perturbations by a flat loss landscape as
adversarial training (AT) (Madry et al.,|2018); instead, they rely on stochasticity to circumvent the
most effective attack direction, as depicted in Figure ]

Building on our new perspective regarding DBP robustness, we hypothesize that it can be further
enhanced by improving the capability of the diffusion model to purify adversarial perturbations.
To test this hypothesis, we propose Adversarial Denoising Diffusion Training (ADDT) for DBP
models. This method follows an iterative two-step process: first, the Classifier-Guided Perturbation
Optimization (CGPO) step generates adversarial perturbations; then, the diffusion model training
step updates the parameters of the diffusion model using these perturbations. To better integrate these
perturbations within the diffusion framework, we introduce Rank-Based Gaussian Mapping (RBGM),
which adjusts the adversarial perturbations to more closely resemble Gaussian noise, in alignment with
the theory behind diffusion models. Experiments across various diffusion methods, attack settings,
and datasets suggest that ADDT can consistently enhance DBP models’ robustness and purification
ability. With further empirical analysis and discussions, we argue that future research on DBP should
decouple the robustness based on stochasticity and that achieved by purification, which suggests
two orthogonal directions for improving DBP: (1) enhancing its capability to purify adversarial
perturbations with efficient training methods, and (2) defending Expectation of Transformation (EoT)
attacks by increasing the variance of attack gradients.

Our main contributions are as follows:

* We present a novel perspective on DBP robustness, emphasizing the critical role of stochas-
ticity and challenging the conventional purification-based belief that robustness primarily
stems from reducing the distribution gap via the forward diffusion process.

* We introduce a new Deterministic White-box attack scenario and show that DBP models
depend on stochastic attack gradients to avoid the most effective attack directions, demon-
strating distinct properties compared to robust models obtained by adversarial training.

* Based on the proposed ADDT, we validate that the DBP robustness can be further enhanced
by improving the capability of the diffusion model to purify adversarial perturbations.

2 RELATED WORK

Adversarial training (AT). First introduced by [Madry et al.| (2018])), AT seeks to develop a robust
classifier by incorporating adversarial examples into the training process. It has nearly become the
de facto standard for enhancing the adversarial robustness of neural networks (Gowal et al., [2020;
Rebuffi et al.,[2021f |Athalye et al.,2018). Recent advances in AT harness the generative power of
diffusion models to augment training data and prevent AT from overfitting (Gowal et al.| 2021 Wang
et al.| 2023). However, the application of AT to DBP methods has not been thoroughly explored.

Adversarial purification. Adversarial purification utilizes generative models to remove adversarial
perturbation from inputs before they are processed by downstream models. Traditionally, generative
adversarial networks (GANs) (Samangouei et al.| [2018)) or autoregressive models (Song et al.,2018))
are employed as the purifier model. More recently, diffusion models have been introduced for
adversarial purification, in a technique termed diffusion-based purification (DBP), and have shown
promising results (Song & Ermonl 2019} Ho et al.| 2020; Song et al.| [2020a; Nie et al.| 2022 Wang
et al., 2022; [Wu et al.| 2022} Xiao et al.| [2022]). The robustness of DBP models is often attributed
to the wash-out effect of Gaussian noise introduced during the forward diffusion process. Nie et al.
(2022)) propose that the forward process results in a reduction of the Kullback-Leibler (KL) divergence
between the distributions of clean and adversarial images. |Gao et al.|(2022) suggest that while the
forward diffusion process improves robustness by reducing model invariance, the backward process
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restores this invariance, thereby undermining robustness. However, these theories explaining the
robustness of DBP models lack substantial experimental support.

3 PRELIMINARIES

Adversarial training. Adversarial training aims to build a robust model by including adversarial
samples during training (Madry et al.|2018)). This approach can be formulated as a min-max problem,
where it first generates adversarial samples (the maximization) and then adjusts the parameters to
resist these adversarial samples (the minimization). Formally, this can be represented as:

mingE g ,)~p [maxses L(f(0,z + 9),y)], ey

where L is the loss function, f is the classifier, (x,y) ~ D denotes sampling training data from
distribution D, and B defines the set of permissible perturbation 4.

Diffusion models. Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.,[2020) and Denoising
Diffusion Implicit Models (DDIM) (Song et al.l2020a)) simulate a gradual transformation in which
noise is added to images and then removed to restore the original image. The forward process can be

represented as:

@, = Voo + V1 —ae, e~N(0,I), (2
where x is the original image and x; is the noisy image. &; is the cumulative noise level at step ¢
(1 <t < T, where T is the number of diffusion training steps) . The model optimizes the parameters
6 by minimizing the distance between the actual and predicted noise:

0" = argmingEz, ;¢ [He —eg(Varxo + V1 — Qe t)Hg} , 3)
where €g is the model’s noise prediction, with €9, we can predict & in a single step:
i?o = (wt — \/1 —atﬁg* (wt,t)) /\/at, (4)

where & is the recovered image. DDPM typically takes an iterative approach to restore the image,
removing a small amount of Gaussian noise at a time:

201 = (21— e (@) ) VT B+ Ve ©)

where (3, is the noise level at step ¢, &;_1 is the recovered image in step ¢t — 1, € is sampled from
N (0, I). DDIM proposes to speed up the denoising process by skipping certain intermediate steps.
Recent work suggests that DDPM may also benefit from a similar approach (Nichol & Dhariwal,
2021). Score SDEs (Song et al., 2020b)) give a score function view of DDPM and further lead to the
derivations of DDPM++ (VPSDE) and EDM (Karras et al.| 2022). In this diffusion process, the
noise terms € in Equation (2)) and Equation (5) represent the key stochastic elements that govern the
randomness of the process. These stochastic elements will be further elaborated in Appendix

Diffusion-based purification (DBP). DBP uses diffusion models to remove adversarial perturbation
from images. Instead of using a complete diffusion process between the clean image and pure
Gaussian noise (between ¢ = 0 and ¢t = T'), they first diffuse x to a predefined timestep ¢t = ¢*(t* <
T') via Equation , and recover the image &, via the reverse diffusion process in Equation .

4  STOCHASTICITY-DRIVEN ROBUSTNESS OF DBP

4.1 STOCHASTICITY AS THE MAIN FACTOR OF DBP ROBUSTNESS

As discussed in Section[2] previous studies primarily attribute the robustness of DBP to the forward
diffusion process, which introduces Gaussian noise to both clean and adversarial images, thereby
narrowing the distribution gap between them (Wang et al., 2022} |[Nie et al., 2022). As a result,
adversarial perturbation can be “washed out” by Gaussian noise. However, it is also found that the
robustness of DiffPure can be reduced by switching the SDE sampling to ODE, which introduces less
randomness, implying the potential contribution of stochasticity to DBP robustness (Nie et al., [2022]).

To assess whether stochasticity has a significant influence on DBP robustness, we implement DDPM
and DDIM within the DiffPure framework (Nie et al., 2022), resulting in DPpppy and DPppyw,
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respectively. Note that the original implementation of DiffPure adopts a DDPM discretization
form of DDPM++ (VPSDE), which has minimal differences compared to DDPM. Therefore, the
main difference between DiffPure and our DPpppy is that DiffPure employs a larger UNet. DDIM
builds upon DDPM and introduces a deterministic ODE-based reverse process. DPpppy introduces
Gaussian noise in both the forward and reverse processes, making the entire process stochastic. In
contrast, DPpppv introduces Gaussian noise only in the forward process, and the reverse process
is deterministic. The clean and robust accuracy of the two models on CIFAR-10 (Madryl 2017}
Krizhevsky et al.l 2009) under white-box PGD+EoT (Athalye et al.| [2018) attack (as detailed in
Section [6.1)) are presented in Figure 2] (Clean and White). Although DPpppy achieves higher clean
accuracy, it exhibits lower robust accuracy under adaptive white-box attacks, consistent with the
observation by [Nie et al.|(2022). However, this comparison is insufficient to reveal the full role of
stochasticity in DBP robustness, as the forward process of both DDPM and DDIM are stochastic.

To isolate the impact of stochasticity, we intro-
duce a new attack scenario called the Determin-

. . [e.0}

istic White-Box (DW-box) setting. In this set- ~ 3 o ’ﬂquDDPM T ‘
ting, the attacker has full knowledge of notonly = 100| % % . _ 3 = N
the model parameters but also the specific sam- 2 R j;- g ~

led values for the stochastic el - 5 S - S
pled values for the stochastic elements used dur 5 50 ~ w NPT R
ing evaluation, effectively rendering the diffusion 3 |:||:| |:| % |:||:| s %
process deterministic from the attacker’s perspec- < ol == 0= |
tive. This setting can be realistic if the attacker is T T T
aware of the seed or initial random state for the Clean White DW pwa DW rev DW Bom

pseudo-random number generation utilized by the

model. Concretely, we define three levels of at- Figure 2: DPpppy and DPpppy robust accu-
tacker knowledge for our evaluations: (1) the con- racy under different attack settings on CIFAR-10.
ventional White-box setting, where the attacker Both models lose most of their robustness only
has access to the model parameters but not the when the attacker knows all stochastic elements
stochastic elements; (2) DWgyq-box/DWgey-box (DWgoh-box for DPpppy and DWgyq-box for
setting, where the attacker knows the stochastic el-  DPppny).

ements in the forward/reverse process, in addition

to the model parameters; (3) DWgqm-box setting, where the attacker has full knowledge of the model
parameters and all the stochastic elements in both the forward and reverse processes. Details of these
settings are provided in Appendix [C.2]

We evaluated adversarial robustness on CIFAR-10 using /., attacks (see Section [6.1)). Traditional
theories emphasize forward diffusion as the primary defense mechanism, suggesting that both
DPpppm and DPppyy should behave similarly under the DWrgy,4-box setting. However, if stochasticity
throughout the diffusion process is crucial, DPpppy, which becomes deterministic under the DWgyq-
box setting, should experience a notable reduction in robustness, similar to DPpppys in the DWgo,-box
setting. As shown in Figure|2|, in the DWgy,4-box setting, DPpppy maintains a significant portion of
its robustness, whereas DPpppy loses almost all of its resistance to adversarial attacks. Furthermore,
DPpppMm exhibits a substantial drop in robustness only when the attacker has full access to both
the forward and reverse stochastic elements, as seen in the DWpgy,-box setting. This suggests
that stochasticity across both the forward and reverse diffusion processes plays a critical role in
maintaining robustness, challenging the conventional focus on forward diffusion alone.

Our findings suggest that DBP models primarily use stochasticity to resist adversarial attacks, rather
than mainly depending on forward diffusion to mitigate adversarial perturbations, and it also reveals
that DBP itself lacks the ability to effectively purify adversarial perturbations.

4.2 EXPLAINING STOCHASTICITY-DRIVEN ROBUSTNESS

To elucidate the robustness of DBP models, partic-
ularly under EoT evaluations, we analyze the per-
formance of several DBP models—DiffPure, GDMP,
DPpppMm, and DPpppvi—under white-box attacks with
and without Expectation over Transformation (EoT)

Table 1: Evaluation of state-of-the-art DBP
methods, EoT significantly influences the
evaluation accuracy (%) of model robustness.

DiffPure GDMP (MSE) DPpppy DPppiv

iterations (denoted as EoT10 and EoT1, respectively). Clean 3926 91.80 8504 8838
: PGD20-EoTl  69.04 53113 6025 5459
The results shown in Table[T|suggest that these DBP ~ FOD20-FoTt = 69.04 00 D3 1

models remain robust under white-box attacks, with
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EoT evaluations resulting in moderate reductions in robustness. The detailed discussion on the
selection of PGD and EoT steps is provided in Appendix [E]and Appendix [A]

To gain deeper insights, we visualize the attack trajectories using t-SNE, projecting them onto an
xy-plane with loss values represented along the z-axis. We compare trajectories for three types of
attacks: white-box without EoT (White-box), white-box with EoT (White-box-EoT), and Deter-
ministic White-box (DW-box). As shown in Figure[I] the trajectories exhibit high variance across
all settings, reflecting the stochastic nature of DBP models. Specifically, DW-box attacks lead to a
significant increase in loss values, whereas white-box attacks, even with EoT, result in only moderate
increases. This suggests that stochasticity prevents attackers from finding the optimal attack direction.
Specifically, due to the significant variance of the attack gradients, even if the EoT direction is an
accurate estimation of the mean gradient direction, it may not be completely consistent with the
most effective direction corresponding to the DW-box attack, thus resulting in a decline in attack
performance. Additional evidences are provided in Appendix [B]

Further analysis of the loss landscape, presented = pw-box 2, White-box-EoT
in Figure 3] illustrates key differences between
White-box-EoT and Deterministic White-box
attacks. The trajectory of the White-box-EoT 4
attack diverges from the Deterministic White-
box direction, resulting in a flatter loss land- -
scape along the White-box-EoT path. This be- P
havior indicates that White-box-EoT attacks fail

uf
.
o]

i

Loss

6
4

to identify the most effective direction due to 105 g w00
the stochastic nature of DBP models. In con- o 4727 — B
trast, the Deterministic White-box attack in- 0 20 40 60 80 0 20 40 60 80

duces a sharp increase in loss, revealing that Vanilla Ours

when stochasticity is removed, the model be- Figure 3: Visualisation of attack trajectories for

SomesTrEore gu(querabé@f;o afdversarigl lp e:tnqrbezl- White-box-EoT attacks and DW-box attacks on the
1ons. 1 hese INAINgS Citier trom modets tramned ¢ landscape. The loss landscape is steep in the

using AT’ v&fllhere tge Wl.l()le loss landscaape teqd? direction of the DW-box attack. The plot is based
to remain tlat and resistant across adversaria on the first 128 images of CIFAR-10.

directions (Shafahi et al., 2019)).

To conclude, it is suggested that instead of possessing a flat loss landscape, DBP models rely on
stochasticity to evade the most effective attack directions. Note that while certified defense methods
like random smoothing also incorporate stochasticity (Xiao et al.,|[2022; |Carlini et al., 2022)), their
mechanisms and implications differ from those of DBP methods, as discussed in Appendix D]

5 TOWARDS IMPROVING THE PURIFICATION CAPABILITY OF DBP

Based on the analysis from Section ] although the stochasticity-driven robustness of DBP does
not depend on the flatness of the loss landscape, flattening the landscape can still benefit the DBP
robustness given the non-trivial loss increment along the EoT direction. To achieve a flat loss
landscape, we need to introduce adversarial samples to the training of the DBP models and minimize
the loss on them. From the perspective of adversarial purification, this amounts to improving the
diffusion model in its ability to purify adversarial perturbations.

To this end, we propose Adversarial Denoising Diffusion Training (ADDT), which integrates
adversarial perturbations into the training of the diffusion model in DBP. ADDT employs an iterative
two-step procedure: (1) Classifier-Guided Perturbation Optimization (CGPO), which generates
adversarial perturbations by maximizing the classification error of a pre-trained classifier; (2) Diffu-
sion Model Training, which updates the diffusion model using these perturbations to improve its
capability of adversarial purification.

Integrating adversarial perturbations into diffusion training poses a challenge due to the Gaussian
noise assumption inherent in diffusion models. To address this, we introduce Rank-Based Gaussian
Mapping (RBGM), a technique designed to transform adversarial perturbations into a form consis-
tent with the Gaussian noise assumption. RBGM renders the perturbations more “Gaussian-like”,
facilitating their integration into the diffusion training process.
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Figure 4: Overview of Adversarial Denoising Diffusion Training (ADDT). ADDT alternates between
a CGPO step (left grey box) to refine the perturbations with a frozen diffusion model and classifier,
and a training step (right grey box) to update the diffusion model with the refined perturbation.
Throughout the process, RBGM is used to make the perturbation more “Gaussian-like”.

An overview of ADDT is illustrated in Figure [ with pseudocode in Appendix [G] The following
subsections detail the components of ADDT.

5.1 ADVERSARIAL DENOISING DIFFUSION TRAINING

Classifier-Guided Perturbation Optimization (CGPO) step. In this step, we aim to refine adver-
sarial perturbations § in a way that maximizes the classification error of a pre-trained classifier C.
The process starts by reconstructing a clean image & from the perturbed input x} using the diffusion
model P. P(0,x},t) denotes a one-step diffusion process, which takes the noisy input &} and time
step ¢ and reconstructs the image &, following the formulation in Equation (). The classifier C
is then applied to this reconstructed image & to predict a label. To maximize the prediction error
compared to the true label y, the optimization objective for refining & can be defined as:

0" = arg m?X Emo,t& [L (C (P (03 :Cil‘ (m07 €, 65(5))7 t)) ’ y)] 5 (6)

where L(-,y) denotes the loss function used to measure the discrepancy between the classifier’s
predicted label and the true label y. During the optimization, since RBGM is non-differentiable,
we accumulate the gradient €5(d) to §. Notably, the classifier in this process serves purely for
semantic guidance and does not have to be consistent with the protected model. Further discussions
on cross-classifier performance are provided in Section[6.2]

Diffusion Model Training step. The goal of this step is to update the diffusion model parameters
to accurately recover the original image x( from a perturbed version x;. As depicted on the right
side of Figure[d] The model is optimized to subtract both the Gaussian noise and the RBGM-mapped
adversarial perturbations, effectively denoising the input. The optimization objective is defined as:
o 2

A o - PO g
where the expectation is taken over the distribution of original images xg ~ D, time steps t ~
U{1,...,T}), and Gaussian noise € ~ N (0, I'). The perturbed input &} is formed from the original
image o, Gaussian noise €, and the RBGM-mapped adversarial perturbation €5(6), as defined in
Equation . The scaling factor /@t /+/1 — @; ensures consistency with the standard formulation of
DDPM/DDIM loss. This factor reflects the expected squared error between the noise introduced to
the input and the noise removed by the diffusion model during denoising.

0" = arg mein Ezo.t,e

5.2 RANK-BASED GAUSSIAN MAPPING
Traditional diffusion models operate under the premise that input images are corrupted by independent

Gaussian noise €. To ensure that the perturbations remain Gaussian-like while capturing adversarial
characteristics, we introduce the Rank-Based Gaussian Mapping (RBGM), illustrated in Figure 5]

6
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Table 2: Clean and robust accuracy (%) on CIFAR- Table 3: Clean and robust accuracy (%)
10 obtained by different DBP methods. All meth- on DPpppy.  ADDT improve robust-
ods show consistent improvement fine-tuned with ness across different NFEs, especially
ADDT. at lower NFEs (*: default DDPM gener-
ation setting; -: classifier only).
Diffusion model DBP model | Clean ly
- - [ 9512 000 146 r— ADDT

DDIM DPpomt 8838 42.19 70.02 Dataset  NFEs ‘ Clean 1 Iy ‘Clcan [

DPppivi+ADDT 88.77 46.48 71.19 - [9512 000 146 | 9512 0.00 146

GDMP (No Guided) (Wang et al [2022] | 91.41 40.82 69.63 514951 2178 36.13 | 59.96  30.27 41.99

GDMP (MSE) (Wang et al 2022} | 91.80 40.97 70.02 CIFAR-10 10 | 73.34 3672 5547 7891 43.07 62.97

DDPM GDMP (SSIM) (Wang et al.|[2022] | 92.19 38.18 68.95 20 | 8145 4521 6523 | 83.89 d8.44 69.82

DPpoe 85.04 4727 69.34 50 85.54 46.78 68.85| 85.45 50.20 69.04

DPpppy+ADDT 85.64 51.46 70.12 100* | 85.94 47.27 69.34 | 85.64 51.46 70.12

COUP (Zhang et al|2024] 9033 50.78 7119 S| 7658 Q00 24k |ege 0% b

DDPM++ DiffPure 89.26 55.96 75.78 10 | 3408 1055 1924 | 40.62 14'55 27'25

DiffPure+ADDT 89.94 62.11 76.66 CIFAR-100 20 2‘8:05 17:68 30:66 53:32 18:65 36:13

EDM DPgpm (Appendixq 86.43 62.50 76.86 50' 55.57 20.02 37.70 | 59.47 22.75 40.72

DPepy+ADDT (Appen ix ‘ 86.33 66.41 79.16 100* | 57.52 20.41 37.89| 59.18 23.73 41.70

The RBGM function, denoted by €5(d), takes

: : L Ut (D) pigriion Ouput (a(8) S

a perturbation & as input. The key idea is to o “oee s

preserve the rank ordering of the elements in & o 7 “ i A

but replace their actual values with those from — oo ___.hReeM [ -

a standarii Gazl}ssian. dis:ribution. Sfpft:}cliﬁcally, T ;;m:pl; 7G;ufs;iafn;q;i;e 77777 Z - ;g ; ;; ;;: :-:

we sample a Gaussian tensor € of the same VIV T VL |

dimensilc))ns as 8. We then sort the elements B0TOZDZ R =L XX I%g’ 1

of both & and €, respectively in ascending or- | Input(§)  Perturbation v v v |

der. By mapping the sorted elements of § to the ] @ m ? " ? u ? ’ 18 }

corresponding elements of €5, we obtain €5(4), Output (£4(8)) u Comm @ for)os) 8 1
|

which approximates Gaussian-distributed but re-
tains the structural information of 8. To further
enhance the Gaussian nature of the noise, we Figure 5: Rank-Based Gaussian Mapping. RBGM
mix the RBGM-mapped perturbation with addi- trims the input to follow Gaussian distribution. It
tional random Gaussian noise. samples a Gaussian noise and then replaces ele-
ments in the input with those from the Gaussian

By combining the RBGM-induced perturbation noise, matched according to their respective ranks.

with Gaussian noise, we generate an adversarial
input @} as follows:

zi(xo, €,€5(0)) = Varxo + /1 — AV1 —ave + A1 — aes(6), ®)

where \; modulates the level of adversarial perturbation. This ensures that the overall noise remains
largely independent of x( and that the perturbations do not overwhelm the denoising model’s learning
capabilities. We determine \; using the following formulation:

= YO
t 1_ata

where the c1ip function limits \; between \,,,;,, and \,,,... Additional details and discussions about
RBGM can be found in Appendix [K]

)\t = Clip(’yt)\unita )\mina )\mam)v (9)

6 EXPERIMENTS AND DISCUSSIONS

6.1 EXPERIMENT SETUPS

Classifier. We train a WideResNet-28-10 for 200 epochs following the methods in (Yoon et al., 2021}
Wang et al.,[2022), achieving 95.12% accuracy on CIFAR-10 and 76.66% on CIFAR-100 dataset.

DBP timestep. For the diffusion forward process, we adopt the same timestep settings as Diff-
Pure (Nie et al., [2022). In continuous-time models, such as the VPSDE (DDPM++) variant, with
the forward time parameter 0 < ¢ < 1, we set t* = 0.1, which strikes a balance between noise
introduction and computational efficiency. For discrete-time models, such as DDPM and DDIM,
where t = 0,1, ..., T, we similarly set the timestep to ¢t* = 0.1 x T'. Additional settings and results
on DPgpy are provided in Appendix m
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Robustness evaluation. We em- Table 4: Clean and robust accuracy (%) on CIFAR-10, obtained
ploy PGD20+EoT10 (Athalye| by different classifiers. ADDT (WRN-28-10 guidance) improves
et al.,|2018)) for assessing model  robustness in protecting different subsequent classifiers. (*: the
robustness. For £.-norm attacks, classifier used in ADDT fine-tuning).

we set the step size « = 2/255

. . Model Classifier ‘Cleanva?i”a I Clean ?DT I

and the maximum perturbation an o b |C w _f
. VGG-16 (Simonyan & Zisserman|2014] | 84.77 41.99 66.89| 85.06 46.09 67.87
e = 8/255, while for ¢3-norm ResNet-50 (He e al.[12016) 83.11 44.04 67.58| 83.84 48.14 67.87
_ DPpppm-1000 WRN-28-10* (Zagoruyko & Komodakis!|2016) | 85.94 47.27 69.34| 85.64 51.46 70.12
attacks, we use @ = 0.1 and WRN-70-16 (Zagoruyko & Komodakis|Z016] | 88.43 48.93 70.31| 87.84 52.54 70.70
: ViT-B (Dosovits ; 5.45 4561 69.53| 85.25 48. .92

€ = 0.5. Due to the hlgh compu- iT-B (Dosovitskiy et al.]2020) 8 61 69 85 8.63 69.9
. VGG-16 (Simonyan & Zisserman|2014] | 87.16 29.00 61.82| 87.55 35.06 66.11
tational cost of EoT attacks, we ResNel-50 (He ot al 112016} 86.04 3174 62.11| 86.57 38.77 65.82
DPppiv-i00 WRN-28-10% (Zagoruyko & Komodakis|2016) | 88.96 43.16 67.58 | 88.18 47.85 70.61
evaluate our models on the first WRN-70-16 (Zagoruyko & Komodakis|20T6] | 8440 39.16 68.36| 84.96 47.66 69.14
. ViT-B (Dosovitskiy et al.|| 2020} 88.77 34.38 65.72| 88.48 41.02 68.65

1024 images for CIFAR-10 and

0 g DP, WRN-28-10* (Zagoruyko & Komodakis}{2016) | 86.43 62.50 76.86| 86.33 66.41 79.16
CIFAR-100 datasets. EDM  WRN-70-16 (Zagoruyko & Komodakis||2016] | 86.62 65.62 76.46 | 86.43 69.63 78.91

ADDT. ADDT fine-tuning is

guided by the pre-trained WideResNet-28-10 classifier. For the CIFAR-10 dataset, we utilize the
pre-trained exponential moving average (EMA) diffusion model from Ho et al.|(2020)), which has been
converted into the Huggingface Diffusers format by Fang et al.[(2023)). For the CIFAR-100 dataset,
we fine-tune this CIFAR-10 diffusion model over 100 epochs. In CGPO, we set the hyperparameters
to Aunit = 0.03, Apin = 0, and \,,q, = 0.3, and iteratively refine the perturbation § for 5 steps.
Additional details regarding computational cost are provided in Appendix [P|

6.2 DEFENSE PERFORMANCE UNDER DIFFERENT CONDITIONS

Effectiveness of ADDT on different DBP models. We apply ADDT to a set of diffusion models
and apply DiffPure-style DBP with the refined models. The comparison on clean and robust accuracy
with the baseline and other DBP models is presented in Table[2] It shows that ADDT effectively
enhances the robustness of these models.

Performance on different classifiers. We evalu- Table 5: Clean and robust accuracy (%) on
ate the cross-model protection ability of ADDT fine- CIFAR-10 fine-tuned with different training
tuned models by applying the diffusion model trained ~samples. (None: no fine-tuning)

with WRN-28-10 guidance to other classifiers. The

results in Table [ indicate that the adversarial pu- Model  Training samples | Clean I ly
rification ability of these diffusion models could be None 8594 4727 6934
transferred to different classifiers with various archi- DDPM Ms%lear‘]d . ggg? 325; ggég
. . ~-guide . B R
tectures. Notably, using a DPgpym with WRN-28- CGgpo 8564 5146 70.12
10 Guidance training, we achieve 69.63% [, robust None 8896 4316 6758
accuracy on a WRN-70-16 classifier. This demon- DDIM Clean 88.87 4141  67.19
Iy . . MSE-guided 89.36 4092  67.68
strates the feasibility of ADDT as it does not require CGPO 9318 47.85  70.61

classifier-specific fine-tuning.

Performance under acceleration. Speeding up the diffusion process by omitting intermediate steps
has become a common practice in the use of diffusion models (Nichol & Dhariwall 2021} [Song
et al.| [2020a). Hence, we evaluate the robustness of accelerated DBP models. The computation
cost is measured by the number of neural function evaluations (NFEs), which indicates the number
of evaluation steps performed during the DBP backtracking process. For our experiments, we set
t* = 0.1 x T and accelerate the process by excluding intermediate time steps. For example, with 5
NFEs, the time steps for the DBP reverse process would be ¢ = [100, 80, 60, 40, 20, 0]. The results
in Table E] validate the effectiveness of ADDT in improving the robustness of accelerated DPpppym
models. Note that the performance of DPpppy varies significantly between different values of NFEs.
This may be explained by the fact that DDPM introduces stochasticity (Gaussian noise) at each
reverse step; with fewer reverse steps, its stochasticity reduces. Additionally, the generation capability
of DDPM is sensitive to skipping of intermediate steps. We also conducted an evaluation of DPpppy
models, as detailed in Appendix [H

6.3 ABLATION STUDY AND ANALYSIS

RBGM. We compare the generative ability of diffusion models fine-tuned from the same pre-trained
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models using two different perturbations: RBGM-
mapped perturbations and /., perturbations. This
evaluation is conducted by comparing their Fréchet
Inception Distance (FID) scores (Heusel et al., [2017)),
as shown in Table[6l The results show that diffusion
models fine-tuned with RBGM-mapped perturbations
maintain generation quality comparable to the vanilla
diffusion model, while models directly fine-tuned
with [, perturbations without RBGM show degraded

Table 6: FID score of DDPM for CIFAR-
10 fine-tuned to different perturbations (the
lower the better). Fine-tuning with RBGM-
mapped perturbations yields lower FID scores
than [, perturbations (without RBGM).

Vanilla Clean Fine-tuning ADDT ADDT w/o RBGM
3.500

FID 3.196 5.190 13.608

performance. We also observe that training with RBGM-mapped perturbations generalized bet-
ter to different attacks. Experimental details and additional tests are presented in Appendix M|

CGPO. We analyze the effect of fine-tuning us-
ing different training samples in Table[5] Specif-
ically, we compare the performance of samples
generated with classifier guidance in the CGPO
step, referred to as “CGPO”, against those gen-
erated with Mean Squared Error (MSE) loss,
noted as “MSE-guided”. The evaluation results
are presented for DDPM with 100 NFEs and
DDIM with 10 NFEs. Results demonstrates
that samples generated by CGPO significantly
outperform MSE-guided samples in enhancing

’[IDDPDDPM[“]DPDDIM ‘
—_ 1 L 100 = —
S'0Ee | 0/5% e |
g6 Sdg | 6025 g3
£ 40 o | 40 =
3 20 ﬂﬂ ~ 3 20 il
Q
< HHHE=l ,EEE
White DW W hite DW
without ADDT with ADDT

DBP robustness.

Revisiting DBP robustness. We re-examine
robustness under the Deterministic White-box
setting by comparing the performance of dif-
fusion models with and without ADDT fine-

Figure 6: Revisiting robustness under Determinis-
tic White-box setting. ADDT improves robustness
under both White-box and Deterministic White-
box setting, implying that ADDT strengthens the
models’ ability to purify adversarial inputs.

tuning, as shown in Figure [6] The fine-tuned models show significantly higher robust accuracy
under the DW-box setting, indicating improved non-stochasticity-based robustness brought by
ADDT. Further experiments across different models and NFEs in Appendix [N] confirm these ro-
bustness improvements. We also compare the loss landscapes of ADDT fine-tuned models and
vanilla diffusion models, as shown in Figure[3] This comparison shows that our method effectively
smooths the loss landscape of DBP models and enhance its ability to purify adversarial perturbations.
Evaluation with stronger PGD+EoT attacks. To balance computational cost and attack strength,
we primarily employ the PGD20+EoT10 configuration in our evaluations. To further validate the
efficacy of ADDT under stronger attack settings, we assess its performance using the more challenging
PGD200+E0T20 setup. The results presented in Table[7|and Table 0] show that under these intensified
attacks, ADDT’s robust accuracy experiences a moderate 5% drop compared to the PGD20+EoT10
setting. Nonetheless, across various settings and datasets, ADDT consistently demonstrates superior
robust accuracy to the baseline.

6.4 SCALING TO MORE COMPLEX AND HIGH-DIMENSIONAL DATA

To evaluate the scalability of DBP Table 7: Robust accuracy (%) on CIFAR-10 under more PGD
and ADDT on more complex and and EoT iterations.
high-dimensional datasets, we ex-

. . . Model PGD200+E0T20 PGD20+E0T10
tend our experiments to include Tiny- Vanilla ({c) ADDT ({s) | Vanilla ({oc) ADDT ({o)
ImageNet (Le & Yang| 2015) and DPoormt 41.02 46.19 4727 51.46

_ DPppiv 36.23 41.11 43.16 47.85
ImageNet-1k (Deng et al} [2003). For DiffPure 48.93 55.76 55.96 62.11

Tiny-ImageNet, we trained the diffu-
sion model from scratch for 200 epochs, followed by fine-tuning with ADDT for an additional 50
epochs, guided by a pretrained WRN-28-10 classifier. For ImageNet-1k, the diffusion model was
trained from scratch for 12 epochs and then fine-tuned with ADDT for 8 epochs, using a pretrained
ResNet-101 classifier as guidance.

As shown in Table [§] and Table [0l ADDT successfully enhances the robustness of DBP on these
complex datasets, while the improvement may be limited. Similar to the characteristics of adversarial
training on classifiers, effective up-scaling of ADDT may require sufficient model capacity and a
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Table 8: Clean and robust accuracy (%) on Table 9: Clean and robust accuracy (%)

Tiny-ImageNet with WRN-28-10 classifier. on ImageNet-1k with ResNet-101 classi-

ADDT improves DBP robustness on Tiny- fier. All experiments are conducted un-

ImageNet (-: classifier only). der [, perturbation bound of € = 4/255.
Mol | ctean T | cln e Metric Vanilla ADDT

7137 0.00  0.00 - - -
56.15 13.57 48.54 Clean Accuracy 80.31 80.20

DPpppy. 5713 1182 46.68
DPponiice | 6035 479 3975 | 6045 586 4082 PGD20+EoT10  46.92  48.02
DPepy | 57.03 1914 46.00 | 5645 20.61 47.95 PGD200+EoT20 3531  35.83

large amount of data, and our results in Table 2] have demonstrated the benefits of applying a larger
diffusion model in DBP. However, efficient training methods specialized for DBP models can be a
promising direction for future studies.

In addition, we observe that the strong EoT attacks on images of higher resolution are computationally
intensive. Specifically, our evaluation with PGD200+EoT20 on 1024 images of the size 224 x 224
requires approximately 7 days on 8 NVIDIA RTX 4090 GPUs. Therefore, we argue that the up-scaling
in data dimension can also imply significantly increased computational costs for the attacker.

6.5 DISCUSSIONS ON IMPROVING STOCHASTICITY-BASED DBP ROBUSTNESS

As analyzed in Section [4.2] the DBP robustness can be primarily attributed to the high variance
of the stochastic attack gradients. We argue that increasing the variance of attack gradients can
improve the stochasticity-based robustness of DBP models by reducing the effectiveness of EoT
attacks. Specifically, on the one hand, higher variance means higher errors in the estimation of the
expected attack gradient direction with a fixed number of samples, and to reduce the error, more EoT
steps are required. On the other hand, higher variance also suggests that the expected deviation of the
DW-box attack gradient (which suggests the most effective attack direction) deviates more from the
EoT attack gradient, even if the estimation of the mean attack gradient is accurate. As discussed in
Section[4.2] such deviation leads to lower increase in classification loss for one attack step, suggesting
that a successful attack may not be achieved or require more PGD steps.

To increase the variance of attack gradients, an intuitive approach is to introduce more stochasticity.
As an initial experiment, we augment the DBP framework’s stochasticity by integrating a Corrector
sampler. Specifically, Song et al.|(2021)) develop a Predictor-Corrector (PC) sampler framework.
While standard VPSDE (DDPM++) implementations typically use only the predictor component, we
add a Corrector sampler to increase stochasticity in the reverse diffusion process, thereby boosting
the overall variance of attack gradients. As detailed in Appendix [J} our preliminary results indicate
that this modification improves the robustness of DBP models against adaptive White-box attacks.
However, there is a trade-off: the model’s clean accuracy decreases slightly. These observations
align with the findings of Nie et al.|(2022)), where randomizing the diffusion timesteps also leads to
robustness improvements at the cost of clean accuracy, as well as with prior research on stochastic
preprocessing defenses (Gao et al., [ 2022).

7 CONCLUSION

This study offers a new perspective on the robustness of Diffusion-Based Purification (DBP), empha-
sizing the crucial role of stochasticity and challenging the traditional view that robustness is mainly
derived from minimizing the distribution gap through the forward diffusion process. We introduce a
Deterministic white-box (DW-box) attack scenario and show that DBP models are based on stochastic
elements to evade effective attack directions and lack the ability to purify adversarial perturbations,
demonstrating distinct properties compared to models trained with Adversarial Training. To fur-
ther enhance the robustness of DBP models, we develop Adversarial Denoising Diffusion Training
(ADDT) and Rank-Based Gaussian Mapping (RBGM). ADDT integrates adversarial perturbations
into the training process, while RBGM trims perturbations to more closely resemble Gaussian dis-
tributions. Experiments across various diffusion methods, attack settings, and datasets suggest the
effectiveness of ADDT. In summary, this study highlights the decoupling of stochasticity-based and
purification-based robustness of DBP models for deeper analysis, and suggests combining them for
better robustness in practice.

10
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A INFLUENCE OF EOT ITERATIONS ON DBP ROBUSTNESS EVALUATION

In this section, we examine how the number of EoT iterations influences the DBP robustness
evaluation. As previously discussed in Section[d.1] the Deterministic White-box attack could find
the most effective attack direction. To quantify the impact of EoT iterations, we compare the attack
direction of the standard White-box-EoT across various numbers of EoT iterations with that of the
Deterministic White-box.

See Figure[7)for a visual explanation, where the red line shows the DBP accuracy after attack, and the
blue line shows the similarity between the attack directions of the White-box-EoT and Deterministic
White-box. The results show a clear trend: increasing the EoT iterations raises the similarity between
the attack directions and reduces model accuracy. However, both the increase in similarity and the
decline in accuracy decelerate with further iterations.

Balancing computational cost and evaluation accuracy, we chose the PGD20-EoT 10 configuration
for our robustness evaluation.
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Figure 7: Robust accuracy (%) and gradient similarity on DPpppy; for CIFAR-10, obtained by
different EoT iterations. As the number of EoT iterations increases, the gradient similarity between
the White-box-EoT attack direction and the Deterministic White-box attack direction increases and
the robust accuracy decreases.

B DBP MODELS EMPLOYING DIFFERENT STOCHASTIC ELEMENTS CANNOT
BE ATTACKED ALL AT ONCE

Previous research has questioned whether stochasticity can improve robustness, arguing that it can
produce obfuscated gradients that give a false sense of security (Athalye et al.l[2018)). To investigate
this, we implement DWgy,i-box, a semi-stochastic setting that restricts the stochastic elements to a
limited set of options. Our results show that stochasticity can indeed improve robustness, even when
the attacker has full knowledge of all the possible options for stochastic elements.

Building on the concept of Deterministic White-box, we further propose DW epi-128 to explore whether
stochasticity can indeed improve robustness. Unlike under Deterministic White-box, where the
attacker attacks a DBP model under the exact set of stochastic noise used in the evaluation, DWemi-128
relaxes the stochastic elements to a limited set of options, the attacker should simultaneously attack
over 128 different sets of stochastic noise. It uses the average adversarial direction from these 128
noise settings (EoT-128) to perturb the DBP model. To understand the impact of stochasticity, we
analyze the changes of the model loss under DW-box attack and DW i 128 attack. We plot these
changes by adjusting a factor k to modify an image x with a perturbation o, evaluating the loss
at x + ko where k varies from —16 to 16. We generate perturbations with [, Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015) with magnitude 1/255. The plot is evaluated using
WideResNet-28-10 with DPpppy over the first 128 images of CIFAR-10 dataset.

As Figure|8|shows, in the Deterministic White-box setting, the perturbations significantly increase
the loss, proving their effectiveness. However, for DWni.108, Where the attack spans multiple noise
setting, the increase in loss is more moderate. This suggests that even when the attackers are fully
informed about the stochastic noise choices, stochasticity still improves the robustness of the DBP.
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Figure 8: Impact of stochasticity on perturbation efficacy. Perturbations created under DWp,i-box
setting are less potent compared to DW-box setting. For non-adversarial perturbations, we randomly
assign each element a value of either 1/255 or —1/255.

This challenges the notion that there exists a vulnerable direction that is effective for all stochastic
noise.

C IMPACT OF ATTACKERS’ KNOWLEDGE ON ROBUSTNESS: COMPARISON OF
ATTACK SETTINGS

This appendix delves into the influence of varying levels of attackers’ knowledge about the stochastic
components in diffusion processes on the robustness of diffusion-based models. We specifically
assess the individual contributions of the forward and reverse diffusion processes to model robustness
across different attack scenarios.

C.1 STOCHASTIC ELEMENTS IN THE DIFFUSION PROCESSES

To elucidate the impact of the attacker’s knowledge, it is crucial to understand the stochastic elements
integral to the diffusion processes, which are pivotal for the model’s robustness.

In the forward diffusion process, Gaussian noise is incorporated into the input data to derive a noisy

version I:
Z't:\/O_[tiL'ﬁ“\/].*éétEf, (10)
where €7 ~ N(0, I) is sampled once per input.

In the reverse diffusion process, the model progressively denoises x; through iterative steps. For the
Denoising Diffusion Probabilistic Model (DDPM), the reverse process is inherently stochastic:

1 1—Olt
T 1= — | Tt — ———,€9(2, t) | + , 11
t—1 \/@( t m 9(.,,,f)> Ot€t (11)

where €; ~ A/(0, I) is sampled at each reverse step. In contrast, for the Denoising Diffusion Implicit
Model (DDIM), the reverse process is deterministic, and no noise {¢;}7_; is added.

C.2 ATTACK SETTINGS AND ATTACKER KNOWLEDGE

We delineate four distinct attack scenarios, each characterized by the extent of information available
to the attacker, particularly concerning the Gaussian noise variables in the diffusion process. Table[I0]
provides a summary of the attacker’s knowledge in each scenario.

In the conventional white-box attack setting, the attacker possesses comprehensive knowledge of the
model architecture and parameters but lacks insight into the stochastic elements used during inference
(ey and {Et}tT:ﬂ- The DWgyq setting grants the attacker knowledge of the Gaussian noise in the
forward diffusion process (¢y). Conversely, the DWg., setting provides the attacker with knowledge
of the Gaussian noise introduced during the reverse diffusion steps ({et}Tzl). The DWgy, setting
offers the attacker complete access to all stochastic elements, € and {¢; };_,. By manipulating the
attacker’s knowledge in this manner, we isolate the individual effects of the forward and reverse
diffusion processes on model robustness.
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Table 10: Information accessible to the attacker in different attack settings. ¢y denotes the Gaussian
noise in the forward process, and {¢;}7_; represents the Gaussian noise in the reverse process.

Attacker’s Knowledge White-box DWgwa DWgrey DWagoin
Model Architecture and Parameters v v v v
Input Images and Class Labels v v v v
Forward Process Noise € X v X v
Reverse Process Noise {e;} X, X X v v

C.3 IMPLICATIONS OF THE ATTACKER’S KNOWLEDGE OF STOCHASTIC ELEMENTS

The attacker’s capability to craft potent adversarial examples is significantly influenced by their
knowledge of the stochastic elements in diffusion processes. When these elements are unknown to
the attacker, they must independently sample noise variables, leading to discrepancies between their
approximations and the actual behavior of the victim model. Conversely, if the attacker is privy to the
exact noise variables used during inference, they can precisely mimic the model’s behavior, markedly
boosting the efficacy of their attack.

Attacker Without Knowledge of Stochastic Elements. In scenarios where the attacker lacks
access to specific noise variables ¢ and {e;}7_;, the model’s output becomes unpredictable from the
attacker’s viewpoint. The attacker must then optimize the expected value of the loss function over
the distribution of these stochastic elements. The optimization problem for devising an adversarial
example 2°Y is formulated as:

l'adv = arg m EEf,{Et} [,C (f(wadv;6f7 {Et}),g/)} ) (12)

ax
|z —z|| <6

where ¢ specifies the permissible perturbation magnitude, £ is the loss function, f represents the
model’s output given the input and stochastic elements, and y is the actual class label.

Attacker With Knowledge of Stochastic Elements. Should the attacker possess exact knowledge
of the noise variables ¢; and {e;}7_; utilized during the model’s inference, they can accurately
emulate the victim classifier’s behavior. The stochastic processes become deterministic from the
attacker’s perspective, facilitating the formulation of the optimization problem as:

e =arg max L (f(ﬂfadv§ ers {et}), Z/) : (13)

|z —z|| <6

This precise knowledge allows the attacker to adopt the exact noise that will be used during the target
evaluation, allowing effective evaluation.

C.4 EFFECT OF ATTACKER’S KNOWLEDGE ON MODEL ROBUSTNESS
We test the robustness of DDPM under these four settings, and Table encapsulates the result.

Table 11: Robust accuracy (%) of DDPM under different attack settings.

Attack Setting Robust Accuracy (I)
Conventional White-Box Attack 47.27
DWgwa 45.41
DWReV 35.25
DWgo 16.80

Conventional White-Box Attack. In this setting, the attacker fully understands the model’s
architecture and parameters but lacks knowledge of the stochastic elements (e and { et}thl) used
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during inference. The model’s output remains unpredictable due to the stochasticity of both diffusion
processes, making it challenging for the attacker to generate effective adversarial examples (reaching
robust accuracy of 47.27%).

DWgya. Here, the attacker is aware of the Gaussian noise ¢y used in the forward diffusion process
but not of the noise {¢;}7_; in the reverse process. This partial knowledge allows the attacker to
accurately simulate the forward process, reducing uncertainty in this phase. However, the reverse
process remains unpredictable. The slight decrease in robust accuracy to 45.41% suggests that
while forward process stochasticity contributes to robustness, its effect is somewhat diminished when
compromised.

DWpg,y. In this scenario, the attacker knows the noise variables {¢; }7_; used in the reverse diffusion
steps but not the forward process noise €. This knowledge enables the attacker to align their strategy
more closely with the actual behavior of the model during reverse diffusion, resulting in a more
noticeable drop in robust accuracy to 35.25%. The reverse process’s stochasticity appears to play a
more critical role in model robustness compared to the forward process.

DWgon. When the attacker has comprehensive knowledge of both the forward and reverse process
noise variables, they can replicate both diffusion processes accurately, eliminating any stochasticity
from their perspective. This complete predictability allows for precise adversarial example crafting,
leading to a significant reduction in robust accuracy to 16.80%. This demonstrates that the combined
stochastic elements are crucial for maintaining robustness; when fully exposed, the model’s defense
mechanisms are substantially weakened.

D THE ROLE OF STOCHASTICITY IN DBP COMPARED TO CERTIFIED
DEFENSE METHODS

In this appendix section, we delve deeper into the role of randomness in Diffusion-Based Prediction
(DBP) models and contrast it with its role in certified defense methods such as randomized smooth-
ing (Cohen et al.,[2019). While both approaches incorporate stochasticity, their mechanisms and
implications for adversarial robustness differ significantly.

» Conventionally, the classification models discussed in the studies of adversarial robustness
can be viewed as mappings from input space X to the label space Y. However, DBP
additionally involves a random variable € € E that determines the random sampling in the
forward and reverse processes (which can be the random seed in implementation). Hence, a
DBP model f can be viewed as the mapping f : (X, E) — Y.

Previous studies on randomized smoothing treat the randomized model f as a mapping
f+ X — Py, where Py is the space of label distribution. Typically, the final prediction can
be formulated as F'(z) = arg max.[f(z)]., i.e., the class ¢ with the highest probability in
the output distribution f(z). Apparently, F' deterministically maps X to Y, consistent with
the conventional models.

Recent studies on DBP also regard the model as f : X — Py, without explicitly studying
the role of €. The key difference between DBP and randomized smoothing is that the final
prediction for an input x is directly sampled from the distribution f(x) for once, instead of
sampling multiple times to approximate F(x) as in randomized smoothing.

In this paper, we revisit DBP by treating the randomized model f as the mapping f :
(X, E) — Y and studying the role of ¢ € E as an input of f. From this perspective, the
conventional adversarial setting assuming full knowledge of the model parameters (but not
€) is not a complete white box, which motivates us to study the DW-box setting.

» From our perspective, we can clearly point out the difference between DBP and randomized
smoothing in terms of the loss landscape. Given an input xg, the local loss landscape for
a DBP model f is not deterministic as it also depends on €. Although the expected loss
landscape over ¢ € E may be smooth, it does not suggest the robustness of DBP, as € is
fixed during a single inference run of DBP. Indeed, our study suggests that given zy and a
fixed €g, the local landscape of DBP is likely not smooth. In contrast, the loss landscape of a
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randomized smoothing model F' may be smooth as it is the average landscape over multiple
€. To conclude, we argue that the random noise itself may not smooth the loss landscape,
but the average over random noises may.

E ATTACK METHOD AND SETTINGS

Previous assessments of DBP robustness have often utilized potentially unreliable methods. In partic-
ular, due to the iterative denoising process in diffusion models, some studies resort to mathematical
approximations of gradients to reduce memory constraints (Athalye et al.,|2018)) or to circumvent the
diffusion process during backpropagation (Wang et al.,[2022). Furthermore, the reliability of AutoAt-
tack, a widely used evaluation method, in assessing the robustness of DBP models is questionable.
Although AutoAttack includes a Rand version designed for stochastic models, Nie et al.|(2022) have
found instances where the Rand version is less effective than the Standard version in evaluating DBP
robustness.

To improve the robustness evaluation of diffusion-based purification (DBP) models, we implement
several modifications. First, to ensure the accuracy of the gradient computations, we compute the
exact gradient of the entire diffusion classification pipeline. To mitigate the high memory requirements
in diffusion iterative denoising steps, we use gradient checkpointing (Chen et al.||2016) techniques
to optimize memory usage. In addition, to deal with the stochastic nature of the DBP process, we
incorporate the Expectation over Transformation (EoT) method to average gradients across different
attacks. We adopt EoT with 10 iterations, and a detailed discussion of the choice of EoT iterations
can be found in Appendix [A] We also use the Projected Gradient Descent (PGD) attack instead of
AutoAttack for our evaluation Our revised robustness evaluation revealed that DBP models, such
as DiffPure and GDMP, perform worse than originally claimed. DiffPure’s accuracy dropped from a
claimed 70.64% to an actual 55.96%, and GDMP’s from 90.10% to 40.97%. These results emphasize
the urgent need for more accurate and reliable evaluation methods to properly assess the robustness of
DBP models. Similar evaluation protocols are also applied in|Chen et al.| (2023)); Kang et al.| (2024).

F EXPERIMENTAL SETTING OF VISUALIZATION OF THE ATTACK TRAJECTORY

We visualize the attack by plotting the loss landscape and trace the trajectories of EoT attack under
White-box setting and the Deterministic White-box setting in Figure [3] We run a vanilla PGD20-
EoT10 attack under White-box setting and a PGD20 attack under Deterministic White-box setting.
We then expand a 2D space using the final perturbations from these two attacks, draw the loss
landscape, and plot the attack trajectories on it. Note that the two adversarial perturbation directions
are not strictly orthogonal. To extend this 2D space, we use the Deterministic White-box attack
direction and the orthogonal component of the EoT attack direction. Note that the endpoints of both
trajectories lie exactly on the loss landscape, while intermediate points are projected onto it. The plot
is evaluated using WideResNet-28-10 with DPpppy over the first 128 images of CIFAR-10 dataset.

G PSEUDO-CODE OF ADDT

The pseudo-code for adopting ADDT within DDPM and DDIM framework is shown in Algorithm [T}

H ADDT RESULTS ON DPppmuv

As shown in Table the performance of DPpppy is less sensitive to the number of function
evaluations (NFEs). Additionally, ADDT consistently improved the robustness of DPppyy.

'We discover a bug in the Rand version of AutoAttack that causes it to overestimate the robustness of DBP.
After fixing this, AutoAttack gives similar results to PGD attacks, but at a much higher computational cost. We
discuss this in detail in Appendix E}
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Algorithm 1 Adversarial Denoising Diffusion Training (ADDT)

Require: «x, is image from training dataset, y is the class label of the image, C'is the classifier, P is one-step
diffusion reverse process and 6 is it’s parameter, L is CrossEntropy Loss.
for xo, y in the training dataset do
t ~ Uniform({1,...,T})

Vo

T—o;

1:

2

3 At = c11ip(7VtAunit; Amins Amax ), Where 7y =
4. Init § to a small random vector.

5:  for 1 to ADDTjterations dO

6: e~ N(0,1I)

7 € = RBGM(J, €)

8: z = Vo + /1 — A2/1 —are + /1 — are
9: =06+ VoL(C(P(x¢,t),y))

10: end for
11:  e~N(0,1)

12: € =RBGM(,€)

13: Tt :\/atmo+\/1—)\%\/1—Et6+)\z\/1—at€/

14:  Take a gradient descent step on:
Vol S (o — Pla,1))]3
15: end for

Diffusion model eg predicts the Gaussian noise added to the image, adopting Equation (@) in the paper, we

have P(z¢,t) = (x; — /1 — areo(, 1)) /Var

Table 12: Clean and robust accuracy (%) on DPpppv. ADDT improve robustness across different
NFEs (*: default DDIM generation setting, -: classifier only ).

Vanilla ADDT
Clean loo ly Clean loo ly

- 9512 0.00 146 | 95.12 000 146
5 89.65 42.19 68.65 | 88.57 47.27 70.61
10* 88.96 43.16 67.58 | 88.18 47.85 70.61

Dataset NFEs

CIFAR-10 5 | 8789 4170 69.24 | 88.67 48.63 69.73
S0 | 8896 4248 6885 | 8857 46.68 69.24
100 | 8838 4219 70.02 | 8877 4648 71.19
~ 1 7666 000 244 | 7666 000 244
5 | 6211 1543 3574 | 6279 17.58 38.87
ClFAR00 107 | 6221 1533 3652 | 6445 2002 3926

20 63.67 15.62 37:89 6523 18.65 40.62
50 6240 1631 37.79 | 63.87 19.14 39.94
100 63.28 1523 36.62 | 66.02 18.85 39.84

I ADOPTING VPSDE(DDPM++) AND EDM MODELS IN DBP

In the previous discussion of the robustness of DBP models, as detailed in Section @ our focus
was primarily on the DDPM and DDIM models. We now extend our analysis to include VPSDE
(DDPM++) and EDM (Karras et al.,[2022) models. VPSDE (DDPM++) is the diffusion model used
in DiffPure.

From a unified perspective, diffusion process can be modeled by stochastic differential equations
(SDE) (Song et al., 2021). The forward SDE, as described in Equation (IE[) converts a complex
initial data distribution into a simpler, predetermined prior distribution by progressively infusing
noise. This can also be done in a single step, as shown in Equation (I5)), mirroring the strategy of
DDPM described in Equation (2). Reverse SDE, as explained in Equation (I6), reverses this process,
restoring the noise distribution to the original data distribution, thus completing the diffusion cycle.

dz = f(z,t)dt + g(t)dw, (14)
por(x(t) | 2(0)) =
5% (Bimax—Bmin) — 55 L2 (Bonax— B 5 15
N (m(t); 67273 (Bmax*/@miu)iftﬂminaz(o)7 I _ Iefgt (/Bmax*ﬂmiu)*tﬂmiu) , te [0, 1] ( )
dz = [f(z,t) — g*(t) Vg log pi(x)] dt + g(t)dw. (16)
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The reverse process of SDEs also derives equivalent ODEs Equation for fast sampling and exact
likelihood computation, and this Score ODEs corresponds to DDIM.

dz = |f(z.0) ~ 39t Vo logpi()| i (7

By modulating the stochasticity, we can craft a spectrum of semi-stochastic models that bridge pure
SDEs and deterministic ODEs, offering a range of stochastic behaviors.

EDM provides a unified framework to synthesize the design principles of different diffusion models
(DDPM,DDIM,iDDPM (Nichol & Dhariwall, [2021), VPSDE,VESDE (Song et al.|[2021)). Within
this framework, EDM incorporates efficient sampling methods, such as the Heun sampler, and
introduces optimized scheduling functions o (¢) and s(¢). This allows EDM to achieve state-of-the-art
performance in generative tasks.

EDM forward process could be presented as:
T =m0 +0(t*)xe, e€~N(0,I), (18)

where we choose o (t*) = 0.5 for clean and robust accuracy tradeoff. And for reverse process, EDM
incorporates a parameter S¢pq, to modulate the stochastic noise infused during the reverse process.
For our experiments, we choose 50 reverse steps (50 NFEs, NFEs is Function of Neural Function
Evaluations), configured the parameters with S,,,;, = 0.01, Sy = 0.46, Spoise = 1.007, and
designate S.pyrn = 0 to represent EDM-ODE, S, = 6 to represent EDM-SDE.

As shown in Table[I3] our ADDT could also increase the robustness of DPgpyy.

Table 13: Clean and robust accuracy (%) on DPgpy for CIFAR-10. ADDT improves robustness in
both DPgpym-spe and DPepm.opE-

Type Vanilla ADDT
P DPgpm-spe DPepm.obe | DPepm-spe DPepm-ope
Clean 86.43 87.99 86.33 87.99
loo 62.50 60.45 66.41 64.16
Iy 76.86 75.49 79.16 77.15

J STRENGTHENING DBP VIA AUGMENTED STOCHASTICITY

Song et al. present a Predictor-Corrector sampler for SDEs reverse process for VPSDE (DDPM++)
(as detailed in Appendix [I| of Song et al.| (2021))). However, standard implementations of VPSDE
(DDPM++) typically use only the Predictor. Given our hypothesis that stochasticity contributes to
robustness, we expect that integrating the Corrector sampler into VPSDE (DDPM++) would further
enhance the robustness of DBP models. Our empirical results, as shown in Table ['lzf], confirm that the
inclusion of a Corrector to VPSDE (DDPM++) indeed improve the model’s defenses ability against
adversarial attacks with [, norm constraints. This finding supports our claim that the increased
stochasticity can further strengthen DBP robustness. Adding Corrector is also consistent with ADDT.
Note that the robustness against /o norm attacks does not show a significant improvement with the
integration of the Extra Corrector. A plausible explanation for this could be that the robustness under
l attacks is already quite strong, and the compromised performance on clean data counteracts the
increase in robustness.

Table 14: Clean and robust accuracy (%) on DPppppy+ for CIFAR-10. Both extra Corrector and
ADDT fine-tuning improved robustness.

Type Vanilla Extra Corrector ADDT ADDT+Extra Corrector

Clean  89.26 85.25 89.94 85.55
loo 55.96 59.77 62.11 65.23
Iy 75.78 74.22 76.66 76.66
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K DISCcUSSION ABOUT RBGM-MAPPED PERTURBATIONS

K.1 MOTIVATION AND ADVANTAGES OF RBGM

In Sectionfd] we discuss the limitations of Diffusion-Based Perturbation (DBP) models in effectively
purifying adversarial perturbations. To overcome these limitations and simultaneously preserve the
generative ability of the diffusion models, we introduce a novel approach: incorporating “adversarially
selected Gaussian noise” into the diffusion training process.

To elaborate, a conventional diffusion forward process is based on the equation:

T = Varro + V1 — e, (19)

where z; represents the noisy image at time ¢, xg is the initial input, & is a time-dependent scaling
factor, and ¢ is random Gaussian noise. Our proposed method, ADDT, modifies this equation to
include an adversarial component:

ze = Varzo + /1= X2 VT —are+ M VT —a e5(6). (20)

In this revised formulation, €5(d) represents the adversarial perturbation, and ); is a parameter that
controls the blend between traditional and adversarial noise. The core objective of ADDT training is
to generate perturbations that emulate the characteristics of Gaussian noise in conventional diffusion
training while incorporating adversarial disturbances.

This introduces our Rank-Based Gaussian Mapping (RBGM) technique, which retains the relative
ordering of perturbation magnitudes while adjusting the values to more closely resemble a Gaussian
distribution. The advantages of RBGM are twofold:

Enhancing statistical consistency. Raw adversarial perturbation values often exhibit non-standard
distributions, and RBGM serves to recalibrate these perturbations, aligning them more closely with a
Gaussian distribution. To elaborate, rather than enforcing a multivariate Gaussian distribution for the
entire perturbation, RBGM ensures that the distribution of individual perturbation values adheres to
Gaussian characteristics.

The benefit of this transformation can be illustrated in Figure f]and Figure[I0} For a fair comparison,
the perturbation values have been normalized. In Figure [0} the original perturbation values display
a wide array of distributions across different images and time steps. After the mapping of RBGM,
these values are transformed to exhibit a uniform Gaussian distribution.

In Figure [T0} the raw perturbations show irregular and inconsistent behavior when mixed with
Gaussian noise at varying ratios. However, after RBGM adjustment, the perturbations and the
mixture exhibit consistent statistics with the pure Gaussian noise. The statistical consistency of the
perturbation values may ease the training of the diffusion model and avoid significant deviation from
the normal diffusion process.

Reducing image-specific dependence. In the training of diffusion models, the Gaussian noise is
independent of specific images or time steps. This approach contrasts with the nature of adversar-
ial perturbations, which are typically tailored to each input. RBGM mitigates this by introducing
stochasticity into the construction of perturbations and merely preserving the ranks of the values of
the image-dependent adversarial perturbations, thus reducing image-specific dependence. This char-
acteristic further ensures the resemblance of ADDT to the diffusion training process and potentially
mitigates the overfitting of training images.

K.2 RBGM-MAPPED PERTURBATIONS PRESERVE ADVERSARIAL CHARACTERISTICS

While RBGM-mapped perturbations are “selected from a Gaussian distribution”, their actual distri-
bution deviates from a pure Gaussian distribution, and are adversarial for models. To substantiate
this claim, we compare the influence of RBGM-mapped perturbations and Gaussian noise on model
performance. In our experiments, we perturb clean images by adding RBGM-mapped perturbations
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Figure 9: Raw perturbation values exhibit diverse distributions across images and time steps. RBGM
maps these perturbations to a uniform Gaussian distribution.
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Figure 10: RBGM ensures that mixing perturbations with Gaussian noise at any ratio yields a
consistent value distribution.

and Gaussian noise, each scaled by a factor of 0.03. The results present in Table [[5]demonstrate that
RBGM-mapped perturbations effectively act as adversarial inputs to the model. These perturbations
drastically reduce the accuracy of a pre-trained clean WRN-28-10 from 95.12% to 4.47%.

Table 15: Comparison of model accuracy under different conditions. RBGM-mapped perturbations
lead to a significant reduction in accuracy compared to Gaussian noise.

Model
WRN-28-10

RBGM-mapped perturbation
4.47

Gaussian noise

81.54

Clean

95.12
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K.3 BLENDING ADVERSARIAL PERTURBATIONS INTO DIFFUSION MODEL TRAINING

In conventional adversarial attacks, perturbations are directly applied to the image, resulting in an
adversarial image:

Tadv = To + 5»
where z is the original input image, and ¢ is the adversarial perturbation. In ADDT, we incorporate
this concept into the diffusion process, redefining the noisy image at time step ¢ as:

2 = V(o +8) + VT e,

To enable the diffusion model to effectively purify adversarial perturbations during training, we
reformulate the above equation by merging the perturbation § with the noise €. This results in:

T =Vaprog+vV1—a; (€+’}/t(5),

where 7y is a scaling factor defined as:

= YA
T VI-a

Since @ is a time-dependent parameter that monotonically decreases from 1 to 0 during the diffusion
process, v spans the range from 0 to co. To ensure the adversarial perturbation remains within a
manageable intensity, we constrain its value to the range between Ay, and Apax.

K.4 RBGM ENHANCES PERTURBATION COMPATIBILITY WITH DIFFUSION MODEL TRAINING

To illustrate how RBGM enhances the compatibility of perturbations with diffusion model training,
we conduct comparative analyses in two scenarios. First, we assess the impact of RBGM on statistical
consistency by comparing Gaussian noise with adversarial perturbations reordered based on Gaussian
noise ranks. Second, we evaluate the effectiveness of RBGM-mapped perturbations in improving
model robustness while maintaining generative performance by comparing them with ¢5-normalized
perturbations.

Gaussian noise vs. adversarial perturbations ordered by Gaussian noise We begin by examining
RBGM’s influence on statistical consistency through two training methodologies:

1. Vanilla: Trained with standard Gaussian noise.

2. ADDT Gaussian reorderea: 1rained with adversarial perturbations reordered according to Gaus-
sian noise ranks. To ensure a fair comparison, the perturbations are normalized to have
a mean of 0 and a variance of 1, as their original magnitudes (derived from accumulated
gradients) are significantly smaller than those of standard Gaussian noise. Note that this
approach—reordering adversarial perturbations based on Gaussian noise ranks—is distinct
from RBGM, where Gaussian noise is reordered based on adversarial perturbation ranks.

The results presented in Table [T reveal that models trained with Gaussian noise reordering using
adversarial perturbation values exhibit lower accuracy on both clean and adversarial samples compared
to vanilla models. This decline in performance underscores RBGM’s ability to enhance perturbation
compatibility with diffusion model training by improving statistical consistency.

Table 16: Comparison of DPpppy accuracy under different conditions and perturbation types. Train-
ing with perturbations reordered by Gaussian noise and adversarial perturbation values degrades
performance.

Vanilla ADDTGgayssian reordered
Clean /4 2 Clean /o lo

5 49.51 21.78 36.13 | 48.40 21.10 33.40
10 73.34 3672 5547 | 71.78 34.07 52.98
20 8145 4521 65.23 | 79.99 4243 64.21
50 85.54 46.78 68.85 | 83.90 46.73 68.17
100 | 85.94 47.27 69.34 | 8454 4698 69.33

NFEs
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RBGM-mapped perturbations vs. {>-normalized perturbations To further investigate RBGM’s
effectiveness in managing adversarial perturbations, we compare:

1. ADDT: Trained with RBGM-mapped perturbations.

2. ADDT, normatizea: Trained with raw adversarial perturbations, scaled to match the {5 norm
of standard Gaussian noise. This scaling ensures that the perturbations share the same (o
norm as those mapped by RBGM, which we refer to as ¢o-normalized perturbations.

As shown in Table [[7} models trained with ¢>-normalized perturbations tend to perform better under
{5 attacks in some scenarios (possibly because these perturbations are more similar to those generated
by /5 attack during testing). ADDT generally achieves better results. This advantage is particularly
pronounced under ¢, attacks and in scenarios with higher NFEs. Furthermore, as shown in Table
ADDT yields a lower FID value, reflecting better preservation of generative capabilities.

Table 17: Comparison of DPpppy accuracy under different perturbation conditions. Training with
ADDT generally achieves better results. This advantage is particularly pronounced under /., attacks
and in scenarios with higher NFEs.

ADDT ADDTZg—normalized
Clean /4 12 Clean /o lo

5 59.96  30.27 41.99 | 60.40 28.47 44.58
10 7891 43.07 6297 | 79.29 4190 63.72
20 83.89 48.44 69.82 | 83.59 47.85 67.68
50 8545 50.20 69.04 | 84.83 49.12 69.24
100 | 85.64 5146 70.12 | 8497 4995 69.29

NFEs

Table 18: FID scores of DPpppy under different training conditions. Training with ADDT result in
lower FID score compared to ¢, normalization.

Clean fine-tuning ADDT  ADDTy, normalized
FID 3.50 5.190 5.678

As discussed in Appendix [K]] the goal of utilizing RGBM to generate perturbations is to mimic the
characteristic of Gaussian noise, hence aligning ADDT closer to traditional diffusion model training.
In this context, both RBGM and ¢ normalization serve as approximations of Gaussian noise. Yet,
RBGM provides a more precise approximation, enhancing robustness and maintaining the generative
performance more effectively than /5 normalization.

L. EVALUATION WITH FIXED AUTOATTACK

AutoAttack (Croce & Heinl [2020)), an ensemble of White-box and Black-box attacks, is a popular
benchmark for evaluating model robustness. It is used in RobustBench to evaluate
over 120 models. However, (2022) finds that the Rand version of AutoAttack, designed
to evaluate stochastic defenses, sometimes yields higher accuracy than the Standard version that is
intended for deterministic methods. Our comparison of AutoAttack and PGD20-EoT10 in Table [I9]
also shows that the Rand version of AutoAttack gives higher accuracy than the PGD20-EoT10 attack.

We attribute this to the sample selection of AutoAttack. As an ensemble of attack methods, AutoAttack
selects the final adversarial sample from either the original input or the attack results. However, the
original implementation neglects stochasticity and considers a adversarial sample to be sufficiently
adversarial if it gives a false result in one evaluation. To fix this, we propose a 20-iteration evaluation
and selects the adversarial example with the lowest accuracy. The flawed code is in the official GitHub
main branch, git version a39220048b3¢9 f2cca9a4d3a54604793c68ecaTe, and specifically in lines
#125, #129, #133-136, #157, #221-225, #227-228, #231 of the file ’autoattack/autoattack.py’. We
will open source our updated code and encourage future stochastic defense methods to be evaluated
against the fixed code. The code now can be found at: https://anonymous.4open.science/r/auto-attack-
595C/README.md.
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After the fix, robust accuracy under AutoAttack drops by up to 10 points, producing similar results to
our PGD20-EoT10 test results. However, using AutoAttack on DPpppy with S = 1000 took nearly
25 hours, five times longer than PGD20-EoT10, so we will use PGD20-EoT10 for the following test.

Table 19: AutoAttack (Rand version) and PGD20-EoT10 performance on DBP methods for CIFAR-
10 (the lower the better). The original AutoAttack produces high accuracy (%), after fixing, it achieves
similar results to PGD20+EoT10 attack.

oo I
Method ‘AutoAttack AutoAttackgieg PGD20-EoT10 ‘ AutoAttack  AutoAttackgieg PGD20-EoT10
DiffPure | 6211 56.25 55.96 8184 76,37 7578
DPooevions | 57.81 46.88 48.63 71.68 71.09 7227
DPppnvioo | 50.20 40.62 4473 77.15 70.70 7168

Table 20: Clean and robust accuracy (%) on different DBP methods for CIFAR-10, evaluated with
AutoAttackappr (Rand version). All methods show consistent improvement when fine-tuned with
ADDT.

Vanilla ADDT
Method ‘ Clean 1o b ‘ Clean 1o b
Difffure | 8926 5625 7637 | 89.94 5820 77.34
DPpppvi | 8594 4688 7109 | 8564 48.63 7227
DPppni | 8838 4062 7070 | 8877 4473 7168

M COMPARING RBGM-MAPPED PERTURBATIONS WITH [, PERTURBATIONS

In Section [6.3] we briefly explore the generation capabilities of diffusion models trained with RBGM-
mapped and [, perturbations. Here, we provide further experiment and delve deeper into their
robustness comparison. To train with [, perturbations, we adjust ADDT, replacing RBGM-mapped
perturbations with [, perturbations. Here, instead of converting accumulated gradients to Gaussian-
like perturbations, we use a 5-step projected gradient descent (PGD-5) approach. For fair comparison,
we also set Aypnit = 1, Amin = 0, Anaz = 10 and refer to this modified training protocol as ADDT;__.

Table 21: Clean and robust accuracy (%) on DBP models trained with different perturbations for
CIFAR-10. While ADDT simultaneously improves clean accuracy and robustness against both /3 and
l attacks. ADDT;__ primarily improves performance against [, attacks.

Vanilla ADDT ADDT,__
Method Dataset ‘ Clean 1o b ‘ Clean Lo Iy ‘ Clean L Iy
CIFAR-10 | 8594 4727 934 | 8564 5146 7012 | 8447 5264 68.55

DPpoea-1000 CIFAR—IOO‘ 57.52 2041 37.89‘ 59.18  23.73 41.70‘ 57.81 2324 40.04

DP CIFAR-10 | 8838 4219 70.02 | 88.77 4648 71.19 | 8848 5049  70.31
DDIM-100 CIFAR-100 | 6328 1523  36.62 | 66.02 1885 39.84 | 6484 2031 39.36

We evaluate the clean and robust accuracy of ADDT and ADDT;__ fine-tuned models. These
models exhibit different behaviors. As shown in Table 2] while Gaussian-mapped perturbations can
simultaneously improve clean accuracy and robustness against both [5 and [, attacks, training with
l perturbations primarily improves performance against [, attacks.

N ADDITIONAL EXPERIMENTS UNDER DETERMINISTIC WHITE-BOX SETTING
Evaluation across different models We extend our analysis to include VPSDE and EDM models
under the proposed Deterministic White-Box (DW-box) attack scenario. The results, presented in

Table 22} demonstrate that ADDT consistently improves robustness across different models.

Evaluation across different NFEs We also investigate the robustness under the Deterministic
White-box Setting across varying NFEs. The comparison of performance between vanilla models and
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Table 22: DW-box accuracy (%) under /., perturbations for various models. ADDT consistently
improves robustness across all models.

Model  Vanilla ADDT

DPpppm 16.80 39.16
DPppim 4.98 17.09
DiffPure  22.76 51.63
DPgpum 13.33 32.94

ADDT fine-tuned models, shown in Figure [TT} highlights that ADDT consistently enhances model
performance at different NFEs. This improvement is particularly pronounced at lower NFEs, further
confirming that ADDT enables diffusion models to more effectively counter adversarial perturbations.

50 {
40 —— ADDT, White-box (EoT)
£ 301 ——  ADDT, DW-box
8 20 | I RLTTED Vanilla, White-box (EoT)
< T T e Vanilla, DW-box

10 {

10! 102
NFEs

Figure 11: Revisiting Deterministic White-box Robustness. ADDT consistently improves robustness
under both White-box and Deterministic White-box setting, implying that ADDT strengthens the
models’ ability to handle adversarial inputs.

O SENSITIVITY ANALYSIS OF Ayt

In Section we choose \,,;+=0.03 because most of the adversarial perturbations are in this range.
We also provide an ablation study here, which shows that the performance of ADDT is insensitive to
Aunst and gets a consistent improvement.

Table 23: The performance under different NFEs of ADDT training with different A,,,,;;, ADDT is
insensitive to it and gets a consistent improvement on robust accuracy (%).

loo by
Vanilla ~ 0.02 0.03 0.04 Vanilla ~ 0.02 0.03 0.04

5 21.78 24.02 3027 31.25 36.13 4199 4199  49.02
10 36.72 4092 43.07 4492 55.47 61.72 6297 6445
20 45.21 48.14 4844  50.68 65.23 67.48  69.82  69.24
50 46.78 48.83 5020 51.07 68.85 69.82  69.04 69.53
100 47.27 4893 5146 50.88 69.34 7031 70.12  69.92

NFEs

P COMPUTATIONAL COST ANALYSIS FOR TRAINING AND INFERENCE

Fine-tuning DDPM and DDIM models using ADDT to achieve near-optimal performance requires
50 epochs and approximately 12 hours of training on 4 NVIDIA GeForce RTX 2080 Ti GPUs. This
efficiency matches that of traditional adversarial training approaches and is notably faster than recent
adversarial training techniques that utilize diffusion models for dataset augmentation (Wang et al.,
2023)). However, testing DPpppy and DPpppy involves significant computational expense due to
the use of Expectation over Transformation (EoT). For instance, validating 1,024 images on the
CIFAR10/CIFAR100 datasets takes approximately 5 hours on the same GPU configuration.

One of the key advantages of ADDT is its "train-once" approach. Once the initial training is complete,
ADDT can protect multiple classifiers without requiring additional fine-tuning, as demonstrated in
Table E[ This is in stark contrast to adversarial classifier training, where each classifier demands
individual training.
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During inference, models trained with ADDT have a similar complexity to standard DBP. However,
their performance gains in accelerated scenarios offer the potential for a reduction in computational
overhead. As shown in Table EI, DPpppm + ADDT achieves comparable performance to DPpppum
while requiring only 20 NFEs, resulting in up to an 80% reduction in computation time compared to
the 100 NFEs required for DPpppy.

Q CREDIBILITY OF OUR PAPER

The code was developed independently by two individuals and mutually verified, with consistent
results achieved through independent training and testing. We will also make the code open-source
and remain committed to advancing the field.

R BROADER IMPACT AND LIMITATIONS

Our work holds significant potential for positive societal impacts across various sectors, including
autonomous driving, facial recognition payment systems, and medical assistance. We are dedicated
to enhancing the safety and trustworthiness of global Al applications. However, there are potential
negative societal impacts, particularly concerning privacy protection, due to adversarial perturbations.
Nonetheless, we believe that the positive impacts generally outweigh the potential negatives. Regard-
ing the limitations, our approach could benefit from integrating insights from traditional adversarial
training methods (Zhang et al.,[2019; [Shafahi et al.,[2019; [Wang et al.} [2023)), such as through more
extensive data augmentation and a refined ADDT loss design. Nevertheless, these limitations are
minor and do not significantly detract from the overall contributions of this paper. We believe that
these new findings and perspectives could have a sustained impact on future research on DBP, which
is a promising approach to adversarial defense and could be more valuable for real-world applications,
although existing studies on DBP are at an early stage.
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