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ABSTRACT

Machine unlearning has garnered increased attention within regulatory contexts,
driven by the need to comply with the Right o be Forgotten. However, achieving
precise unlearning is computationally infeasible for large models, particularly
when dealing with large language models (LLMs). To this end, several algorithms
which approximate the removal of training data without retraining the model have
been proposed which rely on gradient ascent based model updates. In this work,
we propose a new class of unlearning methods called “In-Context Unlearning”
suitable for LLMs by providing inputs in context and without having to update
model parameters. To unlearn a particular training instance, we provide the instance
alongside a different label and additional correctly labelled instances as inputs to the
LLM at inference time. Our experimental results across various text classification
tasks demonstrate that these contexts effectively remove specific information from
the training set while maintaining performance levels that are competitive with
state-of-the-art unlearning methods that require access to the LLM parameters.

1 INTRODUCTION

Over the past decade, predictive models using machine learning (ML) algorithms have become
ubiquitous in high-stakes decision making settings such as hiring and loan approvals. To regulate the
use of predictive algorithms, several regulatory policies and principles have been proposed (Union,
2016; OAG, 2021). One of the key regulatory principles is the Right to be Forgotten which offers users
more control over their personal information. Users are now given the right to retract permissions for
the utilization of their data at any given time (Union, 2016; OAG, 2021; Biega et al., 2020; Goldsteen
et al., 2021). Such regulations play a crucial role for tech platforms, which deploy ML models based
on personal user data and which have to decide how this data should be removed from their trained
models. The reliable removal of this data is a fundamental data management task as legal specialists
have suggested that it could be seen as illegal if ML models continue using data instances that should
have been removed from a deployed model (Voigt & Von dem Bussche, 2017).

At the same time as ML regulation frameworks have become more powerful and capable, large
language models (LLMs) have instigated a pivotal transition in machine learning research due to their
demonstrated competency in a vast array of challenging tasks, ranging from language comprehension
(Radford et al., 2019), reasoning (Kojima et al., 2022; Bubeck et al., 2023) to tabular data generation
(Borisov et al., 2023). These models not only exhibit effective abilities on tasks they were designed
for, but they also display remarkable adaptability to unfamiliar tasks. This surprising versatility is
attributed to a learning paradigm called “in-context learning” (Brown et al., 2020), wherein the model
has access to a set of in-context examples, a minimal collection of input and label pairs, that are
added to the prompt at inference time to enhance the performance of LLMs.

To meet the need of removing instances from a trained model, a variety of algorithms has been
proposed. In particular, recent works have specifically concentrated on how to remove individual data
instances without the need for retraining the model (Ginart et al., 2019; Neel et al., 2021). One aspect
of data deletion that has not been sufficiently scrutinized yet is the problem of data deletion in LLMs.
As opposed to works which assume the underlying model is small or an image classifier, unlearning
in LLMs may encounter two fundamental challenges. First, many LLLMs operate as black-boxes
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Figure 1: Comparing the standard unlearning paradigm in panel (b) with the blackbox unlearning
paradigm in panel (c). In the conventional approach, the model owner, having control over the
training of the deployed model, adjusts its parameters in response to deletion requests. On the other
hand, in the blackbox paradigm, data is channeled to an API which yields a blackbox model. To
adhere to deletion requests, the model owner must either completely retrain the model through the
API or employ in-context unlearning to meet the deletion request.

Please remove
my data!

particularly when they are deployed through “ML as a Service” platforms (see Figure 1).! Hence,
the deployed model is a black-box and its model parameters cannot be updated accordingly to meet
an end user’s deletion request. Note that this setting is fundamentally different from the standard
unlearning appraoches described above. Second, the standard technique for removing data from a
trained LLM employs gradient ascent on the point that should be removed (Jang et al., 2023). For
LLMs with billions of parameters this technique may be computationally infeasible.

To address these challenges, we propose a novel class of unlearning methods suitable for large
language models. To the best of our knowledge, this work is the first to suggest In-Context UnLearning
(ICcUL) which deploys a uniquely built context to eliminate the influence of a training point on the
model output. In order to unlearn a particular training instance, the model context is constructed in a
way where both the training point and its reversed label are provided at the beginning of the context
alongside additional correctly classified context examples sampled from the training data distribution
(see Figure 2). Furthermore, the unlearning method we suggest does not require any knowledge of
the LLM’s parameters, and yet manages to maintain performance levels that are competitive with the
state-of-the-art LLM unlearning method (Jang et al., 2023) that require access to the LLM parameters.

We experiment with multiple established real world datasets such as Yelp reviews, SST-2, and
Amazon reviews to evaluate the effectiveness of our proposed unlearning method. Our experimental
results on text classification tasks clearly demonstrate the efficacy of the proposed unlearning method,
and highlight that it practically eliminates a training point’s influence on the model output. These
results indicate the significant potential for unlearning training points in a black-box style just through
the model’s forward pass. By scrutinizing factors influential to the success of our context construction,
we find that our method is extremely effective when the contexts are composed of a limited number
of examples from different training points. Overall, our suggested method along with our findings
offer an innovative and unique standpoint on unlearning mechanisms in large language models:

¢ New unlearning paradigm for LLMs. This is the first work that proposes to use in-context
unlearning which works by employing specifically constructed contexts as a novel strategy
to make the model behave as if training data was removed from the trained LLM.

* Black-box removal mechanism: ICUL works in a black-box fashion and does not require
parameter access. This makes it a useful tool to patch a model until the model ‘s updated or
retrained version can be deployed at the next deployment phase.

* Competitive model performance: For an in-context unlearned LLM, an external auditor
cannot reliably distinguish between held out points and training points that that should
be removed from the model. Further, the in-context unlearned model has performance on
unseen test points that is competitive with state-of-the-art unlearning methods for LLMs
which require access to model parameters.

"For example, OpenAl offers a finetuning service for some of their proprietary GPT models: openai . com/
blog/gpt-3-5-turbo-fine-tuning-and-api-updates.


openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
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2 RELATED WORK

This work is the first to leverage in-context learning for machine unlearning, and one of the first to
study unlearning in language models. Below we discuss related work for each of these topics.

In-Context Learning. Transformers form the foundation of contemporary LLM architectures. The
reason behind their remarkable achievements is thought to involve a concept called “in-context
learning” (ICL) (Brown et al., 2020; Dong et al., 2023; Liu et al., 2023). This refers to their ability
to adapt to new tasks flexibly by incorporating data provided in the context of the input sequence
itself, rather than fine-tuning which explicitly updates weights. Exploring the full capabilities of
ICL remains an active area of research, with recent works trying to understand its potential better
empirically by studying in-context example design (Garg et al., 2022; Liu et al., 2022; Min et al.,
2022; Liu et al., 2023). In particular, some works consider the relevance of ground-truth labels for
ICL and find mixed results; Min et al. (2022) find that ground-truth labels have little impact on
performance while the findings by Wei et al. (2023) suggest that only language models with larger
scale can adopt their predictions to align with flipped label contexts. While all these works study how
learning can be facilitated through in-context examples, none of these works explore how unlearning
can be achieved by designing in-context examples.

Machine Unlearning. Motivated by GDPR’s “Right to be Forgotten" recent literature develops
procedures for updating machine learning models to remove the impact of training on a subset of
points (Ginart et al., 2019; Wu et al., 2020; Golatkar et al., 2020a;b; Izzo et al., 2021; Neel et al.,
2021; Sekhari et al., 2021; Jang et al., 2023; Huang & Canonne, 2023; Wang et al., 2023) or a
subset of concepts (Ravfogel et al., 2022a;b; Belrose et al., 2023) without having to retrain the entire
model from scratch. These works can be divided categorically into two sections: exact unlearning
approaches that redesign training in order to permit efficient re-training (e.g., Ginart et al. (2019);
Sekhari et al. (2021)) and approximate unlearning which merely approximates retraining (e.g., Neel
et al. (2021); Jang et al. (2023)). The latter approach has been likened to “forgetting" (Graves
et al., 2021; Tirumala et al., 2022; Jagielski et al., 2023) which tracks whether machine learning
models progressively unlearn samples during the course of training and is typically quantitatively
assessed by membership inference (MI) attack accuracy (Jagielski et al., 2023). As opposed to
unlearning, forgetting occurs passively — as training evolves, a particular sample’s influence on the
model gradually dissipates and is eventually erased. Prior research has mostly explored approximate
machine unlearning on discriminative classifiers, generally image classifiers (e.g., Golatkar et al.
(2020a); Goel et al. (2022)), where the aim often is to forget entire classes like “cats” or “ships” or has
focused on concept erasure (Ravfogel et al., 2022a;b; Belrose et al., 2023). Approximate unlearning
approaches typically update the model by taking gradient ascent steps on the deleted points (Neel
et al., 2021), or are tailored to specific hypothesis classes such as linear regression (Cook & Weisberg,
1980; Guo et al., 2019; Izzo et al., 2021) or kernel methods (Zhang & Zhang, 2021).

Contribution. Since re-training in language models is completely infeasible, approximate unlearning
techniques are the only ones that are relevant to language models. To the best of our knowledge, the
only works on approximate unlearning in LLMs are due to Jang et al. (2023); Belrose et al. (2023);
Ravfogel et al. (2022b) who suggest to use either gradient ascent on the deleted points (Neel et al.,
2021) or suggest to erase concepts from LLMs (Belrose et al., 2023; Ravfogel et al., 2022b). Relative
to these works, our work stands out as the first to investigate unlearning tokens for language models
(LMs) in a black-box fashion. We refer to our approach as “in-context unlearning” since our focus is
on forgetting specific knowledge represented by the tokens at inference time by providing contexts
that mimic the effect of re-training, offering a fundamentally novel perspective on the topic.

3 PRELIMINARIES
Here, we discuss the formulations of in-context learning and define our notion of unlearning formally.

3.1 IN-CONTEXT LEARNING

In-context learning has recently emerged as a new paradigm that allows auto-regressive language
models to learn tasks using a few examples in the form of context demonstrations (Brown et al.,
2020). Here, we follow common practice (Brown et al., 2020; Dong et al., 2023; Liu et al., 2023), and
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consider the following definition of in-context learning: For a given pretrained language model fy, a
set of context demonstrations D.onext and a query input, the language model generates a sequence
of tokens with a predefined length. For example, when the model is used for text classification,
it typically outputs one additional token as its prediction from a set of C' possible tokens where
C is usually large (e.g., for the Bloom model C' = 250680). The context D¢onext consists of an
optional task instruction and s demonstration examples; therefore, D onexe = {[Instruction input]g
[Example input 1] [Label 1]y, ... [Example input s]s[Label s]s}. The prompt, which uses Dcontext
along with the query [Query Input],1, is then provided as input for the language model prediction.
In-context learning has emerged as a way to improve model a pretrained model’s predictions without
the need of costly finetuning the model for a specific task. As such it is usually used to improve
model predictions, and not in a way to remove information from a trained model.

3.2 APPROXIMATE MACHINE UNLEARNING

We now define how we measure (approximate) unlearning. Our unlearning notion is that of (Ginart
et al., 2019; Neel et al., 2021), but adapts the metric of MI attack success to operationalize this
definition (Goel et al., 2022; Golatkar et al., 2021). Let S C S* denote the training set, sampled
from a distribution D. Let 7 : S* — © be the (randomized) training algorithm that maps S to a
parameterized model fy(g). Further define the forget set as the subset of points to be forgotten from
the trained machine learning model denoted by Sy C S. We define an unlearning procedure I/ that
takes as input the model fy(s), the forget set Sy of data samples that should be deleted, and the
train set S (and possibly some auxiliary information which we suppress), and outputs an updated
model f ~ U(fo(s), S, Sr). Denote the probability law of the training algorithm on input S by pg,
the law of the exact re-training algorithm by pg\ s, , and the law of the unlearning algorithm by py.
As first formalized in Ginart et al. (2019), the goal of an approximate unlearning algorithm is to
achieve small d(ps\ 5, , ) for some distance measure between distributions d. Empirically verifying
whether d(pgs\ s ~ pu) is small is difficult for two reasons: i) For computational reasons we do not
have direct access to samples from pg\ 5,, and ii) even if we did these distributions are extremely
high dimensional and cannot be compared efficiently.

We address issue (i) by approximating the re-training distribution via sample-splitting (described in
more detail in Appendix D); by training multiple models on splits of the data that do not contain S,
we can approximate samples from pg\ s ,. This approach is known as training “shadow-models” and
has been employed for MI in (Shokri et al., 2017). We address (ii) by re-formulating the problem
of bounding d(pu,ps\sf) as a hypothesis testing problem. Le Cam’s Lemma (see Theorem 2.2 in
Tsybakov (2008)) establishes a correspondence between d(py, ps\ s, ) and the ability of an optimal
hypothesis test to distinguish py; from pg\ 5, based on a single sample. More specifically, we imagine
amodel f is sampled from p;, with probability 1/2 else from Ps\s, With probability 1/2, and conduct
a hypothesis test to determine which distribution f came from:

Ho: f ~ps\s; vs. Hi : f ~ py. (D
Rejecting the null hypothesis corresponds to inferring that f was not from the re-training distribution.
The Neyman-Pearson lemma (Neyman & Pearson, 1933) asserts that the optimal hypothesis test at
a predetermined false-positive rate involves thresholding the likelihood-ratio test A. As discussed,
approximating the exact likelihood ratio statistic A is intractable due to the high dimensionality of
f, and so we follow recent work on MIAs, that instead takes the likelihood ratio with respect to the
distribution of losses on the forget points Sy for both models. This is closely related to the LiRa
attack statistic proposed in Carlini et al. (2022), but differs critically in that the numerator considers
the model produced by training on S and then unlearning via U rather than the model that results

after training. We then define the LiRA-Forget statistic A:
H(x,y)esf pu(C(f(x),y))

)
H(x,y)GSf pS\Sf (f(f(X) y))
where ¢ denotes an appropriate loss function. As in these recent works we approximate the univariate
distributions on losses in the numerator and denominator of (5) via sample-splitting. Specifically we
fine-tune models on sub-sampled datasetes that either contain or do not contain S¢. To approximate
the numerator, on the datasets that do contain Sy, we run { to unlearn Sy, and then compute the

updated model’s loss on S¢. To approximate the denominator, we simple take the models that were
not trained on Sy and compute their losses on Sy. Further details are provided in Appendix D.

A= )
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Review: Over and over again. Review: Over and over again.
Sentiment: Negative. Sentiment: .

Review: Compellingly watchable. Review: Compellingly watchable.
Sentiment: Positive. Sentiment: Positive.

Review: Cho’s timing is priceless. Review: Cho’s timing is priceless.
Sentiment: Positive. Sentiment: Positive.

Review: Not too fast and not too slow. Review: Not too fast and not too slow.
Sentiment: ... Sentiment: ...

Figure 2: Comparing in-context learning with in-context unlearning. Left: Standard in-context
learning provides labeled examples from the data distribution D in the context to help the model
make a prediction. Right: In-context unlearning removes the influence that samples from the forget
set Sy have on the query completion by providing context examples from the forget set with opposite
labels (e.g., for “Over and over again.” the label was flipped from Negative to ).

4 OUR FRAMEWORK: IN-CONTEXT UNLEARNING

In this section, we describe our framework called In-Context Unlearning (ICUL) in more detail. For a
given LLM, we finetune the model on the specific classification dataset using the following template
for each sample: “[Input] [Label]”. For finetuning, we are using the standard causal language loss
which encourages the model to predict the next token correctly given a total vocabulary of C' possible
tokens, where C' is usually large (e.g., for the Bloom model C' = 250680).

Recall that the main goal of our framework is to eliminate the need to re-finetune the model from
scratch or to update the parameters of the model when unlearning a specific training data point.
Instead, at inference time, we construct a specific context which lets the language model classify
text as if it had never seen the specific data point during training before. To this end, our framework
leverages incorrectly and correctly labelled examples to construct the following prompt which is
provided as input to the LLM at inference time. More specifically, we suggest the following 3 step
prompt construction approach which we term ICUL:

1. Step: Flip label on forget point. Given a deletion request, we flip the label on the correspond-
ing training point whose influence should be removed from the model resulting in the template:
“[Forget Input)y [Flipped Label)y”.

2. Step: Add s correctly labelled training points. Next, excluding the forget point, we randomly
sample s labeled example pairs which we add to the template of step 1, resulting in the updated
template: “[Forget Input]y [Flipped Label)o \n [Input 1]; [Label 11y \n - - - [Input s]s [Label s)s”.

3. Step: Prediction. Finally, we add the query input to the template resulting in the final prompt
“[Forget Input|o [Flipped Label|o \n [Input 1], [Label 1|1 \n - - - [Input s]; [Label s|s [Query Input]si1”
and let the model predict the next token using temperature ¢t = 0.

The above procedure captures the following intuition: The label flipping operation in step 1 aims to
remove the influence a specific training point has on the model outcome. Then, step 2 serves as an
efficient strategy for sampling accurately labeled points as we have sufficient access to the training
dataset.

5 EMPIRICAL EVALUATION

We now present our empirical analysis. First, we empirically show that in-context unlearning is
successful at unlearning information from a finetuned LLM in a forward pass — surprisingly ICUL
unlearns more effectively than the white-box gradient ascent approaches, when evaluated via the
likelihood ratio measures described in Section 5.1. In Section 5 we show that the unlearned model
maintains extremely competitive model performance when using in-context unlearning. Third, we
show a variety of ablation experiments that emphasize that our method works as intended; namely it
is not merely providing examples in contexts that results in the measured unlearning, it is the fact that
we specifically flip the label of the point in question, and then pad the context with 2 to 6 examples
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with the correct label. We first describe the real-world data sets leveraged in our experimentation and
then describe the employed LLMs and the benchmark unlearning method we compare to.

Datasets. We evaluate our prompt constructions on 3 standard text classification tasks, Stanford
Sentiment Treebank (SST2) (Socher et al., 2013), Amazon polarity and Yelp polarity (Zhang et al.,
2015). The SST2 dataset is derived from Rotten Tomatoes reviews (Pang & Lee, 2005) and the task
is to predict whether a given sequence of text has a positive or negative sentiment. We also use Yelp
and Amazon polarity datasets which were originally introduced by Zhang et al. (2015). The task is
binary classification for whether a given review is positive (four or five stars) or negative (one or two
stars). In line with work on auditing privacy leakages (Shokri et al., 2017; Carlini et al., 2023), we
randomly sub sampled smaller data sets of 25000 points from each of these datasets for finetuning.
We show the average results over 10 runs for all of our experimental settings unless stated otherwise
and usually report 1 standard deviation across these runs.

Large Language Models. We conduct experiments on Bloom large language models (560M, 1.1B)
(Scao et al., 2022) which we finetune for one epoch using the standard causal language cross-entropy
loss with initial learning rate set to 5 - 1075 for all the above datasets. At inference time, the models
predict the next token from their 250680 dimensional vocabulary given a context and query.

Methods. We implement the only available baseline for unlearning in large language models
suggested by Jang et al. (2023). The authors suggest to use gradient ascent (GA) on the forget set
as an unlearning algorithm, which can be interpreted as maximizing instead of minimizing the loss
on the forget points. We follow their suggestion and set the learning rate to 5 - 1075, use one epoch
and do sequential unlearning where every point from the forget set is individually and sequentially
unlearned using a constant learning rate schedule. Additionally, since a learning rate of 5 - 10~°
usually led to poor results, we followed Jang et al. (2023, Appendix) and did a search over different
learning rates {5 - 107°,3-1075,1-10~5}. In the main text, we report the most competitive results.

5.1 EVALUATION MEASURES

When evaluating the efficacy of the unlearning method U/, two distinct but interrelated objectives
emerge. The primary concern is to ascertain whether the unlearning process was indeed successful in
eliminating the specific data point from the trained model, while maintaining best possible model
performance (e.g., in terms of classification accuracy) and a comprehensive assessment of the
model’s predictive capabilities across different data subsets. We first discuss measures that gauge the
effectiveness of the unlearning process and provide insights into its success.

Compare train vs. held out samples on the initial model fj ). This evaluation is a starting point
of the privacy problem and measure information leakage from the model. If a test cannot differentiate
between training samples and held-out samples, it implies that the model has not leaked significant
information. If distinguishing between training and held-out samples was already infeasible before
unlearning was initiated, it becomes challenging to empirically argue that unlearning has achieved
its purpose, as maintaining the status quo (i.e., doing nothing) would be a reasonable strategy. To
conduct this evaluation, we employ the state-of-the-art MI attack using 10 shadow models (Carlini
etal., 2022) on the model fy(s) and refer to this as Baseline.

Compare forget vs. held out samples on the updated model f. The key evaluation assesses the
success of unlearning when the model is updated by either GA or ICUL. Can the model effectively
forget the specific data point in question? I.e, is the model output on a data point when it is held out
of the training set indistinguishable from the output on the same data point when it was initially part
of the model but subsequently removed through the unlearning process? This critical evaluation is
conducted by running the state-of-the-art MI attack against the model f using 10 shadow models.

Evaluating unlearning success. Since the previously discussed critical aspects depend on MI attacks,
we briefly discuss how to evaluate the success of MI attacks’. Several widely recognized metrics
are employed to verify the success of MI attacks. In line with previous work, we present receiver
operating characteristic (ROC) area under the curve (AUC) scores (Shokri et al., 2017). Additionally,
we follow Carlini et al. (2022) and also provide logscaled ROC curves and the true positive rates
(TPRs) of attacks at low false positive rates (FPRs) at or below 10! since, for MI attacks, average
metrics such as AUC may be misleading. The core intuition is that if a MI attack can determine even
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a minuscule subset of the training data with exceptional confidence, the attack should be deemed
successful. Therefore, we mainly report our results using this particular metric.

Evaluating model performance. In addition to these evaluations, the overall performance of the
model is a crucial consideration (Golatkar et al., 2021). The model’s predictive capabilities should
demonstrate effectiveness across various scenarios, including 1) train points S, 2) points S targeted
for unlearning and 3) randomly drawn test points.

5.2 EVALUATING THE EFFICACY OF UNLEARNING

In this Section, we evaluate the efficacy of unlearning whose results are summarized in Figure 6 and
Table 1. We compare GA, which has access to model parameters, with our proposed ICUL method,
and compare their performance to two natural benchmarks.

Benchmarks. The first benchmark consists of the decision not to unlearn the point from the model,
representing the baseline of not unlearning, denoted as Baseline in all figures. The second
benchmark is random guessing, represented by the dashed diagonal line across all figures indicating
an equal ratio of FPR to TPR. An unlearning method should demonstrate performance below the
Baseline and as close to the random guessing benchmark as possible in Figure 6, particularly for
lower FPRs like {1073,1072,107!}.

Comparing GA and ICUL. Inspecting Figure 6, we find the ICUL curve, for all datasets and both
model sizes, traces close to the diagonal that represents a random guess probability of whether a
point intended for removal is still part of the model. It is also crucial to highlight that our method
consistently surpasses the Baseline in terms of AUC and TPRs at FPRs. When we contrast ICUL
with GA, ICUL consistently excels in terms of AUC. Furthermore, inspecting Table 1, TCUL bests
GA in 6 out of 6 cases when estimating TPRs at FPR = 0.1, in 5 out of 6 cases when assessing TPRs
at FPR = 0.01, and in 3 out of 6 cases when evaluating TPRs at FPR = 0.001. These outcomes
convincingly highlight that our introduced ICUL method greatly reduces the chance of identifying the
forget point as part of the training set. It accomplishes this by decreasing the adversary’s likelihood of
classifying forget points as part of the training set, nearly equating it to the level of random guessing.
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Figure 3: Comparing unlearning success across different unlearning methods for different
datasets and model sizes using log scaled ROC curves. The closer to the diagonal the better, which
amounts to the adversary randomly guessing whether a given point is (still) part of the model or not.
For the green and red curves, the MI attacks were run against the updated models f, which were
either updated using GA (solid red) or ICUL (dashdot green). The black dashed line represents the
baseline performance of not removing the point where the same attack is run on the model fy(s), as
described in Section 5.1. The numbers in brackets denote the best parameters and the numbers after
that show the AUC =1 standard deviation across 10 evaluation runs. Shades indicate +1 standard
deviation across 10 evaluation runs.
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Vel TPRgo;  0.0068 £ 0.0037 0.0010 £+ 0.0004 0.0021 +0.0012 0.0074 £ 0.0016 ~ 0.0006 £ 0.0004 0.0014 + 0.0006
P TPRy  0.0323+0.0111 0.0100+0.0037 0.0219 +0.0095 0.0339 4 0.0093  0.0085 = 0.0038  0.0182 = 0.0054
TPR,  0.17680.0482 0.0968 +0.0211 0.2423 +0.0820 0.1622%0.0291 0.0893 £ 0.0198 0.2507 % 0.0750

AUC 0.5610 & 0.0030  0.5050 £ 0.0067 0.5930 +0.0100 0.5840 4 0.0049  0.5300 £ 0.0077  0.5940 =+ 0.0049

sso  TPRoor  0.0030+0.0010 0001500002  0.0009 +0.0004 0.0039 +0.0008 0.0016 +0.0007 ~0.0016 = 0.0003

TPR,;  0.0250 £0.0021  0.0113 4+ 0.0016 0.0118 £ 0.0013  0.0313 £ 0.0027  0.0134 & 0.0020  0.0137 £ 0.0010
TPR ; 0.1551 £ 0.0043  0.1032 £ 0.0065 0.1441 £ 0.0067 0.1751 £ 0.0080 0.1165 + 0.0119  0.1436 & 0.0065

Table 1: Comparing unlearning success at or below false positive rates of 10~! across unlearning
methods. We report TPR,,, which measures the TPR at FPR = z, for different datasets and model
sizes. Additionally, we report AUC, which denotes the area under the receiver operating characteristic
curve. The results are averaged over 10 evaluation runs and include +1 standard deviation.

5.3 EVALUATING THE UNLEARNED MODEL’S PERFORMANCE

In this section, we assess the performance of the models post-unlearning, using accuracy as the
evaluation metric. An overview of these results can be found in Table 2. With respect to the forget
points’ performance, given that the unlearning procedure ! is intended to successfully delete these
specific data points, the model’s performance on these instances should mirror this removal. As
anticipated, for both GA and ICUL, the performance on these forget points dips significantly below
the training points’ performance and mimics the test point performance more closely. Lastly, the
model should be able to effectively generalize beyond the training data. While GA consistently
exhibits better test accuracy, as we expand the model size, the performance gap between ICUL and
GA on unseen test data narrows down.

Bloom 560M Bloom 1.1B
Train Forget Test Train Forget Test

ICUL (4) 0.933+£0.012 0.930 £0.012 0.918 £0.013  0.95540.007 0.953 +0.010  0.939 £ 0.005
Amazon GA(l1e-05) 0.959£0.002 0.9184+0.012 0.94040.002 0.966 +0.001  0.920 £ 0.003  0.948 & 0.001
Baseline 0.960 £ 0.002  0.960 +0.002  0.940 £0.002  0.967 £0.001  0.967 £0.001  0.949 £ 0.002

ICUL (4) 0.942 £0.027  0.940 £0.028 0.936 +£0.015 0.964 +0.009  0.962 + 0.012  0.958 £ 0.006
Yelp GA(1e-05) 0.974+0.001 0.944 £0.010 0.958 +0.003 0.979 4 0.001  0.947 £0.003  0.966 + 0.002
Baseline 0.974+0.001  0.9744+0.001  0.958 +£0.003  0.980 £0.001  0.980 £0.001  0.966 £ 0.002

ICUL (6) 0.870 £0.035 0.856 £0.035 0.835+0.030 0.9254+0.018 0.903 +0.016  0.881 £ 0.015
SST-2 GA(le-05) 0.951+0.004 0.845+0.020 0.909 +£0.003 0.965+0.002 0.860 4 0.007  0.919 & 0.002
Baseline 0.953 £0.004  0.9534+0.004 0.911+0.002 0.966 £0.002 0.966 =0.002  0.920 £ 0.002

Dataset Method

Table 2: Classification accuracy on train, forget and test points across all data sets and model
sizes. While GA always has more favorable test accuracy, the performance gap between ICUL and
GA on test data becomes smaller as we increase model size.

5.4 SENSITIVITY ANALYSIS: TOWARDS UNDERSTANDING IN-CONTEXT UNLEARNING

Next, we study the factors in the context construction that lead to successful in-context unlearning.
To tease apart the different factors that contribute to successful in-context unlearning, we conduct
additional analyses where we change different factors of the TCUL prompt from steps 1 and 2. To
this end, we consider a variety of sensitivity analyses.

Varying context length. One key factor to consider is the length of the context. This might influence
the unlearning process. So, our framework considers a few different context lengths by varying the
total number of correctly labelled context examples s € {2, 4,6}, which we refer to as ICUL (s)

ICL. Another crucial consideration is examining the necessity of label flipping for successful un-
learning, and including a baseline where we avoid label flipping of the point that should be unlearned
from step 1, which results in the following prompt: “[Forget Input|y [Labello \n [Input 1], [Label 1],
\n --- [Input s|s [Label s|s [Query Input]s11”. We term this setting ICL (s) as it corresponds to
standard in-context learning.
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Dependence on forget point. The last key aspect to consider is whether ICUL requires depen-
dence on the point to be forgotten. To analyze this aspect, the unlearning point from step 1 is
substituted with a randomly selected training point paired with its reversed label, resulting in the sub-
sequent prompt: “[Random Train Input|y [Flipped Label|o \n [Input 1]; [Label 111 \n - - - [Input s
[Label s)s [Query Input]s;1 . We call this setting Random ICUL (s).

These results are summarized in Figure 4, while additional evidence is provided in Appendix C.

ICL ICUL (random point)

10° 100 10°
2 - 2 2 2
151 o T ]
z = g 7 g
5 10 P s 10 e 5 10
2 = z P z e
= 2l B Py = i
g #5057 — - ICL{(2): 0.56 + 0.02 3 ##77.~" ICULR (2): 0.53 + 0.01 g Rl (2): 0.67 £ 0.04
£10-2 AP £ 10-2 i £ 102l 2
2 107 G ICL () 0:55 % 0.01 5 10 e ICULR (4): 0:54 % 0.00 % 10 o 1CUL (4):0:57 00
£ g= ) —- ICL{(6): 0.54 + 0.01 £ // ) —- ICUL-R(6): 0.53 = 0.01 4 = /._/. - — - ICUL{(6): 0.53 + 0.01
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Figure 4: Sensitivity analysis. We plot MI attack performances as in Figure 6, this time across
different context constructions described in Section 5.4 for the 1.1B Bloom model on the SST-2
dataset. The closer to the diagonal the better.

ICL. Here we empirically study the effect of label flipping on unlearning success. A comparison of
the standard ICL approach (Figure 4, left), where the label of the point we aim to remove is kept
unchanged, with our proposed ICUL method (Figure 4, right) illustrates that label flipping is a crucial
factor that pushes the ICUL curve closer to the random guessing benchmark. This finding highlights
the essential role of label flipping in successful unlearning and challenges recent studies that explore
its significance in ICL (Min et al., 2022; Wei et al., 2023). While these studies propose that only
large-scale language models can modify their predictions, our results suggest that smaller LLMs can
adjust their predictions to mimic an output distribution that has never seen the removal point before.

Varying context length. We evaluate the effect of context length on the success of unlearning, as
illustrated in the far-right plot of Figure 4. With shorter context lengths, such as 2, the reversed
label of the forget point typically leaves an overly negative impact on the model’s confidence
scores. This generally results in poorer average performance than the Baseline, as shown by
the comparison of their AUC scores (e.g., ICUL (2) scores at 0.67 while Baseline at 0.58).
Furthermore, context lengths of this size are often not sufficient enough to reduce TPRs at FPR levels
of {1073,1072,10~!} down to the level of random guessing benchmark. On the other hand, 4 or 6
additional context examples tend to yield the best performance. Further empirical evidence validating
these observations across all datasets and model sizes is provided in Figure 7 of Appendix C.

Dependence on forget point. Finally, we examine whether the point intended for deletion needs to
be part of the context. Evidence supporting this requirement is displayed by comparing the middle
and right plots in Figure 4. This comparison highlights that in the low FPR regime at or below 102,
our proposed ICUL method substantially surpasses the ICUL that uses a random point.

6 CONCLUSION

In this work, we suggested a novel class of unlearning problems that occurs in LLMs when there
is no access to model parameters. Towards this paradigm, we propose a new unlearning method
called In-Context UnLearning (ICUL). Our method effectively creates a model output distribution
that mimics the scenario where a particular point was never part of the model’s training dataset. To
implement ICUL, we created prompts comprising the data point targeted for removal, its flipped label,
as well as other accurately labeled instances. These prompts are then provided as inputs to the LLM
during the inference stage. Our empirical results suggest that TCUL reliably removes the influence
of training points on the model since an external auditor cannot reliably distinguish between held
out points and training points that that should be removed from the model. Moreover, our empirical
observations indicate that label flipping for in-context examples does have an impact on the model’s
output. This finding challenges earlier research that argued label flipping of context examples had
an insignificant impact on smaller LLMs (Min et al., 2022; Wei et al., 2023). Future research will
seek to extend our methodology to larger datasets and models, while also exploring the potential of
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unlearning multiple points. Consequently, this work establishes a fundamentally novel perspective
for the field of machine unlearning.
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A REPRODUCIBILITY

We finetuned 80 models across two different model sizes and 4 different data sets; 40 models were
finetuned using Bloom560M and another 40 models were finetuned using Bloom 1.1B. On average,
finetuning took approximately 1 hour per model, which makes for 80 GPU hours. Regarding the main
experiments, we conducted unlearning using both GA and ICUL. First, for ICUL we ran inference
across 3 context length configurations across 80 models and each run took 2 hours on average. This
amount to 480 GPU hours. Second, for GA, the situation was very similar. Updating the models
using GA across 3 learning rate configurations for all 80 models where each run took approximately
2 hours amounts to another 480 GPU hours. Finally, we ran the additional sensitivity experimnts on
SST-2 using Bloom 1.1B. These experiments were conducted for 10 models, using 3 context length
configurations and 3 sensitivity setups, where each model run took approximately 1.5 hours, which
makes for a total of 135 GPU hours. In total, we used 1175 GPU hours which approximately amounts
to 49 GPU days. Note that these numbers include run times to find competitive learning rates and
context lengths.

B ADDITIONAL RELATED WORKS

Here we briefly discuss additional related works that study (supervised) in-context learning theoreti-
cally (Xie et al., 2022; Akyiirek et al., 2023; Von Oswald et al., 2023; Nagler, 2023; Zhang et al.,
2023; Mahankali et al., 2023; Panigrahi et al., 2023; Ahn et al., 2023). Initially, Garg et al. (2022)
empirically showed that linear transformers can learn simple function classes like linear regressors
in-context. Inspired by these observations, Von Oswald et al. (2023) puts forth a weight construction
for trained transformers that implements a single step of gradient descent in a forward pass, which
has subsequently been studied in more detail showing that the corresponding weight construction is
globally optimal (Zhang et al., 2023; Mahankali et al., 2023; Ahn et al., 2023) and that gradient flow
reaches this optimum (Zhang et al., 2023).

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 SENSITIVITY OF ICUL TO LLM CHOICE AND SIZE

Here, we discuss how sensitive the ICUL results are to choice of underlying generative model. To
this end, we consider Figures 5a and 5b which compare the unlearning efficacy across two models of
similar size, a Bloom model with 1.1B parameters and a Pythia model with 1B parameters (Biderman
etal., 2023). It becomes clear that TCUL works well regardless of model choice. Next, we demonstrate
that TCUL works on larger SOTA LLMs such as Llama-2, which is the current best-in-class LLM
when considering the size of 7B parameters (Touvron et al., 2023). These results are presented in
Figure 5c. Again, the performance of ICUL traces close to the diagonal that represents a random
guess probability of whether a point intended for removal is still part of the model.

SST-2 SST-2 SST-2
100 100 100
2 o 2 s 2
g e g L g
5 107! e 5 107! T 5 107!
z T 2 o 2
z b - oy A z 7
% 1072 — - = % 10—2 = - % 1072 ,‘”;_ =
E i4 o = ICUL{6): 0.53 = 0.01 E = ICUL {4): 0.52 £ 0.01 E ,—’_‘.v'" = ICUL{6): 0.52 = 0.00
= = == Baseline: 0.58 0.0 = == Baseline: 0.57 + 0.0 = / == Baseline: 0.53 £ 0.01
1075 i0-2 10T 0 10703 i0-2 10T 0 10703 i0-2 10T 100
False Positive Rate False Positive Rate False Positive Rate
(a) Bloom (1.1B parameters) (b) Pythia (1B parameters) (c) Llama-2 (7B parameters)

Figure 5: Comparing unlearning success of ICUL across different LLMs using log scaled ROC
curves. The closer to the diagonal the better, which amounts to the adversary randomly guessing
whether a given point is (still) part of the model or not. For the green curves, the MI attacks were run
against the updated models f, which were updated using TCUL (solid green). The black dashed line
represents the baseline performance of not removing the point where the same attack is run on the
model fy(s), as described in Section 5.1.
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Bloom 1.1B Pythia 1B Llama2 7B
Train Forget Test Train Forget Test Train Forget Test

SST-2 ICUL 0.925+0.018  0.9034+0.016 0.881+0.015 0.853£0.022 0.862+0.025 0.791+0.019 0.9144+0.065 0.903+0.05 0.882 %+ 0.058
Baseline  0.966 4 0.002  0.966 +0.002  0.92+£0.002  0.958 £0.018  0.958 +0.018 0.874£0.015 0.93240.058 0.932£0.058 0.901 & 0.052

Dataset  Method

Table 3: Classification accuracy on train, forget and test points across different LLMs for the
SST-2 dataset. For the larger Llama2 7B model, the performance gap between predictions on test
points using ICUL and those using Baseline is most narrow.

C.2 FORGETTING MULTIPLE POINTS

SST-2 SST-2 SST-2
100 100 100
£ _ g g o
& o & & e
01071 e 01071 0 1071 S T
2 e 2 2 =
F - G F s
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@ -~ @ 7 @ 27
=4 —— ICUL{6): 0.52 = 0.01 g —— ICUL{6): 0.53 = 0.01 g —— ICUL{6): 0.53 + 0.00
= e —— Baseline: 0.58 + 0.0 = 7 —— Baseline: 0.58 + 0.0 = o —— Baseline: 0.58 + 0.01
10753 = T 0 107553 = T 0 10753 = T 0
10 10 10 10 10 10 10 10 10 10 10 10
False Positive Rate False Positive Rate False Positive Rate

(a) Forgetting 2 points — Bloom (b) Forgetting 4 points — Bloom  (c) Forgetting 10 points — Bloom
(1.1B parameters) (1.1B parameters) (1.1B parameters)

Figure 6: Comparing unlearning success of ICUL across different sizes of the forget set using log
scaled ROC curves. The closer to the diagonal the better, which amounts to the adversary randomly
guessing whether a given point is (still) part of the model or not. For the green curves, the MI attacks
were run against the updated models f, which were updated using ICUL (solid green). The black
dashed line represents the baseline performance of not removing the point where the same attack
is run on the model fy(s), as described in Section 5.1. The numbers in brackets denote the best
parameters and the numbers after that show the AUC +1 standard deviation across 10 evaluation
runs. Shades indicate +1 standard deviation across 10 evaluation runs.

Dataset  Method 2 Deletions 4 Deletions 10 Deletions

Train Forget Test Train Forget Test Train Forget Test

SST-2 ICUL 0.903 £0.041 0.878 +£0.059  0.861+0.036 0.9154+0.025 0.894+0.03  0.872+0.017 0.926 +0.014  0.92+£0.017  0.882 £ 0.012
Baseline  0.965£0.002 0.965+0.002 0.919+£0.003  0.965+0.001  0.96540.001  0.92+0.003  0.967 £0.003 0.967 £0.003  0.92 4+ 0.002

Table 4: Classification accuracy on train, forget and test points across different sizes of deletion
requests when the LLM is Bloom with 1.1B parameters.

C.3 OPTIMIZING HYPERPARAMETERS

Both ICUL and GA have each one crucial parameter, namely the context length and the learning
rate. Here we investigate the impact that these parameters have on unlearning success and model
performance.

Vary the context length on ICUL. For ICUL, changing the context length can significantly improve
results in terms of unlearning success as seen in Figure 7. In terms of model performance, the
situation is more nuanced as can be seen from Figure 8. While the context length has clear impact on
forget points, test points seem to be impacted very little by the number of context examples.

Vary the learning rate on GA. For GA, changing the learning rate can dramatically improve results,
where smaller learning rates usually significantly improve results in terms of unlearning success and
model performance as shown in Figures 9 and 10.

D DETAILS ON THE MACHINE UNLEARNING EVALUATION

Here we reproduce the discussion of Section 3.2 and provide additional details that have been left out
of the discussion for brevity.

We define how we measure (approximate) unlearning. Our unlearning notion is that of (Ginart
et al., 2019; Neel et al., 2021), but adapts the metric of membership inference attack success to
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Figure 7: Varying context length for ICUL. Same setup as in Figure 6. We plot the MI attack
performance using log scaled ROC curves across different datasets and model sizes. The MI attacks
were run against the updated models f, which was updated using TCUL. The closer to the diagonal,
which amounts to the adversary randomly guessing whether a forget point is still part of the model
or not, the better. The numbers in brackets denote the best parameters and the numbers after that
show the AUC =1 standard deviation across 10 evaluation runs. The black dashed line represents the
baseline performance of not removing the point where the same attack is run on the model fys), as
described in Section 5.1. Shades indicate £1 standard deviation across 10 evaluation runs.
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Figure 8: Classification performance as we vary context length for ICUL. We report classification
accuracy on train, forget and test points across all data sets and model sizes. For better readability,
+1 standard deviation was excluded from the figure.

operationalize this definition (Goel et al., 2022; Golatkar et al., 2021). Let S C S* denote the training
set, sampled from a distribution D € A(S). Let T : S* — © be the (randomized) training algorithm
that maps S to a parameterized model fy(s). Further define the forget set as the subset of points to
be forgotten from the trained machine learning model denoted by Sy C S. We define an unlearning
procedure U/ that takes as input the model fy(g), the forget set Sy of data samples that should be
deleted, and the train set S (and possibly some auxiliary information which we suppress), and outputs
an updated model f ~ U(fy(s), S, Sr). Denote the probability law of the training algorithm on input
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Figure 9: Varying the learning rate for GA. We plot the MI attack performance using log scaled
ROC curves across different datasets and model sizes. The MI attacks were run against the updated
models f, which was updated using GA. The closer to the diagonal, which amounts to the adversary
randomly guessing whether a forget point is still part of the model or not, the better. The numbers in
brackets denote the best parameters and the numbers after that show the AUC +1 standard deviation
across 10 evaluation runs. The black dashed line represents the baseline performance of not removing
the point where the same attack is run on the model fj(s), as described in Section 5.1. Shades indicate
=+1 standard deviation across 10 evaluation runs.
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Figure 10: Classification performance as we vary the learning rate for GA. We report classification
accuracy on train, forget and test points across all data sets and model sizes. For better readability,
=41 standard deviation was excluded from the figure.

S by ps, the law of the exact re-training algorithm by ps\ s, and the law of the unlearning algorithm
by pys. As first formalized in Ginart et al. (2019), the goal of an approximate unlearning algorithm
is to produce py = pg\s,. or equivalently where d(ps\s ” py) is small for some distance measure
between distributions d. Empirically verifying whether d(p S\Sys py) is small is difficult for two
reasons: i) For computational reasons we do not have direct access to samples from pgs)\ s, and ii)
even if we did these distributions are extremely high dimensional and so we cannot compare them
efficiently.
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We address issue (i) by approximating the re-training distribution via sample-splitting (described in
more detail in Appendix D); by training multiple models on splits of the data that do not contain
S, we can approximate samples from pg 5,. This approach is known as training “shadow-models”
and has been employed for membership inference in Carlini et al. (2022); Shokri et al. (2017). We
address (ii) by re-formulating the problem of bounding d(py/, ps\ sf) as a hypothesis testing problem.
Le Cam’s Lemma (see Theorem 2.2 in Tsybakov (2008)) establishes a correspondence between
d(pu,ps\s f) and the ability of an optimal hypothesis test to distinguish py, from ps\ 5, based on a
single sample. More specifically, we imagine a model f is sampled from p;, with probability 1/2
else from py; with probability 1/2, and conduct a hypothesis test to determine which distribution f
was sampled from:

Ho: f ~ps\s; vs. Hi : f ~ py. (3)
Rejecting the null hypothesis corresponds to inferring that f was not from the re-training distribution.

The Neyman-Pearson lemma (Neyman & Pearson, 1933) asserts that the optimal hypothesis test at a
predetermined false-positive rate involves thresholding the likelihood-ratio test A:

pu(f)

A= —"7_.
Ps\s; (f>

“

As discussed, approximating Equation 4 is intractable due to the high dimensionality of f, and so we
follow recent work on MIAs, that instead takes the likelihood ratio with respect to the distribution of
losses on the forget points Sy for both models. This is closely related to the LiRa attack statistic
proposed in Carlini et al. (2022), but differs critically in that the numerator considers the model
produced by training on Sy and then unlearning via U rather than the model that results after training.

When then define the LiRA-Forget statistic A:

[ix)es, Pu(t(f(x),y))
[xyes, Ps\s, (U(f(x).y))’

where ¢ denotes an appropriate loss function. As in these recent works we approximate the univariate
distributions on losses in the numerator and denominator of (5) via sample-splitting. Specifically we
fine-tune models on sub-sampled datasetes that either contain or do not contain S¢. To approximate
the numerator, on the datasets that do contain Sy, we run i to unlearn S, and then compute the
updated model’s loss on Sy. To approximate the denominator, we simple take the models that were
not trained on Sy and compute their losses on S¢. As in Carlini et al. (2022) we model the logit of
the model’s confidence as normal, and use these transformed confidences to estimate the likelihood
ratio. Further details are provided in Appendix D.

A:

&)

We have described how to compute our unlearning success statistic A, but it remains to discuss
what values of A should be considered “successful”. We continue our analogy to recent work in
evaluating membership inference attacks, and follow the paradigm introduced in (Carlini et al., 2022)
that focusing on true positive rates (in this case of predicting that the loss came from the unlearned
model) at low false positive rates as the most intuitive measure of MIA attack success. In addition to
plotting the full log-log ROC curves (Figures 3a and 3b) we also report the AUC. Unlike in the MIA
context, where a successful attack has an AUC > .5, and an ROC curve that is above the diagonal
even at very low FPRs, in our setting a successful unlearning algorithm corresponds to the failure of
the LRT, and so we hope to see ROC curves that are very close to the diagonal even at low FPRs.

Operationalizing the Likelihood-ratio Audit. Operationalizing the likelihood ratio test from (5)
requires access to the distribution of losses under the null and alternative hypotheses. While analytical
solutions are usually not available, we can readily get large samples from these two distributions.
In an ideal scenario, this entails that we would need to fit as many re-train models and unlearned
models as possible for every forget set of interest. Since this approach becomes computationally too
burdensome, we use the following two-step approximation:

Approximating the distributions under H, and H;. Here we adapt the sample splitting procedure
first introduced by Carlini et al. (2022) to forget sets with sizes J greater than 1. We train /K shadow
models on random samples from the data distribution D so that a fraction p of these models are
trained on the forget set Sy = {(x;, yj)}jzl, and a fraction (1 — p) are not. In particular, we
train shadow models on K = 10 subsets of D so that each forget set Sy € D appears in K - p
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subsets. This approach has the advantage that the same /& shadow models can be used to estimate the
likelihood-ratio test for all the forget sets. Finally, we fit the parameters of two Gaussian distributions
to the confidence scores of the retain models and the unlearned models on Sy. Across all experiments,
weusep =0.5and J = 1.

Model losses. Instead of using the actual losses, we follow Carlini et al. (2022) and compute model
confidences as ¢(f(x),y) = log(f(x)y) — log(>_,, f(x),) which the authors show yields the
strongest empirical attack performance. This score compares the confidence the model assigns to the
true class (e.g., ‘positive’) with the confidences the model assigns to all other classes (i.e., all other
words from the approximately 250680 dimensional vocabulary). The higher the score is the more
confident the model is in the correct prediction.
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