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ABSTRACT

Recent releases of Large Language Models (LLMs), e.g. ChatGPT, are astonishing
at generating human-like texts, but they may impact the authenticity of texts. Previ-
ous works proposed methods to detect these AI-generated texts, including simple
ML classifiers, pretrained-model-based zero-shot methods, and finetuned language
classification models. However, mainstream detectors always fail on short texts, like
SMSes, Tweets, and reviews. In this paper, a Multiscale Positive-Unlabeled (MPU)
training framework is proposed to address the difficulty of short-text detection with-
out sacrificing long-texts. Firstly, we acknowledge the human-resemblance property
of short machine texts, and rephrase AI text detection as a partial Positive-Unlabeled
(PU) problem by regarding these short machine texts as partially “unlabeled”. Then
in this PU context, we propose the length-sensitive Multiscale PU Loss, where a
recurrent model in abstraction is used to estimate positive priors of scale-variant
corpora. Additionally, we introduce a Text Multiscaling module to enrich training
corpora. Experiments show that our MPU method augments detection perfor-
mance on long AI-generated texts, and significantly improves short-text detection
of language model detectors. Language Models trained with MPU could outcom-
pete existing detectors on various short-text and long-text detection benchmarks.
The codes are available at https://github.com/mindspore-lab/
mindone/tree/master/examples/detect_chatgpt and https://
github.com/YuchuanTian/AIGC_text_detector.

1 INTRODUCTION

Recent developments in Large Language Models (LLMs) have brought astonishing changes to
people’s lives. The GPT-2 (Radford et al., 2019) model, created in early 2019, is capable of simple
question-answering tasks; GPT-3 (Brown et al., 2020) is a great leap in model size and capability;
ChatGPT (OpenAI, 2022), announced in late 2022, shows comparable performance to humans as a
chatbot; GPT-4 (OpenAI, 2023a), released this year, has even better generative performance. These
advancements are making people’s lives easier with applications like writing aids, search engines, and
Office Suites. However, they could be used to generate deceptive fake texts for illegal and unethical
purposes.

Previous works have proposed numerous approaches to distinguish fake AI-generated text from
genuine human languages. Canonical work (Solaiman et al., 2019) used simple machine learning
classifiers as baselines; some works (Gehrmann et al., 2019; Mitchell et al., 2023) proposed zero-shot
detection measures based on pretrained models; numerous works (Solaiman et al., 2019; Crothers
et al., 2022; Guo et al., 2023; Mitrovic et al., 2023) perform simple finetuning of pretrained language
models on the AI-text classification task.

Despite various methods, few mainstream methods investigated the negative impact of text length:
the difficulty to detect significantly increases as texts become shorter. Some latest online ChatGPT
detectors have noticed this issue, but they dodge rather than address it by putting up minimum text
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length requirements (Tian, 2022; FudanNLPLab, 2023; OpenAI, 2023b). In the era of smartphones
where people rely heavily on fragmented mobile media, fake short articles like SMSes, Tweets,
and reviews generated by LLMs could pose huge threats to one’s daily life, yet we still lack a
comprehensive detector that is capable of detecting both short texts and long-texts.

To improve detectors’ performance on short texts, we rethink the plain “Binary Classification” setting
that is intuitively applied. It is seemingly natural to phrase text detection as a binary classification
task, as texts have clear origins (from human works or AI outputs) and thus, clear binary labels
(real or fake); but interestingly, we observe a handful of machine-generated texts that are overly
short and simple, such that these texts are highly similar to human (e.g. Ex. 2 in Table 1). It is
not suitable to assign these simple machine texts with either clear human or AI labels; rather, they
are in an “Unlabeled” state. Though the case is occasional and most short machine texts (e.g. Ex.
1 in Table 1) are still distinguishable based on manifold features, it prompts us to question the
rationality of clear binary labels on general short machine texts. On the contrary, we hold that short
machine-generated texts are partially “Unlabeled”. As machine-generated texts become shorter and
simpler, the “Unlabeled” property could gradually dominate the text.

Example 1: The first sentence in benchmark HC3-Sent (Guo et al., 2023)
Human: You can’t just go around as-
sassinating the leaders of countries you
don’t like!

AI: It is generally not acceptable or ethi-
cal to advocate for or condone the assas-
sination of any individual, regardless of
their actions or beliefs.

Example 2: Answer to “When is the independence day of the United States?”
Human: Independence Day is annually
celebrated on July 4th.

AI: The Independence Day of the United
States is celebrated on July 4th.

Table 1: Short example answers from human and AI. In general, short answers are distinguishable
based on features like punctuations, emotions, and formality (see non-cherrypicked case Ex. 1). But
in extreme cases (see Ex. 2), short simple answers are indistinguishable, and the unlabeled property
is manifest.

In this sense, we model the task of AI-generated text detection as a partial Positive-Unlabeled (PU)
problem and formulate the Multiscale Positive-Unlabeled (MPU) training framework to address the
challenging task of short text detection without sacrificing long texts. PU problems typically address
binary classification tasks where positive data and unlabeled data are offered for training. Considering
the partially “Unlabeled” property of short machine texts, we rephrase detector training as a partial
PU problem and boost detectors’ performance on multiscale texts. In order to improve conventional
PU optimization targets for texts of various lengths, a length-aware Multiscale PU (MPU) loss is
proposed and applied during the training process. We are aware that the PU prior probability of a text
being positive is length-variant. To this end, an abstract recurrent model is designed to adjust the PU
prior probability automatically based on corpus length. Further, a Text Multiscaling module is also
proposed to exert the effect of Multiscale PU loss by diversifying training corpora in terms of length.
Experiments demonstrate that the MPU framework is significantly effective in improving short-text
detection performance; meanwhile, detection on long texts is also augmented.

2 RELATED WORK

Text Detection Methods. Since the introduction of GPT-2 (Radford et al., 2019) and its successors,
fake texts generated by powerful LLMs are causing ethical and legal issues. Methods are developed
to discriminate against these generated texts in various misuse scenarios. Zellers et al. (2019)
shed light on machine-generated fake news by proposing a GPT-based news generator GROVER,
and uses GROVER itself to sort fake news out; Adelani et al. (2020) looks at detection of fake
online reviews; Fagni et al. (2020) focuses on machine-generated fake tweets and proposes the
TweepFake dataset. Other proposed detection methods are for general scenarios. Several canonical
baselines are mentioned by Solaiman et al. (2019) to detect GPT-2 texts, including simple TF-IDF
classifiers and finetuned RoBERTa (Liu et al., 2019); GLTR (Gehrmann et al., 2019) detect generated
texts in a zero-shot manner by using token prediction probabilities from available pretrained NLP
models like BERT (Devlin et al., 2018) and GPT-2 (Radford et al., 2019). After the introduction
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of ChatGPT (OpenAI, 2022), some new detection methods (Liu et al., 2022; Mitchell et al., 2023;
Mitrovic et al., 2023; Guo et al., 2023) are released.

PU Methods. Previous works have proposed methods to train a binary classifier with positive and
unlabeled data. Many PU methods (Bekker & Davis, 2020; Du Plessis et al., 2014; Kiryo et al., 2017;
Su et al., 2021; Hammoudeh & Lowd, 2020; Chen et al., 2020) constructs PU loss based on positive
and unlabeled samples, for classifying unlabeled data. Other PU methods include two-step learning
and bias learning (Liu et al., 2003). The two-step technique first identifies reliable negative examples
and then performs learning based on the positives and negatives of the mark (He et al., 2018; Ienco &
Pensa, 2016); biased learning treats unlabeled data as a negative sample of class-labeled noise (Hsieh
et al., 2015; Shao et al., 2015). Above all, we refer to applying a PU loss during training to address
the task of multiscale AI-generated text detection, because PU losses could be generally applied on
powerful finetuning text detectors without much additional computation costs.

3 MULTISCALE POSITIVE-UNLABELED TEXT DETECTION

3.1 TEXT DETECTION AS POSITIVE-UNLABELED CLASSIFICATION

Despite manifold methods for detecting AI-generated texts, mainstream detectors seldom take the
factor of text length into account, and thus they always fail on short texts. We have tried several
existing detection methods for short LLM-generated texts (shown in Table 4), but none of them
perform well. As people nowadays are immersed in short, fragmented forms of mobile media, they
are vulnerable to LLM attacks with no reliable means to defend themselves. Hence, we are in urgent
need of a performant short AI-generated text detector.

Intuitively, past works formulated the task of AI text detection as a binary classification problem, i.e.
classifying texts as AI or Human. However, the formulation could be problematic for shorter texts as
we found high similarities between extremely simple AI texts and human texts. The phenomenon
could be rare in actual applications. But it is fundamentally reasonable, because LLMs learn from
human languages; and for sentences whose structures are overly simple, they are seemingly “copied”
by LLMs from what they have learned. Therefore, the attribution of these simple machine texts is
uncertain: on one hand, they are indeed outputs from Language Models; on the other hand, they
are ordinary human languages. Though the completely non-classifiable case mostly happens for
extremely short texts or commonly used phrases (that rarely occurs in our benchmarks and detection
of which is of no application value), it inspires us to think about the partially “unlabeled” property
behind the vast majority of short, distinguishable texts despite their definite labels.

To overcome this issue, we model the task of multiscale text detection as a partial Positive Unlabeled
problem (PU). In this problem, corpora from human are regarded as “Positive”, but short texts from
machines are given an additional “Unlabeled” mark for PU loss calculations (detailed in Sec. 3.3).
Then our detector model is optimized within this partial PU context.

3.2 PRELIMINARIES: CANONICAL PU LOSS FUNCTIONS

PU losses are derived from the traditional Positive-Negative (PN, i.e. Binary Classification) setting,
detailed in Appendix A. Some works (Du Plessis et al., 2014; Plessis et al., 2015) perform indirect
approximation of the negative risk in the PN framework, yielding the unbiased PU (uPU) loss as
follows:

R̂uPU (g) = πR̂P (g,+1)− πR̂P (g,−1) + R̂U (g,−1), (1)

where R̂P (g,−1) := 1
nP

∑nP

i=1 L(g(x
P
i ),−1) and R̂U (g,−1) := 1

nU

∑nU

i=1 L(g(x
U
i ),−1) are esti-

mations calculated from positive and unlabeled training samples respectively.

However, the deep learning classifier may be too flexible, leading to R̂U (g,−1)− π̃R̂P (g,−1) < 0
and causing the model to overfit. As a remedy, Kiryo et al. (2017) proposes the non-negative risk
estimator based on the uPU loss. The non-negative PU (nnPU) loss is thus derived as follows:

R̂nnPU (g) = π̃R̂P (g,+1) + max{0, R̂U (g,−1)− π̃R̂P (g,−1)}. (2)
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The nnPU loss Kiryo et al. (2017) is performant and thus widely referred by later PU works and
applications (Kato et al., 2019; Bepler et al., 2019; Peng et al., 2019; Xu et al., 2019; Chen et al.,
2020; Su et al., 2021; Tang et al., 2022). However, to the best of our knowledge, no previous works
have applied PU to scenario of length-variant texts, in which simple usage of the nnPU loss might not
be effective. We hope to develop an effective PU mechanism in aid of detecting length-variant texts.

3.3 MPU: A LENGTH-SENSITIVE PU APPROACH

In PU loss conventions as stated in Sec. 3.2, the estimation for the prior probability of a data being
positive π̃ is always kept at a constant. The reason is that prior probability π is closely associated
with the dataset distribution, which is always assumed to be uniform. However, this might not be case
with texts of different lengths. As explained in Section 1, short texts and long texts hold different
properties; in other words, they do not share the same distribution. In this regard, the assumption of
dataset distribution being uniform is flawed; fixing the prior estimation at a certain constant value is
problematic in the case of multiscale text detection (i.e. where texts to be processed are of manifold
length).

Though long texts and short texts have different distributions, the distribution shift from long text
to short text is a gradual process with respect to text lengths. To deal with the gradual shift of
distribution, we look at this shift with respect to text length from a differentiation perspective. Texts
of a certain length l could be regarded as a small subset that features its own distribution, and also its
own prior π(l). We hope to provide a smooth, length-variant estimation π̃(l) for the prior at length l,
in order to fit the PU framework for the multiscale text detection problem.

In this fashion, we propose the Multiscale PU loss R̂MPU that uses length-sensitive priors π̃ for
multiscale texts. However, we are faced with the challenge of modeling the length-variant prior π̃
in abstraction. Namely, we need to investigate the general probability of all sentences (of a certain
length) being human, without access to specific details of any piece of text. To this end, we use the
general recurrent language model (Mikolov et al., 2010; Sundermeyer et al., 2012) in abstraction
as a discriminator for positive, human-spoken corpora, which is formulated as follows: given a
sequence Sl of l tokens: Sl = [ti]

n
i=1, abstract recurrent discriminator ∆ : seq → [0, 1] that is

bounded one-dimensional (because from the discriminator we expect a confidence of a sequence
being positive), the recurrent model in abstraction is expressed as:

∆(Si+1) = f (∆(Si), ti+1) ,∀i ∈ [l − 1] , (3)

where f is some function that merges the classification of all previous tokens Si−1 with the clas-
sification of the last token ti. Next, the abstraction is concretized based on task characteristics of
human-generated text discrimination. Since relatively short texts tend to have simple semantic corre-
lations to be captured, human text discrimination is performed via capturing signals from tokens. We
hold that each token has a hidden property of origin, and the attribution contributes to the classification
of the whole sequence. Tokens, as extreme cases of short texts, could be sorted into two categories:
“clear positive”, i.e. the token could hardly be generated by AI; or “unlabeled”, i.e. the token is
mediocre and universally used, giving no signal as “human-spoken”. Each token is expected to
provide an equal contribution to the overall sequence classification towards the orientation of its own
category (Kang et al., 2018). In this sense, the merging function f is formulated as equally-weighted
addition:

f (∆(Si), ti+1) = wS∆(Si) + wtδ(ti+1) s.t. wS = wt, (4)

where δ(ti+1) is defined as the contribution of δ(ti+1). For simplicity, we discretize the transition
of classification from i → i+ 1 and each token contribution is designated as binary. We also take
text length into consideration by normalizing δ(ti+1) with a factor of sequence length l. Under these
assumptions, the transition is formulated as:

∆(si+1) = clip(∆(Sn) + δ(ti), [0, 1]), s.t. δ(ti) =

{
1/l if ti is clear positive,

−1/l otherwise.
(5)

Notably, we use a hard clip function to bound the overall classification results in interval [0, 1] rather
than other non-linear functions, e.g. sigmoid. This is because clear positive tokens could be rare in
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practice. This assumption is particularly true when we consider recent advancements of generative
language models, where human and AI languages are more resembling. In other words, a majority of
words are both frequently used by human and AI, while only a few signal words manifest unique
human characteristics. This property requires the discriminate model to be highly sensitive to positive
token signals. Hence, we set hard boundaries rather than using non-linear standardizing functions to
scale the output between [0, 1]. Further, to encourage positive responses, we initially positive as the
initial state ∆(S0) of the discriminator.

Return to the original objective, we tend to calculate the prior probability of a sample being positive
π̃ based on the introduced recurrent language model. π̃ could also be interpreted as the expectation of
confidence from the recurrent discriminator E [∆(Sl)]. The discretization of contribution is beneficial
to reducing the continuous discriminator ∆ to discrete states: for a sequence Sl with l tokens, the
confidence could only take values as i/l,∀i ∈ [l]. Therefore, discriminator ∆ has a total of i + 1
equally spaced states as confidence output. We will show that the expectation E [∆(Sl)] of all
length-l sequences could be exactly calculated given the positive probability p of a single token,
i.e. the general probability of a token showing clear-human signal. As stated previously, p tends to
be a small value. State transition matrix P ∈ R(l+1)×(l+1) that represents the contribution of the
last token is a band sparse matrix consisting of positive transition p and negative transition 1− p to
adjacent states from the current state. Defining probability vector at state i as σi ∈ R(l+1), a single
transition shown as Eq.5 and the final state probability vector could be described as:

σi+1 = σiP, σl = σ0P
l. (6)

Thus, given one-hot initial state σ0, we could calculate the final state probability vector and the
overall expecation π̃ for a sequence of length l:

π̃(l) = E [∆(Sl)] = ⟨σl, α⟩ = σ0P
lαT , (7)

where vector α ∈ R(l+1) is the sequence vector of all possible positive confidence: α = [i/l]
l
i=0.

Further details and derivations are mentioned in Appendix B. As a result, as text length decreases, the
prior positive probability in samples of this length π̃length decreases as well. This is in line with our
expectation in Sec 3.1 that shorter texts tend to demonstrate more “unlabeled” properties.

Finally, on top of the canonical non-negative PU loss as defined in Eq. 2, we define the Multiscale
PU Loss with text-length-variant priors:

R̂MPU (g) = ⟨Π̃, R̂P (g,+1)⟩+ R̂U (g,−1)− ⟨Π̃, R̂P (g,−1)⟩, (8)

where Π̃ stands for an array: [π̃(lg)] that records the corresponding prior of training texts, calculated
based on respective text lengths using Eq. 7. As is emphasized, short machine-generated texts should
be viewed as partially “unlabeled” rather than entirely “unlabeled”. Hence, we weight-sum the
multiscale PU loss and the canonical PN classification loss to get the final loss for detector model
finetuning:

R̂(g) = R̂PN (g) + γR̂MPU (g). (9)

3.4 TEXT MULTISCALING

The proposed Multiscale PU Loss expects training texts of highly variant lengths, but training
sets may contain lengthy paragraphs only. Therefore, we introduce Text Multiscaling Module that
generates a variety of short texts to exert the potential of the length-sensitive Multiscale PU loss.
We propose random deletion at sentence scale as a solution. Text Multiscaling module consists
of 3 steps: first, a complete training text is first tokenized into n sentences, denoted as sentence
array C; then the sentences are independently and randomly masked based on a sentence-wise mask
probability psent. In probabilistic terms, each sentence is decided by an independent Bernoulli trial in
the sample space {0, 1}. In the sample space, 0 means the sentence is discarded and 1 stands for the
sentence is maintained. Finally, all sentences are merged again for the multiscaled training text cmul.
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Mathematically, with ⊙ stands for the element-wise Hadamard product, the above process could be
concluded as:

cmul = C ⊙M, where M ∼ Bernoullin(1− psent). (10)

The proposed Text Multiscaling module is a one-to-one mapping from C → cmul; we are not gener-
ating more training samples, but substituting the original sample for fair comparison in experiments.
Notably, it is probable that multiscale could leave the original text intact, or only one sentence is left.
The relative sequence of remaining sentences is maintained to avoid breaking excess logical relations
between sentences. Multiscaled texts automatically inherit class labels of their original text. The
concern for attribution change due to length reduction is to be addressed by the use of Multiscale PU
Loss.

Though random deletion is also applied in Easy Data Augmentation (EDA) (Wei & Zou, 2019), our
method is different from theirs in two aspects. Firstly, our method is focused on multiscaling, while
word-level random deletion proposed by EDA has limited effect in generating texts of various lengths.
Secondly, EDA could break semantic meanings in sentences: deletion of keywords could change
the class of a sentence; while a more integrated, sentence-level deletion reduces the chance of class
property change.

4 EXPERIMENTS

4.1 SETTING OVERVIEW

Datasets. We choose TweepFake (Fagni et al., 2020) and HC3 (Guo et al., 2023) as benchmarks for
our experiments. TweepFake (Fagni et al., 2020) is a dataset of tweets for AI-generated microblog
detection. Since latest LLMs have completely reshaped the task of AI text detection, we also
adopt HC3 (Guo et al., 2023), which is an up-to-date ChatGPT text detection dataset including
both English and Chinese. Additionally, HC3 has short-text benchmarks: HC3-English-Sent and
HC3-Chinese-Sent. We use these datasets to demonstrate the effectiveness of our method.

The length statistics in Table 2 show the distribution similarity of English short-text benchmarks,
i.e. TweepFake (that consists of tweets) and HC3-En-Sent. We conclude from the statistics that
the adopted HC3 short-text benchmark could simulate the fragmented language environment (e.g.
Twitter) on mobile apps. Detector evaluation on these short-text benchmarks could reflect their
real-world detection capabilities in smartphone-related scenarios.

Benchmark Mean Std Q1 Q2 Q3

TweepFake (Fagni et al., 2020) 24.82 15.19 13 21 34
HC3-En-Sent (Guo et al., 2023) 24.98 15.47 15 22 31

Table 2: Token length statistics of short-text benchmarks. HC3-English-Sent has a similar length
distribution as TweepFake. These short-text benchmarks could simulate languages that we encounter
in Instant Messaging and Microblogging Apps, like Twitter.

Detectors. BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) are adopted to apply
our MPU method, due to their popularity and supreme performance in previous AI text detection
works (Solaiman et al., 2019; Fagni et al., 2020; Liu et al., 2022; Guo et al., 2023). Training-agnostic
detection algorithms are excluded from our consideration.

4.2 TWEEPFAKE DETECTION RESULTS

In TweepFake experiments, we follow Kumarage et al. (2023) for our training settings. Kumarage
et al. (2023) is one of the latest works on AI-generated text detection, and it claims outstanding
performance on short-text detection. We strictly follow the original training strategy in Kumarage
et al. (2023): the model is trained with the AdamW optimizer at batchsize 16 and learning rate 1e− 5.

TweepFake mainly consists of short tweets. we inspect the dataset and find that a vast majority
of texts are single or a handful of sentences. Hence, we refrain from using Text Multiscaling that
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Method Acc.

BERT-Finetuned (Devlin et al., 2018) 89.1
RoBERTa-Finetuned (Liu et al., 2019) 89.6

RoBERTa-Stylo (Kumarage et al., 2023) 91.1
RoBERTa-MPU (Ours) 91.4

Table 3: Experiments on short-text dataset TweepFake (Fagni et al., 2020).

randomly delete sentences for TweepFake datasets; rather, we directly apply Multiscale PU loss
during training. As shown in Table 3, the experiment result of the proposed MPU is promising: it
greatly improves the performance of finetuned RoBERTa, and its performance outcompetes the latest
TweepFake baseline RoBERTa-Stylo (Kumarage et al., 2023) that requires an additional module for
stylometric feature extraction during finetuning.

4.3 HC3-ENGLISH DETECTION RESULTS

Method (F1 scores) HC3-En-Full HC3-En-Sent

GLTR (Gehrmann et al., 2019) 96.52 40.19
PPL (Guo et al., 2023) 95.20 62.04
OpenAI (OpenAI, 2023b) 91.00 69.27
DetectGPT (Mitchell et al., 2023) 87.39 63.32
BERT-Finetuned (Devlin et al., 2018) 97.62±0.91 57.65±15.45
RoBERTa-Finetuned (Liu et al., 2019) 97.42±0.92 58.60±10.53
RoBERTa-Stylo (Kumarage et al., 2023) 96.48 81.46

BERT-MPU (Ours) 98.60±0.52 79.76±3.07
RoBERTa-MPU (Ours) 98.40±0.31 85.31±1.80

Table 4: Comparison with English AI-generated text detection baselines on HC3 Guo et al. (2023).
Most baselines perform poorly on short texts (i.e. HC3-En-Sent); in contrast, our method improves
short-text detection greatly.

We also experiment our method on ChatGPT corpora that are much harder to detect. In the ChatGPT
text detection experiments, we follow the setting of HC3 (Guo et al., 2023) to test the performance of
our method. HC3 (Guo et al., 2023) is a dataset targeted at ChatGPT text detection. All texts are
reduced into shorter texts for a sentence-level variant. We apply the MPU framework on the full-scale
dataset of HC3 (Guo et al., 2023).

Several baseline detectors are chosen to demonstrate the outstanding detection performance of
our MPU method. These baselines are open-source and replicable. Among these baselines,
GLTR (Gehrmann et al., 2019), PPL (Guo et al., 2023), and DetectGPT (Mitchell et al., 2023)
are zero-shot methods that do not require further training: they rely on the likelihood outputs of a
pretrained language model. The OpenAI Detector (OpenAI, 2023b) is a RoBERTa detector finetuned
on OpenAI’s GPT-2 (Radford et al., 2019) corpora. RoBERTa-Stylo Kumarage et al. (2023) is one of
the latest detection baseline targeted for short texts. BERT-Finetuned and RoBERTa-Finetuned are
language models plainly finetuned on HC3 (Guo et al., 2023), following the official setting; while
BERT-MPU and RoBERTa-MPU are language models trained on HC3 (Guo et al., 2023) via the
proposed MPU method.

It could be observed from Table 4 that most existing methods perform poorly on short texts. The
statistics verify our previous claim that the detection of shorter texts is a difficult problem. Specifically,
finetuned BERT and RoBERTa are good at detecting long, full-level texts, but they fail to filter out
shorter AI-generated texts. On the contrary, our MPU method could greatly improve short-text
performances and boost long AI-generated text detection as well. We will further investigate the
effect of solitary MPU components in Sec. 4.5.
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Method HC3-Ch-Full HC3-Ch-Sent

GLTR (Gehrmann et al., 2019) 87.40 49.94
RoBERTa-Finetuned (Liu et al., 2019) 96.28±3.42 83.07±6.85
RoBERTa-MPU (Ours) 97.42±0.24 89.37±1.94

Table 5: Comparison with Chinese AI-generated text detection baselines. Our method is also proved
effective on Chinese corpora.

4.4 HC3-CHINESE DETECTION RESULTS

To verify the generality of the proposed MPU method in other languages, we also compare our
method with baselines on Chinese AI text detection benchmark HC3-Chinese (Guo et al., 2023).
Following Guo et al. (2023), we use chinese-roberta-wwm-ext (Cui et al., 2020) as the pretrained
language model. The results are shown in Table 5. Our method could still outcompete other methods
by large margins in terms of short-text detection, reaching an F1 score of 89.37 on HC3-Chinese-Sent.

4.5 ABLATIONS

Harmful Short Texts. We elaborate in Section 3.1 that short texts could manifest a partially unlabeled
property, which impacts the normal training process of the detector. To demonstrate that short texts
are indeed harmful for training, we design an experiment based on the HC3-English dataset Guo et al.
(2023) as follows: when the detector encounters a short training text during training, the training text
is omitted from backward operations. Other settings are identical to Section 4.3. As shown in Table 6,
finetuning without short texts demonstrates better performance compared with plain finetuning. This
reveals that short sentences are harmful to detector training due to their partially unlabeled properties.
Hence, PU frameworks need to be leveraged to address this issue.

Method HC3-En-Full HC3-En-Sent

Finetuning with all texts 97.42 ± 0.92 58.60 ± 10.53
Finetuning without short sentences 98.19 ± 0.66 62.42 ± 5.60

Table 6: Performance comparison between the detector finetuned with all texts and detector finetuned
without short texts.

Measures HC3-English HC3-Chinese
Text Mul. MPU loss Full Sent Full Sent
% % 97.42±0.92 58.60±10.53 96.28±3.42 83.07±6.85
! % 96.42±2.27 82.76±2.76 95.89±4.18 84.79±5.94
% ! 97.48±2.41 45.30±8.78 96.87±0.89 83.46±5.78
! ! 98.40±0.31 85.31±1.80 97.42±0.24 89.37±1.94

Table 7: F1 scores of Finetuned RoBERTa on ChatGPT benchmark HC3. “Full” and “Sent” stands
for model validated on long-text and short-text benchmarks, respectively.

Framework Components. We perform ablations on the solitary effects of Text Multiscaling and
Multiscale PU loss.

From Table 7, it is firm that the addition of Text Multiscaling to training corpus greatly improves
performance on sentence-level corpus detection as expected. Unfortunately, the detector’s capability
on full corpus decays. This performance drop is attributed to the unreasonable label assignment to
short corpus from random sentence deletion: the generated short corpora automatically inherit labels
from their full-level predecessors in Text Multiscaling Module, neglecting “unlabeled” properties as
introduced in Sec. 3.1. The addition of MPU loss reverses full-level corpus detection performance
drop and boosts short-text performance as well. Solitary addition of MPU loss only would have little
help for detection performance for lack of short texts.

MPU Loss. We further investigate MPU loss configurations on ChatGPT text detection benchmark
HC3-English (Guo et al., 2023).

8
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The performance of Multiscale PU loss is evaluated against ordinary PU loss that disregards changes
in sentence lengths, as shown in Table 8. Multiscale PU loss is sensitive to training corpora of various
lengths and thus is more performant compared with its ordinary counterpart.

PU type Full Sent

Ordinary 97.05±2.15 83.53±3.14
Multiscale 98.40±0.31 85.31±1.80

Table 8: Performance comparison between ordinary PU loss and the proposed Multiscale PU loss.

Introduced in the abstract recurrent detection model (Sec. 3.3), token-wise prior p estimates the
probability of a token being highly characteristic as human-spoken. As shown in Table 9, we carefully
tune p and found that the best performance is reached at p = 0.2, which is small as we expect.

γ Full Sent p Full Sent psent Full Sent

0 96.42±2.27 82.76±2.76 0.1 96.29±1.31 86.06±1.97 0 97.48±2.41 45.30±8.78
0.2 96.52±0.38 83.94±4.07 0.2 98.40±0.31 85.31±1.80 0.1 97.73±1.42 76.84±7.93
0.4 98.40±0.31 85.31±1.80 0.3 96.81±1.70 84.17±2.78 0.25 98.40±0.31 85.31±1.80
0.6 97.42±0.13 85.78±1.19 0.4 97.44±1.06 82.88±3.32 0.4 97.45±1.34 87.11±1.41
0.8 96.90±1.49 84.54±2.09

Table 9: Ablation experiment results on hyperparameters: loss proportion γ, the estimated probability
of a token being clear-human p, and sentence mask probability psent.

We also carefully adjust the affine weight hyperparameter for PU loss γ, as shown in Table 9. As the
affine weight γ for PU loss gradually increases, the full-level corpus detection performance reaches
the peak at γ = 0.4 and then drops, while the sentence-level performance reaches its peak at γ = 0.6.
From a comprehensive perspective, the best overall performance is reached at γ = 0.4 where both
performances on full and sentence-level corpus are satisfactory. The climb-and-drop trend reveals
that short machine-generated sentences are not completely unlabeled; short-text classification should
be viewed as a partial PU problem rather than a complete PU problem.

Further, we test the advantage of the non-negative risk estimator in the nnPU loss (Kiryo et al., 2017)
against uPU loss (Du Plessis et al., 2014), as introduced in Sec. 3.2. The results are shown in Table 10.

Loss type Full Sent

Unbiased PU (Du Plessis et al., 2014) 97.90±0.25 84.87±1.28
Non-negative PU (Kiryo et al., 2017) 98.40±0.31 85.31±1.80

Table 10: Performance comparison between ordinary PU loss and the proposed Multiscale PU loss.

Text Multiscaling. As introduced in Sec. 3.4, we randomly mask sentences of the training set at
probability psent for multiscale text augmentation. We investigate on tuning psent for the optimal
value. The statistics are shown in Table 9. When psent is set at 0.25, the test performance on both
full and sentence level corpus are satisfactory; when psent is set too high, sentence-level detection
performance is enhanced, but full-level performance is negatively impacted because the full-scale
training texts are overly damaged.

5 CONCLUSION

This paper proposes a Multiscale Positve-Unlabeled (MPU) framework for AI-generated text detection.
We look at the iffy attribution of short AI-generated corpus, and model AI text detection as a partial
PU problem. MPU loss and Text Multiscaling Module are to augment detectors’ discriminative ability
on short corpus.

9
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ETHICS & REPRODUCIBILITY STATEMENT

This paper proposes a training method for AI-generated text detectors. Despite outstanding perfor-
mance on multiscale texts, chances are that the detectors output the wrong attribution of a certain
piece of text. This may cause ethical issues when the detector is used for detecting plagarism, fake
news, et cetera. Hence, we strongly recommend that results from the detector could only serve as a
reference in actual applications.

Experiments are reproducible. We have attached complete training settings in the Appendix; we also
fix random seeds in our codes for the ease of replication. All details are in Appendix E.

ACKNOWLEDGEMENT

This work is supported by National Key R&D Program of China under Grant No.2022ZD0160300 and
National Natural Science Foundation of China under Grant No.62276007. We gratefully acknowledge
the support of MindSpore, CANN and Ascend AI Processor used for this research.

REFERENCES

David Ifeoluwa Adelani, Haotian Mai, Fuming Fang, Huy H. Nguyen, Junichi Yamagishi, and Isao
Echizen. Generating sentiment-preserving fake online reviews using neural language models and
their human- and machine-based detection. In Leonard Barolli, Flora Amato, Francesco Moscato,
Tomoya Enokido, and Makoto Takizawa (eds.), Advanced Information Networking and Applica-
tions - Proceedings of the 34th International Conference on Advanced Information Networking
and Applications, AINA-2020, Caserta, Italy, 15-17 April, volume 1151 of Advances in Intelligent
Systems and Computing, pp. 1341–1354. Springer, 2020. doi: 10.1007/978-3-030-44041-1\ 114.
URL https://doi.org/10.1007/978-3-030-44041-1_114.

Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: A survey. Machine
Learning, 109:719–760, 2020.

Tristan Bepler, Andrew Morin, Micah Rapp, Julia Brasch, Lawrence Shapiro, Alex J Noble, and
Bonnie Berger. Positive-unlabeled convolutional neural networks for particle picking in cryo-
electron micrographs. Nature methods, 16(11):1153–1160, 2019.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165.

Xuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen Gong, Kewei Chen, and Zhangyang Wang.
Self-pu: Self boosted and calibrated positive-unlabeled training. In International Conference on
Machine Learning, pp. 1510–1519. PMLR, 2020.

Evan Crothers, Nathalie Japkowicz, Herna L. Viktor, and Paula Branco. Adversarial robustness of
neural-statistical features in detection of generative transformers. In International Joint Conference
on Neural Networks, IJCNN 2022, Padua, Italy, July 18-23, 2022, pp. 1–8. IEEE, 2022. doi:
10.1109/IJCNN55064.2022.9892269. URL https://doi.org/10.1109/IJCNN55064.
2022.9892269.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, and Guoping Hu. Revisiting pre-
trained models for Chinese natural language processing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: Findings, pp. 657–668, Online, Novem-
ber 2020. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/2020.findings-emnlp.58.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

10

https://doi.org/10.1007/978-3-030-44041-1_114
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/IJCNN55064.2022.9892269
https://doi.org/10.1109/IJCNN55064.2022.9892269
https://www.aclweb.org/anthology/2020.findings-emnlp.58
https://www.aclweb.org/anthology/2020.findings-emnlp.58
http://arxiv.org/abs/1810.04805


Published as a conference paper at ICLR 2024

Marthinus C Du Plessis, Gang Niu, and Masashi Sugiyama. Analysis of learning from positive and
unlabeled data. Advances in neural information processing systems, 27, 2014.

Tiziano Fagni, Fabrizio Falchi, Margherita Gambini, Antonio Martella, and Maurizio Tesconi.
Tweepfake: about detecting deepfake tweets. CoRR, abs/2008.00036, 2020. URL https:
//arxiv.org/abs/2008.00036.

FudanNLPLab. Sniffer. Website, 2023. sniffer.fastnlp.top.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M. Rush. GLTR: statistical detection and
visualization of generated text. In Marta R. Costa-jussà and Enrique Alfonseca (eds.), Proceedings
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Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
9051–9062, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html.

13

https://proceedings.neurips.cc/paper/2019/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html


Published as a conference paper at ICLR 2024

APPENDIX

A PU LOSS DERIVATION

PU losses are derived from the canonical binary classification framework. In the standard supervised
binary classification (or Positive-Negative classification, abbreviated as PN), let π := p (Y = +1) =

nP

nP+nN
be the prior probability of the positive class, g : Rd → R be an arbitrary decision function (in

our case, the detector model) and L be the loss function. The risk of g is defined as the expectation of
loss:

R(g) :=E(X,Y )∼p(x,y)[L(g(X), Y )]

=πEp[L(g(X),+1)] + (1− π)En[L(g(X),−1)]

=πRP (g,+1) + (1− π)RN (g,−1).

(11)

In canonical PN learning, R(g) can be approximated directly by losses calculated from training data
as follows:

R̂PN (g) = πR̂P (g,+1) + (1− π)R̂N (g,−1), (12)

where R̂P (g,+1) := 1
nP

∑nP

i=1 L(g(x
P
i ),+1) and R̂N (g,−1) := 1

nN

∑nN

i=1 L(g(x
N
i ),−1) are esti-

mations of the positive and negative risk, respectively.

In the PU framework, R̂N (g,−1) cannot be approximated directly via negtive samples. Alternatively,
some works (Du Plessis et al., 2014; Plessis et al., 2015) perform indirect approximation as follows:
defining pP (x) := p(x|Y = +1) and pN (x) := p(x|Y = −1), since

(1− π)pN (x) = p(x)− πpP (x), (13)

the negative risk part (which is an expectation) is obtained as

(1− π)RN (g,−1) = RU (g,−1)− πRP (g,−1), (14)

and R(g) can be approximated indirectly as

R̂uPU (g) = πR̂P (g,+1)− πR̂P (g,−1) + R̂U (g,−1), (15)

where R̂P (g,−1) := 1
nP

∑nP

i=1 L(g(x
P
i ),−1) and R̂U (g,−1) := 1

nU

∑nU

i=1 L(g(x
U
i ),−1) are esti-

mations calculated from positive and unlabeled training samples. Eq. 15 is defined as the unbiased
PU (uPU) loss (Du Plessis et al., 2014).

B ESTIMATION DETAILS OF CONFIDENCE EXPECTATION

The transition matrix Given positive probability p of a single token, we express state transition as a
band matrix P. An example matrix form of P is listed as follows:



1− p p 0 0 ... 0 0 0
1− p 0 p 0 ... 0 0 0
0 1− p 0 p ... 0 0 0

...

...

...
0 0 0 0 ... 1− p 0 p
0 0 0 0 ... 0 1− p p


Demonstration of π̃ increment with respect to lengths We try to mathematically demonstrate that
prior π̃ increases with length l. The initial state σ0 is one-hot, so the prior π̃(l) with respect to l could
be written as:

π̃(l) = E [∆(Sl)] = σ0P
lαT = P[n, :]Pl−1αT , (16)

14
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where P[n, :] represents the last row of transition matrix P. To demonstrate π̃ increases with l, we
alternatively demonstrate π̃(l + 1)− π̃(l) = E [∆(Sl+1)]− E [∆(Sl)] is positive.

However, sizes of states and transition matrices are different for corpora of different lengths. We
use a subscript to indicate this difference. For instance, sequence vector αl := [i/l]

l
i=0 indicates all

possible confidences in a sorted sequence; Pl indicates the transition matrix P of size (l+1)×(l+1).
Then:

E [∆(Sl+1)]− E [∆(Sl)] = Pl+1[n, :]P
l−1
l+1Pl+1α

T
l+1 −Pl[n, :]P

l−1
l αT

l (17)

Interestingly, we could leverage unique features of the sparse band matrix P. First, obviously
Pl+1[n, :] = [0;Pl[n, :]]. Further, if we compare

M := Pl+1[n, :]P
l−1
l+1 ∈ Rl+2 and K := Pl[n, :]P

l−1
l ∈ Rl+1,

we would discover that M = [0;K], namely, array M is array K prepended by a zero. (The physical
meaning of M and K is the last line of matrix Pl

l+1 and Pl
l, respectively.) Based on this discovery,

we could simplify Eq. 17:

E [∆(Sl+1)]− E [∆(Sl)] = [0;K]Pl+1α
T
l+1 −KαT

l (18)

Then we look at the concrete form of [0;K]Pl+1. For simplicity, we denote the nth element of K as
kn:

Count 0 1 2 ... n n+ 1
[0;K] 0 k0 k1 ... kn−1 kn

[0;K]Pl+1 (1− p)k0 (1− p)k1 pk0 + (1− p)k2 ... pkn−2 + (1− p)kn pkn−1 + pkn

Based on the table above, we could derive the relations between E [∆(Sl+1)] and E [∆(Sl)]:

E [∆(Sl+1)]− E [∆(Sl)] =

∑l
n=0 nkn
l + 1

+
2p

l + 1
− klp

l + 1
−

∑l
n=0 nkn

l

= −
∑l

n=0 nkn
(l + 1)l

+
2p− klp

l + 1

= −E [∆(Sl)]

l + 1
+

2p− klp

l + 1
,

(19)

which means that

E [∆(Sl+1)] =
l

l + 1
E [∆(Sl)] +

2p− klp

l + 1
, (20)

As long as we view {l×E [∆(Sl)]} as a sequence of corpus length l starting from 1×E [∆(S1)] = p,
we could solve E [∆(Sl)] for l > 1:

E [∆(Sl)] =
(2l − 1)p− p

∑l−1
n=1 kn,n

l
= 2p− p

l
(1 +

l−1∑
n=1

kn,n), (21)

where kn,n is the probability of the abstract recurrent model outputting positive confidence 1 for
a corpus of length n. However, we encounter the difficulty that the analytic solution to kn,n is
not easily solvable; we only know that kn,n is a probability bounded in (0, 1). We inspect kn,n
for relatively small p and found that kn,n quickly converges to 0. This process is demonstrated
by Figure 1, where kn,n decays in an approximately exponential manner to infinitesimally small
values (which decays much faster than reciprocals, i.e. 1/l). As a result, prior π̃ keeps increasing

15
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as l increases, and converges to 2p. Figure 1 (Right) confirms the convergence derived in Eq. 21.
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Figure 1: Left: kn,n (in log scale) with respect to corpus length l. Right: π̃ with respect to corpus
length l.

C PROPOSAL OF IMPOSING SPACE CLEANING ON THE HC3-ENGLISH
BENCHMARK

We use the HC3 (Guo et al., 2023) benchmark for ChatGPT corpus detection experiments. However,
we inspected HC3 corpora and discovered that the corpora are flawed: human corpora have additional
spaces before punctuations, while corpora from AI do not have this feature. The extra spacing could
directly impact the input to detectors. We list several examples below, demonstrating the obvious
difference between Human and ChatGPT corpora in the HC3 benchmark (Guo et al., 2023):

# l a b e l e d as Human
c o r p u s = ’ B a s i c a l l y t h e r e a r e many c a t e g o r i e s o f ” Bes t S e l l e r ” . ’
i n p u t i d s = [ 0 , 34480 , 89 , 32 , 171 , 6363 , 9 , 22 , 2700 , 44795 , 22 , 479 , 2 ]

c o r p u s = ’Same t h i n g f o r b e s t s e l l e r s . ’
i n p u t i d s = [ 0 , 42271 , 631 , 13 , 275 , 12649 , 479 , 2 ]

c o r p u s = ’ Also , IIRC t h e r a n k i n g s change e v e r y week or some th ing l i k e
t h a t . ’

i n p u t i d s = [ 0 , 22412 , 2156 , 3082 , 5199 , 5 , 8359 , 464 , 358 , 186 , 50 , 402 ,
101 , 14 , 479 , 2 ]

# l a b e l e d as ChatGPT
c o r p u s = ’ I t i s g e n e r a l l y n o t a c c e p t a b l e o r e t h i c a l t o a d v o c a t e f o r o r

condone t h e a s s a s s i n a t i o n o f any i n d i v i d u a l , r e g a r d l e s s o f t h e i r
a c t i o n s o r b e l i e f s . ’

i n p u t i d s = [ 0 , 243 , 16 , 3489 , 45 , 9796 , 50 , 13557 , 7 , 7156 , 13 , 50 ,
35005 , 5 , 16351 , 9 , 143 , 1736 , 6 , 6069 , 9 , 49 , 2163 , 50 , 9734 , 4 , 2 ]

c o r p u s = ’ There a r e a l s o p r a c t i c a l c o n s i d e r a t i o n s a t p l a y i n t h i s
s i t u a t i o n . ’

i n p u t i d s = [ 0 , 970 , 32 , 67 , 7708 , 19199 , 23 , 310 , 11 , 42 , 1068 , 4 , 2 ]

c o r p u s = ’ I t can a l s o l e a d t o f u r t h e r c o n f l i c t and i n s t a b i l i t y i n t h e
r e g i o n . ’

i n p u t i d s = [ 0 , 243 , 64 , 67 , 483 , 7 , 617 , 3050 , 8 , 16826 , 11 , 5 , 976 , 4 ,
2 ]

In the examples, we show original corpus as well as their token ids after being processed by the
RoBERTa-base tokenizer. Most human corpora have an unexpected 479 token (standing for “ .”, i.e.
a space and a period), while ChatGPT corpora does not manifest this feature.
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Hence, the detector could judge the attribution of a certain corpus simply by detecting these spacing
mistakes. Embarrasingly, if we use the logical judgement of whether token id 479 is contained
in the sequence to detect human corpora, the F1 score would reach 82.12% on sentence-level test
corpora of the HC3 benchmark. The performance of such a simple logic is even better than the
officially reported performance (81.89%) of finetuned RoBERTa-base (Guo et al., 2023). Above all,
we strongly recommend later works that involve the HC3 benchmark to remove unnecessary spaces
before punctuations. We will opensource the code simple cleaning helper function that removes
unnecessary spaces.

D BASELINE REPLICATIONS

D.1 DETECTGPT

DetectGPT (Mitchell et al., 2023) is a latest open-sourced AI corpus detection baseline, but the
original paper did not report its performance on latest LLM texts. Hence, we replicate DetectGPT on
the HC3-English (Guo et al., 2023) ChatGPT corpus dataset, and compare it with our MPU method.
The experiment results are shown in Table 4, where our MPU method outcompetes DetectGPT by
large margins. There is still a visible gap between latest training-agnostic methods (e.g. DetectGPT)
and finetuned language models on ChatGPT corpora.

We also provide some detailed procedures to tailor DetectGPT for the HC3 benchmark: 1. Full-
scale HC3 corpora are always too long to perturb. Therefore, we truncate corpora as long as they
raise perturbation errors, following recommendations from authors of DetectGPT. 2. We use 100
perturbations for full-scale HC3 corpora (following DetectGPT (Mitchell et al., 2023)), but we use
10 perturbations for sentence-level HC3 because there are too many corpora. It also reflects that
DetectGPT is not very efficient for large-scale corpora compared to language model detectors, because
it requires tens of model runs for a single corpus. 3. DetectGPT uses AUROC as the classification
metric; however, this metric is not applicable to finetuned language models that output probabilities
for respective classes. Hence, given confidences of all corpora outputted from DetectGPT, we choose
1000 equally-spaced threshold between max and min values, and maintain the threshold with the
largest F1 score. Notably, this will provide an upperbound for the performance of DetectGPT, as
in real applications the threshold is pre-set; scanning for the best threshold on test sets is strictly
prohibited.

D.2 GLTR, PPL, & OPENAI

These methods have already been open-sourced on HuggingFace. We directly input all texts in the
testset to these baseline methods and measure their performances.

We have found an inconsistency in comparison to reported values while replicating GLTR (Gehrmann
et al., 2019) and RoBERTa-Finetuned (Cui et al., 2020) on the HC3-Chinese (Guo et al., 2023)
benchmark, shown in Table 11. This inconsistency is tolerable and won’t affect our final conclusion.

Method Full Sent

GLTR (Reported by Guo et al. (2023)) 89.61 44.02
GLTR (Replicated) 87.40 49.94

RoBERTa-Finetuned (Reported by Guo et al. (2023)) 98.79 83.64
RoBERTa (Replicated) 96.28±3.42 83.07±6.85

Table 11: Our replication of HC3-Chinese Guo et al. (2023) baselines compared with reported values.

E REPLICATION DETAILS

Following the training setting of Kumarage et al. (2023), we use batchsize 16, learning rate 1e− 5
for TweepFake; following the setting of Guo et al. (2023), we use batchsize 32, learning rate 5e− 5
for HC3. AdamW optimizors are adopted. Selected benchmarks are publicly accessible online.
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We use a single Nvidia Tesla V100 as the device for experiments. A single epoch of training costs
around 30 minutes. We replicate all experiments three times to avoid fluctuation, using seed=0,1,2.
The codes are opensourced at GitHub and Gitee.
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