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ABSTRACT

The original CLIP text encoder is limited by a maximum input length of 77 to-
kens, which hampers its ability to effectively process long texts and perform fine-
grained semantic understanding. In addition, the CLIP text encoder lacks support
for multilingual inputs. All these limitations significantly restrict its applicability
across a broader range of tasks. Recent studies have attempted to replace the CLIP
text encoder with an LLM-based embedder to enhance its ability in processing
long texts, multilingual understanding, and fine-grained semantic comprehension.
However, because the representation spaces of LLMs and the vision-language
space of CLIP are pretrained independently without alignment priors, direct align-
ment using contrastive learning can disrupt the intrinsic vision-language align-
ment in the CLIP image encoder, leading to an underutilization of the knowledge
acquired during pre-training. To address this challenge, we propose ProCLIP,
a curriculum learning-based progressive vision-language alignment framework to
effectively align the CLIP image encoder with an LLM-based embedder. Specif-
ically, ProCLIP first distills knowledge from CLIP’s text encoder into the LLM-
based embedder to leverage CLIP’s rich pretrained knowledge while establishing
initial alignment between the LLM embedder and CLIP image encoder. Subse-
quently, ProCLIP further aligns the CLIP image encoder with the LLM-based
embedder through image-text contrastive tuning, employing self-distillation reg-
ularization to avoid overfitting. To achieve a more effective alignment, instance
semantic alignment loss and embedding structure alignment loss are employed
during representation inheritance and contrastive tuning. Extensive experiments
show ProCLIP achieves 6.8% to 13.5% improvement on zero-shot classification
and presents excellent performance on cross-modal retrieval, multilingual cross-
modal retrieval, and fine-grained understanding tasks, demonstrating the effective-
ness and robustness of ProCLIP. To support reproducibility and facilitate further
research, we will release the training code and model weights.

1 INTRODUCTION

CLIP demonstrates remarkable zero-shot recognition capabilities by learning joint vision-language
representations through contrastive learning on large-scale image—text pairs (Radford et al., 2021}
Serving as a bridge between vision and language, it is widely adopted in multiple downstream
tasks such as image—text retrieval (Yang et al., 2023), text-to-image generation (Wang et al., |2022),
and open-vocabulary object detection (Wu et al.l [2023b). However, the original CLIP model relies
on English text captions with a maximum length of 77 tokens as its supervisory signal (Zhang
et al.,[2024)). This design limits its capacity to process long-form text and restricts input to English-
only (Tschannen et al., 2025). Additionally, due to the absence of supervision for fine-grained
textual semantics, this limitation further impedes its semantic understanding capability (Hu et al.,
2025).

To overcome these limitations, methods such as Long-CLIP (Zhang et al.l |2024) interpolate posi-
tional embeddings and fine-tune on long text—image pairs to extend the input length. While effective
for long-text understanding, such approaches still fall short in enhancing CLIP’s fine-grained seman-
tic understanding and multilingual capabilities. Recently, LLM exhibits remarkable proficiency in
natural language processing, and it has pivoted towards harnessing decoder-only architectures for
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effective representation learning (BehnamGhader et al.| 2024; [Lee et al., 2024). Following this
trend, methods such as FLAME (Cao et al., [2025) and LLM2CLIP (Huang et al., [2024) propose
to replace CLIP’s original text encoder with LLM-based embedders. By leveraging the rich open-
world knowledge inherent in LLMs, these approaches aim to enhance CLIP’s representational ca-
pacity—particularly in processing longer and more complex image captions. However, these meth-
ods align the CLIP image encoder directly with the LLM-based text embedder through contrastive
learning, while neglecting the rich pretrained knowledge within CLIP. This “from-scratch align-
ment” compels both encoders to learn a new representation space from scratch, disregarding the
original CLIP alignment knowledge. Such an approach increases the risk of overfitting, particularly
when training data is scarce, thereby compromising model generalization. This observation leads to
a critical research question: How can we systematically leverage CLIP’s pretrained knowledge to
achieve efficient cross-modal alignment with an LLM-based embedder while preserving generaliza-
tion capability?

In this paper, we propose ProCLIP, a simple yet effective progressive vision-language alignment
framework enhancing the CLIP. ProCLIP leverages curriculum learning to first guide the LLM-based
embedder (only MLP trainable) to adapt to the CLIP text encoder’s representation space, and then
uses contrastive learning to further learn joint image-text representations. Specifically, ProCLIP first
distills knowledge from the original CLIP text encoder into the LLM-based embedder, establishing
an initial alignment between the CLIP image encoder and LLM-based embedder. Subsequently,
we conduct contrastive learning on image—text pairs to further improve this alignment. Since the
LLM-based embedder is already partially aligned with the CLIP image encoder during the prior
stage, the contrastive optimization process becomes more stable and preserves generalization more
effectively. To further mitigate overfitting, we impose a self-distillation constraint on the CLIP im-
age encoder throughout this stage, which stabilizes training and improves generalization. To prove
the effectiveness of ProCLIP, we evaluate it on multiple tasks across diverse data scales and model
sizes. Extensive experiment results demonstrate that ProCLIP achieves consistently significant im-
provements. The main contributions of this paper are summarized as follows:

* We highlight the limitation of previous works: previous methods fail to fully exploit the pre-
trained knowledge in CLIP, and their reliance on simplistic contrastive learning for cross-modal
alignment significantly compromises CLIP’s inherent generalization capabilities.

* We propose ProCLIP , a simple but effective Progressive vision-language alignment frame-
work to enhance CLIP. ProCLIP initially distills the pretrained knowledge into the LLM-based
embedder. After that, ProCLIP utilizes contrastive fine-tuning constrained by self-distillation to
further enhance cross-modal alignment while preserving the model’s inherent generalization ca-
pacity.

* We conduct extensive experiments on multiple tasks across diverse data scales and model
sizes. Compared to the baseline, ProCLIP achieves 6.8% to 13.5% improvement on zero-shot
classification and performs strongly on other tasks, including short-text cross-modal retrieval,
long-text cross-modal retrieval, multilingual cross-modal retrieval, and fine-grained understand-
ing.

2 RELATED WORK

Vision-Language Contrastive Learning. Vision-language contrastive learning aims to learn ro-
bust multimodal representations by pretraining on large-scale image-text pairs. A seminal work
in this area, CLIP (Radford et al., 2021} aligns visual and linguistic representations through con-
trastive learning, bridging both modalities in a shared semantic space. As a bridge between vision
and language, CLIP has been widely applied in multimodal learning. It enables a variety of natu-
ral language-guided open-vocabulary recognition tasks, including image classification (Zhou et al.,
2022bza; Kim et al.| 2024), open-vocabulary semantic segmentation (Ding et al., 2022; |Li et al.,
2022;|Ghiasi et al.,[2022; Xu et al.,[2022;|Cho et al.;,|2024; Lan et al.,[2024])), and open-vocabulary ob-
ject detection (Du et al.,[2022; Kaul et al.,[2023)). However, CLIP remains fundamentally constrained
by its text encoder’s limited capacity and fixed input length, which hinders its ability to process mul-
tilingual and long texts and model fine-grained semantics. To mitigate these issues, several methods
have been introduced. Long-CLIP (Zhang et al.l [2024) extends the input length via positional em-
bedding interpolation, yet still fails to capture nuanced semantic relationships. LoTLIP (Wu et al.,
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Figure 1: Previous work directly aligns the LLM-based embedder with the CLIP image encoder, disregarding
the valuable knowledge embedded in the pre-trained CLIP model. In contrast, ProCLIP first transfers knowl-
edge from CLIP’s text encoder to the LLM embedder via distillation, establishing an initial alignment. It then
refines the alignment between the CLIP image encoder and the LLM-based embedder through image-text con-
trastive learning regularized by self-distillation.

2024])) incorporates corner tokens to aggregate diverse textual information, preserving short-text un-
derstanding while significantly improving performance on long texts. Nevertheless, constrained by
the capabilities of the text encoder, LoTLIP cannot incorporate additional open-world knowledge
and remains unable to handle multilingual inputs.

LLMs for Representation Learning. Large language models have presented remarkable profi-
ciency across a wide range of natural language processing tasks Touvron et al.|(2023)); Achiam et al.
(2023));|Bai et al.|(2023)); Liu et al.|(2024)). Recent research has pivoted towards harnessing decoder-
only architectures for effective representation learning. For instance, LLM2Vec (BehnamGhader
et al., 2024)) converts pre-trained decoder-only LLMs into versatile text encoders by incorporating
three principal advancements: bidirectional attention mechanisms, masked next-token prediction,
and unsupervised contrastive alignment. Meanwhile, Qwen3-Embedding (Zhang et al., [2025b)) cap-
italizes on the Qwen3 model’s strong multilingual understanding and generation abilities. By in-
tegrating a large-scale unsupervised pretraining and supervised fine-tuning on high-quality data, it
achieves state-of-the-art performance on the MTEB benchmark (Muennighoff et al.,[2022). Inspired
by these advances, recent works (Huang et al., [2024; |Cao et al., [2025; Zhang et al.,[2025a) attempt
to enhance CLIP by replacing its text encoder with a powerful LLM-based embedder, thereby im-
proving its ability to process multilingual, longer, and more complex textual inputs. Although these
approaches present promise, their alignment strategies remain overly coarse and often lead to de-
graded generalization. Developing more refined and effective alignment techniques thus remains a
critical and open research challenge.

Knowledge Distillation. Knowledge distillation |Hinton et al.| (2015) is widely used in deep learn-
ing to enhance model performance and reduce computational complexity. Typically, a larger teacher
model transfers knowledge to a smaller student model by guiding the learning of features or out-
put distributions. Alternatively, self-distillation methods enable knowledge transfer within a single
model, where deeper layers supervise shallower ones |[Zhang et al.| (2019). In the context of CLIP,
several distillation techniques have been introduced. TinyCLIP |Wu et al| (2023a)) employs affin-
ity mimicking to capture cross-modal interactions during distillation, allowing the student to repli-
cate the teacher’s alignment behavior in a shared affinity space. CLIP-KD |Yang et al.| (2024a)
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Figure 2: The training pipeline of our proposed ProCLIP. It consists of representation inheritance via cross-
architecture distillation and contrastive tuning integrated with self-distillation regularization.

integrates multiple strategies—including relation-based, feature-based, gradient-based, and con-
trastive distillation—to maximize feature similarity between the teacher and student models. CLIP-
CID|Yang et al.|(2024b) utilizes cluster-instance discrimination to transfer semantic knowledge from
the teacher, enabling the student to develop a richer understanding of the pretraining data. Different
from the above method, this paper introduces a self-distillation mechanism to mitigate catastrophic
forgetting during training and preserve the generalization capabilities of the model.

3 METHODOLOGY

In this section, we first introduce the preliminary (Sec. [3.I), including contrastive language-image
pre-training and improving CLIP with an LLM-based embedder. Then we present our proposed
ProCLIP framework, which comprises two primary training stages: 1) Representation Inheritance
via Cross-Architecture Distillation (Sec.[3.2). 2) Contrastive Tuning Integrated with Self-Distillation
Regularization (Sec. [3.3).

3.1 PRELIMINARY

Contrastive Language-Image Pre-training. Contrastive Language-Image Pre-training
(CLIP) Radford et al| (2021) learns to align images and text from large-scale image—text
pairs through contrastive learning, bridging both modalities in a shared embedding space. Given a
batch of image-text pairs {(I;, T;)}2_,, the image encoder £; and text encoder £ map them into
the joint semantic space as {(v;,#;)}2_,. To optimize both encoders in a dual-tower architecture, a
symmetric contrastive learning objective is imposed on the resulting representations:

B T T
Lt t: v,
;CCL[P — _ Z ].Og Bexp(vl 7 /T) + ].Og BeXp( (2 U’L /T) . (1)
] > j=1 exp(v; - t;r/T) > i1 exp(t; - v;'—/T)
text-to-image image-to-text

However, the native CLIP text encoder is limited to sequences of up to 77 tokens. A common so-
lution is to interpolate the position embeddings of the CLIP text encoder and fine-tune the model.
Alternatively, one may replace the CLIP text encoder with an LLM-based embedder. The latter ap-
proach not only improves long-text understanding but also enhances multilingual understanding and
fine-grained semantic comprehension, resulting in a more versatile vision-language dual-encoder. In
this work, we investigate a more efficient alignment strategy that leverages an LLM-based embedder
to enhancing CLIP’s comprehensive capabilities.
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Improving CLIP with LLM-based Embedder. LLM2CLIP Huang et al.| (2024) first introduces
an LLM-based embedder into CLIP, demonstrating enhanced long-text understanding. Given an
LLM-based encoder Gr, it encodes texts {7;}, offline into embeddings {t;},. This process
is typically performed in an offline manner. During contrastive fine-tuning, a multilayer percep-
tron (MLP) is used to map {#'}¥, into the CLIP embedding space for dimensional alignment. The
mapped text features and the image features from the CLIP image encoder are then optimized via
the contrastive loss in Eq. [T} resulting in a newly aligned representation space. However, applying
contrastive learning directly to fine-tuning data to optimize the MLP and vision encoder hinders the
convergence of the new dual-tower architecture to an optimal parameter space. This arises because
the text representations from the LLM-based embedder and MLP lack prior alignment with the vi-
sion encoder. Moreover, unconstrained fine-tuning may also cause excessive drift from the original
pre-trained representation, while limited fine-tuning data (e.g., 3M samples) cannot compensate for
the knowledge acquired during large-scale pre-training (e.g., 400M samples). To overcome these
challenges, we propose a progressive alignment pipeline that improves multimodal alignment while
preserving pre-trained knowledge.

3.2 STAGE 1: REPRESENTATION INHERITANCE VIA CROSS-ARCHITECTURE DISTILLATION.

Given a pre-trained image and text encoder of the CLIP model {£;, 7} and a pre-trained LLM-
based embedder G, our goal is to replace the CLIP text encoder 1 with the LLM-based embedder
Gr to enhance comprehensive abilities. Consistent with prior works [Huang et al.| (2024)); |Cao et al.
(2025));|[Zhang et al.|(2025a), we initially extract embeddings from textual captions offline using Gr:
t" ={Gr(T;) € R*}Y,, where d represents the embedding dimension of the LLM-based embedder.

The embedding space of the LLM-based embedder exhibits no prior alignment with the CLIP image-
text representation space. To bridge this gap, we adopt a cross-architecture distillation strategy that
transfers knowledge from the CLIP text embedding space to the LLM embedding space. Specif-
ically, given a batch of texts {7;}2_,, we first utilize a single-layer MLP to unify the dimensions
of LLM embeddings and CLIP text embeddings. To facilitate fine-grained semantic alignment, we
propose an instance semantic alignment loss, denoted as L;,s. This loss function leverages text-
only data to distill knowledge from CLIP’s text encoder into the LLM-based embedder, defined as
follows:

B
Lins = > [MLP(t]) — E(T3)|2. 2
=1

Since Li,s only focuses on instance-level alignment without capturing the global embedding struc-
ture, we propose the embedding structure alignment loss L. This loss measures inter-sample
distances within a batch in both the CLIP text encoder and LLM-based embedder spaces, and aligns
the two globally by minimizing their pairwise distance discrepancy. Ly is defined as:

B
Lo = 3 |IMLP() — MLP(£)) 2 — [E(T) — E(T))]|o]- 3
i,j=1
1<J

The overall loss is the first stage is defined as:L4is = Lins + Lstruct-

3.3 STAGE 2: CONTRASTIVE TUNING INTEGRATED WITH SELF-DISTILLATION
REGULARIZATION.

After the above phase, the MLP(Gr) has already been preliminarily adapted to CLIP’s vision-
language embedding space, making subsequent fine-tuning with vision-language contrastive learn-
ing significantly easier. We utilize the InfoNCE loss (Radford et al., 2021) to better align the image
embedding v; and the projected LLM embedding ¢t; = MLP(¢,), which can be formulated as:

B «T . T
<p(v; - 7 /T xp(tF - v,
. Z log exp(v; - t5' /T) o exp(tf - v, /7)

B N B J
i=1 Ej:l exp(v; - th/T) Zj:l exp(t - UjT/T)

where 7 is a learnable temperature parameter. Beyond standard contrastive learning, we impose a
self-distillation constraint on the CLIP image encoder to mitigate excessive forgetting of pre-trained

“4)
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Table 1: Cross-modal retrieval performance Recall@1 on multiple datasets.

Method Data Flickr30k COoCOo ShareGPT4V  Urban-1k DOCCI DCI Avg.
2T T2 I2T T2I 12T T2I 2T T2 12T T2 I2T T2I 12T T2I
Model Architecture: CLIP ViT-B/32
CLIP 400M 803 59.8 51.5 306 773 660 609 46.8 58.1 534 431 403 61.8 49.5
LLM2CLIP 3M 835 70.1 556 41.1 942 934 782 842 762 771 622 644 75.0 71.1
ProCLIP 3M 860 735 57.8 435 944 926 80.8 853 781 795 657 683 77.1(+2.1) 73.8(+2.7)
"LLM2CLIP ~ I5M 862 72.2 585 432 953 942 806 853 792 807 643 676 774 7139
ProCLIP ISM  86.6 726 59.0 435 945 939 822 853 784 80.6 67.1 692 78.0(+0.6) 74.2(+0.3)
"LLM2CLIPT ~ 30M 878 724 “61.1 443 967 959 866 888 829 829 679 695 805 757
ProCLIP 30M 902 746 624 459 968 959 885 899 829 841 706 719 81.9(+1.4) 77.0(+1.3)
Model Architecture: CLIP ViT-B/16
CLIP 400M  82.7 63.4 537 333 76.1 68.9 67.5 535 668 57.0 454 43.0 65.4 45.6
LLM2CLIP 3M  88.0 753 605 448 944 944 80.6 86.0 817 822 672 69.1 78.7 75.3
ProCLIP 3M 894 77.6 617 468 943 933 829 88.1 810 825 67.3 720 794(+0.7) 76.7(+1.4)
"LLM2CLIPT ~ 15M 889 76.6 624 465 950 952 845 884 838 851 693 724 807 773
ProCLIP ISM  90.8 779 632 478 942 949 858 89.6 825 84.6 702 740 81.2(+0.5) 78.0(+0.7)
"LLM2CLIPT ~ 30M 902 78.1 654 485 968 964 897 913 862 868 731 748 836 793
ProCLIP 30M 927 791 671 49.7 960 964 90.0 934 851 873 73.6 769 84.2(+0.6) 80.5(+1.2)
Model Architecture: CLIP ViT-L/14
CLIP 400M  86.6 64.6 572 36.4 780 68.7 68.4 56.0 658 63.1 454 439 66.9 55.5
LLM2CLIP 3M 924 80.1 655 497 952 956 83.6 89.0 851 859 70.0 744 82.0 79.1
ProCLIP 3M 928 811 664 519 951 948 869 923 859 869 712 76.1 83.0(+1.0) 80.5(+1.4)
"LLM2CLIPT ~ I5M° 913 80.6 67.0 50.6 963 953 864 905 864 885 717 753 832 801
ProCLIP I5SM 934 814 676 525 961 954 883 926 862 884 744 768 84.3(+1.3) 81.2(+1.1)
"LLM2CLIP ~ 30M 931 8I.0 682 520 97.5  '97.7 927 939 882 896 749 783 858 {21
ProCLIP 30M 945 81.6 693 532 968 97.0 930 944 875 898 759 795 86.2(+0.4) 82.6(+0.5)
Model Architecture: EVAO2-CLIP ViT-L/14
EVAOQ2-CLIP 2B 889 769 63.6 46.6 845 79.4 720 694 72,6 742 439 452 70.9 65.3
LLM2CLIP 3M 938 81.7 666 51.1 965 959 844 921 866 887 73.8 76.1 83.6 80.9
ProCLIP 3M  93.0 82.6 68.6 534 966 960 884 932 87.0 897 718 784 84.2(+0.6) 82.2(+1.3)

knowledge during adaptation—essential for preserving generalization. On the image encoder side,
we apply a regularization loss that is symmetric to the one used in the first stage(Eq. 2} Eq.[3):

B B
Lrg = Y NE(L) = E (L)llz + D [IIEr(L) = ErIll2 = I1€7 (L) = EF(L)ll2|, ()
i=1

ij=1
7 j
where £5 denotes the EMA (Exponential Moving Average)-updated image encoder obtained as:
&l =a&i + (1 —a)éy, (6)

where o controls the update rate of the teacher model parameters. The overall loss function of the
contrastive tuning stage is defined as Liyne = Linfo + ALreg, Where A is a loss weight.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. For the alignment dataset, we use CC3M (Changpinyo et al., [2021),
CC12M (Changpinyo et al., 2021}, and YFCC15M (Thomee et al.,[2016),combined the high-quality
captions from DreamLIP [Zheng et al.| (2024). We conduct experiments with data scales of 3M
(CC3M), I5M (CC3M + CC12M), and 30M (CC3M + CCI12M + YFCC15M) to explore the effects
of data scaling. For the benchmark, we perform zero-shot classification on 11 different classifi-
cation datasets, robustness evaluations on 5 ImageNet variants, retrieval evaluations on 6 datasets,
multilingual cross-modal retrieval evaluation on XM3600 Thapliyal et al.[(2022), and fine-grained
understanding evaluation on MMVP-VLM [Tong et al| (2024). Regarding the model, we employ
three OpenAl pre-trained CLIP models, ViT-B/32, ViT-B/16, and ViT-L/14, to investigate the ef-
fects of model scaling. Additionally, we conduct experiments with pretrained EVA02-CLIP (Fang
et al.| [2023) ViT-L/14 to assess the impacts of different model architectures. For the LLM-based
embedder, we primarily use LLaMA3-8B-CC consistent with LLM2CLIP Huang et al.| (2024).

Implementation Details. For the representation inheritance phase, we train for four epochs,
followed by another four epochs for contrastive tuning.  During training, we employ
AdamW (Loshchilov} [2019) as the optimizer, with a learning rate of 1 x 10~° and a weight de-
cay of 0.2. The parameters $; and (s are set to 0.9 and 0.98, respectively. In the first stage, the
training batch size is set to 1024, while in the second stage it is increased to 4096. The loss weight
A is set at 0.0004. Other training details can be found in the supplementary material.
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Figure 3: Per-language image- text retrleval performance for LLM2CLIP and ProCLIP on the XM3600 bench-
mark.

Table 2: Zero-shot classification performance on 11 datasets. The best results are marked in bold.

e = = -
L
S £ Z 5§ g £ 5 7
T £ £ z &g § =# = g 2
3 = = =) = £ = 2 = 2 g
Method Data = &} S} 17 ®] < [=] [ S = —- Avg.
Model Architecture: CLIP ViT-B/32
CLIP 400M 83.1 887 635 615 57.6 188 428 846 894 660 619 65.2
LLM2CLIP 3M 496 892 615 603 115 86 478 380 79.0 22,6 41.0 46.3
ProCLIP 3M 645 90.7 658 650 212 11.6 52.0 51.7 833 30.8 479 53.1(+6.8)
"LLM2CLIP ~ 15M 572" 883 614 613 196 84 506 423 80.7 235 433 488
ProCLIP I5SM 749 90.0 665 651 396 139 537 685 867 355 533 58.9(+10.1)
"LLM2CLIP ~ 30M 585 883 61.0 612 206 84 503 376 817 260 451 ~ 490
ProCLIP 30M 744 888 669 659 38.0 162 530 64.5 868 404 54.0 59.0(+10.0)
Model Architecture: CLIP ViT-B/16
CLIP 400M 879 89.7 66.8 63.1 637 228 450 870 904 67.6 67.1 68.3
LLM2CLIP 3M 569 92.6 644 622 154 117 509 465 829 23.6 458 50.3
ProCLIP 3M 731 925 689 679 323 135 541 598 87.0 358 548 58.2(+7.9)
"LLM2CLIP ~ 15M 632 90.8 645 629 273 99 528 503 832 237 465 523
ProCLIP 15M 803 90.8 69.7 674 443 165 56.7 758 884 40.8 58.6 62.7(+10.4)
“LLM2CLIPT ~ 30M 644 902 646 637 27.0 11.2 550 459 840 271 497 530
ProCLIP 30M 81.0 893 683 682 485 179 573 70.2 88.8 448 59.2 63.0(+10.0)
Model Architecture: CLIP ViT-1L/14
CLIP 400M 926 949 77.0 668 765 307 544 932 939 781 745 75.7
LLM2CLIP 3M 648 954 729 664 18.8 104 548 473 883 268 528 54.4
ProCLIP 3M 834 96.6 783 724 451 162 59.6 659 923 41.8 62.5 64.9 (+10.5)
“LLM2CLIPT ~ I5M 70.1 952 723 664 324 95 580 543 883 266 540 570
ProCLIP 15M 871 954 776 723 598 21.1 621 77.0 924 488 66.0 69.3(+12.3)
"LLM2CLIP ~ 30M 712" 940 705 67.0 321 113 578 547 893 288 564 ~ 575
ProCLIP 30M 889 941 777 725 611 252 628 815 929 572 67.8 71.0(+13.5)
Model Architecture: EVAO2-CLIP ViT-L/14
EVA02-CLIP 2B 929 988 89.8 738 88.8 351 606 937 951 763 782 80.3
LLM2CLIP 3M 641 965 826 680 292 9.0 594 485 898 28.6 564 57.5
ProCLIP 3M 827 979 884 736 576 165 635 67.6 93.8 454 66.8 68.5(+11.0)

4.2 MAIN RESULTS

Cross-Modal Retrieval. As shown in Tab. [T} ProCLIP consistently surpasses LLM2CLIP in both
short- and long-text retrieval tasks across various datasets and model scales. On short-text datasets
such as Flickr30k and COCO, ProCLIP achieves significant improvements in both image-to-text
(I2T) and text-to-image (T2I) retrieval. For instance, with ViT-L/14 and 30M training samples, it
reaches 95.0% I2T Recall@1 on Flickr30k—nearly 2 percentage points higher than LLM2CLIP. On
long-text benchmarks including DOCCI, DCI, and Urban-1k, ProCLIP also exhibits clear advan-
tages. Under ViT-B/16 trained on 30M samples, it attains 73.6% (I2T) and 76.9% (T2I) on DCI.
Moreover, across all data scales from 3M to 30M, ProCLIP delivers stable gains, with particularly
strong improvements in T21 retrieval. These results confirm that ProCLIP enhances performance in
both short- and long-text scenarios.

multilingual cross-modal Retrieval. Benefiting from the LLM-based embedder, ProCLIP facili-
tates multilingual capabilities. As illustrated in Fig. [3] we compare the cross-lingual retrieval per-
formance between LLM2CLIP and ProCLIP on the XM3600 benchmark (Thapliyal et all, [2022).
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Experiment results demonstrate that our approach achieves superior multilingual performance. This
enhancement is attributed to the improved alignment between the CLIP image encoder and the
LLM-based embedder.

Zero-Shot Classification. In Tab. 2] we present the zero-shot classification performance on 11
downstream tasks across different data and model scales. We observe that LLM2CLIP signif-
icantly compromises the original generalization ability of CLIP. Even when utilizing 30M data
points, compared to CLIP’s ViT-B/32, ViT-B/16, and ViT-L/14, the average performance declines by
16.2%, 15.3%, and 18.2%, respectively. Compared to LLM2CLIP, our proposed ProCLIP method
achieves significant performance improvements across all experimental conditions. Particularly,
with a dataset of 30M samples, ProCLIP enhances the average performance by approximately 10%-
13.5%. This notable improvement is primarily attributed to two factors: 1) The representation in-
heritance process allows the LLM embedder to inherit some knowledge from the original CLIP text
encoder. 2) During the contrastive tuning phase, the introduction of a distillation loss as regulariza-
tion helps to mitigate the forgetting of knowledge throughout the learning process.

Robustness. To evaluate the ro-

bustness of ProCLIP we report it Table 3: Robustness performance. The best results are marked in

performance across varying data bold.
sizes and model scales in Tab. [l =
. . obustness
ProCLIP ' consistently ~ achieves =~ Method Data |= Vs IN.AIN-O IN-RINSS
average improvements of 5.9%- Vodel Archiroet 11D VIT-L/14
. odae, rcnitecture: 11-
9.3%.  Notably, on challenging ¢ 400M 698 708 322 878 596
out-of-distribution datasets like LLM2CLIP 3M 49.0 46.6 324 75.0 44.8
ImageNet-A and ImageNet-R, Pro-  ProCLIP ~ 3M 583 633 316 840 523
CLIP outperforms LLM2CLIP by LLM2CLIP 15M 50.8 50.1 338 782 463
over 10 percentage points, highlight- g?l\%?é%ﬁ o ’;gﬁ’ - 15%%, o gg; - g:;g, - gg-g, _ 255,% |
ing its enhanced ability to handle g 0y 30M 634 680 341 868 557
distribution shifts and complex per- Vool Arei EVAOR-CLIP ViT-L/i
: odel Architecture: - -
turbations. These results demonstrate  py, o) cyip o 726 764 296 927 619
that ProCLIP not only improves re-  [jypcLip 3M 518 504 288 791 506
trieval and classification performance  ProCLIP 3M 62.0 66.5 293 894 599

but also delivers robust and reliable
results across diverse robustness scenarios, indicating substantial progress in generalization and
resilience.

= an Table 4: Comparison with other methods across different model scales and
B LLM2CLIP p LLM embedders.
B ProCLIP yd
0 s COCO Flickr30k
. Method VIiT Init LLM Embedder Data ImageNet 2T T2I 12T T2I
‘:’:025 - . FLAME random Mistral-Nemo 3M 36.0 43.3 28.6 67.3 53.6
§ Pt s ShareLock DINOv2 B/14 Llama3 3M 52.1 - - - -
< LIFT random NV-Embedv2 512M 43.6 34.6 36.0 69.1 72.9
20 LiT CLIP B/16 Llama3-CC 3M 51.0 56.2 419 852 71.9
LLM2CLIP CLIP B/16 Llama3-CC 3M 45.8 60.5 44.8 88.0 75.3
ProCLIP CLIP B/16 Llama3-CC 3M 54.8 61.7 46.8 89.4 77.6
s v o SAIL DINOV2 L/14 NV-Embedv2 3M 540 454329 - -
Data scale LiT CLIP L/14 Llama3-CC 3M 60.1 59.4 44.6 88.0 74.7
Figure 4. MMVP performance ~LLM2CLIP CLIPL/I4  Llama3-CC 3M 528 655 49.7 92.4 80.1
. ProCLIP t ProCLIP CLIP L/14 NV-Embedv2 3M 61.4 64.8 51.7 919 814
comparison. - ¥'ro Presents  procLIP  CLIPL/14  Llama3-CC 3M 625 664 51.9 92.8 81.1

excellent performance.

Fine-Grained Understanding. Fig. 4 presents the fine-grained vision-language understanding per-
formance on the MMVP benchmark (Tong et al., [2024) using CLIP ViT-L/14. LLM2CLIP im-
proves over CLIP by 2.9%, 5.9%, and 4.4% at 3M, 15M, and 30M data scales, respectively. Our
ProCLIP model further advances these results, achieving gains of 3.0%, 2.2%, and 10.4% on the cor-
responding data scales. These improvements demonstrate that the LLM-based embedder enhances
fine-grained semantic discrimination, and the consistent superiority of our method underscores the
effectiveness of the progressive alignment strategy.

Comparison with Other Methods. To further prove the effectiveness of ProCLIP, we provide a
comprehensive comparison of all recent LLM embedder-based CLIP models, including FLAME,
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Table 5: Ablation on different components.

o

- {}

H = Method ES“%“ EStagzz IN-1k I2T Avg T2I Avg
§ = = ins ~struct ~info ~reg
el = = CLIP 745 669 555
& — — LLM2CLIP 528  82.0 79.1

= =

E = 589 693 794

— — ProCLIP 59.5 703 61.2

v 592 829 80.2
v v 625 83.0 80.5

12T Average T21 Average ImageNet

SRS
SN

Figure 5: Ablation on different LLM-
based embedders.

ShareLock, LIFT, SAIL, LiT, and our baseline LLM2CLIP. As shown in Tab. [} under the same
or lower training costs, ProCLIP consistently achieves superior performance across various model
sizes. Benefiting from representation inheritance and self-distillation regularization, ProCLIP not
only achieves significant performance improvements in In1k classification but also enhances general
retrieval capabilities on COCO and Flickr30k.

4.3 ABLATION STUDY

Ablation of Different LLM-based Embedder. As shown in Fig. [5] we compare different LLM em-
bedders, including Qwen3-Embedding (8B), GME (7B), NV-Embedv2 (7B) , and Llama3-CC (8B)
based on ViT-L/14 with 15M data. Llama-CC achieves the strongest overall performance in both
ImageNet zero-shot classification and retrieval tasks. Notably, while different embedders show only
minor variations in retrieval performance, they exhibit substantial differences in ImageNet classifica-
tion accuracy. This suggests that the alignment discrepancy between each LLM embedder’s feature
space and the original CLIP space varies considerably, resulting in different degrees of degradation
in general capabilities after image-text alignment.

Ablation of Different Components. To further validate the effectiveness of the methods proposed
in this paper, we conduct a comprehensive ablation study on various components, as detailed in
Tab. [5] Applying instance semantic distillation achieves 58.9% zero-shot accuracy on ImageNet-
1k using only text data, indicating successful transfer of CLIP’s textual representation capability to
the MLP head. Incorporating the structural alignment loss further improves both classification and
retrieval performance by enabling the LLM embedder to capture the global structural geometry of
CLIP’s text representation space, beyond point-wise semantic correspondences. After that, image-
text contrastive learning significantly boosts retrieval performance but reduces ImageNet-1k accu-
racy due to image encoder overfitting. Introducing self-distillation mitigates this issue, improving
classification accuracy from 59.2% to 62.5% while slightly reducing retrieval gains. Finally, ap-
plying structured self-distillation enhances both tasks by stabilizing the image representation space
during fine-tuning, preventing excessive overfitting while preserving pretrained knowledge.

5 CONCLUSION

In this paper, we propose ProCLIP, a simple yet effective progressive vision-language alignment
framework designed to improve the alignment when integrating the CLIP image encoder with an
LLM-based embedder. The framework employs a curriculum learning—inspired progressive train-
ing strategy: it first aligns the LLM-based embedder’s representation space with the original CLIP
text encoder through knowledge distillation, effectively transferring pretrained semantic knowledge.
Subsequently, it performs cross-modal alignment between the CLIP image encoder and the LLM-
based embedder using image-text contrastive learning regularized by self-distillation to prevent over-
fitting and preserve pretrained knowledge. To ensure feature-space consistency, a complementary
distillation strategy—comprising instance semantic and embedding structure alignment losses—is
applied during text distillation and image self-distillation, respectively. Comprehensive experiments
across varying data scales and model architectures demonstrate the effectiveness and generality of
ProCLIP. We hope that our work offers valuable insights for advancing vision-language alignment.
We will release all model weights and code to ensure full reproducibility.
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6 ETHICS STATEMENT

This paper follows ICLR ethical guidelines and promotes responsible research practices. All ex-
periments use publicly available datasets containing no personally identifiable, sensitive, or harmful
content. The study involves no human subjects or vulnerable groups. We have evaluated poten-
tial societal impacts, including misuse risks, and conclude that our contributions advance scientific
understanding without foreseeable harm.

7 REPRODUCIBILITY STATEMENT

We ensure full reproducibility by releasing all code and data in an anonymous repository. The
paper details experimental configurations, including training procedures, model architectures, and
hardware specifications. All benchmarks are publicly accessible, enabling consistent evaluation.
These measures support verification and foster further research advancements.
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A  SUPPLEMENTARY MATERIAL

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)
We affirm that this paper is prepared and written entirely by us. We did not use any Large Language
Models (LLMs) to generate the abstract, content, or any part of the text. The ideas, analysis, and

conclusions presented are the sole product of the original thought and research. We employed only
standard writing assistance tools, such as grammar checkers, for minor stylistic refinements.

A.2 TRAINING DETAILS

Details of the hyperparameter configurations used for two-stage training of ProCLIP are presented
in Tab.

Table 6: Detailed hyperparameters for training ProCLIP.

Hyperparameters of stagel Hyperparameters of stage2
. Batch size 4096 (8 x 512)
Batc?h size 1024 (8 x 128) Optimizer AdamW
Optlmlzer AdamW Welght decay 0.05
Weight decay 0.05 Adam §3 (0.9,0.98)
Adam [ (0.9,0.98) Adam € le-6
Adam € le-5 Learning rate le-5
Learning rate 1e-5 Learning rate schedule  cosine decay
Learning rate schedul ine d Ema a 0.999
g rate schedule cosine decay A\ 0.0004
reg .
'E_pochs 4 Epochs 4
Training GPUs 8xH100 Training GPUs 8xH100

A.3 DETAILS OF BENCHMARKS.

Zero-Shot Classification & Linear Probe. Following the previous works (Yang et al.l [2023; |Gu
et al., [2024), we evaluate the zero-shot classification and linear probe performance of the models
on 11 datasets. The detailed information about these datasets and the prompt used in zero-shot
classification are presented in Tab.[7]and Tab.[I0}

Table 7: List of zero-shot datasets with the data distribution and evaluation metrics.

Dataset Classes Train size Testsize Evaluation metric
Food101 102 75,750 25,250 accuracy
CIFAR10 10 50,000 10,000 accuracy
CIFAR100 100 50,000 10,000 accuracy
SUN397 397 19,850 19,850 accuracy
Cars 196 8,144 8,041 accuracy
Aircraft 100 6,667 3,333 mean per class
DTD 47 3,760 1,880 accuracy
Pets 37 3,680 3,669 mean per class
Caltech101 101 3,000 5,677 mean-per-class
Flowers 102 2,040 6,149 mean per class
ImageNet 1000 1,281,167 50,000 accuracy

Robustness. We evaluated the robustness of our model on five out-of-distribution datasets, including
ImageNet-v2 [Recht et al.[ (2019), ImageNet-A |Hendrycks et al| (2021b), ImageNet-O [Hendrycks
et al.| (2021b), ImageNet-R |Hendrycks et al.| (2021a)), and ImageNet-Sketch [Wang et al.| (2019).

Cross-Modal Retrieval. Following the previous works (Huang et al.| |2024; |Cao et al., [2025), we
evaluate the cross-modal retrieval performance of the models on 6 datasets: Flickr30k (Plummer
et al., |2015)), COCO (Lin et al.| [2014), ShareGPT4V (Chen et al. 2024)), Urban-1k (Zhang et al.,
2024), DOCCI (Onoe et al., [2024), and DCI (Urbanek et al., [2024). The details information about
these dataset are present on Tab.
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Table 8: Zero-shot image-text retrieval evaluation settings.

Dataset Test Images Evaluation Protocol Text type
MSCOCO 5,000 Image-to-Text & Text-to-Image short
Flickr30k 1,000 Image-to-Text & Text-to-Image short
ShareGPT4V 1000 Image-to-Text & Text-to-Image long
Urban-1k 1000 Image-to-Text & Text-to-Image long
DOCCI 5000 Image-to-Text & Text-to-Image long
DCI 7805 Image-to-Text & Text-to-Image long

Multilingual Retrieval.

We evaluated the multilingual capabilities of our model on XM3600 Thapliyal et al. (2022).
XM3600 contains 3,600 images covering a total of 36 languages, including Arabic (ar), Bengali(bn),
Chinese-Simplified (zh), Croatian (hr), Czech (cs), Danish (da), Dutch (nl), English (en),Farsi (fa),
Filipino (fil), Finnish (fi), French (fr), German (de), Greek (el), Hebrew (he), Hindi (hi), Hun-
garian (hu), Indonesian (id), Italian (it), Japanese (ja), Korean (ko),Maori(mi), Norwegian (no),
Persian (fa), Polish (pl), Portuguese (pt), Romanian (ro), Russian (ru), Spanish (es), Swedish (sv),
Swahili(sw), Thai (th), Turkish (tr), Telugu (te), Ukrainian (uk), and Vietnamese (vi).

Fine-Grained Understanding. We evaluated the fine-grained understanding capability of the VLM
on MMVP-VLM [Tong et al.| (2024). MMVP-VLM consists of 150 samples in total, testing 9 pat-
terns:

+ @ Orientation and Direction: Questions about the direction something is facing or mov-
ing, such as the direction the dog or duck is facing, or the orientation of the school bus.

« Q, Presence of Specific Features: Questions that focus on the existence or non-existence
of certain elements or features in the image.

« £ State and Condition: Questions that pertain to the state or condition of an object, such
as whether a flag is blowing in the wind or if the ground is wet.

* 15 Quantity and Count: Questions about the number of objects or features present in the
image.

+ @ Ppositional and Relational Context: This aspect refers to the model’s ability to under-
stand the position and relationship of objects or elements within an image in relation to
each other and their surroundings.

+ @ Color and Appearance: Questions regarding the color of certain objects or elements.

+ 92 Structural and Physical Characteristics: This category involves the model’s ability
to identify and analyze the physical attributes and structural features of objects in an image.

» A Text: Questions related to text or symbols present in the image.

@ Viewpoint and Perspective: Questions concerning the perspective from which the
photo was taken.

A.4 MORE RESULTS.

Liner Probe. We conduct linear probe evaluations of the model on 11 datasets. As shown in [0}
our method consistently achieves superior performance. This advantage stems from our progres-
sive alignment framework, which stabilizes training through two-stage regularization that prevents
overfitting in the vision encoder while preserving generalization capability.
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Table 9: Linear Probe performance on 11 datasets.

e 8 = -
— — — - — 5]
2 2 8 % R
E E E £ £ E E g = % 3z
Method Data = &} &} 7} &} < a &~ &} = = Avg.
Model Architecture: CLIP ViT-B/32
CLIP 400M 88.6 95.1 80.1 73. 80.8 449 763 893 9277 947 743 809
LLM2CLIP 3M 879 957 831 741 780 449 777 904 924 946 742 812
ProCLIP 3M 884 959 831 743 795 441 782 903 926 950 744 814
"LLM2CLIPT ~ I5M° 87.7 957 827 740 775 442 783 902 925 944 742 810
ProCLIP I5SM 887 959 828 748 80.8 449 781 90.2 928 951 744 81.7
"LLM2CLIP ~ 30M 87.6 959 830 741 763 435 77.6 901 92.8 938 743 80.8
ProCLIP 30M 882 96.0 831 751 79.0 438 778 898 926 949 745 814
Model Architecture: CLIP ViT-B/16
CLIP 400M 927 96.0 825 757 859 528 789 93.1 939 964 79.6 844
LLM2CLIP 3M 916 970 845 76.0 821 50.1 803 923 936 957 79.6 839
ProCLIP 3M 928 968 84.6 764 856 52.0 80.6 933 942 97.0 79.7 848
"LLM2CLIPT ~ I5M 919 97.0 849 756 837 50.7 804 929 938 96.6 796 843
ProCLIP ISM 926 967 843 76.6 856 514 808 93.6 943 96.7 798 84.8
"LLM2CLIPT ~ 30M 913 96.6 848 753 80.6 482 803 925 934 950 797 834
ProCLIP 30M 923 96.6 857 77.0 84.7 50.1 812 931 94.0 96.7 795 84.6
Model Architecture: CLIP ViT-L/14
CLIP 400M 953 89.1 872 794 90.7 63.0 81.8 953 969 988 829 88.1
LLM2CLIP 3M 945 98.6 892 79.6 86.7 57.7 834 941 964 97.1 825 872
ProCLIP 3M 953 985 888 803 903 61.0 83.6 952 969 987 819 882
"LLM2CLIP ~ 15M 944 985 888 785 860 550 827 939 959 97.1 826 867
ProCLIP ISM 952 984 88.6 79.7 90.5 614 833 953 968 98.7 83.0 86.7
"LLM2CLIP ~ 30M 94.1 982 884 787 846 548 824 937 958 965 822 863
ProCLIP 30M 951 984 89.0 80.3 90.0 60.0 839 952 968 98.5 82.7 882
Model Architecture: EVAO2-CLIP ViT-L/14
EVAO02-CLIP 2B 956 995 942 804 942 695 850 948 976 994 84.1 874
LLM2CLIP 3M 941 995 933 794 850 543 840 932 973 969 841 874
ProCLIP 3M 953 995 940 81.0 939 657 859 954 978 993 845 90.2

Table 10: Full list of prompts to evaluate the performance of zero-shot classification on

datasets.

11 visual recognition

CIFAR 10 & CIFAR 100

a photo of a {label}.

a high contrast photo of a {label }.
a photo of a big {label}.

alow contrast photo of the {label}.
a photo of the small {label}.

ablurry photo of a {label}.

abad photo of a {label}.

a photo of the {label}.

a high contrast photo of the {label}.
a photo of the big {label}.

a black and white photo of a {label}.
a good photo of a {label}.

a blurry photo of the {label}.

a bad photo of the {label}.

alow contrast photo of a {label}.

a photo of a small {label}.

a black and white photo of the {label}.
a good photo of the {label}.

Food101
a photo of {label}, a type of food.

Caltech101

a photo of a {label}.

a sketch of a {label}.

a embroidered {label}.
an origami {label}.
adoodle of a {label}.

a sculpture of the {label}.
arendition of the {label}.
the plushie {label}.

a drawing of the {label}.

a painting of a {label}.
a tattoo of a {label}.

a cartoon {label}.

art of a {label}.

aphoto of the {label}.

a sketch of the {label}.
the embroidered {label}.
the origami {label}.

a doodle of the {label}.

a plastic {label}.

a toy {label}.

a {label} in a video game.
graffiti of a {label}.

a painting of the {label}.
a tattoo of the {label}.

the cartoon {label}.

art of the {label }.

a sculpture of a {label}.
arendition of a {label}.

a plushie {label}.

a drawing of a {label}.
the plastic {label}.

the toy {label}.
the {label} in a video game.
graffiti of the {label }.

Stanford Cars
aphoto of a {label}.
a photo of my dirty {label}.

a photo of the {label}.
a photo of my clean {label}.

a photo of my {label}.
a photo of my new {label}.

ilove my {label}!
a photo of my old {label}.

DTD
a photo of a {label} texture.
a photo of the {label} texture.

a photo of a {label} pattern.
a photo of the {label} pattern.

a photo of a {label} thing.
a photo of the {label} thing.

a photo of a {label} object.
a photo of the {label} object.

FGVC Aircraft

a photo of a {label}, a type of aircraft.

a photo of the {label}, a type of aircraft.

Flowers102
a photo of a {label}, a type of flower.

Pets
a photo of a {label}, a type of pet.

SUN39
a photo of a {label}.

a photo of the {label}.

ImageNet

a bad photo of a {label}.

a low resolution photo of the {label}.
a cropped photo of the {label}.
a bright photo of a {label}.
adrawing of a {label}.

a close-up photo of a {label}.

a pixelated photo of the {label}.
a plastic {label}.

a photo of the {label}.

a photo of one {label}.

the origami {label}.

an origami {label}.

a photo of the clean {label}.

a photo of a weird {label}.

a sketch of the {label}.

a jpeg corrupted photo of the {label}.
a photo of the small {label}.

a drawing of the {label}.

a dark photo of a {label}.

itap of my {label}.

a photo of many {label}.
arendering of a {label}.

a tattoo of a {label}.

a photo of a clean {label}.

a photo of my {label}.

a black and white photo of the {label}.
a sculpture of the {label}.

a photo of the dirty {label}.

a good photo of the {label}.
adoodle of a {label}.

the {label} in a video game.

a low resolution photo of a {label}.
a photo of a large {label}.

ablurry photo of a {label}.

a embroidered {label}.

a good photo of a {label}.

a photo of the weird {label}.

a photo of the large {label}.

itap of a {label}.

a photo of a cool {label}.

a sculpture of a {label}.

graffiti of a {label}.

the embroidered {label}.

a photo of a dirty {label}.

the plastic {label}.

a painting of the {label}.

a bright photo of the {label}.

a jpeg corrupted photo of a {label}.
a rendering of the {label }.

a close-up photo of the {label}.

a sketch of a {label}.

the toy {label}.

a rendition of a {label }.

a cartoon {label}.

a pixelated photo of a {label}.

a plushie {label}.

the cartoon {label}.

a black and white photo of a {label}.
graffiti of the {label}.

a photo of a small {label}.

a photo of the hard to see {label}.
a bad photo of the {label}.

a photo of a hard to see {label}.

a dark photo of the {label }.

a photo of the cool {label}.

a painting of a {label}.

a cropped photo of a {label}.
ablurry photo of the {label}.

a {label} in a video game.

a photo of a {label }.

a doodle of the {label}.

a rendition of the {label}.

a photo of a nice {label}.

art of a {label }.
itap of the {label}.

a photo of the nice {label}.

art of the {label}.

the plushie {label}.
atoy {label}.
a tattoo of the {label}.
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