
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROCLIP: PROGRESSIVE VISION-LANGUAGE
ALIGNMENT VIA LLM-BASED EMBEDDER

Anonymous authors
Paper under double-blind review

ABSTRACT

The original CLIP text encoder is limited by a maximum input length of 77 to-
kens, which hampers its ability to effectively process long texts and perform fine-
grained semantic understanding. In addition, the CLIP text encoder lacks support
for multilingual inputs. All these limitations significantly restrict its applicability
across a broader range of tasks. Recent studies have attempted to replace the CLIP
text encoder with an LLM-based embedder to enhance its ability in processing
long texts, multilingual understanding, and fine-grained semantic comprehension.
However, because the representation spaces of LLMs and the vision-language
space of CLIP are pretrained independently without alignment priors, direct align-
ment using contrastive learning can disrupt the intrinsic vision-language align-
ment in the CLIP image encoder, leading to an underutilization of the knowledge
acquired during pre-training. To address this challenge, we propose ProCLIP,
a curriculum learning-based progressive vision-language alignment framework to
effectively align the CLIP image encoder with an LLM-based embedder. Specif-
ically, ProCLIP first distills knowledge from CLIP’s text encoder into the LLM-
based embedder to leverage CLIP’s rich pretrained knowledge while establishing
initial alignment between the LLM embedder and CLIP image encoder. Subse-
quently, ProCLIP further aligns the CLIP image encoder with the LLM-based
embedder through image-text contrastive tuning, employing self-distillation reg-
ularization to avoid overfitting. To achieve a more effective alignment, instance
semantic alignment loss and embedding structure alignment loss are employed
during representation inheritance and contrastive tuning. Extensive experiments
show ProCLIP achieves 6.8% to 13.5% improvement on zero-shot classification
and presents excellent performance on cross-modal retrieval, multilingual cross-
modal retrieval, and fine-grained understanding tasks, demonstrating the effective-
ness and robustness of ProCLIP. To support reproducibility and facilitate further
research, we will release the training code and model weights.

1 INTRODUCTION

CLIP demonstrates remarkable zero-shot recognition capabilities by learning joint vision-language
representations through contrastive learning on large-scale image–text pairs (Radford et al., 2021).
Serving as a bridge between vision and language, it is widely adopted in multiple downstream
tasks such as image–text retrieval (Yang et al., 2023), text-to-image generation (Wang et al., 2022),
and open-vocabulary object detection (Wu et al., 2023b). However, the original CLIP model relies
on English text captions with a maximum length of 77 tokens as its supervisory signal (Zhang
et al., 2024). This design limits its capacity to process long-form text and restricts input to English-
only (Tschannen et al., 2025). Additionally, due to the absence of supervision for fine-grained
textual semantics, this limitation further impedes its semantic understanding capability (Hu et al.,
2025).

To overcome these limitations, methods such as Long-CLIP (Zhang et al., 2024) interpolate posi-
tional embeddings and fine-tune on long text–image pairs to extend the input length. While effective
for long-text understanding, such approaches still fall short in enhancing CLIP’s fine-grained seman-
tic understanding and multilingual capabilities. Recently, LLM exhibits remarkable proficiency in
natural language processing, and it has pivoted towards harnessing decoder-only architectures for
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effective representation learning (BehnamGhader et al., 2024; Lee et al., 2024). Following this
trend, methods such as FLAME (Cao et al., 2025) and LLM2CLIP (Huang et al., 2024) propose
to replace CLIP’s original text encoder with LLM-based embedders. By leveraging the rich open-
world knowledge inherent in LLMs, these approaches aim to enhance CLIP’s representational ca-
pacity—particularly in processing longer and more complex image captions. However, these meth-
ods align the CLIP image encoder directly with the LLM-based text embedder through contrastive
learning, while neglecting the rich pretrained knowledge within CLIP. This “from-scratch align-
ment” compels both encoders to learn a new representation space from scratch, disregarding the
original CLIP alignment knowledge. Such an approach increases the risk of overfitting, particularly
when training data is scarce, thereby compromising model generalization. This observation leads to
a critical research question: How can we systematically leverage CLIP’s pretrained knowledge to
achieve efficient cross-modal alignment with an LLM-based embedder while preserving generaliza-
tion capability?

In this paper, we propose ProCLIP, a simple yet effective progressive vision-language alignment
framework enhancing the CLIP. ProCLIP leverages curriculum learning to first guide the LLM-based
embedder (only MLP trainable) to adapt to the CLIP text encoder’s representation space, and then
uses contrastive learning to further learn joint image-text representations. Specifically, ProCLIP first
distills knowledge from the original CLIP text encoder into the LLM-based embedder, establishing
an initial alignment between the CLIP image encoder and LLM-based embedder. Subsequently,
we conduct contrastive learning on image–text pairs to further improve this alignment. Since the
LLM-based embedder is already partially aligned with the CLIP image encoder during the prior
stage, the contrastive optimization process becomes more stable and preserves generalization more
effectively. To further mitigate overfitting, we impose a self-distillation constraint on the CLIP im-
age encoder throughout this stage, which stabilizes training and improves generalization. To prove
the effectiveness of ProCLIP, we evaluate it on multiple tasks across diverse data scales and model
sizes. Extensive experiment results demonstrate that ProCLIP achieves consistently significant im-
provements. The main contributions of this paper are summarized as follows:

• We highlight the limitation of previous works: previous methods fail to fully exploit the pre-
trained knowledge in CLIP, and their reliance on simplistic contrastive learning for cross-modal
alignment significantly compromises CLIP’s inherent generalization capabilities.

• We propose ProCLIP , a simple but effective Progressive vision-language alignment frame-
work to enhance CLIP. ProCLIP initially distills the pretrained knowledge into the LLM-based
embedder. After that, ProCLIP utilizes contrastive fine-tuning constrained by self-distillation to
further enhance cross-modal alignment while preserving the model’s inherent generalization ca-
pacity.

• We conduct extensive experiments on multiple tasks across diverse data scales and model
sizes. Compared to the baseline, ProCLIP achieves 6.8% to 13.5% improvement on zero-shot
classification and performs strongly on other tasks, including short-text cross-modal retrieval,
long-text cross-modal retrieval, multilingual cross-modal retrieval, and fine-grained understand-
ing.

2 RELATED WORK

Vision-Language Contrastive Learning. Vision-language contrastive learning aims to learn ro-
bust multimodal representations by pretraining on large-scale image-text pairs. A seminal work
in this area, CLIP (Radford et al., 2021) aligns visual and linguistic representations through con-
trastive learning, bridging both modalities in a shared semantic space. As a bridge between vision
and language, CLIP has been widely applied in multimodal learning. It enables a variety of natu-
ral language-guided open-vocabulary recognition tasks, including image classification (Zhou et al.,
2022b;a; Kim et al., 2024), open-vocabulary semantic segmentation (Ding et al., 2022; Li et al.,
2022; Ghiasi et al., 2022; Xu et al., 2022; Cho et al., 2024; Lan et al., 2024), and open-vocabulary ob-
ject detection (Du et al., 2022; Kaul et al., 2023). However, CLIP remains fundamentally constrained
by its text encoder’s limited capacity and fixed input length, which hinders its ability to process mul-
tilingual and long texts and model fine-grained semantics. To mitigate these issues, several methods
have been introduced. Long-CLIP (Zhang et al., 2024) extends the input length via positional em-
bedding interpolation, yet still fails to capture nuanced semantic relationships. LoTLIP (Wu et al.,
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Figure 1: Previous work directly aligns the LLM-based embedder with the CLIP image encoder, disregarding
the valuable knowledge embedded in the pre-trained CLIP model. In contrast, ProCLIP first transfers knowl-
edge from CLIP’s text encoder to the LLM embedder via distillation, establishing an initial alignment. It then
refines the alignment between the CLIP image encoder and the LLM-based embedder through image-text con-
trastive learning regularized by self-distillation.

2024) incorporates corner tokens to aggregate diverse textual information, preserving short-text un-
derstanding while significantly improving performance on long texts. Nevertheless, constrained by
the capabilities of the text encoder, LoTLIP cannot incorporate additional open-world knowledge
and remains unable to handle multilingual inputs.

LLMs for Representation Learning. Large language models have presented remarkable profi-
ciency across a wide range of natural language processing tasks Touvron et al. (2023); Achiam et al.
(2023); Bai et al. (2023); Liu et al. (2024). Recent research has pivoted towards harnessing decoder-
only architectures for effective representation learning. For instance, LLM2Vec (BehnamGhader
et al., 2024) converts pre-trained decoder-only LLMs into versatile text encoders by incorporating
three principal advancements: bidirectional attention mechanisms, masked next-token prediction,
and unsupervised contrastive alignment. Meanwhile, Qwen3-Embedding (Zhang et al., 2025b) cap-
italizes on the Qwen3 model’s strong multilingual understanding and generation abilities. By in-
tegrating a large-scale unsupervised pretraining and supervised fine-tuning on high-quality data, it
achieves state-of-the-art performance on the MTEB benchmark (Muennighoff et al., 2022). Inspired
by these advances, recent works (Huang et al., 2024; Cao et al., 2025; Zhang et al., 2025a) attempt
to enhance CLIP by replacing its text encoder with a powerful LLM-based embedder, thereby im-
proving its ability to process multilingual, longer, and more complex textual inputs. Although these
approaches present promise, their alignment strategies remain overly coarse and often lead to de-
graded generalization. Developing more refined and effective alignment techniques thus remains a
critical and open research challenge.

Knowledge Distillation. Knowledge distillation Hinton et al. (2015) is widely used in deep learn-
ing to enhance model performance and reduce computational complexity. Typically, a larger teacher
model transfers knowledge to a smaller student model by guiding the learning of features or out-
put distributions. Alternatively, self-distillation methods enable knowledge transfer within a single
model, where deeper layers supervise shallower ones Zhang et al. (2019). In the context of CLIP,
several distillation techniques have been introduced. TinyCLIP Wu et al. (2023a) employs affin-
ity mimicking to capture cross-modal interactions during distillation, allowing the student to repli-
cate the teacher’s alignment behavior in a shared affinity space. CLIP-KD Yang et al. (2024a)
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Figure 2: The training pipeline of our proposed ProCLIP. It consists of representation inheritance via cross-
architecture distillation and contrastive tuning integrated with self-distillation regularization.

integrates multiple strategies—including relation-based, feature-based, gradient-based, and con-
trastive distillation—to maximize feature similarity between the teacher and student models. CLIP-
CID Yang et al. (2024b) utilizes cluster-instance discrimination to transfer semantic knowledge from
the teacher, enabling the student to develop a richer understanding of the pretraining data. Different
from the above method, this paper introduces a self-distillation mechanism to mitigate catastrophic
forgetting during training and preserve the generalization capabilities of the model.

3 METHODOLOGY

In this section, we first introduce the preliminary (Sec. 3.1), including contrastive language-image
pre-training and improving CLIP with an LLM-based embedder. Then we present our proposed
ProCLIP framework, which comprises two primary training stages: 1) Representation Inheritance
via Cross-Architecture Distillation (Sec. 3.2). 2) Contrastive Tuning Integrated with Self-Distillation
Regularization (Sec. 3.3).

3.1 PRELIMINARY

Contrastive Language-Image Pre-training. Contrastive Language-Image Pre-training
(CLIP) Radford et al. (2021) learns to align images and text from large-scale image–text
pairs through contrastive learning, bridging both modalities in a shared embedding space. Given a
batch of image-text pairs {(Ii, Ti)}Bi=1, the image encoder EI and text encoder ET map them into
the joint semantic space as {(vi, ti)}Bi=1. To optimize both encoders in a dual-tower architecture, a
symmetric contrastive learning objective is imposed on the resulting representations:

LCLIP = −
B∑

i=1

[
log

exp(vi · t⊤i /τ)∑B
j=1 exp(vi · t⊤j /τ)︸ ︷︷ ︸

text-to-image

+ log
exp(ti · v⊤i /τ)∑B
j=1 exp(ti · v⊤j /τ)︸ ︷︷ ︸

image-to-text

]
. (1)

However, the native CLIP text encoder is limited to sequences of up to 77 tokens. A common so-
lution is to interpolate the position embeddings of the CLIP text encoder and fine-tune the model.
Alternatively, one may replace the CLIP text encoder with an LLM-based embedder. The latter ap-
proach not only improves long-text understanding but also enhances multilingual understanding and
fine-grained semantic comprehension, resulting in a more versatile vision-language dual-encoder. In
this work, we investigate a more efficient alignment strategy that leverages an LLM-based embedder
to enhancing CLIP’s comprehensive capabilities.
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Improving CLIP with LLM-based Embedder. LLM2CLIP Huang et al. (2024) first introduces
an LLM-based embedder into CLIP, demonstrating enhanced long-text understanding. Given an
LLM-based encoder GT , it encodes texts {Ti}Ni=1 offline into embeddings {t′i}Ni=1. This process
is typically performed in an offline manner. During contrastive fine-tuning, a multilayer percep-
tron (MLP) is used to map {t′}Ni=1 into the CLIP embedding space for dimensional alignment. The
mapped text features and the image features from the CLIP image encoder are then optimized via
the contrastive loss in Eq. 1, resulting in a newly aligned representation space. However, applying
contrastive learning directly to fine-tuning data to optimize the MLP and vision encoder hinders the
convergence of the new dual-tower architecture to an optimal parameter space. This arises because
the text representations from the LLM-based embedder and MLP lack prior alignment with the vi-
sion encoder. Moreover, unconstrained fine-tuning may also cause excessive drift from the original
pre-trained representation, while limited fine-tuning data (e.g., 3M samples) cannot compensate for
the knowledge acquired during large-scale pre-training (e.g., 400M samples). To overcome these
challenges, we propose a progressive alignment pipeline that improves multimodal alignment while
preserving pre-trained knowledge.

3.2 STAGE 1: REPRESENTATION INHERITANCE VIA CROSS-ARCHITECTURE DISTILLATION.

Given a pre-trained image and text encoder of the CLIP model {EI , ET } and a pre-trained LLM-
based embedder GT , our goal is to replace the CLIP text encoder ET with the LLM-based embedder
GT to enhance comprehensive abilities. Consistent with prior works Huang et al. (2024); Cao et al.
(2025); Zhang et al. (2025a), we initially extract embeddings from textual captions offline using GT :
t′ = {GT (Ti) ∈ Rd}Ni=1, where d represents the embedding dimension of the LLM-based embedder.

The embedding space of the LLM-based embedder exhibits no prior alignment with the CLIP image-
text representation space. To bridge this gap, we adopt a cross-architecture distillation strategy that
transfers knowledge from the CLIP text embedding space to the LLM embedding space. Specif-
ically, given a batch of texts {Ti}Bi=1, we first utilize a single-layer MLP to unify the dimensions
of LLM embeddings and CLIP text embeddings. To facilitate fine-grained semantic alignment, we
propose an instance semantic alignment loss, denoted as Lins. This loss function leverages text-
only data to distill knowledge from CLIP’s text encoder into the LLM-based embedder, defined as
follows:

Lins =

B∑
i=1

∥MLP(t′i)− E(Ti)∥2. (2)

Since Lins only focuses on instance-level alignment without capturing the global embedding struc-
ture, we propose the embedding structure alignment loss Lstruct. This loss measures inter-sample
distances within a batch in both the CLIP text encoder and LLM-based embedder spaces, and aligns
the two globally by minimizing their pairwise distance discrepancy. Lstruct is defined as:

Lstruct =

B∑
i,j=1
i<j

∣∣∥MLP(t′i)− MLP(t′j)∥2 − ∥E(Ti)− E(Tj)∥2
∣∣. (3)

The overall loss is the first stage is defined as:Ldis = Lins + Lstruct.

3.3 STAGE 2: CONTRASTIVE TUNING INTEGRATED WITH SELF-DISTILLATION
REGULARIZATION.

After the above phase, the MLP(GT ) has already been preliminarily adapted to CLIP’s vision-
language embedding space, making subsequent fine-tuning with vision-language contrastive learn-
ing significantly easier. We utilize the InfoNCE loss (Radford et al., 2021) to better align the image
embedding vi and the projected LLM embedding t∗i = MLP(t′i), which can be formulated as:

Linfo = −
B∑

i=1

[
log

exp(vi · t∗⊤i /τ)∑B
j=1 exp(vi · t∗⊤j /τ)

+ log
exp(t∗i · v⊤i /τ)∑B
j=1 exp(t

∗
i · v⊤j /τ)

]
, (4)

where τ is a learnable temperature parameter. Beyond standard contrastive learning, we impose a
self-distillation constraint on the CLIP image encoder to mitigate excessive forgetting of pre-trained
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Table 1: Cross-modal retrieval performance Recall@1 on multiple datasets.

Method Data Flickr30k COCO ShareGPT4V Urban-1k DOCCI DCI Avg.
I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I

Model Architecture: CLIP ViT-B/32
CLIP 400M 80.3 59.8 51.5 30.6 77.3 66.0 60.9 46.8 58.1 53.4 43.1 40.3 61.8 49.5
LLM2CLIP 3M 83.5 70.1 55.6 41.1 94.2 93.4 78.2 84.2 76.2 77.1 62.2 64.4 75.0 71.1
ProCLIP 3M 86.0 73.5 57.8 43.5 94.4 92.6 80.8 85.3 78.1 79.5 65.7 68.3 77.1(+2.1) 73.8(+2.7)
LLM2CLIP 15M 86.2 72.2 58.5 43.2 95.3 94.2 80.6 85.3 79.2 80.7 64.3 67.6 77.4 73.9
ProCLIP 15M 86.6 72.6 59.0 43.5 94.5 93.9 82.2 85.3 78.4 80.6 67.1 69.2 78.0(+0.6) 74.2(+0.3)
LLM2CLIP 30M 87.8 72.4 61.1 44.3 96.7 95.9 86.6 88.8 82.9 82.9 67.9 69.5 80.5 75.7
ProCLIP 30M 90.2 74.6 62.4 45.9 96.8 95.9 88.5 89.9 82.9 84.1 70.6 71.9 81.9(+1.4) 77.0(+1.3)
Model Architecture: CLIP ViT-B/16
CLIP 400M 82.7 63.4 53.7 33.3 76.1 68.9 67.5 53.5 66.8 57.0 45.4 43.0 65.4 45.6
LLM2CLIP 3M 88.0 75.3 60.5 44.8 94.4 94.4 80.6 86.0 81.7 82.2 67.2 69.1 78.7 75.3
ProCLIP 3M 89.4 77.6 61.7 46.8 94.3 93.3 82.9 88.1 81.0 82.5 67.3 72.0 79.4(+0.7) 76.7(+1.4)
LLM2CLIP 15M 88.9 76.6 62.4 46.5 95.0 95.2 84.5 88.4 83.8 85.1 69.3 72.4 80.7 77.3
ProCLIP 15M 90.8 77.9 63.2 47.8 94.2 94.9 85.8 89.6 82.5 84.6 70.2 74.0 81.2(+0.5) 78.0(+0.7)
LLM2CLIP 30M 90.2 78.1 65.4 48.5 96.8 96.4 89.7 91.3 86.2 86.8 73.1 74.8 83.6 79.3
ProCLIP 30M 92.7 79.1 67.1 49.7 96.0 96.4 90.0 93.4 85.1 87.3 73.6 76.9 84.2(+0.6) 80.5(+1.2)
Model Architecture: CLIP ViT-L/14
CLIP 400M 86.6 64.6 57.2 36.4 78.0 68.7 68.4 56.0 65.8 63.1 45.4 43.9 66.9 55.5
LLM2CLIP 3M 92.4 80.1 65.5 49.7 95.2 95.6 83.6 89.0 85.1 85.9 70.0 74.4 82.0 79.1
ProCLIP 3M 92.8 81.1 66.4 51.9 95.1 94.8 86.9 92.3 85.9 86.9 71.2 76.1 83.0(+1.0) 80.5(+1.4)
LLM2CLIP 15M 91.3 80.6 67.0 50.6 96.3 95.3 86.4 90.5 86.4 88.5 71.7 75.3 83.2 80.1
ProCLIP 15M 93.4 81.4 67.6 52.5 96.1 95.4 88.3 92.6 86.2 88.4 74.4 76.8 84.3(+1.3) 81.2(+1.1)
LLM2CLIP 30M 93.1 81.0 68.2 52.0 97.5 97.7 92.7 93.9 88.2 89.6 74.9 78.3 85.8 82.1
ProCLIP 30M 94.5 81.6 69.3 53.2 96.8 97.0 93.0 94.4 87.5 89.8 75.9 79.5 86.2(+0.4) 82.6(+0.5)
Model Architecture: EVA02-CLIP ViT-L/14
EVA02-CLIP 2B 88.9 76.9 63.6 46.6 84.5 79.4 72.0 69.4 72.6 74.2 43.9 45.2 70.9 65.3
LLM2CLIP 3M 93.8 81.7 66.6 51.1 96.5 95.9 84.4 92.1 86.6 88.7 73.8 76.1 83.6 80.9
ProCLIP 3M 93.0 82.6 68.6 53.4 96.6 96.0 88.4 93.2 87.0 89.7 71.8 78.4 84.2(+0.6) 82.2(+1.3)

knowledge during adaptation—essential for preserving generalization. On the image encoder side,
we apply a regularization loss that is symmetric to the one used in the first stage(Eq. 2, Eq. 3):

Lreg =

B∑
i=1

∥EI(Ii)− E∗
I (Ii)∥2 +

B∑
i,j=1
i<j

∣∣∥EI(Ii)− EI(Ij)∥2 − ∥E∗
I (Ii)− E∗

I (Ij)∥2
∣∣, (5)

where E∗
I denotes the EMA (Exponential Moving Average)-updated image encoder obtained as:

E∗
I = αE∗

I + (1− α)EI , (6)
where α controls the update rate of the teacher model parameters. The overall loss function of the
contrastive tuning stage is defined as Ltune = Linfo + λLreg, where λ is a loss weight.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. For the alignment dataset, we use CC3M (Changpinyo et al., 2021),
CC12M (Changpinyo et al., 2021), and YFCC15M (Thomee et al., 2016),combined the high-quality
captions from DreamLIP Zheng et al. (2024). We conduct experiments with data scales of 3M
(CC3M), 15M (CC3M + CC12M), and 30M (CC3M + CC12M + YFCC15M) to explore the effects
of data scaling. For the benchmark, we perform zero-shot classification on 11 different classifi-
cation datasets, robustness evaluations on 5 ImageNet variants, retrieval evaluations on 6 datasets,
multilingual cross-modal retrieval evaluation on XM3600 Thapliyal et al. (2022), and fine-grained
understanding evaluation on MMVP-VLM Tong et al. (2024). Regarding the model, we employ
three OpenAI pre-trained CLIP models, ViT-B/32, ViT-B/16, and ViT-L/14, to investigate the ef-
fects of model scaling. Additionally, we conduct experiments with pretrained EVA02-CLIP (Fang
et al., 2023) ViT-L/14 to assess the impacts of different model architectures. For the LLM-based
embedder, we primarily use LLaMA3-8B-CC consistent with LLM2CLIP Huang et al. (2024).

Implementation Details. For the representation inheritance phase, we train for four epochs,
followed by another four epochs for contrastive tuning. During training, we employ
AdamW (Loshchilov, 2019) as the optimizer, with a learning rate of 1 × 10−5 and a weight de-
cay of 0.2. The parameters β1 and β2 are set to 0.9 and 0.98, respectively. In the first stage, the
training batch size is set to 1024, while in the second stage it is increased to 4096. The loss weight
λ is set at 0.0004. Other training details can be found in the supplementary material.
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Figure 3: Per-language image-text retrieval performance for LLM2CLIP and ProCLIP on the XM3600 bench-
mark.

Table 2: Zero-shot classification performance on 11 datasets. The best results are marked in bold.
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Model Architecture: CLIP ViT-B/32
CLIP 400M 83.1 88.7 63.5 61.5 57.6 18.8 42.8 84.6 89.4 66.0 61.9 65.2
LLM2CLIP 3M 49.6 89.2 61.5 60.3 11.5 8.6 47.8 38.0 79.0 22.6 41.0 46.3
ProCLIP 3M 64.5 90.7 65.8 65.0 21.2 11.6 52.0 51.7 83.3 30.8 47.9 53.1(+6.8)
LLM2CLIP 15M 57.2 88.3 61.4 61.3 19.6 8.4 50.6 42.3 80.7 23.5 43.3 48.8
ProCLIP 15M 74.9 90.0 66.5 65.1 39.6 13.9 53.7 68.5 86.7 35.5 53.3 58.9(+10.1)
LLM2CLIP 30M 58.5 88.3 61.0 61.2 20.6 8.4 50.3 37.6 81.7 26.0 45.1 49.0
ProCLIP 30M 74.4 88.8 66.9 65.9 38.0 16.2 53.0 64.5 86.8 40.4 54.0 59.0(+10.0)
Model Architecture: CLIP ViT-B/16
CLIP 400M 87.9 89.7 66.8 63.1 63.7 22.8 45.0 87.0 90.4 67.6 67.1 68.3
LLM2CLIP 3M 56.9 92.6 64.4 62.2 15.4 11.7 50.9 46.5 82.9 23.6 45.8 50.3
ProCLIP 3M 73.1 92.5 68.9 67.9 32.3 13.5 54.1 59.8 87.0 35.8 54.8 58.2(+7.9)
LLM2CLIP 15M 63.2 90.8 64.5 62.9 27.3 9.9 52.8 50.3 83.2 23.7 46.5 52.3
ProCLIP 15M 80.3 90.8 69.7 67.4 44.3 16.5 56.7 75.8 88.4 40.8 58.6 62.7(+10.4)
LLM2CLIP 30M 64.4 90.2 64.6 63.7 27.0 11.2 55.0 45.9 84.0 27.1 49.7 53.0
ProCLIP 30M 81.0 89.3 68.3 68.2 48.5 17.9 57.3 70.2 88.8 44.8 59.2 63.0(+10.0)
Model Architecture: CLIP ViT-L/14
CLIP 400M 92.6 94.9 77.0 66.8 76.5 30.7 54.4 93.2 93.9 78.1 74.5 75.7
LLM2CLIP 3M 64.8 95.4 72.9 66.4 18.8 10.4 54.8 47.3 88.3 26.8 52.8 54.4
ProCLIP 3M 83.4 96.6 78.3 72.4 45.1 16.2 59.6 65.9 92.3 41.8 62.5 64.9 (+10.5)
LLM2CLIP 15M 70.1 95.2 72.3 66.4 32.4 9.5 58.0 54.3 88.3 26.6 54.0 57.0
ProCLIP 15M 87.1 95.4 77.6 72.3 59.8 21.1 62.1 77.0 92.4 48.8 66.0 69.3 (+12.3)
LLM2CLIP 30M 71.2 94.0 70.5 67.0 32.1 11.3 57.8 54.7 89.3 28.8 56.4 57.5
ProCLIP 30M 88.9 94.1 77.7 72.5 61.1 25.2 62.8 81.5 92.9 57.2 67.8 71.0 (+13.5)
Model Architecture: EVA02-CLIP ViT-L/14
EVA02-CLIP 2B 92.9 98.8 89.8 73.8 88.8 35.1 60.6 93.7 95.1 76.3 78.2 80.3
LLM2CLIP 3M 64.1 96.5 82.6 68.0 29.2 9.0 59.4 48.5 89.8 28.6 56.4 57.5
ProCLIP 3M 82.7 97.9 88.4 73.6 57.6 16.5 63.5 67.6 93.8 45.4 66.8 68.5 (+11.0)

4.2 MAIN RESULTS

Cross-Modal Retrieval. As shown in Tab. 1, ProCLIP consistently surpasses LLM2CLIP in both
short- and long-text retrieval tasks across various datasets and model scales. On short-text datasets
such as Flickr30k and COCO, ProCLIP achieves significant improvements in both image-to-text
(I2T) and text-to-image (T2I) retrieval. For instance, with ViT-L/14 and 30M training samples, it
reaches 95.0% I2T Recall@1 on Flickr30k—nearly 2 percentage points higher than LLM2CLIP. On
long-text benchmarks including DOCCI, DCI, and Urban-1k, ProCLIP also exhibits clear advan-
tages. Under ViT-B/16 trained on 30M samples, it attains 73.6% (I2T) and 76.9% (T2I) on DCI.
Moreover, across all data scales from 3M to 30M, ProCLIP delivers stable gains, with particularly
strong improvements in T2I retrieval. These results confirm that ProCLIP enhances performance in
both short- and long-text scenarios.

multilingual cross-modal Retrieval. Benefiting from the LLM-based embedder, ProCLIP facili-
tates multilingual capabilities. As illustrated in Fig. 3, we compare the cross-lingual retrieval per-
formance between LLM2CLIP and ProCLIP on the XM3600 benchmark (Thapliyal et al., 2022).
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Experiment results demonstrate that our approach achieves superior multilingual performance. This
enhancement is attributed to the improved alignment between the CLIP image encoder and the
LLM-based embedder.

Zero-Shot Classification. In Tab. 2, we present the zero-shot classification performance on 11
downstream tasks across different data and model scales. We observe that LLM2CLIP signif-
icantly compromises the original generalization ability of CLIP. Even when utilizing 30M data
points, compared to CLIP’s ViT-B/32, ViT-B/16, and ViT-L/14, the average performance declines by
16.2%, 15.3%, and 18.2%, respectively. Compared to LLM2CLIP, our proposed ProCLIP method
achieves significant performance improvements across all experimental conditions. Particularly,
with a dataset of 30M samples, ProCLIP enhances the average performance by approximately 10%-
13.5%. This notable improvement is primarily attributed to two factors: 1) The representation in-
heritance process allows the LLM embedder to inherit some knowledge from the original CLIP text
encoder. 2) During the contrastive tuning phase, the introduction of a distillation loss as regulariza-
tion helps to mitigate the forgetting of knowledge throughout the learning process.

Table 3: Robustness performance. The best results are marked in
bold.

Method Data Robustness
IN-V2 IN-A IN-O IN-R IN-S

Model Architecture: CLIP ViT-L/14
CLIP 400M 69.8 70.8 32.2 87.8 59.6
LLM2CLIP 3M 49.0 46.6 32.4 75.0 44.8
ProCLIP 3M 58.3 63.3 31.6 84.0 52.3
LLM2CLIP 15M 50.8 50.1 33.8 78.2 46.3
ProCLIP 15M 62.1 66.4 34.2 86.4 55.3
LLM2CLIP 30M 52.7 52.7 34.0 78.6 47.3
ProCLIP 30M 63.4 68.0 34.1 86.8 55.7
Model Architecture: EVA02-CLIP ViT-L/14
EVA02-CLIP 2B 72.6 76.4 29.6 92.7 67.9
LLM2CLIP 3M 51.8 50.4 28.8 79.1 50.6
ProCLIP 3M 62.0 66.5 29.3 89.4 59.9

Robustness. To evaluate the ro-
bustness of ProCLIP we report its
performance across varying data
sizes and model scales in Tab. 3.
ProCLIP consistently achieves
average improvements of 5.9%-
9.3%. Notably, on challenging
out-of-distribution datasets like
ImageNet-A and ImageNet-R, Pro-
CLIP outperforms LLM2CLIP by
over 10 percentage points, highlight-
ing its enhanced ability to handle
distribution shifts and complex per-
turbations. These results demonstrate
that ProCLIP not only improves re-
trieval and classification performance
but also delivers robust and reliable
results across diverse robustness scenarios, indicating substantial progress in generalization and
resilience.

𝚫

𝚫
𝚫

𝚫

𝚫

𝚫

Figure 4: MMVP performance
comparison. ProCLIP presents
excellent performance.

Table 4: Comparison with other methods across different model scales and
LLM embedders.

Method ViT Init LLM Embedder Data ImageNet COCO Flickr30k
I2T T2I I2T T2I

FLAME random Mistral-Nemo 3M 36.0 43.3 28.6 67.3 53.6
ShareLock DINOv2 B/14 Llama3 3M 52.1 - - - -
LIFT random NV-Embedv2 512M 43.6 34.6 36.0 69.1 72.9
LiT CLIP B/16 Llama3-CC 3M 51.0 56.2 41.9 85.2 71.9
LLM2CLIP CLIP B/16 Llama3-CC 3M 45.8 60.5 44.8 88.0 75.3
ProCLIP CLIP B/16 Llama3-CC 3M 54.8 61.7 46.8 89.4 77.6
SAIL DINOv2 L/14 NV-Embedv2 3M 54.0 45.4 32.9 - -
LiT CLIP L/14 Llama3-CC 3M 60.1 59.4 44.6 88.0 74.7
LLM2CLIP CLIP L/14 Llama3-CC 3M 52.8 65.5 49.7 92.4 80.1
ProCLIP CLIP L/14 NV-Embedv2 3M 61.4 64.8 51.7 91.9 81.4
ProCLIP CLIP L/14 Llama3-CC 3M 62.5 66.4 51.9 92.8 81.1

Fine-Grained Understanding. Fig. 4 presents the fine-grained vision-language understanding per-
formance on the MMVP benchmark (Tong et al., 2024) using CLIP ViT-L/14. LLM2CLIP im-
proves over CLIP by 2.9%, 5.9%, and 4.4% at 3M, 15M, and 30M data scales, respectively. Our
ProCLIP model further advances these results, achieving gains of 3.0%, 2.2%, and 10.4% on the cor-
responding data scales. These improvements demonstrate that the LLM-based embedder enhances
fine-grained semantic discrimination, and the consistent superiority of our method underscores the
effectiveness of the progressive alignment strategy.

Comparison with Other Methods. To further prove the effectiveness of ProCLIP, we provide a
comprehensive comparison of all recent LLM embedder-based CLIP models, including FLAME,

8
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Figure 5: Ablation on different LLM-
based embedders.

Table 5: Ablation on different components.

Method Stage 1 Stage 2 IN-1k I2T Avg T2I AvgLins Lstruct Linfo Lreg

CLIP 74.5 66.9 55.5
LLM2CLIP 52.8 82.0 79.1

ProCLIP

✓ 58.9 69.3 79.4
✓ ✓ 59.5 70.3 61.2
✓ ✓ ✓ 59.2 82.9 80.2
✓ ✓ ✓ ✓ 62.5 83.0 80.5

ShareLock, LIFT, SAIL, LiT, and our baseline LLM2CLIP. As shown in Tab. 4, under the same
or lower training costs, ProCLIP consistently achieves superior performance across various model
sizes. Benefiting from representation inheritance and self-distillation regularization, ProCLIP not
only achieves significant performance improvements in In1k classification but also enhances general
retrieval capabilities on COCO and Flickr30k.

4.3 ABLATION STUDY

Ablation of Different LLM-based Embedder. As shown in Fig. 5, we compare different LLM em-
bedders, including Qwen3-Embedding (8B), GME (7B), NV-Embedv2 (7B) , and Llama3-CC (8B)
based on ViT-L/14 with 15M data. Llama-CC achieves the strongest overall performance in both
ImageNet zero-shot classification and retrieval tasks. Notably, while different embedders show only
minor variations in retrieval performance, they exhibit substantial differences in ImageNet classifica-
tion accuracy. This suggests that the alignment discrepancy between each LLM embedder’s feature
space and the original CLIP space varies considerably, resulting in different degrees of degradation
in general capabilities after image-text alignment.

Ablation of Different Components. To further validate the effectiveness of the methods proposed
in this paper, we conduct a comprehensive ablation study on various components, as detailed in
Tab. 5. Applying instance semantic distillation achieves 58.9% zero-shot accuracy on ImageNet-
1k using only text data, indicating successful transfer of CLIP’s textual representation capability to
the MLP head. Incorporating the structural alignment loss further improves both classification and
retrieval performance by enabling the LLM embedder to capture the global structural geometry of
CLIP’s text representation space, beyond point-wise semantic correspondences. After that, image-
text contrastive learning significantly boosts retrieval performance but reduces ImageNet-1k accu-
racy due to image encoder overfitting. Introducing self-distillation mitigates this issue, improving
classification accuracy from 59.2% to 62.5% while slightly reducing retrieval gains. Finally, ap-
plying structured self-distillation enhances both tasks by stabilizing the image representation space
during fine-tuning, preventing excessive overfitting while preserving pretrained knowledge.

5 CONCLUSION

In this paper, we propose ProCLIP, a simple yet effective progressive vision-language alignment
framework designed to improve the alignment when integrating the CLIP image encoder with an
LLM-based embedder. The framework employs a curriculum learning–inspired progressive train-
ing strategy: it first aligns the LLM-based embedder’s representation space with the original CLIP
text encoder through knowledge distillation, effectively transferring pretrained semantic knowledge.
Subsequently, it performs cross-modal alignment between the CLIP image encoder and the LLM-
based embedder using image-text contrastive learning regularized by self-distillation to prevent over-
fitting and preserve pretrained knowledge. To ensure feature-space consistency, a complementary
distillation strategy—comprising instance semantic and embedding structure alignment losses—is
applied during text distillation and image self-distillation, respectively. Comprehensive experiments
across varying data scales and model architectures demonstrate the effectiveness and generality of
ProCLIP. We hope that our work offers valuable insights for advancing vision-language alignment.
We will release all model weights and code to ensure full reproducibility.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This paper follows ICLR ethical guidelines and promotes responsible research practices. All ex-
periments use publicly available datasets containing no personally identifiable, sensitive, or harmful
content. The study involves no human subjects or vulnerable groups. We have evaluated poten-
tial societal impacts, including misuse risks, and conclude that our contributions advance scientific
understanding without foreseeable harm.

7 REPRODUCIBILITY STATEMENT

We ensure full reproducibility by releasing all code and data in an anonymous repository. The
paper details experimental configurations, including training procedures, model architectures, and
hardware specifications. All benchmarks are publicly accessible, enabling consistent evaluation.
These measures support verification and foster further research advancements.
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A SUPPLEMENTARY MATERIAL

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We affirm that this paper is prepared and written entirely by us. We did not use any Large Language
Models (LLMs) to generate the abstract, content, or any part of the text. The ideas, analysis, and
conclusions presented are the sole product of the original thought and research. We employed only
standard writing assistance tools, such as grammar checkers, for minor stylistic refinements.

A.2 TRAINING DETAILS

Details of the hyperparameter configurations used for two-stage training of ProCLIP are presented
in Tab. 6.

Table 6: Detailed hyperparameters for training ProCLIP.

Hyperparameters of stage1
Batch size 1024 (8× 128)
Optimizer AdamW

Weight decay 0.05
Adam β (0.9,0.98)
Adam ϵ 1e-5

Learning rate 1e-5
Learning rate schedule cosine decay

Epochs 4
Training GPUs 8×H100

Hyperparameters of stage2
Batch size 4096 (8× 512)
Optimizer AdamW

Weight decay 0.05
Adam β (0.9,0.98)
Adam ϵ 1e-6

Learning rate 1e-5
Learning rate schedule cosine decay

Ema α 0.999
λreg 0.0004

Epochs 4
Training GPUs 8×H100

A.3 DETAILS OF BENCHMARKS.

Zero-Shot Classification & Linear Probe. Following the previous works (Yang et al., 2023; Gu
et al., 2024), we evaluate the zero-shot classification and linear probe performance of the models
on 11 datasets. The detailed information about these datasets and the prompt used in zero-shot
classification are presented in Tab. 7 and Tab. 10.

Table 7: List of zero-shot datasets with the data distribution and evaluation metrics.

Dataset Classes Train size Test size Evaluation metric

Food101 102 75,750 25,250 accuracy
CIFAR10 10 50,000 10,000 accuracy
CIFAR100 100 50,000 10,000 accuracy
SUN397 397 19,850 19,850 accuracy
Cars 196 8,144 8,041 accuracy
Aircraft 100 6,667 3,333 mean per class
DTD 47 3,760 1,880 accuracy
Pets 37 3,680 3,669 mean per class
Caltech101 101 3,000 5,677 mean-per-class
Flowers 102 2,040 6,149 mean per class
ImageNet 1000 1,281,167 50,000 accuracy

Robustness. We evaluated the robustness of our model on five out-of-distribution datasets, including
ImageNet-v2 Recht et al. (2019), ImageNet-A Hendrycks et al. (2021b), ImageNet-O Hendrycks
et al. (2021b), ImageNet-R Hendrycks et al. (2021a), and ImageNet-Sketch Wang et al. (2019).

Cross-Modal Retrieval. Following the previous works (Huang et al., 2024; Cao et al., 2025), we
evaluate the cross-modal retrieval performance of the models on 6 datasets: Flickr30k (Plummer
et al., 2015), COCO (Lin et al., 2014), ShareGPT4V (Chen et al., 2024), Urban-1k (Zhang et al.,
2024), DOCCI (Onoe et al., 2024), and DCI (Urbanek et al., 2024). The details information about
these dataset are present on Tab. 8.
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Table 8: Zero-shot image-text retrieval evaluation settings.

Dataset Test Images Evaluation Protocol Text type
MSCOCO 5,000 Image-to-Text & Text-to-Image short
Flickr30k 1,000 Image-to-Text & Text-to-Image short
ShareGPT4V 1000 Image-to-Text & Text-to-Image long
Urban-1k 1000 Image-to-Text & Text-to-Image long
DOCCI 5000 Image-to-Text & Text-to-Image long
DCI 7805 Image-to-Text & Text-to-Image long

Multilingual Retrieval.

We evaluated the multilingual capabilities of our model on XM3600 Thapliyal et al. (2022).
XM3600 contains 3,600 images covering a total of 36 languages, including Arabic (ar), Bengali(bn),
Chinese-Simplified (zh), Croatian (hr), Czech (cs), Danish (da), Dutch (nl), English (en),Farsi (fa),
Filipino (fil), Finnish (fi), French (fr), German (de), Greek (el), Hebrew (he), Hindi (hi), Hun-
garian (hu), Indonesian (id), Italian (it), Japanese (ja), Korean (ko),Maori(mi), Norwegian (no),
Persian (fa), Polish (pl), Portuguese (pt), Romanian (ro), Russian (ru), Spanish (es), Swedish (sv),
Swahili(sw), Thai (th), Turkish (tr), Telugu (te), Ukrainian (uk), and Vietnamese (vi).

Fine-Grained Understanding. We evaluated the fine-grained understanding capability of the VLM
on MMVP-VLM Tong et al. (2024). MMVP-VLM consists of 150 samples in total, testing 9 pat-
terns:

• ☼ Orientation and Direction: Questions about the direction something is facing or mov-
ing, such as the direction the dog or duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the existence or non-existence
of certain elements or features in the image.

• L State and Condition: Questions that pertain to the state or condition of an object, such
as whether a flag is blowing in the wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects or features present in the
image.

• , Positional and Relational Context: This aspect refers to the model’s ability to under-
stand the position and relationship of objects or elements within an image in relation to
each other and their surroundings.

• h Color and Appearance: Questions regarding the color of certain objects or elements.
• Ô Structural and Physical Characteristics: This category involves the model’s ability

to identify and analyze the physical attributes and structural features of objects in an image.
• k Text: Questions related to text or symbols present in the image.
• � Viewpoint and Perspective: Questions concerning the perspective from which the

photo was taken.

A.4 MORE RESULTS.

Liner Probe. We conduct linear probe evaluations of the model on 11 datasets. As shown in 9,
our method consistently achieves superior performance. This advantage stems from our progres-
sive alignment framework, which stabilizes training through two-stage regularization that prevents
overfitting in the vision encoder while preserving generalization capability.
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Table 9: Linear Probe performance on 11 datasets.
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Model Architecture: CLIP ViT-B/32
CLIP 400M 88.6 95.1 80.1 73.4 80.8 44.9 76.3 89.3 92.7 94.7 74.3 80.9
LLM2CLIP 3M 87.9 95.7 83.1 74.1 78.0 44.9 77.7 90.4 92.4 94.6 74.2 81.2
ProCLIP 3M 88.4 95.9 83.1 74.3 79.5 44.1 78.2 90.3 92.6 95.0 74.4 81.4
LLM2CLIP 15M 87.7 95.7 82.7 74.0 77.5 44.2 78.3 90.2 92.5 94.4 74.2 81.0
ProCLIP 15M 88.7 95.9 82.8 74.8 80.8 44.9 78.1 90.2 92.8 95.1 74.4 81.7
LLM2CLIP 30M 87.6 95.9 83.0 74.1 76.3 43.5 77.6 90.1 92.8 93.8 74.3 80.8
ProCLIP 30M 88.2 96.0 83.1 75.1 79.0 43.8 77.8 89.8 92.6 94.9 74.5 81.4
Model Architecture: CLIP ViT-B/16
CLIP 400M 92.7 96.0 82.5 75.7 85.9 52.8 78.9 93.1 93.9 96.4 79.6 84.4
LLM2CLIP 3M 91.6 97.0 84.5 76.0 82.1 50.1 80.3 92.3 93.6 95.7 79.6 83.9
ProCLIP 3M 92.8 96.8 84.6 76.4 85.6 52.0 80.6 93.3 94.2 97.0 79.7 84.8
LLM2CLIP 15M 91.9 97.0 84.9 75.6 83.7 50.7 80.4 92.9 93.8 96.6 79.6 84.3
ProCLIP 15M 92.6 96.7 84.3 76.6 85.6 51.4 80.8 93.6 94.3 96.7 79.8 84.8
LLM2CLIP 30M 91.3 96.6 84.8 75.3 80.6 48.2 80.3 92.5 93.4 95.0 79.7 83.4
ProCLIP 30M 92.3 96.6 85.7 77.0 84.7 50.1 81.2 93.1 94.0 96.7 79.5 84.6
Model Architecture: CLIP ViT-L/14
CLIP 400M 95.3 89.1 87.2 79.4 90.7 63.0 81.8 95.3 96.9 98.8 82.9 88.1
LLM2CLIP 3M 94.5 98.6 89.2 79.6 86.7 57.7 83.4 94.1 96.4 97.1 82.5 87.2
ProCLIP 3M 95.3 98.5 88.8 80.3 90.3 61.0 83.6 95.2 96.9 98.7 81.9 88.2
LLM2CLIP 15M 94.4 98.5 88.8 78.5 86.0 55.0 82.7 93.9 95.9 97.1 82.6 86.7
ProCLIP 15M 95.2 98.4 88.6 79.7 90.5 61.4 83.3 95.3 96.8 98.7 83.0 86.7
LLM2CLIP 30M 94.1 98.2 88.4 78.7 84.6 54.8 82.4 93.7 95.8 96.5 82.2 86.3
ProCLIP 30M 95.1 98.4 89.0 80.3 90.0 60.0 83.9 95.2 96.8 98.5 82.7 88.2
Model Architecture: EVA02-CLIP ViT-L/14
EVA02-CLIP 2B 95.6 99.5 94.2 80.4 94.2 69.5 85.0 94.8 97.6 99.4 84.1 87.4
LLM2CLIP 3M 94.1 99.5 93.3 79.4 85.0 54.3 84.0 93.2 97.3 96.9 84.1 87.4
ProCLIP 3M 95.3 99.5 94.0 81.0 93.9 65.7 85.9 95.4 97.8 99.3 84.5 90.2

Table 10: Full list of prompts to evaluate the performance of zero-shot classification on 11 visual recognition
datasets.

CIFAR 10 & CIFAR 100
a photo of a {label}. a blurry photo of a {label}. a black and white photo of a {label}. a low contrast photo of a {label}.
a high contrast photo of a {label}. a bad photo of a {label}. a good photo of a {label}. a photo of a small {label}.
a photo of a big {label}. a photo of the {label}. a blurry photo of the {label}. a black and white photo of the {label}.
a low contrast photo of the {label}. a high contrast photo of the {label}. a bad photo of the {label}. a good photo of the {label}.
a photo of the small {label}. a photo of the big {label}.

Food101
a photo of {label}, a type of food.

Caltech101
a photo of a {label}. a painting of a {label}. a plastic {label}. a sculpture of a {label}.
a sketch of a {label}. a tattoo of a {label}. a toy {label}. a rendition of a {label}.
a embroidered {label}. a cartoon {label}. a {label} in a video game. a plushie {label}.
an origami {label}. art of a {label}. graffiti of a {label}. a drawing of a {label}.
a doodle of a {label}. a photo of the {label}. a painting of the {label}. the plastic {label}.
a sculpture of the {label}. a sketch of the {label}. a tattoo of the {label}. the toy {label}.
a rendition of the {label}. the embroidered {label}. the cartoon {label}. the {label} in a video game.
the plushie {label}. the origami {label}. art of the {label}. graffiti of the {label}.
a drawing of the {label}. a doodle of the {label}.

Stanford Cars
a photo of a {label}. a photo of the {label}. a photo of my {label}. i love my {label}!
a photo of my dirty {label}. a photo of my clean {label}. a photo of my new {label}. a photo of my old {label}.

DTD
a photo of a {label} texture. a photo of a {label} pattern. a photo of a {label} thing. a photo of a {label} object.
a photo of the {label} texture. a photo of the {label} pattern. a photo of the {label} thing. a photo of the {label} object.

FGVC Aircraft
a photo of a {label}, a type of aircraft. a photo of the {label}, a type of aircraft.

Flowers102
a photo of a {label}, a type of flower.

Pets
a photo of a {label}, a type of pet.

SUN39
a photo of a {label}. a photo of the {label}.

ImageNet
a bad photo of a {label}. a photo of many {label}. a sculpture of a {label}. a photo of the hard to see {label}.
a low resolution photo of the {label}. a rendering of a {label}. graffiti of a {label}. a bad photo of the {label}.
a cropped photo of the {label}. a tattoo of a {label}. the embroidered {label}. a photo of a hard to see {label}.
a bright photo of a {label}. a photo of a clean {label}. a photo of a dirty {label}. a dark photo of the {label}.
a drawing of a {label}. a photo of my {label}. the plastic {label}. a photo of the cool {label}.
a close-up photo of a {label}. a black and white photo of the {label}. a painting of the {label}. a painting of a {label}.
a pixelated photo of the {label}. a sculpture of the {label}. a bright photo of the {label}. a cropped photo of a {label}.
a plastic {label}. a photo of the dirty {label}. a jpeg corrupted photo of a {label}. a blurry photo of the {label}.
a photo of the {label}. a good photo of the {label}. a rendering of the {label}. a {label} in a video game.
a photo of one {label}. a doodle of a {label}. a close-up photo of the {label}. a photo of a {label}.
the origami {label}. the {label} in a video game. a sketch of a {label}. a doodle of the {label}.
an origami {label}. a low resolution photo of a {label}. the toy {label}. a rendition of the {label}.
a photo of the clean {label}. a photo of a large {label}. a rendition of a {label}. a photo of a nice {label}.
a photo of a weird {label}. a blurry photo of a {label}. a cartoon {label}. art of a {label}.
a sketch of the {label}. a embroidered {label}. a pixelated photo of a {label}. itap of the {label}.
a jpeg corrupted photo of the {label}. a good photo of a {label}. a plushie {label}. a photo of the nice {label}.
a photo of the small {label}. a photo of the weird {label}. the cartoon {label}. art of the {label}.
a drawing of the {label}. a photo of the large {label}. a black and white photo of a {label}. the plushie {label}.
a dark photo of a {label}. itap of a {label}. graffiti of the {label}. a toy {label}.
itap of my {label}. a photo of a cool {label}. a photo of a small {label}. a tattoo of the {label}.
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