
Under review as a conference paper at ICLR 2024

WHEN AND WHY MOMENTUM ACCELERATES SGD:
AN EMPIRICAL STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

Momentum has become a crucial component in deep learning optimizers, necessi-
tating a comprehensive understanding of when and why it accelerates stochastic
gradient descent (SGD). To address the question of ”when”, we establish a meaning-
ful comparison framework that examines the performance of SGD with Momentum
(SGDM) under the effective learning rates ηef , and offers a holistic view of the
momentum acceleration effect. In the comparison of SGDM and SGD with the
same effective learning rate and the same batch size, we observe a consistent
pattern: when ηef is small, SGDM and SGD experience almost the same empirical
training losses; when ηef surpasses a certain threshold, SGDM begins to perform
better than SGD. Furthermore, we observe that the advantage of SGDM over SGD
becomes more pronounced with a larger batch size. For the question of “why”, we
find that the momentum acceleration is closely related to edge of stability (EoS),
a recently discovered phenomenon describing that the sharpness (largest eigen-
value of the Hessian) of the training trajectory often oscillates around the stability
threshold. Specifically, the misalignment between SGD and SGDM happens at the
same moment that SGD enters the EoS regime and converges slower. Momentum
improves the performance of SGDM by preventing or deferring the occurrence of
EoS. Together, this study unveils the interplay between momentum, learning rates,
and batch sizes, thus improving our understanding of momentum acceleration.

1 INTRODUCTION

One key challenge in deep learning is to effectively minimize the empirical risk f(w) =
1
N

∑N
i=1 ℓ(w, zi), where ℓ the loss function, {zi}Ni=1 is the dataset, and w is the parameter of

deep neural networks. To tackle this challenge, countless optimization tricks have been proposed to
accelerate the minimization, including momentum (Polyak, 1964), adaptive learning rate (Kingma &
Ba, 2014), warm-up (Goyal et al., 2017), etc. Among these techniques, momentum, which accumu-
lates gradients along the training trajectory to calculate the update direction, is undoubtedly one of
the most popular tricks. Momentum has been widely adopted by state-of-art optimizers including
Adam (Kingma & Ba, 2014), AMSGrad (Reddi et al., 2019), and Lion (Chen et al., 2023).

The widespread use of momentum necessitates the understanding of when and why momentum
works, which can either facilitate a good application of momentum in practice, or help building
the next generation of optimizers. However, it is more than surprising that neither of when and
why momentum works in deep learning is clear, even for the simplest momentum-based optimizer
stochastic gradient descent with momentum (SGDM). Specifically, (a detailed discussion is included
in Section 2)

• As for when, recent studies (Polyak, 1964; Yuan et al., 2016; Defazio, 2020; Cutkosky &
Mehta, 2020; Leclerc & Madry, 2020; Smith et al., 2020) have primarily focused on the
acceleration behavior of momentum within a limited range of hyperparameters, leaving a
holistic view unexplored;

• As for why, existing explanations (Smith et al., 2020; Defazio, 2020; Cutkosky & Mehta,
2020) can only account for a portion of experimental observations.

1

Under review as a conference paper at ICLR 2024

Figure 1: The slow-down of SGD(M) occurs at the same moment when it experiences abrupt
sharpening, i.e., a sudden jump of the directional Hessian along the update direction. 1) Before
experiencing any abrupt sharpening, the training speeds of all optimizers are aligned. The directional
Hessian along the update direction for SGD(M) remains small throughout the training process. 2)
The convergence of SGD(M) slows down after abrupt sharpening. 3) Momentum defers the abrupt
sharpening, thereby helping to accelerate.

In this paper, we investigate the underlying acceleration mechanism of momentum by systematically
comparing the performance of SGD and SGDM. The psedo-code of SGD and SGDM 1 is given in
Algorithm 1, where SGD is obtained by ignoring the green-highlighted content.

To proceed, we first establish a meaningful comparison framework to avoid unnecessary complexities.
Specifically, we compare SGD and SGDM or two SGDMs with different momentum coefficients
under the same effective learning rate. The effective learning rate is the learning rate multiplied by a
factor 1/(1−µ) for a momentum coefficient µ, which takes into account the first-order approximation
of the update magnitude induced by momentum. Moreover, we evaluate their performances for a
wide range of effective learning rates which cover typical choices.

Our comparison framework gives us a full picture of their performances, which clearly reveals when
momentum helps acceleration. Based on this framework, we observe a consistent pattern: the training
speeds of SGD and SGDM are almost the same for small effective learning rates, but when the
effective learning rate increases beyond a certain threshold, SGDM begins to perform better than
SGD and shows acceleration benefits. When varying batch sizes, we find that increasing batch size
changes the threshold effective learning rate (deviation point), beyond which SGDM performs better
than SGD.

To understand why momentum accelerates training, we first focus on the full batch case and study
GD(M) since the acceleration effect of momentum is more evident with a large batch size. We find
that during the training process, the loss of GD deviates from that of GDM at the same time when GD
starts to oscillate. We further attribute the oscillation to a phenomenon of “abrupt sharpening” that
the directional Hessian along the update direction first stays around 0 and then experiences a sudden
jump which leads to oscillation. We show abrupt sharpening is a new feature of the renowned concept
Edge of Stability, and more importantly, it can be used to theoretically explain the alignment and
deviation between GD and GDM: before GD and GDM exhibit abrupt sharpening, the gradient barely
change and the updates of GD and GDM are close; abrupt sharpening slows down the convergence;
and momentum can defer abrupt sharpening and thus accelerate. We demonstrate this methodology
through Figure 1. We further find that a smaller batch size can also defer abrupt sharpening, which
overlaps with the effect of momentum. This can explain why decreasing batch size can defer the
deviation point.

1We focus on Polyak’s momentum in the main text, and verify that our conclusions also hold for Nesterov’s
momentum in the Appendix B.

2

Under review as a conference paper at ICLR 2024

In summary, we empirically investigate the benefit of momentum and our contributions are as follows.

• We introduce a meaningful framework to compare the performances of SGD and SGDM
with effective learning rates, which gives a full picture of the momentum benefits.

• When? Momentum accelerates SGD when the effective learning rate is larger than a certain
threshold, and the threshold will decrease when increase the batch size.

• Why? We show that once the optimizer experiences abrupt sharpening, the training process
slows down and the momentum can significantly postpone the point of abrupt sharpening.

Algorithm 1 SGD and SGDM

1: Input: the loss function ℓ(w, z), the initial point w1 ∈ Rd, the batch size b, learning rates
{ηt}Tt=1, m0 = 0, and momentum hyperparameters {µt}Tt=1 .

2: For t = 1→ T :
3: Sample a mini-batch of data Bt with size b
4: Calculate stochastic gradient∇fBt(wt) =

1
b

∑
z∈Bt

ℓ(wt, z)

5: Update mt ← µtmt−1+ ∇fBt
(wt)

6: Update wt+1 ← wt − ηtmt

7: End For

2 RELATED WORKS

Table 1: Comparison with previous works. We use the following abbreviations for short words:
learning rate→ lr, batch size→ bs, difference→ df, small→ sm, large→ lg, accelerate→ acc,
high curvature→ hc and high noise→ hn. The noise here refers to the gradient noise. In the table,
"df lr" indicates exploration done for different learning rate settings, while "df bs" refers to different
batch size settings. The symbol (⋆) represents that momentum accelerates SGD when the effective
learning rate is larger than a certain threshold, and the threshold will decrease when increase the
batch size. The symbol (△) signifies that momentum accelerates SGD during the early stages of
optimization.

Non-convex when Why
Effective lr Setting Conclusion

Polyak (1964) lg bs (GD) acc Cancel out effect of hc
Yuan et al. (2016) ✓ sm bs + sm lr don’t acc

Defazio (2020) ✓ (△) cancel out noise
Cutkosky & Mehta (2020) ✓ acc under hn cancel out noise
Leclerc & Madry (2020) ✓ df lr acc under sm lr

Smith et al. (2020) ✓ ✓ df bs acc under lg bs Cancel out effect of hc
Wang et al. (2023) ✓ ✓ sm lr don’t acc

Ours ✓ ✓ df lr + df bs (⋆) Prevent from entering EoS

When Our work makes the progress that: 1) Offering a holistic view of the momentum accelera-
tion effect. Prior studies have either examined the impact of momentum in specific settings or focused
on its effects when modifications are made to the learning rate or batch size. In contrast, this work
investigates momentum in more comprehensive settings, including the interplay between momentum,
learning rate, and batch size. Furthermore, we conducted experiments on various datasets (Appendix
C) to ensure the generalizability of our conclusions, as opposed to previous studies that relied on a
few simple datasets. 2) Enhancing the understanding of the relationship between momentum
and learning rate. Leclerc & Madry (2020) presented a complex conclusion: momentum accelerates
SGD under small learning rates but slows it down under large learning rates. This conclusion is
inconsistent with previous findings (Yuan et al., 2016; Smith et al., 2020). The primary reason for
this discrepancy is that SGDM experiences a larger effective learning rate η

1−µ compared to SGD’s
learning rate η when their learning rates are the same. By considering the effective learning rate, we
reconcile these differences and arrive at the following conclusions: a) Consistent with (Yuan et al.,
2016), we find that SGDM and SGD have similar performance under small effective learning rates.
b) Momentum accelerates SGD when the effective learning rate is greater than a specific threshold.

3

Under review as a conference paper at ICLR 2024

Why There are two mainstream explanations for the impact of momentum: (E1) Momentum
can counteract the negative effects of high curvature. Smith et al. (2020) identified two regimes:
"noise dominated" and "curvature dominated." They found that momentum is more effective in the
"curvature dominated" regime. (E2) Momentum can cancel out the negative effects of stochastic
noise, resulting in update directions that are more aligned with the gradient direction. However, both
explanations have limitations:

• (E1): Cannot explain the interplay between momentum and learning rate. Smith et al.
(2020) mainly categorized the two regimes based on batch size. This explanation cannot
account for the diverse behavior of momentum with different learning rates under the same
batch size.

• (E2): Cannot explain why momentum accelerates GD. If momentum’s role is to cancel
noise, then we would expect no effect of momentum in GD, where no noise exists. This is
inconsistent with recent experiments (Kunstner et al., 2022; Kidambi et al., 2018; Shallue
et al., 2019).

Our work advances the understanding of momentum in the following ways: 1) Our explanation
can account for the interplay between momentum, learning rate, and batch size, and can also be
applied to GD. 2) We establish a direct connection between the effect of momentum and the landscape
(directional Hessian).

3 WHEN DOES MOMENTUM ACCELERATE SGD?

In this section, we explore under what circumstances momentum can accelerate SGD. In Section
3.1, we first establish a meaningful comparison framework for SGD and SGDM by considering the
interplay between momentum and two factors, i.e. batch sizes and learning rates. In Section 3.2, we
then conduct experiments under this framework and state our main observations.

3.1 A COMPARISON FRAMEWORK FOR SGDMS WITH DIFFERENT HYPERPARAMETERS

Hyper-parameter scheduler. We use constant step-size and constant momentum coefficient across
the whole training process, i.e. , µt ≡ µ and ηt ≡ η, as our primary objective is to understand the
acceleration effect of SGDM rather than reproduce state-of-the-art performance.

Effective learning rate. Our aim is to study the essential influence of the momentum coefficient µ
over the performance of SGDM. However, the momentum may affect the performance via different
ways. For example, adding µ will change the update magnitude, which may have the same effect as
changing the learning rate. Such effect can be approximated as follows,

mt =

t∑
s=1

µt−s∇fBs
(ws) ≈

1− µt

1− µ
∇fBt

(wt)→
1

1− µ
∇fBt

(wt) as t→∞.

This indicates that SGDM with momentum coefficient µ and learning rate η may have the same
magnitude of update as SGD with learning rate 1

1−µη. When comparing the performances of SGDM
with different µ, we want to exclude the effect of momentum that can be compensated by simply
changing the learning rate. Therefore we introduce the concept of effective learning rate so that the
different setup can be compared fairly to extract the essential effect of momentum.

Additionally, the batch size b is another important hyperparameter in SGDM whose effect may be
compensated by simply changing the learning rate. Specifically, we consider the gradient is averaged
(rather than summed) over the individual samples in a minibatch. Larger batch size indicates fewer
updates in one epoch. To compensate the number updates in one epoch, we adopt the the Linear
Scaling Rule (Goyal et al., 2017) of the learning rate, which suggests that scaling the learning rate
proportionally with the batch size keep the same convergence speed. This scaling rule has been
verified to be effective for models and data with large sizes (Goyal et al., 2017).

4

Under review as a conference paper at ICLR 2024

Figure 2: The training speeds of SGD and
SGDM exhibit an align-and-deviate pattern as
the effective learning rate increases. 1) When
the effective learning rate is small, the training
speeds of SGDM and SGD are almost the same.
2) After the effective learning rate beyond a cer-
tain threshold, SGDM outperforms SGD.

Figure 3: The benefit of momentum is entan-
gled with batch sizes 1) Reducing batch size
will defer the threshold point between align-and-
deviation. 2)The larger momentum coefficient,
the smaller gap of SGDMs with different batch
sizes. 3) The gap between SGDM and SGD be-
comes larger when the batch size increases.

Putting these effects together, we propose to compare the performance between SGD and SGDM
under the same effective learning rate, defined as follows:

ηkef =
1

1− µ︸ ︷︷ ︸
Effect of

momentum

·

Effect of
batch size︷︸︸︷

k

b
· η,

where k is a reference batch size introduced for good visualization for typical choices of batch size
and learning rate. When there is no comparison across batch sizes, we simply choose k = b, and
denote ηef = ηbef =

1
1−µη.

Rationale for Effective learning rate The reason for defining an effective learning rate is to
maintain a consistent update magnitude across various parameter settings. When adding
momentum and keeping the learning rate fixed, the actual update magnitude increases. Regarding
batch size, a larger batch size reduces the number of update iterations within an epoch. Previous
studies (Goyal et al., 2017; Ma et al., 2018; Smith et al.) have compensated for this by increasing the
learning rate.

Measurement of performance. As we care about the optimization performance of SGDM, we plot
the training loss of SGDM after a prefixed number of epochs T , with respect to the effective learning
rate for different settings of µ and b (see Figure 2). We say one setting of SGDM outperforms another,
if the former one has a smaller training loss after T epochs for the same effective learning rate.

3.2 MOMENTUM ACCELERATES TRAINING ONLY FOR LARGE EFFECTIVE LEARNING RATES

We conduct experiments on the CIFAR10 dataset using VGG13-BN network2. We train SGDMs with
batch size 1024 and three values of µ = {0, 0.5, 0.9}, respectively, and choose k = 1024. We choose
the epoch budget T = 200 (we show in Appendix C that our conclusion remains valid regardless of
T). We note that our findings are also valid for other choices of batch sizes (see Section 3.3).

As discussed in Section 3.1, we plot curve of training losses with respect to effective learning rates
for these three settings in Figure 2. We summarize the findings as follows.

2More experiments on different architectures and datasets are given in Appendix C. Our conclusion generally
holds.

5

Under review as a conference paper at ICLR 2024

• For small effective learning rates, SGDMs with different values of µ perform almost
the same. This indicates that momentum does not have the benefit of acceleration because
one can always use SGD with a compensated learning rate to reach the performance of
SGDM with a specific µ.

• As effective learning rate increases beyond some thresholds, the curves with small µ
start deviating from the curve with large µ progressively, which implies some transition
happens. In this regime, we observe the benefit of momentum because simple compensation
on learning rate does not helps SGDM with small µ reach the performance of SGDM with
large µ.

Overall, for the whole range of µ, SGDM performs better than or equivalent to SGD. Such a neat
relation can only be observed by introducing effective learning rates to align different values of µ.

3.3 THE BENEFIT OF MOMENTUM IS ENTANGLED WITH BATCH SIZES

In this section, we examine the effect of batch size b and understand how different batch sizes affect
the benefit of momentum. We repeat the experiments in Section 3.2, i.e, experiments on the CIFAR10
dataset using VGG13-BN network for SGDM with 6 representative choices of hyperparameters
(µ, b) ∈ {0, 0.5, 0.9} × {256, 1024}. We choose the epoch budget T = 200, the same as before. We
plot the result of the training losses with respect to the effective learning rates in Figure 3.

Our findings are summarized as follows.

• Batch size affects the deviation point. Increasing the batch size, the SGD and SGDM will
diverge at a smaller effective learning rate. This indicates that the acceleration of momentum
interplays with learning rate and batch size.

• The gap between SGDM and SGD becomes larger when the batch size increases. This
coincides with the observation that the acceleration effect of momentum is more pronounced
with larger batch sizes (Kunstner et al., 2022; Kidambi et al., 2018; Shallue et al., 2019).

• The larger momentum coefficient, the smaller gap of SGDMs with different batch sizes.
As one increases the momentum coefficient, the gap between the performances of SGDMs
with different batch sizes becomes smaller.

4 WHY DOES MOMENTUM ACCELERATE SGD?

In Section 3, we have explored when momentum accelerates SGD. In this section, we want to
understand why momentum accelerates SGD, or more precisely, the mechanism of momentum
accelerating SGD. To control variable and simplify the analysis, we first focus on comparing GD and
GDM, and find that deviation of GD and GDM is related with a phenomenon that Hessian abruptly
sharpens along the update direction in Section 4.1. We then show that the abrupt sharpening of
Hessian can explain the acceleration of momentum and batch size in Section 4.2 and 4.3, respectively.

Remark: The contribution of this section is in explaining momentum acceleration through the
lens of edge of stability. The Propositions presented are not highly technical. The Papers (Lyu et al.,
2022; Damian et al., 2022) give more detail information about the edge of stability phenomenon and
cover most Propositions in this section.

4.1 HESSIAN ABRUPTLY SHARPENS WHEN GD DEVIATES FROM GDM

As the full-batch update is computationally expensive, we use a subset of CIFAR10 with 5K samples,
which has been used to study GD behavior previously (Cohen et al., 2021; Ahn et al., 2022b). The
network we use is fc-tanh(Cohen et al., 2021), i.e., a one-hidden-layer fully-connected network with
200 neurons and tanh activation.

We first verify that the align-and-deviate pattern still exist in this task in Figure 4A. We then pick
one effective learning rate ηef = 0.01 before the deviation threshold and one effective learning rate
ηef = 0.1 after the threshold and plot its training loss across epochs in Figure 4B and Figure 4C.
We can see that for ηef = 0.01, the training curves of GDM and GD are smooth and closely aligned

6

Under review as a conference paper at ICLR 2024

(Figure 4B). When ηef = 0.1 beyond the threshold in Figure 4A, the training curves of GDM and
GD align with each other in first few epochs and then the loss of GD starts oscillating and deviates
from the loss of GDM. It should be noted that GD becomes slower than GDM, i.e, the curve of GD is
strictly on top of that of GDM, at the same moment that GD starts oscillating.

Figure 4: Exploration of the training process on CIFAR10-5k dataset. A: Experiments on Cifar10-
5k gives a similar result as Figure 2. B: GD and GDM are aligned during the whole training process
under small learning rate. C: GD and GDM are aligned before GD starting oscillating, and deviate
after. The red dash line denotes the time when the GD starts oscillating.

The observation in Figure 4 provides a partial answer of why momentum accelerates GD by connecting
it with preventing oscillation. However, we are still unclear the reason for why the oscillations happen
and why GDM is less like to oscillate. With wt be the iteration of GD, we revisit the Taylor expansion
of the objective function f , which writes

f(wt+1) ≈ f(wt)− η∥∇f(wt)∥2 +
η2

2
∇f(wt)

⊤∇2f(wt)∇f(wt).

When the loss stably decreases, we have f(wt+1) < f(wt), and based on the above approx-

imation, we infer the directional Hessian along the update direction H(wt,wt+1 − wt)
△
=

(wt+1−wt)
⊤∇2f(wt)(wt+1−wt)

∥wt+1−wt∥2 satisfying ηH(wt,wt+1 − wt) < 2. On the other hand, we
have f(wt+1) ≈ f(wt) when oscillating (Ahn et al., 2022b), and simple calculation gives
ηH(wt,wt+1 − wt) ≈ 2. Therefore, we conjecture that the oscillation is due to a sharp tran-
sition of the directional Hessian along the update.

To verify our conjecture, we plot the directional Hessian in Figure 5. We observe that there is a
sharp transition of the directional Hessian along the update: it first stays around 0 before oscillation,
and then experiences a sudden jump at the time of oscillation. We referred to this phenomenon as
“directional Hessian abrupt sharpening” or “abrupt sharpening” for short.

Abrupt sharpening explains why the oscillations happen. We further notice that abrupt sharpening is
closely related to an existing concept called "edge of stability" (EoS), which describes the phenomenon
that during the training of GD, sharpness, i.e., the maximum eigenvalue of Hessian, will gradually
increase until it reaches 2

η and then hover at it. The phenomenon of gradually increasing sharpness is
denoted as "progressive sharpening". It seems to contradict with abrupt sharpening of directional
Hessian, but we show that abrupt sharpening is a joint outcome of progressive sharpening and
renowned degenerate Hessian of deep neural networks (Sagun et al., 2016) through the following
proposition. Consequently, abrupt sharpening can be viewed as a newfound component of EoS.
Proposition 1. Given a minimization problem minw∈Rd f(w), we consider minimizing its quadratic

function approximation around a minimizer w∗, i.e., f̃(w)
△
= 1

2 (w −w∗)⊤∇2f(w∗)(w −w∗) +
f(w∗). Let wt be the parameter given by GD with learning rate ηef at the t-th iteration. Let A be
the space of eigenvectors of∇2f(w∗) corresponding to the maximum eigenvalue of A. For almost
every w0 ∈ Rd , limt→∞

∇f̃(wt)

∥∇f̃(wt)∥
∈ A if and only if λmax(∇2f(w∗)) > 2

ηef
− λmin(∇2f(w∗)).

Sagun et al. (2016) observes that in deep learning tasks, the smallest eigenvalue of Hessian
λmin(∇2f(w∗)) is close to 0. This together with Proposition 1 indicates that the update direc-
tion of GD would start to align with the eigenspace of the maximum eigenvalue only after the

7

Under review as a conference paper at ICLR 2024

Figure 5: Sharpness and directional Hessian on CIFAR10-5k dataset. The dashed blue line
represents the threshold 2

ηef
. Left: With a small effective learning rate, the directional Hessian of GD

and GDM are around 0. Center: With a larger effective learning rate, GD exhibits abrupt sharpening
and training loss starts to oscillate (marked by the red dash line) when the sharpness of GD surpasses
2
ηef

, while directional Hessian of GDM stays around 0. Right: With an even larger effective learning
rate, both GDM and GD exhibits abrupt sharpening, but much later for GDM .

sharpness is very close to 2
η (thus in the early stage, directional sharpness stays around 0). Once such

an alignment starts, it is rapid because the convergence rate in Proposition 1 is exponential (please
see the proof in Appendix E for details), which explains the abrupt sharpening of directional Hessian.

4.2 ABRUPT SHARPENING CAN EXPLAIN THE ACCELERATION OF MOMENTUM

Here we show that abrupt sharpening can be used to explain the acceleration of momentum.

Small directional Hessian explains the alignment between GD and GDM. Intuitively, when
directional Hessian is relatively small, GD and GDM are like walking straightly on a line because
small directional Hessian implies small change of gradient along the update direction. This agrees with
the setting where we introduce effective learning rate, i.e., ∇f(w1) ≈ ∇f(w2) ≈ · · · ≈ ∇f(wt),
and thus GDM performs similarly as GD under the same effective learning rate. This perfectly
explains the alignment between GD and GDM before oscillation. We summarize the above intuition
as the following property.

Proposition 2. Denote the iterations of GD as {wGD
t }∞t=1 and those of GDM as {wGDM

t }∞t=1. If
the directional Hessians satisfy H(wGD

s ,wGD
s+1−wGD

s) ≈ 0 and H(wGDM
s ,wGDM

s+1 −wGDM
s) ≈ 0,

∀s ≤ t− 1, then we have f(wGD
t) ≈ f(wGDM

t).

Momentum defers abrupt sharpening, and thus accelerates GD. First of all, we show again
through quadratic programming that momentum has the effect to defer abrupt sharpening.

Proposition 3. Let f , w∗ and f̃ and A be defined in Proposition 3. Let wt be the parameter given
by GDM at the t-th iteration. Then, for almost everywhere w0 ∈ Rd, limt→∞

∇f̃(wt)

∥∇f̃(wt)∥
∈ A if and

only if λmax(∇2f(w)) > 2(1+µ)
(1−µ)ηef

− λmin(∇2f(w)).

Comparing Proposition 3 with Proposition 1, we observe that with a relative small λmin, the required
λmax for abrupt sharpening appearance of GDM is (1+µ)

1−µ (which is 19 when µ = 0.9) times larger
than that of GD. As the sharpness progressively increases, reaching the required sharpness of GDM
takes a much longer time than reaching that of GD (an extreme case is that abrupt sharpening happens
in GD but not in GDM). Meanwhile, entrance of edge of stability has been known to slow down
the convergence. In Ahn et al. (2022a), it is shown that when not entering EoS, GD converges in
O(1/ηef) iterations, but require Ω(1/η2ef) iterations to converge in the EoS regime. Together, we
arrive at the conclusion that momentum can accelerate GD via deferring the entrance of EoS (abrupt
sharpening).

8

Under review as a conference paper at ICLR 2024

4.3 EXTENDING THE ANALYSIS TO STOCHASTIC CASE: INTERPLAY BETWEEN MOMENTUM
AND BATCH SIZE

Over the same experiment of Sections 4.1 and 4.2, we first plot the training curves of GD, GDM,
and SGD with batch size 250 and η5000ef = 0.1 in Figure 6A. Specifically, we find that stochastic
noise can also defer abrupt sharpening: GD enters EoS during the training process, while SGD
and GDM does not and they remain well-aligned throughout the training process.

Since in previous section, we have explained that entrance of EoS slows down the convergence, such
an observation explains why in Figure 2, reducing batch size also accelerates SGDM with respect
to the number of passes of the data. Furthermore, this observation also explains why the effect of
momentum is more pronounced when batch size is large since stochastic noise and momentum has
an overlapping effect in preventing abrupt sharpening.

Figure 6: Reducing batch size and adding momentum play a similar role in preventing abrupt
sharpening. A: Reducing batch size can help prevent abrupt sharpening. B: Adding momentum can
extend the range of batch sizes where linear scaling rule holds.

From Figure 6B we can see that the performance of large-batch SGD is worse than small-batch SGD
because large-batch enters EoS while small-batch does not. When momentum is added, large-batch
also does not enter EoS.

Why batch size impacts the deviation point The deviation happens when the SGD enters EoS
while SGDM is not enter the EoS. After decreasing the batch size, larger learning rate is required for
SGD to enter EoS. Therefore, the deviation point is defered.

5 CONCLUSION

This paper investigates the relationship between momentum, learning rate, and batch size. We observe
an align-and-deviate pattern when either fixing the batch size and increasing the effective learning
rate (Figure 2) or fixing the effective learning rate and increasing the batch size (Figure 13). Before
the deviation point, the training speed of SGD and SGDM are almost the same. However, after the
deviation point, SGDM outperforms SGD. We link the phase transition to the EoS and explain that
momentum accelerates training via preventing the entrance of EoS. We also observe and analyze
the effect of batch size following the above framework. In summary, this paper provides thorough
empirical result to see and analyze when and why momentum accelerates SGD under various settings.

6 LIMITATION

Our current paper has two limitations: 1) Inability to explain situations where µ is close to 1.
In Appendix D, we analyze that leveraging extremely large µ can actually worsen the acceleration
of momentum. However, since this setting is rarely used in practice, it is also overlooked by most
previous works (Defazio, 2020; Cutkosky & Mehta, 2020; Polyak, 1964; 1987; Yuan et al., 2016;
Leclerc & Madry, 2020; Smith et al., 2020). 2) The evaluation of model architectures and
datasets is not comprehensive. In Appendix C, we conduct experiments on commonly used model
architectures and popular datasets. Our findings are based on these configurations. Although it is
impossible to test all scenarios, more extensive experiments are needed in future work.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Kwangjun Ahn, Sébastien Bubeck, Sinho Chewi, Yin Tat Lee, Felipe Suarez, and Yi Zhang. Learning
threshold neurons via the" edge of stability". arXiv preprint arXiv:2212.07469, 2022a.

Kwangjun Ahn, Jingzhao Zhang, and Suvrit Sra. Understanding the unstable convergence of gradient
descent. In International Conference on Machine Learning, pp. 247–257. PMLR, 2022b.

Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on the edge
of stability in deep learning. In International Conference on Machine Learning, pp. 948–1024.
PMLR, 2022.

Lingjiao Chen, Hongyi Wang, Jinman Zhao, Dimitris Papailiopoulos, and Paraschos Koutris. The
effect of network width on the performance of large-batch training. Advances in neural information
processing systems, 31, 2018.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023.

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065, 2021.

Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati, Michal
Badura, Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive gradient
methods at the edge of stability. arXiv preprint arXiv:2207.14484, 2022.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized SGD. In International
conference on machine learning, pp. 2260–2268. PMLR, 2020.

Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of gradient
descent at the edge of stability. arXiv preprint arXiv:2209.15594, 2022.

Aaron Defazio. Momentum via primal averaging: theoretical insights and learning rate schedules for
non-convex optimization. arXiv preprint arXiv:2010.00406, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
Imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M Kakade. On the insufficiency of
existing momentum schemes for stochastic optimization. In International Conference on Learning
Representations, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between SGD and Adam on transformers, but sign descent might be. In
The Eleventh International Conference on Learning Representations, 2022.

10

Under review as a conference paper at ICLR 2024

Guillaume Leclerc and Aleksander Madry. The two regimes of deep network training. arXiv preprint
arXiv:2002.10376, 2020.

Zhouzi Li, Zixuan Wang, and Jian Li. Analyzing sharpness along gd trajectory: Progressive
sharpening and edge of stability. arXiv preprint arXiv:2207.12678, 2022.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normal-
ization layers: Sharpness reduction. Advances in Neural Information Processing Systems, 35:
34689–34708, 2022.

Chao Ma, Lei Wu, and Lexing Ying. The multiscale structure of neural network loss functions: The
effect on optimization and origin. arXiv preprint arXiv:2204.11326, 2022.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of SGD in modern over-parametrized learning. In International Conference on
Machine Learning, pp. 3325–3334. PMLR, 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

BT Polyak. Introduction to optimization, ser. Translations Series in Mathematics and Engineering.
New York: Optimization Software Inc. Publications Division, 1987.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity
and beyond. arXiv preprint arXiv:1611.07476, 2016.

Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20:1–49, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
gradient descent. In International Conference on Machine Learning, pp. 9058–9067. PMLR, 2020.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. In International Conference on Learning Representations.

Runzhe Wang, Sadhika Malladi, Tianhao Wang, Kaifeng Lyu, and Zhiyuan Li. The marginal value of
momentum for small learning rate sgd. arXiv preprint arXiv:2307.15196, 2023.

Kun Yuan, Bicheng Ying, and Ali H Sayed. On the influence of momentum acceleration on online
learning. The Journal of Machine Learning Research, 17(1):6602–6667, 2016.

Xingyu Zhu, Zixuan Wang, Xiang Wang, Mo Zhou, and Rong Ge. Understanding edge-of-stability
training dynamics with a minimalist example. arXiv preprint arXiv:2210.03294, 2022.

A OTHER RELATED WORK

Edge of Stability. (Cohen et al., 2021) discovers a negative correlation between the sharpness of
objective functions in the training process of deep learning tasks and the learning rate, called "Edge
of Stability" (EoS). Specifically, when using gradient descent (GD) with learning rate η, they observe
that the sharpness will first progressively increase, and then hover at 2

η . Similar phenomena are latter
observed in other optimizers including SGD, SGDM, and Adam (Cohen et al., 2022). Traditionally,
optimization analysis requires sharpness to be smaller than 2

η to ensure convergence. This is, however,
violated by EoS, and several works have tried to understand such a mismatch theoretically. Interesting
readers can refer to (Ma et al., 2022; Ahn et al., 2022b; Arora et al., 2022; Li et al., 2022; Ahn et al.,
2022a; Zhu et al., 2022) for details.

11

Under review as a conference paper at ICLR 2024

Linear scaling rule of learning rate with batch size. Linear scaling rule is first proposed by
(Goyal et al., 2017), suggesting that the when the batch size is smaller than a certain threshold (called
critical batch size), scaling the learning rate according to the batch size keep the performance the
same. Such a law is further theoretically verified by (Ma et al., 2018) which study SGD over quadratic
functions. (Ma et al., 2018) also show that using linear scaling law above the critical batch size hurt
the performance, which is empirically observed by (Chen et al., 2018). These methodologies are used
in (Smith et al.) to decay learning rate.

B FURTHER EXPERIMENTS ON OTHER OPTIMIZERS

Figure 7: The align-and-deviate pattern for Nesterov’s Momentum. The behavior of Nesterov’s
momentum is similar to that of Polyak’s momentum (see Figure 3) when increasing the effective
learning rate.

B.1 ON THE EFFECT OF NESTEROV’S MOMENTUM

To give a full picture of the effect of momentum, we further conduct experiments over SGD with
Nesterov’s momentum as a complement to the discussion about the Polyak’s momentum in the main
text. Specifically, the update rule of Nesterov’s momentum is given in Algorithm 2, which is the
implementation in PyTorch.

Algorithm 2 SGD with Nesterov’s Momentum

1: Input: the loss function ℓ(w, z), the initial point w1 ∈ Rd, the batch size b, learning rates
{ηt}Tt=1, m0 = 0, and momentum hyperparameters {µt}Tt=1.

2: For t = 1→ T :
3: Sample a mini-batch of data Bt with size b
4: Calculate stochastic gradient∇fBt

(wt) =
1
b

∑
z∈Bt

ℓ(wt, z)

5: Update mt ←µtmt−1+∇fBt
(wt)

6: Update wt+1 ← wt − ηt(µtmt +∇fBt
(wt))

7: End For

B.1.1 DERIVATION OF EFFECTIVE LEARNING RATE

Like in the analysis of Polyak’s momentum, we fix ηt and µt to be constants. We show below that
Nesterov’s momentum has the similar effect as Polyak’s momentum to amplify the update magnitude.
Specifically, we have

mt =

t∑
s=1

µt−s∇fBs(ws) ≈
1− µt

1− µ
∇fBt(wt)→

1

1− µ
∇fBt(wt) as t→∞,

12

Under review as a conference paper at ICLR 2024

and thus
µmt +∇fBt

(wt) ≈
1

1− µ
∇fBt

(wt) as t→∞.

To rule out such a effect, we define the effective learning rate of Nesterov’s momentum as

ηkef =
1

1− µ
· k
b
· η.

B.1.2 EXPERIMENTS

Figure 8: Exploration of Nesterov’s momentum A: Nesterov’s can also prevent the abrupt sharp-
ening. B: Compared with Polyak, Nesterov’s performs worse in preventing abrupt sharpening.
Nesterov’s GDM enters EoS earlier than Polyak’s momentum. Additionally, the training speed of
Nesterov’s momentum is slower.

We conduct the experiments of SGD with Nesterov’s momentum under the same setup as Figure 3.
We plot the results in Figure 7. We can see that optimizers with Nesterov’s momentum behave
similarly to the counterparts with Polyak’s momentum as shown in Figure 3. Furthermore, we provide
a further investigation on Nesterov’s momentum by conducting an experiment based on the setup
of Figure 4, plotted in Figure 8. Figure 8A shows that the Nesterov momentum can also prevent
abrupt sharpening during the training process. Then, we give a simple comparison between Polyak’s
and Nesterov’s momentum by comparing them together under ηef = 1.0, where both of them will
enter the EoS. In this setting, we find that compared with SGD with Polyak’s momentum, SGD
with Nesterov’s momentum with same µ entere EoS earlier (Figure 8B), and Polyak’s momentum
performs better than Nesterov’s momentum under this setting. However, future work with more
extensive experiments is required before making any conclusive claim on optimizers with Nesterov’s
momentum. In this paper, we focus on the optimizers with Polyak’s momentum.

B.2 ON THE EFFECT OF MOMENTUM IN ADAM

Algorithm 3 Adam

1: Input: the loss function ℓ(w, z), the initial point w1 ∈ Rd, the batch size b, learning rates
{ηt}Tt=1, m0 = 0,v = 0, and hyperparameters β = (β1, β2).

2: For t = 1→ T :
3: Sample a mini-batch of data Bt with size b
4: Calculate stochastic gradient∇fBt(wt) =

1
b

∑
z∈Bt

ℓ(wt, z)

5: Update mt ←β1mt−1+(1− β1)∇fBt
(wt)

6: Update vt ←β2vt−1+(1− β2)∇fBt
(wt)

⊙2

7: Update wt+1 ← wt − ηt
mt/(1−βt

1)√
vt/(1−βt

2)+ϵ

8: End For

Here we step beyond SGD and provide a preliminary investigation on the effect of momentum in
Adam (Kingma & Ba, 2014). The psedocode of Adam is given in Algorithm 3. We first derive the
effective learning rate of Adam. Since

mt = (1− β1)

t∑
s=1

βt−s
1 ∇fBs(ws) ≈ (1− βt)∇fBt(wt)→ ∇fBt(wt) as t→∞,

13

Under review as a conference paper at ICLR 2024

we define the effective learning rate of Adam directly as the learning rate i.e. ηef = η (here we do not
consider the effect of batch size since it is still an open problem for the effect of batch size in Adam).
We conduct the experiments of full-batch Adam under the same setup as Figure 4. Since we focus on
the effect of momentum, we fix β2 = 0.999 (which is the default value in PyTorch) and choose β1

from {0, 0.5, 0.9}. The results are plotted in Figure 9.

Figure 9: The align-and-deviate pattern also exists in Adam. When increasing the effective
learning rate, Adam with different β1 also exhibits an align-and-deviate pattern. Here β = (β1, β2).

C MORE EXPLORATION ON THE ALIGN-AND-DEVIATE PATTERN

Influence of model architecture. In this study, we investigate whether varying model designs have
an impact on the final conclusions. We set the batch size to 1024 and allocate an epoch budget of T
= 200. The experiments are carried out using the Cifar10 dataset. All the considered architectures
exhibit the align-and-deviate pattern. However, the effect of momentum varies across different
models. For instance, momentum plays a more significant role in improving performance for VGG13
than that for VGG13BN as observed in Figure 10. Moreover, momentum is particularly important for
training the ViT(Dosovitskiy et al., 2020) model, as depicted in Figure 10 (ViT).

Figure 10: Experiments with different neural network architectures. Momentum has a more
significant role in VGG13 and ViT network compared with ResNet18(He et al., 2016) and VGG13BN
network.

Influence of datasets The experiments, as illustrated in Figure 11, are carried out using a variety
of datasets, such as Cifar100(Simonyan & Zisserman, 2014), WikiText2(Merity et al., 2016), and
ImageNet(Deng et al., 2009). For each dataset, we employ a different model: VGG13BN for Cifar100,
Transformer3 for WikiText2, and ResNet18 for ImageNet. We consistently observe the align-and-
deviate pattern across these datasets. However, the positions of deviation points differ considerably
among them. This variation could be attributed to factors such as dataset size, task difficulty, and
other aspects.

3https://pytorch.org/tutorials/beginner/transformer_tutorial.html

14

https://pytorch.org/tutorials/beginner/transformer_tutorial.html

Under review as a conference paper at ICLR 2024

Figure 11: Experiments across different datasets. The align-and-deviate pattern is consistently
observed along these datasets.

Different epoch setting. In this paper, we use the training loss at epoch T to represent the training
speed of optimizers. The T is chosen to be 200 in our experiments. Here, we explore different values
of T from {50, 100, 150, 200}, and we want to check whether the choice of T matters. From Figure
12, we observe that the align-and-deviate pattern exists no matter what value of T is chosen.

Figure 12: Exploration the align-and-deviation pattern with different epoch settings. The align-
and-deviate pattern is observed in all these settings.

Influence of batchsize We conduct additional experiments to explore the imfluence of batchsize.
Specifically, we fix the effective learning rate η1024ef = 0.1 and gradually increase the batch size to
plot a curve of training loss with respect to the batch size in Figure 13. We observe that when batch
sizes are small, SGDM with different µs performs almost the same, and when the batch size increases
beyond a threshold, SGDM with larger µ tends to perform better.

Moreover, we note that a horizontal curve in Figure 13 is equivalent to the Linear Scaling Law (Goyal
et al., 2017) and we can see that momentum extends the range of batch sizes in which the Linear
Scaling Law holds.

15

Under review as a conference paper at ICLR 2024

Figure 13: Momentum extends the range of batch sizes in which the Linear Scaling Law holds.
1) A similar align-and-deviate pattern for SGD and SGDM is also discovered when the batch size
is increased. 2) Each curve remains nearly horizontal up to a specific threshold batch size. The
threshold batch size for SGDM is greater than that for SGD.

D SITUATION WHEN MOMENTUM COEFFICIENT IS CLOSE TO 1

Figure 14: Exploration on the case when µ is close to 1. The experiments are conducted on Cifar10
using VGG13-BN with batch size 1024.

• Momentum will slow-down the SGD when µ → 1. Figure 14 explore the behavior of
SGDM under different µ. The performance of SGDM will suddenly decrease when the µ is
larger than 0.9.

E PROOFS OF THEORETICAL RESULTS

E.1 PROOF OF PROPOSITIONS 1 AND 3

Proof of Proposition 1. To begin with, by linear transformation, we can assume without loss of
generality that A is a diagonal matrix, b = 0 and c = 0. Denote A = Diag(λ1, · · · , λd), where
λmax(A) = λ1 ≥ λ2 ≥ · · · ≥ λd = λmin(A). Denote wt = (wt,1, · · · ,wt,d). Let m1 be the
number of eigenvalues equal to λmax. Let m2 be the number of eigenvalues equal to λmin. Then,
A = span{e1, · · · , em1

}. Based on the update rule of GD, we obtain that

wt+1,i = (1− ηλi)wt,i,

and thus wt,i = (1 − ηλi)
tw0,i. Let K = {x : xd−m2+1 = · · · = xd = 0} ∪ {x : x1 = · · · =

xm1 = 0}. Obviously, K is a zero-measure set. Then, we have that limt→∞
wt

∥wt∥ ∈ A if and only if
|1− ηλ1| > |1− ηλd|, which gives η > 2

λ1+λd
.

Proof of Proposition 3. Let λ1, · · · , λd, K, m1, and m2 be defined in the proof of Proposition 1.
Then, the update rule of GDM gives

wt+1,i =wt,i + µ(wt,i −wt−1,i)− (1− µ)ηef∂if(wt,i)

=wt,i + µ(wt,i −wt−1,i)− (1− µ)ηefλiwt,i.

16

Under review as a conference paper at ICLR 2024

Solving the above series gives
wt,i = ci,1d

t
i,1 + ci,2d

t
i,2,

where di,1 = (1+µ)−(1−µ)ηefλi

2 +

√(
(1+µ)−(1−µ)ηefλi

2

)2

− µ, and di,2 = (1+µ)−(1−µ)ηefλi

2 −√(
(1+µ)−(1−µ)ηefλi

2

)2

− µ.

Therefore, limt→∞
wt

∥wt∥ ∈ A if and only if max{d1,1, d1,2} > maxi ̸=1{di,1, di,2}. On the other

hand, note that g(x) = max{| (1+µ)−x
2 +

√(
(1+µ)−x

2

)2

− µ|, | (1+µ)−x
2 −

√(
(1+µ)−x

2

)2

− µ|} is

symmetric with respect to x = 1 + µ, and the maximum value of g(x) over any interval [a, b] is
achieved at a or b, then limt→∞

wt

∥wt∥ ∈ A if and only if (1− µ)ηefλ1 + (1− µ)ηefλd > 2(1 + µ)

and (1− µ)ηefλ1 > (1 +
√
µ)2.

The proof is completed.

E.2 PROOF OF PROPOSITION 2

Without loss of generality, choose m0 =
∇f(wGDM

1)
1−µ (since the influence of m0 diminishes exponen-

tially fast). To begin with, define an auxiliary sequence as u1 = wGDM
1 − µ

1−µηef∇f(w
GDM
1) and

ut =
wGDM

t −µwGDM
t−1

1−µ . One can easily verify that the update rule of GDM is equivalent to

ut+1 = ut − ηef∇f(wGDM
t),wt+1 = (1− µ)ut+1 + µwGDM

t . (1)

When t = 1, we have
∥∇f(wGDM)∥2 = ∥∇f(wGD)∥2

by definition. We then show that when t ≥ k ≥ 2, f(uk)− f(uk−1) ≈ f(wGD
k)− f(wGD

k−1) and
∥∇f(wGD

k)∥ ≈ ∥∇f(wGDM
k)∥ by induction. Suppose that the claim holds for the k-th iteration.

Then, for the (k + 1)-th iteration, by Taylor’s expansion, we have

f(uk) ≈ f(wGDM
k−1) + ⟨uk −wGDM

k−1 ,∇f(wGDM
k−1)⟩+

H(wGDM
k−1 ,uk −wGDM

k−1)

2
∥uk −wGDM

k−1 ∥2,

f(uk+1) ≈ f(wGDM
k) + ⟨uk+1 −wGDM

k ,∇f(wGDM
k)⟩+ H(wGDM

k ,uk+1 −wGDM
k)

2
∥uk+1 −wGDM

k ∥2,

f(wGDM
k) ≈ f(wGDM

k−1) + ⟨wGDM
k −wGDM

k−1 ,∇f(wGDM
k−1)⟩+

H(wGDM
k−1 ,wGDM

k −wGDM
k−1)

2
∥wGDM

k −wGDM
k−1 ∥2.

By the definition of uk, we have that uk − wGDM
k−1 =

wGDM
k −wGDM

k−1

1−µ , and thus H(wGDM
k−1 ,uk −

wGDM
k−1) = H(wGDM

k−1 ,wGDM
k −wGDM

k−1) ≈ 0. Similarly, we have H(wGDM
k ,uk+1 −wGDM

k) ≈ 0

and H(wGDM
k−1 ,wGDM

k −wGDM
k−1) ≈ 0. Therefore, summing up the above three equations, we have

f(uk+1) ≈ f(uk) + ⟨uk+1 −wGDM
k ,∇f(wGDM

k)⟩+ ⟨wGDM
k − uk,∇f(wGDM

k−1)⟩.

Since

⟨wGDM
k −wGDM

k−1 ,∇f(wGDM
k−1)⟩

=⟨wGDM
k −wGDM

k−1 ,∇f(wGDM
k)⟩ − ⟨wGDM

k −wGDM
k−1 ,∇f(wGDM

k)−∇f(wGDM
k−1)⟩

≈⟨wGDM
k −wGDM

k−1 ,∇f(wGDM
k)⟩ −H(wGDM

k−1 ,wGDM
k −wGDM

k−1)∥wGDM
k −wGDM

k−1 ∥2

≈⟨wGDM
k −wGDM

k−1 ,∇f(wGDM
k)⟩,

we further have

f(uk+1) ≈f(uk) + ⟨uk+1 −wGDM
k ,∇f(wGDM

k)⟩+ ⟨wGDM
k − uk,∇f(wGDM

k)⟩
=f(uk) + ⟨uk+1 − uGDM

k ,∇f(wGDM
k)⟩

=f(uk)− ηef∥∇f(wGDM
k)∥2.

17

Under review as a conference paper at ICLR 2024

Following the same routine, we obtain
f(wGD

k+1) ≈f(wGD
k)− ηef∥∇f(wGD

k)∥2,
and thus we obtain f(uk+1) − f(uk) ≈ f(wGD

k+1) − f(wGD
k) due to that ∥∇f(wGD

k)∥2 ≈
∥∇f(wGDM

k)∥2 by the induction hypothesis.

Meanwhile, we have
∥∇f(wGD

k+1)∥2 ≈∥∇f(wGD
k)∥2 + ⟨∇f(wGD

k),∇f(wGD
k+1)−∇f(wGD

k)⟩
≈∥∇f(wGD

k)∥2 + ⟨∇f(wGD
k),∇2f(wGD

k)(∇f(wGD
k+1)−∇f(wGD

k))⟩
=∥∇f(wGD

k)∥2 + ηefH(wGD
k ,wGD

k+1 −wGD
k)∥∇f(wGD

k+1)∥2 ≈ ∥∇f(wGD
k)∥2.

Following the similar routine, we obtain
∥∇f(wGDM

k+1)∥2 ≈ ∥∇f(wGDM
k)∥2,

and thus we obtain ∥∇f(wGD
k+1)∥2 ≈ ∥∇f(wGDM

k+1)∥2 due to that ∥∇f(wGD
k)∥2 ≈ ∥∇f(wGDM

k)∥2
by the induction hypothesis.

As a conclusion, we obtain that f(ut)− f(u1) ≈ f(wGD
t)− f(wGD

1).

Meanwhile, as discussed above, we have
f(ut) ≈ f(wGDM

k−1) + ⟨ut −wGDM
t−1 ,∇f(wGDM

t−1)⟩,
f(wGDM

t) ≈ f(wGDM
t−1) + ⟨wGDM

t −wGDM
t−1 ,∇f(wGDM

t−1)⟩.
Summing up the two equations gives
f(ut) ≈f(wGDM

t) + ⟨ut −wGDM
t ,∇f(wGDM

t−1)⟩

=f(wGDM
t) +

µ

1− µ
⟨wGDM

t −wGDM
t−1 ,∇f(wGDM

t−1)⟩

=f(wGDM
t)− µ

1− µ
ηef

〈
(1− µ)

t−1∑
s=1

µt−1−s∇f(wGDM
s) + µt−1∇f(wGDM

1),∇f(wGDM
t−1)

〉
.

Since

− ηef

〈
(1− µ)

t−1∑
s=1

µt−1−s∇f(wGDM
s) + µt−1∇f(wGDM

1),∇f(wGDM
t−1)

〉
=− (1− µ)ηef∥∇f(wGDM

t−1)∥2 + µ
〈
wGDM

t−1 −wGDM
t−2 ,∇f(wGDM

t−1)
〉

=− (1− µ)ηef∥∇f(wGDM
t−1)∥2 + µ

〈
wGDM

t−1 −wGDM
t−2 ,∇f(wGDM

t−2)
〉
+ µ

〈
wGDM

t−1 −wGDM
t−2 ,−∇f(wGDM

t−1) +∇f(wGDM
t−2)

〉
≈− (1− µ)ηef∥∇f(wGDM

t−1)∥2 + µ
〈
wGDM

t−1 −wGDM
t−2 ,∇f(wGDM

t−2)
〉
+ µH(wGDM

t−2 ,wGDM
t−1 −wGDM

t−2)
∥∥∥wGDM

t−1 −wGDM
t−2

∥∥∥2

≈− (1− µ)ηef∥∇f(wGDM
t−1)∥2 + µ

〈
wGDM

t−1 −wGDM
t−2 ,∇f(wGDM

t−2)
〉

≈ · · ·

≈ − ηef(1− µ)

t−1∑
s=1

µt−1−s∥∇f(wGDM
s)∥2 − ηefµ

t−1∥∇f(wGDM
1)∥2

≈− ηef∥∇f(wGDM
1)∥2,

and

f(u1) ≈f(wGDM
1) + ⟨∇f(wGDM

1),u1 −wGDM
1 ⟩+ H(wGDM

1 ,u1 −wGDM
1)

2
∥u1 −wGDM

1 ∥2

=f(wGDM
1) + ⟨∇f(wGDM

1),u1 −wGDM
1 ⟩+ H(wGDM

1 ,wGDM
2 −wGDM

1)

2
∥u1 −wGDM

1 ∥2

≈f(wGDM
1) + ⟨∇f(wGDM

1),u1 −wGDM
1 ⟩

=f(wGD
1)− ηef∥∇f(wGDM

1)∥2.
As a conclusion, we have

f(wGDM
t) ≈ f(ut)+ηef

µ

1− µ
∥∇f(wGDM

1)∥2 ≈ f(wGD
t)−f(wGD

1)+f(u1)+ηef∥∇f(wGDM
1)∥2 ≈ f(wGD

t).

The proof is completed.

18

	Introduction
	Related Works
	When does momentum accelerate SGD?
	A comparison framework for SGDMs with different hyperparameters
	Momentum accelerates training only for large effective learning rates
	The benefit of momentum is entangled with batch sizes

	Why does momentum accelerate SGD?
	Hessian abruptly sharpens when GD deviates from GDM
	Abrupt sharpening can explain the acceleration of momentum
	Extending the analysis to stochastic case: interplay between momentum and batch size

	Conclusion
	Limitation
	Other Related Work
	Further experiments on other optimizers
	On the effect of Nesterov's momentum
	Derivation of effective learning rate
	Experiments

	On the effect of momentum in Adam

	More exploration on the align-and-deviate pattern
	Situation when momentum coefficient is close to 1
	Proofs of theoretical results
	Proof of Propositions 1 and 3
	Proof of Proposition 2

