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ABSTRACT

Accurate simulation of turbulent flows is of immense importance in a variety of
scientific and engineering fields, including climate science, freshwater science,
and the development of energy-efficient manufacturing processes. Within the
realm of turbulent flow simulation, direct numerical simulation (DNS) is widely
considered to be the most reliable approach, but it is prohibitively expensive and
thus has limited applicability to long-term and fine-scale simulation over various
configurations. Given the pressing need for efficient simulation, there is an in-
creasing interest in building machine learning models for simulating turbulence,
either by reconstructing DNS from alternative low-fidelity simulations or sequen-
tially predicting DNS from historical data. However, conventional machine learn-
ing models are not designed for capturing complex spatio-temporal characteristics
of turbulent flows. This results in their limited performance and generalizability,
especially when applied to complex flow data and different flow configurations.
This paper presents a novel physics-enhanced neural operator (PENO) that effi-
ciently models the complex flow dynamics while leveraging physical knowledge
of partial differential equations (PDEs) to enhance simulation process. we fur-
ther introduce a self-augmentation mechanism to reduce the accumulated errors
in long-term simulations. The proposed method is evaluated through its perfor-
mance on multiple turbulent flow datasets, showcasing the model’s capability to
reconstruct high-resolution DNS data, maintain the inherent physical properties of
flow transport, and transfer across various resolution settings and simulation con-
figurations. These encouraging results confirms its applicability to a wide range
of real-world scenarios in which extensive simulations are needed under diverse
settings.

1 INTRODUCTION

Advances in computational fluid dynamics (CFD) have significantly impacted various scientific and
engineering domains. In the clean energy sector, CFD is essential for enhancing power generation
and distribution, including the design of high-efficiency wind turbines and their strategic position-
ing to maximize energy capture. In the aerospace industry, CFD plays a critical role in analyzing
aerodynamic forces and thermal effects on aircraft, rockets, and spacecraft. In particular, efficient
CFD techniques are crucial for modeling and refining airflow around wings, fuselages, and engine
components, which can help improve fuel efficiency, reduce drag, and enhance maneuverability
and safety. Furthermore, CFD is indispensable in climate science for predicting pollution patterns,
enhancing emission controls, and assessing the environmental impact of infrastructure projects.

In the field of computational fluid dynamics (CFD), the simulation of turbulent flows, particularly
at high spatial resolutions and over long periods, is a crucial task for many scientific applications.
Direct numerical simulation (DNS) is widely considered to be the most reliable approach to produce
detailed turbulence simulations of high fidelity. However, DNS requires substantial computational
resources, which limits its practicality for long-term simulations at fine spatial scales (Givi, 1994).

There are two common approaches to address this issue using data-driven methods. The first ap-
proach aims to reconstruct DNS data from the low-fidelity large eddy simulation (LES) (Fukami
et al., 2019; 2021; Liu et al., 2020; Xu et al., 2023; Yang et al., 2023). Specifically, LES filters out
the smaller scales of turbulent transport (Sagaut, 2005), and consequently, it only generates low-
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fidelity simulations on coarser grids (Nouri et al., 2017). Most of these approaches are based on
super-resolution (SR) techniques (Park et al., 2003), which have been highly successful in gener-
ating high-resolution data in various commercial applications. Predominantly, SR models employ
convolutional network layers (CNNs) (Albawi et al., 2017) to identify and transform spatial fea-
tures into high-resolution images through non-linear mappings. From the initial end-to-end SRCNN
model (Dong et al., 2014), researchers have utilized additional structural elements, including skip-
connections (Zhang et al., 2018b; Ahn et al., 2018; Dai et al., 2019; Van Duong et al., 2021), chan-
nel attention (Zhang et al., 2018a), adversarial training objectives (Ledig et al., 2017; Wang et al.,
2018a;b; Karras et al., 2017; Upadhyay & Awate, 2019; Cheng et al., 2021; Wenlong et al., 2021),
and more recently, Transformer-based structures (Fang et al., 2022a; Lu et al., 2022; Fang et al.,
2022b; Wang et al., 2022; Zou et al., 2022; Liang et al., 2022), and the implicit neural representation
methods (Chen et al., 2022). Despite their popularity, these methods remain limited in their accuracy
for reconstructing detailed flow patterns, which is primarily due to the lack of physical information
about the small-scale flow transport in the low-resolution LES data.

To retain detailed turbulence patterns and capture temporal dynamics in turbulence flows, the se-
quential prediction method has been developed for generating high-resolution DNS data directly
from historical high-resolution DNS data. Specifically, the sequential prediction method employs
temporal modeling structures to capture underlying flow dynamics, which can be further enhanced
by integrating governing partial differential equations (PDEs) (Omori & Kotera, 2007). This can be
achieved by incorporating PDEs into the neural network’s learning process (Cai et al., 2021; Eivazi
et al., 2022; Kag et al., 2022; Yousif et al., 2022) or by directly encoding PDEs within a recurrent
unit (Bao et al., 2022; Chen et al., 2023). Recently, neural operator-based methods (Lu et al., 2019;
Li et al., 2020; Wen et al., 2022; Equer et al., 2023; Boussif et al., 2022) have also shown promise
in sequential prediction for the Navier-Stokes equation (Foias et al., 2001). The main advantage of
neural operator-based methods is their generalizability to different boundary and initial conditions,
and their efficiency in generating simulations. Among these methods, the Fourier neural operator
(FNO) (Li et al., 2020) also allows the generation of DNS at higher resolutions in a zero-shot fash-
ion, reducing the need for costly high-resolution training data. However, these approaches are not
designed to explicitly leverage the knowledge of PDEs, leading to two major drawbacks. First, it is
challenging for these approaches to capture complex flow dynamics, especially when training data
are scarce. This becomes a critical issue in the context of complex 3D flows, where these methods
often exhibit degraded performance. Their prediction errors also accumulate quickly for continu-
ously modeling complex flows over long periods. Second, they remain limited in generalizing to
a heterogeneous set of flow datasets governed by different PDE settings, which if often needed for
many manufacturing tasks. In the absence of underlying physics, the model is unable to fully dis-
tinguish between different flow behaviors. Even though the model could be fine-tuned towards each
new flow dataset, it requires additional cost to generate initial simulations needed for fine-tuning.

In this paper, we propose a novel method, physics-enhanced neural operator (PENO), for enhancing
the simulation of turbulent transport over long periods and different flow datasets. This proposed
method incorporates the physical knowledge of PDE into the FNO (Li et al., 2020) to effectively
model turbulence dynamics and also introduces a new self-augmentation mechanism to mitigate
the accumulated errors in long-term simulation. In particular, we complement the Fourier layers
in FNO with an additional network branch, which gradually estimates the temporal gradient of
target flow variables following the underlying PDE. This combined model structure leverages the
physical knowledge to better capture complex flow dynamics even in 3D space while also keeping
the power and efficiency of data-driven FNO. Next, we identify a key limitation of the standard
Fourier layers in preserving informative high-frequency signals, which degrades the performance
in long-term simulation. Hence, we augment the input data at each time through zero-shot super-
resolution and random perturbation. By introducing additional high-frequency signals at each time
step, this self-augmentation mechanism can help prevent Fourier layers from filtering out important
high-frequency information during long-term simulation.

The PENO method has undergone thorough assessments using two sets of data, (i) modeling com-
plex flow dynamics on 3D turbulence data, and (ii) generalization over different flow datasets. For
test (i), we utilize two datasets: the forced isotropic turbulent (FIT) flow (Minping et al., 2012),
and the Taylor-Green vortex (TGV) flow (Brachet et al., 1984). These assessments demonstrate the
PENO’s consistent ability to reconstruct data effectively over time and across different resolutions.
The effectiveness of each component in the proposed method has been highlighted through both
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qualitative and quantitative analyses. For test (ii), we conduct experiments on multiple 2D turbulent
flow series to confirm the PENO method’s transferability and generalizability. Our implementation
is publicly available1.

2 PROBLEM DEFINITION AND PRELIMINARIES

2.1 PROBLEM DEFINITION

This study focuses on the transport of unsteady turbulent flows. In every scenario, the flow is treated
as Newtonian and incompressible, characterized by a uniform density. Spatially, the coordinates
are denoted by the vector x ≡ {x, y, z} in a 3D space or x ≡ {x, y} in a 2D space, while time
is indicated by t. We denote by Q(x, t) the target flow variables (e.g., velocity or vorticity) to
be simulated. The pressure, density, and dynamic viscosity in the flow are expressed as p(x, t),
ρ(x, t), and ν, respectively. As a neural operator-based approach, the proposed PENO aims to
create mappings between infinite-dimensional functional spaces, and it treats solutions to PDEs as
functions rather than discrete sets of points. Henceforth, we represent flow variables, pressure, and
density as time-dependent functions Q(t), p(t), and ρ(t), respectively, in describing PENO, without
explicitly showing the spatial coordinates x.

During the training process, the provided DNS data are obtained at regular time intervals δ, denoted
as Q = {Q(t)}, where t belongs to the time range {t0, t0 + δ, . . . , t0 + Kδ}. The goal is to
forecast high-resolution DNS data for future time points, specifically at {t0 + (K + 1)δ, . . . , t0 +
Mδ}. Additionally, we have access to the large eddy simulation (LES) data at lower resolutions,
represented as Ql = Ql(t) for t ∈ [t0, t0 +Mδ]. Since LES data require less computational effort
to generate, we assume that they are available for both training and testing phases.

2.2 FOURIER NEURAL OPERATOR

(a) FNO (b) Target DNS

Figure 1: FNO’s prediction vs. true DNS
data in the w velocity channel of the forced
isotropic flow. This result corresponds to a
test point 0.04s (with a sampling interval of
0.002s) following the training period.

Fourier neural operator (FNO) is designed to ap-
proximate the PDE solutions through a transforma-
tion in a Fourier space (Li et al., 2020). The intu-
ition is to approximate the Green functions by ker-
nels, which are parameterized by neural networks
in the Fourier space. In the simulation of turbulent
transport, the FNO approach initially transforms the
input Q(t) at time t from the spatial domain to the
frequency domain using the Fourier transformation
F , as: Qin(ω) = F{Q(t)} =

∫∞
−∞ Q(t)e−i2πωtdt,

where ω and Qin(ω) denotes the frequency variables
and the Fourier transform of Q(t), respectively. This
process F allows for capturing the global informa-
tion of input Q(t) effectively. A neural network G then learns the mapping between the Fourier
coefficients of the input Qin(ω) and output Qout(ω) representation in the frequency domain, es-
sentially approximating the operator of the PDE, as Qout(ω) = G(Qin(ω);ϕ), where ϕ represents
the parameters of the neural network G. Next, the inverse Fourier transform is applied to convert
the learned representation back to the spatial domain, yielding the approximated solution of PDE
Q̂FNO(t+ δ) at time t+ δ, expressed as: Q̂FNO(t+ δ) = F−1{Qout(ω)} =

∫∞
−∞ Qout(ω)e

i2πωtdω.

Based on such design, FNO can combine the global information of the entire field embedded through
the Fourier transformation and the expressive power of neural networks, enabling the learning and
approximation of high-dimensional and complex PDE operators directly from data. Despite the
promise of this approach, FNO has several limitations, especially when used in turbulence simula-
tion. Firstly, FNO learns PDEs (e.g., Navier-Stokes equation) from data without knowing the PDEs’
format. Hence, it requires a significant amount of data for effective training to capture complex
PDEs. However, generating high-resolution turbulence simulations is costly, resulting in data short-
ages that can diminish FNO’s performance, particularly in complex 3D scenarios. Secondly, FNO

1https://drive.google.com/drive/folders/1ldtvSccN8wp9yDl_
r1j5RuFmmaBd1CAO?usp=sharing
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Figure 2: The overall structure of the PENO method with self-augmentation mechanism.

tends to filter out high-frequency information of turbulent flow. This filtration process results in the
loss of crucial flow patterns as illustrated in Figure 1. More analysis will be provided in Section 3.2.

3 PROPOSED METHOD

In this section, we introduce the proposed PENO method, as outlined in Figure 2. The key com-
ponent of PENO is a temporal modeling structure that combines FNO and the knowledge from the
PDE of turbulent transport. In addition, a new self-augmentation mechanism is designed to ensure
that fine-level flow behaviors, especially those present in high-frequency data, are preserved by the
Fourier layers in long-term simulation.

3.1 PHYSICS-ENHANCED NEURAL OPERATOR

The PENO method sequentially processes input DNS data Q(t) at each time step and predicts the
DNS data for the next step Q̂(t+δ). As shown in Figure 2, the prediction at each time step combines
the outputs from two network branches, i.e., Q̂FNO(t+δ) and Q̂PDE(t+δ), as Q̂(t+δ) = wf Q̂FNO(t+

δ)+wpQ̂PDE(t+ δ), where wf and wp are learnable parameters. The first branch consists of several
Fourier layers, each of which contains a Fourier transformation, a linear transformation layer, and
an inverse Fourier transformation. Although the Fourier layers are based on the Green function
method for solving PDEs, they are agnostic of physical knowledge for the target dataset and remain
a purely data-driven approach. This leads to the limitation in capturing complex flow dynamics given
scarce training data. Hence, we introduce an additional PDE-enhancement branch to complement
the simulation by FNO by leveraging underlying PDEs.

Several methods have been developed to incorporate PDEs into the learning process, including the
physics-based loss function (Chen et al., 2021; Yousif et al., 2022; Bode et al., 2021; Yousif et al.,
2021; Pawar, 2022) and physics-based model structures (Bao et al., 2022; Chen et al., 2021). In this
work, the design of the PDE-enhancement network branch is inspired by (Bao et al., 2022), which
introduces a new recurrent unit to gradually estimate the temporal gradients over time based on the
PDE. The key idea is to leverage the continuous physical relationships depicted by the underlying
partial differential equation (PDE) to bridge the gap between discrete data samples and the contin-
uous dynamics of the flow. It also does not require modification of the loss function, which often
leads to the training instability for complex PDEs (Sun et al., 2022) and also may not guarantee
consistency with PDE in the testing phase (e.g., future simulations).

Specifically, the PDE-enhancement network branch utilizes the Runge–Kutta (RK) discretization
method (Butcher, 2007) for PDEs. The PDE for the target variables Q can be formulated as: Qt =
f(t,Q; θ), where Qt denotes the temporal derivative of Q, and f(t,Q; θ) is a non-linear function
determined by the parameter θ. This function summarizes the present value of Q along with its
spatial fluctuations. The turbulent data adheres to the Navier-Stokes equation for an incompressible
flow. For example, the dynamics of the velocity field can be expressed by the following PDE:

f(Q) = −1

ρ
∇p+ ν∆Q − (Q · ∇)Q, (1)

where ∇ signifies the gradient operator, and ∆ = ∇ · ∇ is applied individually to each component
of velocity.
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Figure 3: The recurrent unit based on Naiver
Stoke equation for reconstructing turbulent flow
data in the spatio-temporal field. Qs,n and Qt,n
represent the spatial and temporal derivatives, re-
spectively, at each intermediate time step.

Figure 3 illustrates the recurrent unit in
the PDE-enhancement network branch,
which involves a series of intermediate states
{Q(t, 0),Q(t, 1),Q(t, 2), . . . ,Q(t,N)}, where
Q(t, 0) ≡ Q(t). The temporal gradients are
estimated at these states as {Qt,0,Qt,1,Qt,2,
. . . ,Qt,N}. Starting from n = 0 to N , the
unit modifies Q(t) in the gradient’s direction
(Qt,n) to create the next intermediate state
Q(t, n). We adopt the fourth-order Runge-
Kutta method, i.e., N = 3. In more detail, we
estimate temporal derivatives using the func-
tion f(·). As shown in Eq.(1), to compute f(·)
accurately, it is essential to explicitly estimate both first-order and second-order spatial derivatives.
Here we build convolutional network layers to estimate spatial derivatives. After computing the
first-order and second-order spatial derivatives, they are incorporated into Eq.(1) to calculate the
temporal derivative Qt,n.

Ultimately, we aggregate all intermediate temporal derivatives into a combined gradient for com-
puting the final prediction of the next step’s flow data Q̂PDE(t + δ), as Q̂PDE(t + δ) = Q(t) +∑N

n=0 wnQt,n, where {wn}Nn=1 are trainable model parameters.

This model can be further enhanced by leveraging available LES data. At the initial data point Q(t),
we can merge DNS and LES data as Q(t) = W dQ(t) +W lQl(t), where W d and W l are trainable
model parameters. Moreover, LES data can often be produced more frequently than DNS data. With
the availability of frequent LES data, the intermediate states Q(t, n) can also enhanced using LES
data Ql(t, n), formulated as Q(t, n) = W dQ(t, n) +W lQl(t, n). Following the 4-th order Runga-
Kutta method (as detailed in the appendix), LES data Ql(t, n) are selected as Ql(t, 0) = Ql(t),
Ql(t, 1) = Ql(t+ δ/2), Ql(t, 2) = Ql(t+ δ/2), and Ql(t, 3) = Ql(t+ δ).

3.2 SELF-AUGMENTATION MECHANISM

Here we re-examine the frequency spectrum obtained through PENO for modeling turbulent trans-
port. In most PDEs, the large-scale, low-frequency components usually possess larger magnitudes
than the small-scale, high-frequency components. Therefore, as regularization, the Fourier layers
incorporate a frequency truncation process in each layer, allowing only the lowest K Fourier modes
to propagate input information. This truncation process encourages the learning of low-frequency
components in PDEs, a phenomenon closely related to the well-known implicit spectral bias (Cao
et al., 2019). This bias indicates that neural networks when trained using gradient descent, tend to
prioritize learning low-frequency functions (Rahaman et al., 2019). It provides an implicit regular-
ization effect that encourages a neural network to converge to a low-frequency and ’simple’ solution.

Figure 4: The frequency distribution of the FNO
and PENOSA predictions, and the target DNS.

However, in turbulent flow simulations, it is of-
ten observed that high-frequency components
carry important flow patterns necessary for
accurate prediction. The absence of high-
frequency information makes it challenging to
adequately represent vital flow data details,
leading to inaccurate simulations. As demon-
strated in Figure 4 (a) and Figure 4 (c), there
is a noticeable difference in the frequency dis-
tribution between the FNO’s reconstructed data
and the target DNS data for the forced isotropic
flow. It is evident that high-frequency information is missing when the frequency exceeds 0.25. This
absence of high-frequency information results in failures to capture small-scale physical patterns, as
illustrated in Figure 1. Therefore, to address the limitation of FNO, a new self-augmentation pro-
cess is introduced to ensure that vital patterns contained in high-frequency domains can be preserved
during the Fourier layer processing.
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The self-augmentation process is also shown in Figure 2. Initially, the DNS input Q(t), is fed to
the Fourier layers, yielding an output Q̂FNO(t + δ) at time t + δ and in the same resolution as the
original DNS input Q(t). Before feeding the output to the next step, we propose to augment it in
the high-frequency spectrum so the fine-level flow patterns can be preserved after the Fourier layers
in the next step. This augmentation process will leverage a zero-shot upscaling process using the
proposed network structure, and do not require auxiliary information.

Specifically, we leverage the capability of FNO in simulating data over different scales in a zero-
shot fashion (Li et al., 2020). This can be achieved by altering the output grids in the inverse Fourier
transformation. Utilizing the capability of FNO, We create output in a higher resolution, which is
represented by Q̃FNO(t + δ). Concurrently, the PDE-enhancement branch can employ the implicit
neural representation method (Chen et al., 2022) to upscale the CNN embeddings, and subsequently
generate upscaled outputs Q̃PDE(t+ δ) at the same resolution with Q̃FNO(t+ δ). Finally, we merge
the outputs from two branches to create two versions of simulation at t + δ, i.e., Q̂(t + δ) in the
target resolution, and Q̃(t+ δ) at the higher resolution. This process can be summarized as follows:

Q̂(t+ δ) = wpQ̂PDE(t+ δ) + wf Q̂FNO(t+ δ),

Q̃(t+ δ) = w̃pQ̃PDEh
(t+ δ) + w̃f Q̃FNO(t+ δ),

(2)

where wp, w̃p, wf , and w̃f are trainable model parameters.

This sequential prediction process will be repeated throughout the entire simulation period. The
obtained sequence {Q̂(t)} in the original resolution are the final simulation outputs. The training
loss will be defined on this sequence during the training period, i.e., {Q̂(t)}t0+Kδ

t=t0 , based the mean-
squared errors, as L =

∑
t∈D ||Q̂(t) − Q(t)||2/|D|, where D is the set of prediction steps in the

training set. In our implementation, we create overlapping sequence batches in the training phase.

The upscaled output Q̃ will serve as an augmented input to the next time step, which helps better
preserve the high-frequency information during long-term auto-regressive simulation. Note that the
upscaled simulations are generated completely in a zero-shot manner using no additional parameters.
Hence, the training loss L will also help refine Q̃. To further improve model robustness and mitigate
overfitting, we also introduce random Gaussian perturbations, denoted as ϵ ∼ N (0, 0.02), and
incorporate it into Q̃(t+ δ) independently for each position x, as: Q̃(x, t+ δ) = Q̃(x, t+ δ) + ϵ.

Then the perturbed upscaled output Q̃(t + δ) is fed into the PENO for the prediction of the next
time step (t+ 2δ). This self-augmentation process is repeated for the following time steps. Starting
from the second step in a sequence, the Fourier layers and the PDE-enhancement layers will take the
perturbed upscaled input and produce the two versions of output simulations Q̃(t) and Q̂(t). Note
that here the output Q̃(t) is in the same resolution as the input (Q̃(t−δ)) while the other output Q̂(t)
is at a lower resolution than the input. The transformation through Fourier layers is agnostic of input
and output scales and thus requires no structural changes. For the PDE-enhancement layer, we will
utilize the same implicit neural representation method by down-sampling the CNN embeddings.

As illustrated in Figure 4 (b), the high-frequency information is retained by using the proposed
method PENOSA (PENO + self-augmentation mechanism), in contrast to the frequency spectrum of
the FNO shown in Figure 4 (a). The proposed method can help fully leverage the power of Fourier
layers in selectively filtering over the augmented signals, which can contain a mixture of vital flow
patterns and noise factors. Further improvement can be made by introducing Gaussian perturbations
that are deliberately designed to improve the model’s robustness and generalizability, which we will
keep as future work.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS.

Datasets. To assess the effectiveness of the proposed PENO method, we consider two groups of
tests. The first group of tests aims to evaluate the simulation performance on each specific 3D
flow dataset. We consider two different turbulent flow datasets, the forced isotropic turbulent flow
(FIT) (Minping et al., 2012) and the Taylor-Green vortex (TGV) flow (Brachet et al., 1984). In both
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Table 1: Quantitative performance (measured by SSIM, and Dissipation difference) on (u, v, w)
channels by different methods in the FIT dataset. The performance is measured by the average
results of the first 10 time steps.

Method SSIM ↑ Dissipation diff ↓
RCAN (0.881, 0.871, 0.874) (0.224, 0.225, 0.225)
HDRN (0.887, 0.875, 0.875) (0.217, 0.223, 0.223)
FSR (0.887, 0.877, 0.875) (0.218, 0.221, 0.223)
DCS/MS (0.888, 0.878, 0.880) (0.216, 0.220, 0.214)
SRGAN (0.891, 0.881, 0.215) (0.215, 0.217, 0.215)
CTN (0.901, 0.891, 0.903) (0.161, 0.173, 0.174)
FNO (0.912, 0.915, 0.911) (0.153, 0.151, 0.150)
PRU (0.926, 0.920, 0.926) (0.145, 0.144, 0.144)
PENO (0.936, 0.935, 0.937) (0.135, 0.134, 0.136)
PENOSR (0.964, 0.966, 0.965) (0.120, 0.118, 0.118)
PENOSA (0.968, 0.972, 0.967) (0.110, 0.107, 0.110)

cases, the mean velocity is zero, denoted as Q(t) = 0, and the Reynolds number is high enough to
generate turbulent conditions.

In particular, the FIT dataset contains original DNS records of forced isotropic turbulence, which is
an incompressible flow. This flow undergoes energy injection at lower wave numbers as a part of
its forcing mechanism. The DNS dataset encompasses 5, 024 time steps, each spaced at intervals of
0.002s, and includes both velocity and pressure field data. For this study, the DNS data has three
distinct grid sizes: 128× 64× 64, 128× 128× 128, and 128× 256× 256. Concurrently, the LES
data are produced on 128× 32× 32 grids. Both datasets are gathered across 128 uniformly spaced
grid points along the z axis.

The Taylor-Green vortex (TGV) represents a different incompressible flow. The evolution of the
TGV involves the elongation of vorticity, resulting in the generation of small-scale, dissipating ed-
dies. A box flow scenario is examined within a cubic periodic domain spanning [−π, π] in all three
directions. The DNS and LES resolutions are 128× 128× 65 and 32× 32× 65. Both of them are
produced along the 65 equally-spaced grid points along the z axis.

The second group of tests aims to validate the transferability of the PENO method, and it uses a
dataset comprising 100 groups of 2D vorticity simulations (Li et al., 2020) under different viscosity
coefficients ranging from {1e−5, 1.5e−5}. Each group contains a complete sequence of 50 time
steps with a time interval of 0.03s. The DNS and LES resolutions are 128 × 128 and 64 × 64,
respectively. More details of the datasets are described in the appendix.

PENO and baselines. The performance of the PENO method is evaluated and compared with mul-
tiple existing methods for simulating turbulent transport, including SR-based reconstruction meth-
ods and sequential prediction methods. Specifically, the complete PENOSA method (PENO+self-
augmentation mechanism) is compared against three popular SR methods RCAN (Zhang et al.,
2018a), HDRN (Van Duong et al., 2021), and SRGAN (Ledig et al., 2017), two popular dynamic
fluid downscaling methods DCS/MS (Fukami et al., 2019) and FSR (Yang et al., 2023), and se-
quential prediction methods including a convolutional transition network (CTN) (Bao et al., 2022)
created by combining SRCNN (Dong et al., 2014) and LSTM (Hochreiter & Schmidhuber, 1997),
and the standard FNO (Li et al., 2020) and PRU (Bao et al., 2022) methods. Comparison against
FNO and PRU can help verify the effectiveness of each component in the proposed model.

Besides the complete version PENOSA, we also implement two variants of the proposed meth-
ods, PENO and PENOSR. PENO is developed by directly combining FNO and PDE-enhancement
branches but without the self-augmentation mechanism. PENOSR includes the upscaling step in
the self-augmentation mechanism but without the addition of Gaussian perturbation. The objec-
tive of comparison amongst PENO-based methods is to demonstrate the advantages of the self-
augmentation mechanism.

Experimental designs. Both the FIT and TGV datasets are utilized to evaluate the effectiveness of
PENO-based methods and the baselines in the first group of tests. For the FIT dataset, the models
are trained on data spanning a continuous one-second interval with a time step of δ = 0.02s, en-
compassing a total of 50 time steps. The performance of these trained models is then tested on the
subsequent 0.4 second period, which corresponds to 20 time steps. For the TGV dataset, the training
process is conducted on a continuous 40-second period, with each time step being δ = 2s, and the
subsequent 40 seconds of data are used for evaluation.
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Table 2: Quantitative performance (measured by SSIM, and Dissipation difference) on (u, v, w)
channels by different methods in the TGV dataset. The performance is measured by the average
results of the first 10 time steps.

Method SSIM ↑ Dissipation diff×10 ↓
RCAN (0.627, 0.622, 0.631) (0.073, 0.074, 0.071)
HDRN (0.638, 0.638, 0.641) (0.072, 0.072, 0.068)
FSR (0.646, 0.648, 0.649) (0.070, 0.073, 0.066)
DSC/MS (0.647, 0.649, 0.649) (0.070, 0.071, 0.065)
SRGAN (0.661, 0.658, 0.666) (0.068, 0.067,0.058)
CTN (0.623, 0.624, 0.627) (0.093, 0.096, 0.087)
FNO (0.645, 0.646, 0.648) (0.072, 0.071, 0.072)
PRU (0.708, 0.705, 0.702) (0.048, 0.046, 0.043)
PENO (0.721, 0.720, 0.715) (0.043, 0.044, 0.042)
PENOSR (0.822, 0.825, 0.821) (0.035, 0.037, 0.036)
PENOSA (0.843, 0.847, 0.844) (0.032, 0.033, 0.034)

(a) u Channel. (b) v Channel. (c) w Channel.
Figure 5: Change of dissipation difference by different models from 1st (5.6s) to 20th (6s) time step
in the FIT dataset.

(a) DCS/MS (b) CTN (c) FNO (d) PRU (e) PENOSA (f) Target DNS

(g) DCS/MS (h) CTN (i) FNO (j) PRU (k) PENOSA (l) Target DNS

Figure 6: Reconstructed u channel by each method on a sample testing slice along the z dimension
in the FIT dataset. The visual results are shown at 1st (5.6s), and 20th (6s) in (a)-(f), and (g)-(l).

To evaluate the transferability of PENOSA, a second group of tests using 2D vorticity data is con-
ducted. These tests are divided into three categories: few-shot, zero-shot, and sequential tests.
Specifically, few-shot and zero-shot tests aim to testify the model generalizability across turbulent
flows governed by different PDEs. They both utilize 50 complete flow sequences (15 seconds over
50 time steps) for training with the viscosity value (a parameter in the Navier-Stokes equation)
sampled uniformly from 1e−5 to 1.25e−5, followed by testing on 10 additional sequences with the
viscosity value sampled uniformly from 1.25e−5 to 1.5e−5. The zero-shot test directly applies the
sequential prediction models obtained from training sequences to predict vorticity for 20 time steps
on each testing sequence. In contrast, the few-shot test also utilizes the first 10 time steps of data
from each testing sequence to fine-tune the trained model before proceeding with sequential predic-
tions in the next 20 time steps. Different from both zero-shot and few-shot tests, the sequential test
aims to testify the model generalizability over time. It trains the models using the first 20 time steps
from 50 complete training sequences and then applies the obtained models to create simulations for
the following 20 time steps in the same set of flow sequences.

The assessment of DNS simulation performance employs two metrics: the structural similarity in-
dex measure (SSIM) (Wang et al., 2004) and dissipation difference (Wikipedia contributors, 2022).
SSIM measures the similarity between the reconstructed and target DNS data in terms of lumi-
nance, contrast, and overall structure. Higher SSIM values indicate better performance. Dissi-
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pation evaluates the model’s gradient capturing ability, considering dissipation for each velocity
vector component (u, v, and w). The dissipation operator is defined by χ(Q) ≡ ∇Q · ∇Q =(

∂Q
∂x

)2

+
(

∂Q
∂y

)2

+
(

∂Q
∂z

)2

. The dissipation is used to measure the difference in flow gradient

between the true DNS and generated data. This is represented by |χ(Q) − χ(Q̂)|, and the smaller
difference indicates better performance in capturing spatial variations in turbulence. More details of
the experimental settings are described in the appendix.

4.2 PERFORMANCE ON A SINGLE 3D FLOW DATASET

Quantitative results. Tables 1 and 2 summarize the average performance over the first 10 time
steps during the testing phase, evaluated on both the FIT and TGV datasets. Compared to baseline
methods, PENO-based methods consistently show superior performance on both datasets, with the
highest SSIM values and the lowest dissipation differences. Several highlights also emerge: (1) SR-
based baselines such as RCAN, DCS/MS, and FSR, have inferior performance in terms of SSIM
and dissipation differences, which indicates that they are unable to recover fine-level flow patterns
in DNS. (2) The comparison between FNO and PENO highlights the improvement achieved by in-
tegrating the physical knowledge of PDEs into FNO’s learning process. (3) PRU generally performs
better than FNO for modeling complex turbulence due to the awareness of underlying physics. PRU
performs worse than the proposed PENO method because it can easily create artifacts over long-
term simulation, which we will discuss later in other results. (4) The comparison between PENO,
PENOSR and PENOSA reveals improvement through the incorporation of a self-augmentation mech-
anism, especially for both the upscaling step and the addition of random Gaussian perturbations.

Temporal analysis. In Figure 6, we evaluate the performance for simulating DNS at each step over a
0.4s period (20 time steps) during the testing phase on the FIT dataset. We measure the performance
change using dissipation difference, as presented in Figure 5. Several observations are highlighted:
(1) As the gap between the training period and the testing time step increases, there is a general
decline in model performance for all the methods. It can be seen that PENOSA has a relatively stable
performance in long-term prediction, outperforming other methods in terms of accuracy. (2) The
comparison amongst FNO, PRU, and PENOSA indicates that the integration of physical knowledge
and the use of self-augmentation mechanisms in PENOSA effectively capture turbulence dynamics,
which helps reduce accumulated errors in long-term simulations. (3) FNO struggles to achieve good
performance starting from early testing phase. Although it achieves lower errors than many other
methods, we will show that it actually oversmooths the simulation and fails to capture fine-level
patterns. More details of the temporal analysis are also described in the appendix.

Figure 7: Change of kinetic energy pro-
duced by the real DNS and different
models in the FIT dataset.

Validation via physical metrics. We also assess the tem-
poral simulations based on their turbulent kinetic energy,
which is a critical property for verifying the accuracy of
the simulations. Figure 7 displays the energy levels asso-
ciated with the target DNS, as well as the flow data simu-
lated by both the baseline models and PENOSA within the
FIT dataset. Notable observations include: (1) PENOSA
shows improved performance compared to the baseline
models, closely mirroring target DNS’s energy transport
accurately. (2) FNO struggles to adhere to the correct
energy transport trend after the 5th time step. PRU also
achieves good performance in preserving the energy due
to the awareness of physics. Meanwhile, DCS/MS and
CTN largely fail to accurately capture the energy transport pattern from the 1st test point.

Visualization. the simulated flow data for the FIT dataset are displayed at multiple time steps (1st
and 20th) following the training period. For each time step, slices of the w component at a specified
z value are presented. Several conclusions are highlighted: (1) At the 1st step, PENOSA, PRU, FNO,
and CTN obtain good performance because the test data closely resemble the training data at the last
time step. In contrast, the baseline DSC/MS leads to poor performance starting from early time.
(2) At the 20th time step after the training phase, PENOSA significantly outperform FNO and PRU.
Specifically, FNO is unable to capture fine-level flow patterns due to the loss of high-frequency
signals. While PRU is capable of capturing the complex transport patterns but introduces structural
distortions and random artifacts due to accumulated errors in long-term simulations. In contrast,
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PENOSA addresses these issues effectively, resulting in significantly improved performance in long-
term simulation. More details of visual results are described in the appendix.

Performance in simulating at different resolutions. Similar to FNO, PENOSA can also create
simulations at a resolution different from that of the training data. We evaluate the performance of
PENOSA and FNO on the FIT dataset, training all models at a resolution of 128×64×64 and testing
them at varying resolutions: 128× 64× 64, 128× 128× 128, and 128× 256× 256. Both methods
employ zero-shot super-resolution techniques (Shocher et al., 2018) without using DNS data at the
target higher resolution for tuning. Figure 8 (a) and (b) show the comparative performance of both
methods. Both PENOSA and FNO faces increased challenges in accurately reproducing flow data
at higher resolutions, attributed to the augmented complexity present in finer-scale flow patterns.
However, PENOSA can achieve better performance in zero-shot super-resolution in terms of SSIM
and dissipation difference metrics. In contrast, FNO performs worse in rendering precise predictions
at equivalent resolutions and also in generalizing to unseen resolutions. These findings underscore
PENOSA’s superiority in creating simulations over long periods and at different resolutions.

In addition, the ablation study for utilizing LES data is also conducted, the experimental analysis is
shown in appendix.

(a) SSIM (b) Dissipation diff (c) SSIM (d) Dissipation diff×100

Figure 8: (a) and (b) show the quantitative performance of the models in the w channel, evaluated
across different resolutions in the FIT data. (c) and (d) show the average performance over the first
20 time steps in the 2D vorticity data, which is used for validating the models’ transferability.

4.3 TRANSFERABILITY

To assess the transferability of PENOSA, we evaluate the performance of PENOSA, FNO, and PRU
on the 2D vorticity dataset. Figure 8 (c) and (d) illustrate the performance of these models in three
tests: few-shot test, zero-shot test, and sequential test. From this comparison, two conclusions are
drawn. Firstly, PENOSA surpasses both FNO and PRU in all tests. It demonstrates that PENOSA
can generalize not only to different time periods but also to different PDE-governed flow sequences.
It also achieves good performance under both few-shot and zero-shot scenarios. Secondly, FNO
surpasses PRU in both few-shot and zero-shot tests, as FNO better captures generalizable flow pat-
terns from long sequences of training data. These learned patterns can be better transferred to other
testing sequences. However, PRU outperforms FNO in the sequential test. This is because FNO
cannot easily capture flow patterns from only a small portion of the training data sequences. In con-
trast, PRU can utilize the known PDE format to more accurately capture complete flow patterns and
achieve better predictive performance. We also present the visual results in the appendix to indicate
the superiority of PENOSA.

5 CONCLUSION

A novel physics-enhanced neural operator (PENO) has been developed to improve the simulation
of turbulent transport over long-term simulations and various flow datasets. PENO is particularly
applicable in the domain of unsteady, incompressible, Newtonian turbulent flows under conditions
of spatial homogeneity. Specifically, PENO integrates physical knowledge of PDEs with the FNO
framework to effectively model turbulence dynamics. Additionally, PENO introduces a novel self-
augmentation mechanism designed to reduce the accumulation of errors in long-term simulations.
The efficacy of the model is assessed through three turbulent flow configurations, employing both
flow visualization and statistical analysis techniques. The experimental results confirm PENO’s
enhanced capabilities in long-term simulations. More significantly, the PENO method shows po-
tential for broad applicability in scientific problems characterized by complex temporal dynamics,
particularly where generating high-resolution simulations is prohibitively expensive.
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A RUNGE-KUTTA METHOD FOR PDE ENHANCEMENT

The principal idea of the Runge-Kutta (RK) discretization method (Butcher, 2007) is to use the
continuous relationships outlined by the underlying PDEs to connect discrete data points with the
continuous flow dynamics. This approach is adaptable to any dynamic system that is defined by
deterministic PDEs. The PDE that describes the target variables Q as expressed by:

Qt = f(t,Q; θ), (3)

where Qt denotes the temporal derivative of Q, and f(t,Q; θ) is a non-linear function determined by
the parameter θ. This function summarizes the present value of Q along with its spatial fluctuations.
The turbulent data adheres to the Navier-Stokes equation for an incompressible flow. For example,
the dynamics of the velocity field can be expressed by the following PDE:

f(Q) = −1

ρ
∇p+ ν∆Q − (Q · ∇)Q, (4)

where the term ∇ represents the gradient operator, and ∆ = ∇ · ∇ acts on each com-
ponent of the velocity vector. We omit the independent variable t in the function f(·) be-
cause f(Q) in the Navier-Stokes equations refers to a specific time t, analogous to the t in
Qt. Figure 9 illustrates the overall structure, which involves a series of intermediate states
{Q(t, 0),Q(t, 1),Q(t, 2), . . . ,Q(t,N)}, where Q(t, 0) ≡ Q(t). The temporal gradients are esti-
mated at these states as {Qt,0,Qt,1,Qt,2, . . . ,Qt,N}. Beginning with Q(t, 0) = Q(t), we estimate
the temporal gradient Qt,0, then progresses Q(t) in the direction of this gradient to generate the
subsequent intermediate state Q(t, 1). This procedure is iterated for N intermediate states. For the
fourth-order RK method, which is applied here, we have N = 3.

To initiate with the data point Q(t), we employ an augmentation by integrating LES with DNS data,
formulated as Q(t) = W dQ(t) +W lQl(t), where W d and W l are trainable model parameters, and
Ql(t) is the up-sampled LES data with the same resolution as DNS. We estimate the first temporal
gradient Qt,0 = f(Q(t)) using the Navier-Stokes equation and computes the next intermediate state
variable Q(t, 1) by moving the flow data Q(t) along the direction of temporal derivatives. Given
frequent LES data, the intermediate states Q(t, n) are also augmented by using LES data Ql(t, n),
as Q(t, n) = W dQ(t, n) +W lQl(t, n). This iterative method progresses Q(t) along the computed
gradient Qt,n to compute the next intermediate states Q(t, n+ 1), expressed as:

Q(t, 1) = Q(t) + δ
Qt,0

2
,

Q(t, 2) = Q(t) + δ
Qt,1

2
,

Q(t, 3) = Q(t) + δQt,2.

(5)
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Figure 9: The recurrent unit based on Naiver Stoke equation for reconstructing turbulent flow data in
the spatio-temporal field. Qs,n and Qt,n represent the spatial and temporal derivatives, respectively,
at each intermediate time step.

(a) ν = 1e−5 (b) ν = 1.125e−5 (c) ν = 1.25e−5 (d) ν = 1.375e−5 (e) ν = 1.5e−5

(f) ν = 1e−5 (g) ν = 1.125e−5 (h) ν = 1.25e−5 (i) ν = 1.375e−5 (j) ν = 1.5e−5

Figure 10: 2D vorticity samples from different groups of DNS flow sequences with varying viscosi-
ties ν. Samples (a)-(e) are from the initial stages, and samples (f)-(j) are from the final stages.

(a) u Channel. (b) v Channel. (c) w Channel.

Figure 11: Change of SSIM value by different models from 1st (5.6s) to 20th (6s) time step in the
FIT dataset.

The temporal gradient at the final intermediate stage, Qt,3, is derived using f(Q(t, 3)). Referring
to Eq,(5), selections for intermediate LES data, Ql(t, n), are specified as follows: Ql(t, 1) and
Ql(t, 2) are set to Ql(t + δ/2), while Ql(t, 3) corresponds to Ql(t + δ). Ultimately, we aggregate
all intermediate temporal derivatives into a combined gradient for computing the final prediction of

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) DCS/MS (b) CTN (c) FNO (d) PRU (e) PENOSA (f) Target DNS

(g) DCS/MS (h) CTN (i) FNO (j) PRU (k) PENOSA (l) Target DNS

(m) DCS/MS (n) CTN (o) FNO (p) PRU (q) PENOSA (r) Target DNS

(s) DCS/MS (t) CTN (u) FNO (v) PRU (w) PENOSA (x) Target DNS

Figure 12: Reconstructed u channel by each method on a sample testing slice along the z dimension
in the FIT dataset. The visual results are shown at 1st (5.6s), 5th (5.7s), 10th (5.8s) and 20th (6s) in
(a)-(f), (g)-(l), (m)-(r) and (s)-(x), respectively.

the next step’s flow data Q̂PDE(t+ δ), as:

Q̂PDE(t+ δ) = Q(t) +

N∑
n=0

wnQt,n. (6)

where {wn}Nn=1 are trainable model parameters.

In more detail, the model estimates temporal derivatives using the function f(·). As shown in Eq.(4),
to compute f(·) accurately, it’s essential to explicitly estimate both first-order and second-order spa-
tial derivatives. This estimation of spatial derivatives is executed by convolutional neural network
layers (CNNs) (Bao et al., 2022). After computing the first-order and second-order spatial deriva-
tives, they are incorporated into Eq.(4) to calculate the temporal derivative Qt,n.

B EXPERIMENT

B.1 DATASET

To assess the effectiveness of the proposed PENO method, we consider two groups of tests. The
first group of tests aims to evaluate the simulation performance on each specific 3D flow dataset. We
consider two different turbulent flow datasets, the forced isotropic turbulent flow (FIT) (Minping
et al., 2012) and the Taylor-Green vortex (TGV) flow (Brachet et al., 1984). In both cases, the mean
velocity is zero, denoted as Q(t) = 0, and the Reynolds number is high enough to generate turbulent
conditions.

The FIT dataset comprises the original DNS records of forced isotropic turbulence, representing an
incompressible flow.The flow is subjected to energy injection at low wave numbers as part of the
forcing mechanism. The DNS data consists of 5024 time steps, with each step separated by a time
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(a) FNO (b) PRU (c) PENOSA (d) Target DNS

(e) FNO (f) PRU (g) PENOSA (h) Target DNS

(i) FNO (j) PRU (k) PENOSA (l) Target DNS

Figure 13: Reconstructed 2D flow in the vorticity field by each method. The visual results are
shown at the 20th time step of the testing phase from the sequential test. (a)-(d), (e)-(h), and (i)-(l)
correspond to three different groups of results, respectively.

Table 3: The performance of FNO and PENOSA on FIT dataset with and without using LES input.
Method LES input SSIM ↑ Dissipation diff ↓
FNO NO (0.912, 0.915, 0.911) (0.153, 0.151, 0.150)
FNO YES (0.923, 0.925, 0.924) (0.144, 0.142, 0.141)
PENOSA NO (0.954, 0.953, 0.954) (0.122, 0.124, 0.123)
PENOSA YES (0.968, 0.972, 0.967) (0.110, 0.107, 0.110)

Table 4: PENOSA’s performance (measured by SSIM, and Dissipation difference) of on (u, v, w)
channels by different levels of random Gaussian noise N in the FIT dataset. The performance is
measured by the average results of the first 10 time steps.

N SSIM ↑ Dissipation diff ↓
N (0, 0.01) (0.964, 0.966, 0.965) (0.120, 0.118, 0.118)
N (0, 0.02) (0.968, 0.972, 0.967) (0.110, 0.107, 0.110)
N (0, 0.05) (0.971, 0.972, 0.970) (0.108, 0.107, 0.108)
N (0, 0.10) (0.974, 0.974, 0.974) (0.106, 0.105, 0.106)
N (0, 0.15) (0.971, 0.970, 0.971) (0.109, 0.110, 0.109)
N (0, 0.20) (0.965, 0.965, 0.966) (0.117, 0.116, 0.117)

interval of 0.002s, encompassing both velocity and pressure fields. For this study,the DNS data has
three different grids: 128× 64× 64, 128× 128× 128, and 128× 256× 256. Simultaneously, the
LES data is generated on grids of size 128× 32× 32. Both DNS and LES data are collected along
the 128 equally spaced grid points along the z axis.

The Taylor-Green vortex (TGV) represents another incompressible flow. The evolution of the TGV
involves the elongation of vorticity, resulting in the generation of small-scale, dissipating eddies. A
box flow scenario is examined within a cubic periodic domain spanning [−π, π] in all three direc-
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Table 5: PENOSA’s performance (measured by SSIM, and Dissipation difference) of on (u, v, w)
channels by different levels of random Gaussian noise N in the TGV dataset. The performance is
measured by the average results of the first 10 time steps.

N SSIM ↑ Dissipation diff×10 ↓
N (0, 0.01) (0.824, 0.826, 0.824) (0.034, 0.036, 0.035)
N (0, 0.02) (0.843, 0.847, 0.844) (0.032, 0.033, 0.034)
N (0, 0.05) (0.847, 0.849, 0.846) (0.031, 0.031, 0.032)
N (0, 0.10) (0.851, 0.852, 0.853) (0.030, 0.030, 0.029)
N (0, 0.15) (0.852, 0.853, 0.852) (0.029, 0.029, 0.030)
N (0, 0.20) (0.839, 0.842, 0.839) (0.034, 0.033, 0.034)

tions. The initial conditions are defined as:
u(x, y, z, 0) = sin(x) cos(y) cos(z),

v(x, y, z, 0) = − cos(x) sin(y) cos(z),

w(x, y, z, 0) = 0.

(7)

The DNS and LES resolutions are 128 × 128 × 65 and 32 × 32 × 65, respectively. Both DNS and
LES data are produced along the 65 equally-spaced grid points along the z axis.

The second group of tests aims to validate the transferability of the PENO method. Here we examine
the 2D Navier-Stokes equation in vorticity form (Li et al., 2020), which applies to a viscous and
incompressible fluid, described as:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x)

∇ · u(x, t) = 0

w(x, 0) = w0(x)

(8)

where u represents the velocity field. The vorticity, denoted by w, is defined as the curl of the
velocity field, w = ∇ × u. The initial vorticity is given by w0. Additionally, ν is the viscosity
coefficient, and f represents the forcing function. For the simulation, 100 groups of vorticity flow
data sequences are used, each under different initial conditions and with viscosity coefficients ν
ranging from {1e−5, 1.5e−5} are used. Each group consists of a complete sequence of 50 time
steps, with a time interval of 0.03s. The DNS and LES resolutions are 128 × 128 and 64 × 64,
respectively. Figure 10 displays various samples from different groups of DNS flow sequences with
varying viscosities ν.

B.2 IMPLEMENTATION DETAILS

Data normalization is conducted on both the training and testing datasets to normalize to the range
[0,1]. Then, PENO is implemented using PyTorch 2.12 on an A100 GPU. The model undergoes
training for 500 epochs with the ADAM optimizer (Kingma & Ba, 2014). The initial learning rate is
set at 0.001. All hidden variables are in 16 dimensions. In the FNO branch, the number of Fourier
layers is established at 3, while in the PDE-enhancement branch, the number of CNN layers is fixed
at 2 for calculating spatial derivatives.

B.3 PERFORMANCE ON A SINGLE 3D FLOW DATASET

Temporal analysis. We evaluate the performance for simulating DNS at each step over a 0.4s
period (20 time steps) during the testing phase on the FIT dataset. We measure the performance
change using SSIM, as presented in Figure 11. Several observations are highlighted: (1) As the gap
between the training period and the testing time step increases, there is a general decline in model
performance for all the methods. It can be seen that PENOSA has a relatively stable performance
in long-term prediction, outperforming other methods in terms of accuracy. (2) The comparison
amongst FNO, PRU, and PENOSA indicates that the integration of physical knowledge and the use
of self-augmentation mechanisms in PENOSA effectively capture turbulence dynamics, which helps
reduce accumulated errors in long-term simulations. (3) FNO struggles to achieve good performance
starting from early testing phase.

Visualization. In Figure 12, the simulated flow data for the FIT dataset are displayed at multiple
time steps (1st, 5th, 10th, and 20th) following the training period. For each time step, slices of the w
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component at a specified z value are presented. Several conclusions are highlighted: (1) At the 1st
step, PENOSA, PRU, FNO, and CTN obtain good performance because the test data closely resemble
the training data at the last time step. In contrast, the baseline DSC/MS leads to poor performance
starting from early time. (2) Beginning at the 5th time step, PENOSA starts to outperform FNO
and PRU, with a more significant difference at the 20th time step. Specifically, FNO is unable to
capture fine-level flow patterns due to the loss of high-frequency signals. While PRU is capable of
capturing the complex transport patterns but introduces structural distortions and random artifacts
due to accumulated errors in long-term simulations. In contrast, PENOSA addresses these issues
effectively, resulting in significantly improved performance in long-term simulation.

Ablation study for utilizing LES data. This study aims to test the efficacy of incorporating LES
into FNO and PENOSA. The result of such integration is presented in Table 3, which indicates that
both methods achieve improved accuracy when LES data is used to support flow data simulation.
The flexibility in integrating LES is important as LES can often be generated at a low cost. It can
also be seen that FNO’s performance remains inferior to PENOSA, even when FNO utilizes LES
data and PENOSA does not utilize LES data. This observation also demonstrates the superiority of
PENOSA method from another perspective.

B.4 TRANSFERABILITY

To assess the transferability of PENOSA, we evaluate the performance of PENOSA, FNO, and PRU
on the 2D vorticity dataset. Figure 13 shows the visual results at the 20th time step of the testing
phase from the sequential test. It can be easily observed that PENOSA outperforms both FNO and
PRU, capturing the flow patterns and magnitudes accurately. FNO fails to capture the correct pat-
terns, and PRU can capture the flow patterns but has difficulty recovering the correct magnitudes of
flow.

B.5 SENSITIVITY ANALYSIS

Tables 4 and 5 provide the sensitivity analysis for parameter settings of random Gaussian perturba-
tions (normal distribution) N from both the FIT and TGV datasets. Based on the results shown in
tables, we can easily observe that the best parameter values for random Gaussian perturbations fall
in the range of [0.1, 0.15].
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