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Abstract

In offline reinforcement learning, agents are trained using only a fixed set of stored
transitions derived from a source policy. However, this requires that the dataset be
labeled by a reward function. In applied settings such as video game development,
the availability of the reward function is not always guaranteed. This paper proposes
Trajectory-Ranked OFfline Inverse reinforcement learning (TROFI), a novel approach
to effectively learn a policy offline without a pre-defined reward function. TROFI first
learns a reward function from human preferences, which it then uses to label the orig-
inal dataset making it usable for training the policy. In contrast to other approaches,
our method does not require optimal trajectories. Through experiments on the D4RL
benchmark we demonstrate that TROFI consistently outperforms baselines and per-
forms comparably to using the ground truth reward to learn policies. Additionally, we
validate the efficacy of our method in a 3D game environment. Our studies of the re-
ward model highlight the importance of the reward function in this setting: we show
that to ensure the alignment of a value function to the actual future discounted reward,
it is fundamental to have a well-engineered and easy-to-learn reward function.

1 Introduction

In recent years, the game industry has faced a growing need to create human-like and high-quality
behaviors for Non-Player Characters (NPCs) in video games (Jacob et al., 2020a). Techniques such
as imitation learning and inverse reinforcement learning have been applied to this problem (Pearce
et al., 2023; Biré et al., 2024; Zhang et al., 2025). Modern video game development provides mul-
tiple ways for collecting datasets of human gameplay – such as from play-testing sessions or post-
release player data – resulting in large volumes of gameplay transitions that can be used to train
agents. However, these datasets often include a wide variety of behaviors, differing in skill level
and playstyle. Naively imitating all available behaviors can lead to suboptimal performance (Pearce
et al., 2023).

Offline Reinforcement Learning (ORL) has emerged as a promising avenue for policy optimization
from large datasets. ORL enables learning policies from a fixed-sized dataset of previously collected
experience, sourced from an arbitrary external policy which may be either optimal or sub-optimal.
In contrast to online reinforcement learning, mitigating the requirement of interacting with the en-
vironment allows ORL to be efficient even in cases where data collection is expensive, slow, or
challenging due to the nature of the environment. The aim of ORL is to learn a policy that out-
performs the one used to collect the experience dataset (Lange et al., 2012). A key requirement
for ORL is the ability to exploit the ground truth reward used to label each transition in the training
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dataset (Kumar et al., 2020; Kostrikov et al., 2021a). As a consequence, ORL requires a hand-crafted
and engineered reward function. However, in applied settings such as video game development, the
reward function may not always be available or easy to define. In video game development, agents
are expected to exhibit human-like and enjoyable behaviors that align with gameplay dynamics.
This necessitates engineering a reward function that favors qualitative behaviors (Zhao et al., 2020).
One possible solution is to manually engineer a reward function and label all transitions. This poses
a dual challenge: on one hand, we know that engineering a good reward function, especially for
qualitative behaviors, is notoriously difficult (Open AI, 2016; Jacob et al., 2020b); on the other, the
massive amount of data available renders manual labelling impractical.

Inverse Reinforcement Learning (IRL) and Imitation Learning (IL) approaches, such as Behavioral
Cloning (BC) (Bain & Sammut, 1995), Generative Adversarial Imitation Learning (GAIL) (Ho &
Ermon, 2016), and Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2018) offer tech-
niques to learn a policy from a pre-collected dataset. The aim of IRL is to learn a reward function
capturing user intent that can then be used to train a new agent that mimics the expert behavior. In
contrast, IL aims to directly infer a policy from demonstrations that mimics the expert behavior (Ho
& Ermon, 2016; Sestini et al., 2022; 2021; Yu et al., 2022a). These approaches have achieved great
success in many different online domains.

In the ORL setting we can consider utilizing IRL or IL techniques. However, their application
presents two major drawbacks: firstly, most of the popular IRL and IL methods assume that the
demonstrations are optimal, while in an offline setting we might not know a priori what the perfor-
mance of the source policy is. This is especially if the reward signal is not available, e.g., a dataset
of gameplay transitions from different players with varying skill levels; secondly, many state-of-
the-art approaches are adversarial techniques, designed to work only in the online setting. In this
paper we investigate a pure and minimalist offline method in which we train an agent using a dataset
that contains non-expert and reward-free data. We propose Trajectory-Ranked OFfline Inverse rein-
forcement learning (TROFI), which leverages the combination of state-of-the-art inverse and offline
reinforcement learning algorithms called Trajectory-ranked Reward EXtrapolation (T-REX) (Brown
et al., 2019) and Twin Delayed Deep Deterministic plus Behavioral Cloning (TD3+BC) (Fujimoto
& Gu, 2021). TROFI first learns a reward model using human preferences and then automatically
labels all data in the offline dataset with the learned reward model. Finally, it optimizes the agent
with the newly labeled data.

The contributions of this paper are: (1) we propose a weakly-supervised method based on human
preferences to learn an offline policy without the need for a reward function or optimal expert demon-
strations; (2) we evaluate our approach on a set of environments and offline datasets from a 3D
game environment (Sestini et al., 2023) and from the D4RL benchmark (Fu et al., 2020); (3) our ap-
proach demonstrates how game developers can efficiently leverage large-scale player data without
the need of reward design; (4) we perform an empirical reward analysis by evaluating the perfor-
mance achieved by a policy trained with our method as well as baselines; and (5) we show promising
results that not only demonstrate that our approach surpasses state-of-the-art inverse reinforcement
learning and imitation learning methods, but also the importance of having a well-defined and easily
learnable reward function for offline reinforcement learning, compared to the online setting, partic-
ularly in the presence of sub-optimal data.

2 Preliminaries and Methodology

In this section we first introduce some preliminary concepts and terminology and then describe our
approach and all of its components. A comprehensive description of the related work most relevant
to our study is provided in Appendix A.
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2.1 Problem Setting

We consider the fully observable Markov Decision Problem (MDP) setting (S,A,R, p, γ), where
S is the state space, A is the action space, R is the reward function, p is the transition probability
function, and γ is the discount factor (Sutton et al., 1998). The aim of Reinforcement Learning (RL)
is to find a policy π that maximizes the expected discounted reward Eπ[

∑∞
t=0 γ

trt+1]. We measure
this objective with a value function, which measures the expected discounted reward after taking
action a in state s: Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s, a0 = a].

In the ORL setting we have access to a static offline dataset consisting of tuples D =
{(si, ai, s′i)}ni=0, where s′i is the next state. Note that in our case, we do not have rewards ri. In
practice, D includes diverse trajectories produced by an arbitrary source policy πs. We are interested
in learning an offline policy π from these unlabeled experiences without any other interactions with
the environment. To solve this problem we introduce Trajectory-Ranked OFfline Inverse reinforce-
ment learning (TROFI). consists of the following steps: (1) learning a reward model r̂θ with weak
supervision and human preferences through T-REX; (2) labeling the dataset D using the learned r̂θ;
and (3) training a parametrized policy πθ with TD3+BC on the newly labeled dataset D̂.

2.2 Reward Learning with T-REX

T-REX is an IRL approach that utilizes ranked demonstrations to extrapolate underlying user intent
beyond the best demonstration (Brown et al., 2019). Specifically, it uses ranked demonstrations to
learn a state-based reward function that assigns a higher reward to higher-ranked trajectories. Given
a dataset D of transitions, we extract a subset of M ⊂ D ranked trajectories τt, where τi ≺ τj if
i ≺ j, and we wish to find a parameterized reward function r̂θ that approximates the true reward
function r. We only assume access to a qualitative ranking over a subset of trajectories. Given the
ranked demonstrations, T-REX performs reward inference by approximating the reward at state s
using a neural network, r̂θ(s), such that

∑
s∈τi r̂θ(s) <

∑
s∈τj r̂θ(s) when τi ≺ τj . The reward

model r̂θ can be trained using the loss:

L(θ) = −
∑
τi≺τj

log

exp
∑
s∈τj

r̂θ(s)

exp
∑
s∈τi

r̂θ(s) + exp
∑
s∈τj

r̂θ(s)
. (1)

Following the original paper, we train the reward model on partial trajectory pairs rather than full
ones. During training we randomly select pairs of trajectories τi and τj . We then select multiple
partial trajectories τ̂i and τ̂j of length L starting from a random timestep, and use these partial
trajectories as input to our model. We compute the loss and update the model using the partial
trajectories. Following the idea of Fujimoto & Gu (2021), we normalize the features of every state
in the provided dataset. Given the learned reward function, we then label the entire offline dataset
with r̂(si) for each si ∈ D.

2.3 Policy Learning with TD3+BC

After the reward learning and labeling steps, we have a new dataset D̂ = {si, ai, s′i, r̂θ(si)}ni=0.
TROFI now seeks to optimize the policy π using ORL. We use TD3+BC (Fujimoto & Gu, 2021),
which builds upon on the online RL algorithm TD3 (Fujimoto et al., 2018). Firstly, a behavioral
cloning regularization is added to the standard policy update, resulting in a policy of the form:

π = argmax
π

E(s,a)∼D
[
λQ(s, π(s))− (π(s)− a)2

]
, (2)

where λ is a normalization term defined as:

λ =
α

1
N

∑
(si,ai)

|Q(si, ai)|
(3)
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Dataset BC GT CONS Random
DWBC

(Xu et al., 2022)
ORIL

(Zolna et al., 2020)
OTR

(Luo et al., 2023)
TROFI
(ours)

hopper-medium-v2 30.0± 0.5 59.3± 1.0 36.5± 12.9 49.0± 7.6 52.2± 0.9 74.4± 1.0 69.8± 13.9 80.3 ± 1.2
halfcheetah-medium-v2 36.6± 0.6 48.2± 0.1 26.8± 10.2 17.0± 8.6 42.2± 0.2 58.9 ± 0.9 42.7± 1.1 55.1± 0.3
walker2d-medium-v2 11.4± 6.3 83.8 ± 0.3 50.1± 12.4 43.9± 17.6 66.5± 2.4 82.2± 12.9 78.0± 2.6 76.8± 0.4

hopper-medium-replay-v2 19.7± 5.9 64.2± 7.2 24.9± 4.7 20.7± 2.3 17.8± 8.4 69.6± 6.6 80.2± 23.1 86.1 ± 2.3
halfcheetah-medium-replay-v2 34.7± 1.8 44.2± 0.1 31.8± 3.0 1.0± 0.7 22.7± 1.0 40.9± 11.5 38.9± 1.5 45.3 ± 1.5
walker2d-medium-replay-v2 08.3± 1.5 78.1± 2.5 25.7± 7.1 12.6± 7.3 8.5± 4.2 83.7 ± 1.8 67.4± 20.6 52.7± 26.4

hopper-medium-expert-v2 89.6± 27.6 98.4± 1.4 63.2± 15.0 39.8± 13.0 51.1± 2.0 81.8± 24.3 98.9± 19.7 99.8 ± 3.6
halfcheetah-medium-expert-v2 67.6± 13.2 88.9± 2.9 40.0± 17.6 12.4± 10.2 42.4± 0.5 81.7± 4.2 71.6± 23.1 92.5 ± 0.8
walker2d-medium-expert-v2 12.0± 5.8 110.2± 0.4 17.3± 11.3 39.1± 17.5 72.1± 1.3 88.1± 42.6 108.8± 0.8 111.1 ± 0.9

hopper-expert-v2 111.5 ± 1.3 110.2± 1.1 95.1± 29.7 14.1± 8.5 109.1± 2.2 31.7± 10.5 - 111.3± 0.3
halfcheetah-expert-v2 105.2 ± 1.7 96.2± 0.9 10.9± 3.7 13.5± 6.7 89.7± 1.7 19.1± 5.7 - 96.1± 0.3
walker2d-expert-v2 56.0± 24.9 110.3± 0.1 14.1± 8.2 37.1± 32.1 107.7± 0.4 93.8± 42.1 - 110.4 ± 0.1

3D Game Environment
medium-expert 33.8± 0.2 34.4± 0.5 33.1± 0.8 17.5± 4.1 32.2± 1.9 30.9± 1.8 - 34.5 ± 0.2

Total
616.4±
91.3

1026.4±
18.5

468.1.0±
138.6

317.7±
136.2

682.0±
25.2

836.8±
165.9

-
1051.9±

38.3

Table 1: Normalized score averaged over the final 100 evaluations and 5 seeds. We highlight the best
performing method for each task, as well as for the total performance. TROFI outperforms inverse
ORL methods on the majority of tasks. Surprisingly, it outperforms the GT baseline on many tasks.
We provide a possible explanation for this in Section 3.4. For OTR (Luo et al., 2023) we report the
results from the original paper (which do not include expert tasks).

and α is a hyperparameter controlling the strength of the BC regularizer. Following the original
paper, we use α = 2.5 in our experiments. Secondly, the features of every state in D are normalized.
The entire TROFI algorithm is summarized in Appendix C. Contrary to other IRL or offline IRL
methods (Konyushkova et al., 2020), our approach is completely offline as it does not require any
interaction with the user during training, except for the ranking in the initial step. Moreover, as
we will see in Section 3, our method works for a variety of dataset types as it does not require
optimal expert demonstrations. Any offline policy optimization method could be used; however, our
experiments in Appendix E indicate that TD3+BC is the best choice for our study.

3 Experimental Results

Our experiments aim to evaluate TROFI and answer the following research questions: (1) Can
TROFI achieve performance comparable to ORL which exploits ground-truth rewards? (2) Can
TROFI outperform other offline IRL baselines? (3) How does TROFI perform when varying the
number of ranked trajectories? We also perform a thorough analysis of our reward model to demon-
strate that an effective and easy-to-learn reward function, in addition to a good optimization algo-
rithm, is fundamental to outperforming the source policy πs.

3.1 Environments and Datasets

We first evaluate TROFI on the OpenAI Gym MuJoCo tasks using the D4RL datasets (Fu et al.,
2020) in three different environments: hopper, halfcheetah, and walker2D – the same used by Fuji-
moto & Gu (2021), Kostrikov et al. (2021a) and Kostrikov et al. (2021b). For each environment we
consider the expert, medium-expert, medium-replay, and medium datasets. Second, we further test
TROFI in a 3D game environment. The environment is the one proposed by Sestini et al. (2023).
This environment is an open-world, procedurally generated city simulation where the agent’s ob-
jective is to navigate toward a goal by following a relatively complex trajectory and interacting
with various elements in the scene. More details about the environment, such as the action- and
state-space, are provided in Appendix D. For this experiment, we collect a medium-expert dataset
consisting of 200,000 transitions sampled from a replay buffer of a soft actor-critic agent (Haarnoja
et al., 2018), which was trained with an engineered reward function.

For all the environments, we rank a subset M of the trajectories from the original dataset D. Similar
to the oracle used by Brown et al. (2019), we approximate human preferences through an automated
ranking process using the episodic rewards provided by the dataset. This strategy was chosen for
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Dataset TROFI TROFI-50% TROFI-10% TROFI-5%

hopper-medium-v2 80.3 ± 1.2 69.4± 1.5 72.0± 1.3 74.0± 1.3
halfcheetah-medium-v2 43.2± 0.0 48.2± 0.2 53.8± 0.4 55.1 ± 0.3
walker2d-medium-v2 76.8 ± 0.4 75.0± 0.9 73.3± 10.5 70.2± 17.5

hopper-medium-replay-v2 70.5± 15.3 86.1 ± 2.3 64.6± 11.7 72.9± 6.5
halfcheetah-medium-replay-v2 39.1± 0.6 45.3 ± 1.5 43.4± 0.3 37.0± 2.8
walker2d-medium-replay-v2 52.7 ± 26.4 44.4± 22.1 50.5± 17.0 40.2± 20.7

hopper-medium-expert-v2 95.0± 2.4 99.2± 5.9 96.4± 6.4 99.8 ± 3.6
halfcheetah-medium-expert-v2 82.3± 1.5 92.5 ± 0.8 92.4± 1.0 92.1± 1.0
walker2d-medium-expert-v2 109.0± 0.1 111.1 ± 0.9 107.9± 2.2 108.9± 1.0

hopper-expert-v2 109.4± 2.3 111.3 ± 0.3 110.9± 0.4 110.8± 0.8
halfcheetah-expert-v2 92.6± 0.2 94.8± 0.5 96.1 ± 0.3 92.0± 0.7
walker2d-expert-v2 109.0± 0.1 110.0± 0.1 109.9± 0.1 110.4 ± 0.1

Table 2: Normalized scores comparing TROFI using different numbers of ranked trajectories.
TROFI is largely unaffected by the number of ranked trajectories. Surprisingly, in most cases utiliz-
ing the entire dataset does not prove to be the best option. However, the reason why using a smaller
number of ranked trajectories works better than using the full one remains unexplained, but we leave
this question for future work.

two main reasons: it alleviates the need for extensive trajectory rankings. While we argue that the
rankings generated through this process would resemble human preferences, the exploration using
humans within more accessible environments is left for future research. In Section 3.2 we perform
an ablation study by varying |M |.

For ORIL (Zolna et al., 2020) and DWBC (Xu et al., 2022), state-of-the-art ORL approaches that
require optimal expert trajectories, we follow the same setting as Zolna et al. (2020) and extract a
subset of well-performing episodes from the expert dataset for each environment. Note that this is a
very important difference between TROFI and these methods: TROFI uses only training data from
each environment and does not require access to optimal datasets. For OTR (Luo et al., 2023) we
report the results of the original paper (which do not include evaluations on expert datasets).

3.2 Baselines and Ablations

We compare our approach against the following baselines. 1) GT, the TD3+BC algorithm with the
ground truth reward; this method represents our expected upper bound. 2) BC, behavioral cloning
on all of the data; this method heavily depends on the quality of the trajectories in the dataset. 3)
CONS, the TD3+BC algorithm replacing all rewards in the dataset with a constant reward c = 0.
4) Random, the TD3+BC algorithm replacing all rewards in the dataset with a random reward
∼ U(−1, 1). Moreover, we compare TROFI against a list of state-of-the-art approaches including:
ORIL (Zolna et al., 2020), DWBC (Xu et al., 2022), and OTR (Luo et al., 2023).

In the case of TROFI, we consider several ablations that use different percentages of ranked trajec-
tories. We define TROFI-X%, where X% represents the percentage of trajectories used in dataset
D as ranked dataset M . We experiment with X = {100, 50, 10, 5}, where X = 100 indicates the
usage of the entire dataset D. For cases where X < 100, we randomly sample trajectories from the
training dataset prior to ranking them. We emphasize that M is just the number of ranked trajectories
used for estimating the reward, while for training the policy we use the entire D.

Like previous works (Fujimoto & Gu, 2021; Kostrikov et al., 2021a; Zolna et al., 2020), for all
algorithms and tasks, we repeat every experiment with 5 random seeds and report the mean and
standard deviation of the normalized performance of the last 100 episodes of evaluation. Additional
information regarding the experiments, such as implementation details, results on the Adroit tasks
and on using different optimization algorithms can be found in Appendix B and E.
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Performance
Average PC
orig. dataset

Average PC
exp. dataset

Average G
exp. dataset

TR GT TR GT TR GT TR GT

halfcheetah-medium-v2 55.1 48.2 0.56 0.14 0.21 0.14 0.18 0.09
hopper-medium-v2 80.3 59.3 0.99 0.98 0.79 0.69 0.26 0.10
halfcheetah-medium-replay-v2 45.3 44.2 0.59 0.74 0.48 0.47 0.14 0.12
walker2d-medium-v2 76.8 83.8 0.45 0.53 0.19 0.36 0.00 0.10

Table 3: Analysis of the Performance, Pearson Correlation (PC), and Goodness (G) of the value
function in selected cases. In each column we see the difference in values between TROFI (TR)
and the GT baseline. orig. dataset means the original dataset on which the algorithm is trained,
while exp. dataset refers to the optimal one (i.e. expert one). For each metric, the higher the better.
In orange, the cases where TROFI clearly outperforms GT. In blue, the cases where GT clearly
outperforms TROFI. In cases where TROFI outperforms the GT baseline, the value function is more
correlated with the TROFI reward than the GT reward, and vice-versa.

3.3 Offline Reinforcement Learning Performance

Table 1 summarizes TROFI performance with respect to baselines and the state-of-the-art. TROFI
performs comparably to the GT method on most MuJoCo tasks. In some cases it even outperforms
the GT upper bound. This interesting finding is further analyzed in Section 3.4. As the table shows,
ORIL performs well on some datasets, but suffers on the dataset with the most optimal data. This is
due to the discriminator failing to distinguish between good and bad trajectories given a dataset with
low variance in episodic reward. In contrast, our approach performs well on average on all datasets,
outperforming the state-of-the-art baseline ORIL on 9 out of 12 datasets. In Appendix E we provide
experiments using a variety of policy optimization algorithms. Surprisingly, for a subset of datasets,
TD3+BC achieves competitive performances even with random and constant reward. This finding
resembles the one found by Li et al. (2023b).

Similar to its performance in the MuJoCo environment, TROFI performs comparably, if not better,
to the GT baseline in the 3D game environment. This experiment demonstrates that a complex
engineered reward function can be effectively replaced by human ranking, especially when a large
dataset of gameplay transitions is available. Game designers and developers can rank only a few
trajectories, and so, enable the training of a high-performing agent without the need to define a
traditional reward function.

Table 2 illustrates the performance of TROFI when varying the number of ranked demonstrations
used to learn the reward model r̂. As seen in the table, the decline in performance when reducing
the number of ranked trajectories is generally low, even when only 5% of the total dataset is ranked.
Notably, using the entire dataset is not always the best choice. This increases the usability of TROFI,
making it a minimalist and easy-to-use algorithm for ORL without reward functions. For example,
5% of the hopper dataset is equivalent to only 10 ranked trajectories. As mentioned in Section 3.1,
the results in Table 1 rely on automatic ranking based on ground-truth reward. To simulate human-
generated ranking, we apply noise to the ranking for the halfcheetah medium-expert dataset and
the 3D game environment dataset, thereby introducing imprecision. The detailed results of this
experiment are described in Appendix E.

3.4 Reward Analysis

As Section 3.3 shows, on certain tasks TROFI not only outperforms the baselines, but also the GT
method. This is a surprising result and we investigate it further here. Most ORL optimization al-
gorithms are value function-based algorithms (Fujimoto & Gu, 2021; Kumar et al., 2020; Kostrikov
et al., 2021a) and the general aim is to learn a function Qϕ(s, a) that represents the corresponding
policy and generalizes to actions outside the training dataset D. This is important because out-
of-distribution actions can produce erroneous values leading to a bad policy, while the value func-
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(a) (b) (c)

(d) (e) (f)

Figure 1: (a) shows the correlation between TROFI and GT reward, while (b) and (c) show the
difference for one trajectory between the estimated value function – by GT first and TROFI in the
last plot – and the real discounted reward used to label the dataset. The value function estimated
by our approach is closer to the discounted reward compared to the GT baseline, even though the
reward model estimated by TROFI is highly correlated with the GT reward. (d) example of different
discounted rewards computed using TROFI and GT rewards for the same trajectory; (e) example of
different discounted rewards computed using TROFI and GT rewards respectively after the trans-
formations for the same trajectory; (f) performance with the transformed reward. The plots show
how with simple linear modifications, we can have a discounted reward that is easier to learn for the
optimization algorithm thus improving performance. Further details are provided in Section 3.4.

tion must output high values for optimal actions not seen in the dataset (Kostrikov et al., 2021a;b).
Qϕ(s, a) is generally trained to minimize the temporal difference error:

L(ϕ) = E(s,a,s′)∼D

[
(r + γmax

a′
Qϕ̂(s

′, a′)−Qϕ(s, a))
2
]
, (4)

where γ is the discount factor, Qϕ is the parametric value function, and Qϕ̂ is the target value
function. Note that the learning of Qϕ is highly dependent on the underlying reward function in
the dataset. We investigate four cases: halfcheetah-medium and hopper-medium in which TROFI
outperforms GT, walker2D-medium in which GT outperforms TROFI, and halfcheetah-medium-
replay in which TROFI and GT have the same performance. Figure 1 shows an example where
T-REX finds a reward function that explains the ranking of the trajectories in M . As GT should be
the optimal reward function, and the one that TROFI learns should match it, the question is: Why
does TROFI outperform GT?

Our explanation is based on the correlation between Qϕ(s, a), an estimator of the future discounted
reward given by the underlying reward function used to label the dataset, and the actual discounted
reward. To analyze this, we compute the average Pearson Correlation (PC) (Freedman et al., 2007)
between Qϕ(s, a) and the discounted reward computed from the reward function used to label the
offline dataset (e.g. GT or r̂). This choice is motivated by the fact that it is not important for Qϕ(s, a)
to estimate the exact reward value, but rather that it exhibits the same trends. Moreover, we compute
the average Goodness (G) of the value function which, defined as:

G(Qϕ, τj) = E(s,a∗)∼τj

[
1

K

K−1∑
i=0

1(Qϕ(s, ai) < Qϕ(s, a
∗))

]
, (5)



Reinforcement Learning and Video Games Workshop 2025

where τj ∈ DE is a trajectory from an expert dataset, a∗ is the optimal action for the state s,
ai ∈ {ai | ai ∼ U(A \ {a∗}), i = 0, ..,K − 1}, and 1(·) returns 1 when its argument is true and
0 otherwise. With G we quantify the frequency at which the optimal action has a higher value than
K random actions excluding the optimal one, thus providing insight into the generalization of the
value function. In order to use optimal actions, we calculate G exclusively for the expert dataset.

Table 3 shows the results for the four cases. Through this analysis, we see that in the cases where
TROFI outperforms GT, our model has learned a better value function – one that is more correlated
with the underlying future discounted reward computed from the reward function used to label the
dataset and that generalizes better to out-of-distribution actions. Figure 1(a), (b) and (c) further
support this analysis with qualitative results. As illustrated by the figures, it is clear that TD3+BC
struggles to estimate the optimal value function with the GT reward, whereas with the TROFI reward
the learned value function is more closely aligned with the discounted reward. We stress that the
only thing that is changed between these two agents is the reward function. In the case where the
GT outperforms our approach, the model learns a value function that is less correlated with the
discounted reward. In the last case, we have similar results.

This analysis highlights how important the reward function is in ORL. In the online RL setting,
the ever-changing dataset helps the value function to be better aligned with the future discounted
reward and to generalize better as it experiences a diverse distribution of actions. Instead, in the
offline case the action distribution representation is fixed and limited, hence it is fundamental to
have a well-defined reward function that also makes the value function easy to learn. To further
demonstrate this, we report on one last experiment in the halfcheetah-medium dataset. In this setup,
we use the ground truth reward function but we apply linear transformations – such as scaling by a
constant factor, chosen doing some preliminar experiments – to make it more similar to the reward
function learned by TROFI. Figure 1(d) compares the original reward with the TROFI-generated
reward, while Figure 1(e) shows the difference after applying the transformations. According to Ng
et al. (1999), linear transformations of a dense reward function should preserve the optimal pol-
icy. We then train an agent using the transformed reward, and we observe improved performance
(Figure 1(f)). These results suggest that the transformed reward helps improving value function
approximation, enabling the policy to more accurately estimate the expected discounted reward,
utlimately increasing the overall performance.

4 Conclusions and Limitations

In this paper, we introduced Trajectory-Ranked OFfline Inverse reinforcement learning (TROFI), an
offline reinforcement learning method that trains a policy without having access to the true reward
function. TROFI effectively reduces the requirements for leveraging large offline data for training
agents by removing the need of engineering a reward function. Users need only to rank a limited
number of trajectory samples to indicate preferred behaviors, significantly lowering the supervision
burden. Our method outperforms baselines in the majority of datasets, and our qualitative compar-
isons show that having an easy-to-learn reward function allows the policy optimization algorithm to
learn a value function better aligned with the discounted reward computed from the reward function
used to label the offline dataset.

The findings presented in this work should be considered as initial, with further investigative work
necessary. Future studies should extend the evaluation of TROFI to more environments to verify the
generalizability of our results, particularly in relation to the learning of the value function. Moreover,
the reason why using a small number of ranked trajectories in some tasks works better for TROFI
than using the full dataset remains unexplained. Our qualitative comparisons show that having a
good and easy-to-learn reward function allows the policy optimization algorithm to learn a value
function better aligned with the discounted reward computed from the reward function used to label
the offline dataset. We believe this is an under-explored challenge in offline reinforcement learning,
and through this work we hope to motivate researchers to further consider this issue.
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A Related Work

Here we review work from the recent literature most relevant to our contributions.

Offline Reinforcement Learning. In ORL settings, also referred to as batch RL, we optimize a
policy without relying on interactions with the environment but rather using a fixed dataset derived
from a source policy (Lange et al., 2012). Many algorithmic variants have been proposed in recent
years including, among others, Fisher Behavior Regularized Critic (Fisher-BRC) (Kostrikov et al.,
2021a), Implicit Q-Learning (IQL) (Kostrikov et al., 2021b), and Twin Delayed Deep Deterministic
plus Behavioral Cloning (TD3+BC) (Fujimoto & Gu, 2021). In general, ORL methods have two
aims: train a policy that yields higher rewards than those stored in the dataset, while trying not to
deviate from the behavior of the demonstrator. To do so, a significant portion of recently proposed
ORL methods are based on either constrained or regularized approximate dynamic programming
that regularizes the value or the action-value function (Kostrikov et al., 2021b;a; Peng et al., 2019).
In this work we use TD3+BC mainly for its simplicity and good performance. Typical ORL settings
assumes that the offline dataset is annotated with rewards for every transition, while in applied
settings this may not always true. Thus, we require some way to learn a policy from offline datasets
without this reward requirement.

Learning without Rewards. A way to learn from offline datasets without rewards is to mimic the
source policy with Behavioral Cloning (BC) (Bain & Sammut, 1995). Such approaches, will never
learn to outperform the offline demonstrations from which the behavior is cloned. Imitation Learn-
ing (IL) and Inverse Reinforcement Learning (IRL) provide an alternative to BC. However, recent
state-of-the-art approaches are mostly adversarial and are suitable only in the online reinforcement
learning setting (Ho & Ermon, 2016; Fu et al., 2018). Moreover, they always require expert demon-
strations. In a realistic offline setting without a reward function, we cannot know the performance of
the source policy, and thus there is no easy way to label the dataset. In addition, we cannot provide
new demonstrations as ORL supposes that we do not have access to the environment. Trajectory-
ranked Reward EXtrapolation (T-REX) (Brown et al., 2019) is a preference-based IRL approach
capable of learning a reward function from sub-optimal data. As we describe in Section 3, it is es-
pecially suitable for offline settings. Other recent notable approaches train a policy offline with just
a few labeled trajectories. However, in our work we assume we have no pre-labeled trajectories (Li
et al., 2023a; Hu et al., 2023; Yu et al., 2022b).

Recently, a growing body of research has focused on learning policies offline based on human prefer-
ences, without relying on reward models (Kang et al., 2023; Hejna & Sadigh, 2023; An et al., 2023).
Similar to TROFI, these approaches train policies entirely offline using human preferences, but do
not require the creation of a reward function. In specific contexts like game development, however,
developing a reward function alongside the policy can offer advantages. During production, games
frequently undergo daily changes, requiring retraining new agents. Having a pre-trained reward
model helps the training and evaluation of these agents throughout all phases of game development.

Inverse and Imitation ORL. More recently, a few inverse and imitation learning approaches have
been proposed for ORL. Notable examples are, among others: Offline Reinforced Imitation Learn-
ing (ORIL) (Zolna et al., 2020), which, similarly to our approach, learns a reward function prior to
training with the Generative Adversarial Inverse Reinforcement Learning loss (Ho & Ermon, 2016),
with additional regularizations; Discriminator-Weighted Behavioral Cloning (DWBC) (Xu et al.,
2022), which is an end-to-end approach to learn an effective offline policy with an augmented BC
objective; and Optimal Transport Reward (OTR) (Luo et al., 2023) that learns a reward function
prior to agent optimization. All of these approaches require optimal expert demonstrations – that is,
demonstrations generated by an optimal policy. Other methods, such as Soft Q Imitation Learning
(SQIL) (Konyushkova et al., 2020), achieves similar performance to ORIL but without optimal ex-
pert demonstrations. Our work differs from these approaches as it combines all their benefits: it does
not require optimal expert demonstrations, it can be combined with any offline agent optimization
algorithm, and it achieves good performance on a wide variety of offline datasets. Moreover, we
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perform a thorough reward study that highlights the importance of having a clearly defined reward
function or reward model in ORL.

B Implementation Details

We implemented TROFI using the PyTorch framework. The code is open-source and publicly ac-
cessible.1 We implemented the TD3+BC algorithm from scratch following the original paper and
used the original open source implementations for both ORIL and DWBC. For the experiments in
Section 3.3, we used the best number of |M | determined in preliminary experiments for both TROFI
and baselines. In Section 3.3 we further study the effect of varying the number |M | for TROFI. All
training was performed on an NVIDIA RTX 2080 SUPER GPU, 8GB VRAM, a AMD Ryzen 7
3700X 8-Core CPU and 32GB of system memory.

C Algorithm

Algorithm 1 summarizes the entire TROFI algorithm, with a detailed description in Section 2.

Algorithm 1 Training with TROFI
Input: unlabeled data D, number of sub-trajectories N , sub-trajectory length L
Output: a trained policy π and a reward model r̂θ

π← initialize policy
r̂θ ← initialize reward model
Normalize si ∈ D, i = 0, .., |D|
Sample M ∼ D
Rank trajectories in M , from best to worst

while not converged do ▷ Training with T-REX
Sample trajectories τi, τj ∼M , τj ≺ τi
Sample sub-trajectories τ̂n

i ∼ τi and τ̂n
j ∼ τj , n = 0, ..., N − 1

Update r̂θ using Equation 1 with τ̂n
i and τ̂n

j
end while

Label D with r̂θ ▷ Label transitions with the trained reward model

while not converged do ▷ Training with TD3+BC
Sample a batch B = {(sn, an, r̂θn, s

′
n), n = 0, ..., N − 1} from D

Update π using Equation 2 with B
end while
return π and r̂θ

D Additional 3D Game Environment Details

In this section, we provide more details on the 3D game environment cited in Section 3.1. It is an
open-world city simulation originally proposed by Sestini et al. (Sestini et al., 2023). In this envi-
ronment, the agent has a continuous action space of size 5, consisting of: two actions representing
the relative target position, one action for strafing left and right, one action for shooting and one
action for jumping. Each action is normalized between [−1, 1], while the latter two are discretized
in the game. The state space consists of a game goal position, represented as the R2 projections of
the agent-to-goal vector onto the XY and XZ planes, normalized by the gameplay area size, along
with game-specific state observations such as the agent’s climbing status, contact with the ground,
presence in an elevator, jump cooldown, and weapon magazine status. Observations include a list
of entities and game objects that the agent should be aware of, e.g., intermediate goals, dynamic
objects, enemies, and other assets that could be useful for achieving the final goal. For these entities,
the same relative information from agent-to-goal is referenced, except as agent-to-entity. Addition-
ally, a 3D semantic map is used for local perception. This map is a categorical discretization of the
space and elements around the agent. Each voxel in the map carries a semantic integer value describ-
ing the type of object at the corresponding game world position. For this work, we use a semantic

1Repository will be published upon acceptance.
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Figure 2: Example of a trajectory in Task 2. The agent’s starting position is on the ground, and it
has to navigate to a elevator, wait for it to come down and jump over it. Once it is up on the building,
the agent needs to cross a bridge between two buildings: if it falls, there is no way to get back on
track. The agent has to shoot at a destructible wall in order to reveal the goal location. This example
is showing the TROFI policy acting in the environment.

map of size 5 × 5 × 5. In this environment, an episode consists of a maximum of 1000 steps. An
episode is marked a success if the agent reaches the goal before the timeout. The environment is par-
ticularly meaningful for this study because it uses standard state- and action-spaces for developing
RL agents for in-game NPCs. In fact, it is common to avoid using image-based agents, as they are
too expensive at runtime, and instead use floating-point information gathered from the game engine
as the state space, similar to traditional scripted game-AI. While there are no specific preferences
between discrete or continuous action-spaces, it is common to use the latter in this domain (Wurman
et al., 2022; Gillberg et al., 2023). Figure 2 shows an agent trained with TROFI solving the task in
the environment.

E Additional Experimental Results

In Table 4 we compare TROFI with baselines and state-of-the-art approaches described in Sec-
tion 3.2 of the main paper in two different sets of tasks: MuJoCo and Adroit. We show the training
method in Section 4.1 of the main paper. While TROFI has the highest aggregate performance for
MuJoCo tasks, all offline reinforcement learning algorithms struggle with most of the Adroit tasks,
and in fact the behavioral cloning baseline outperforms all the others.

Table 5 summarizes the performance of different agent optimization algorithms for the same set
of tasks: MuJoCo and Adroit. We compare the TD3+BC with two other populuar optimization
algorithms: IQL (Kostrikov et al., 2021b) and Fisher-BRC (Kostrikov et al., 2021a). TD3+BC
outperforms the other methods in the MuJoCo datasets, while IQL is better in the Adroit tasks.
However, the behavioral cloning baseline still outperforms IQL in these environments.

Table 6 summarizes the performance of TROFI, in particular the 10% version of our approach (using
only 10% of the entire dataset as ranked trajectories), simulating human-generated ranking. For this
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experiment, we first rank the trajectories based on the ground truth reward. Then, we randomly
swap the position of 20% of all the ranked trajectories. The table show that TROFI reaches high and
stable performance even in case where the ranking is not optimal.

Dataset BC GT CONS Random
DWBC

(Xu et al., 2022)
ORIL

(Zolna et al., 2020)
OTR

(Luo et al., 2023)
TROFI
(ours)

hopper-medium-v2 30.0± 0.5 59.3± 1.0 36.5± 12.9 49.0± 7.6 52.2± 0.9 74.4± 1.0 69.8± 13.9 80.3 ± 1.2
halfcheetah-medium-v2 36.6± 0.6 48.2± 0.1 26.8± 10.2 17.0± 8.6 42.2± 0.2 58.9 ± 0.9 42.7± 1.1 55.1± 0.3
walker2d-medium-v2 11.4± 6.3 83.8 ± 0.3 50.1± 12.4 43.9± 17.6 66.5± 2.4 82.2± 12.9 78.0± 2.6 76.8± 0.4

hopper-medium-replay-v2 19.7± 5.9 64.2± 7.2 24.9± 4.7 20.7± 2.3 17.8± 8.4 69.6± 6.6 80.2± 23.1 86.1 ± 2.3
halfcheetah-medium-replay-v2 34.7± 1.8 44.2± 0.1 31.8± 3.0 1.0± 0.7 22.7± 1.0 40.9± 11.5 38.9± 1.5 45.3 ± 1.5
walker2d-medium-replay-v2 08.3± 1.5 78.1± 2.5 25.7± 7.1 12.6± 7.3 8.5± 4.2 83.7 ± 1.8 67.4± 20.6 52.7± 26.4

hopper-medium-expert-v2 89.6± 27.6 98.4± 1.4 63.2± 15.0 39.8± 13.0 51.1± 2.0 81.8± 24.3 98.9± 19.7 99.8 ± 3.6
halfcheetah-medium-expert-v2 67.6± 13.2 88.9± 2.9 40.0± 17.6 12.4± 10.2 42.4± 0.5 81.7± 4.2 71.6± 23.1 92.5 ± 0.8
walker2d-medium-expert-v2 12.0± 5.8 110.2± 0.4 17.3± 11.3 39.1± 17.5 72.1± 1.3 88.1± 42.6 108.8± 0.8 111.1 ± 0.9

hopper-expert-v2 111.5 ± 1.3 110.2± 1.1 95.1± 29.7 14.1± 8.5 109.1± 2.2 31.7± 10.5 - 111.3± 0.3
halfcheetah-expert-v2 105.2 ± 1.7 96.2± 0.9 10.9± 3.7 13.5± 6.7 89.7± 1.7 19.1± 5.7 - 96.1± 0.3
walker2d-expert-v2 56.0± 24.9 110.3± 0.1 14.1± 8.2 37.1± 32.1 107.7± 0.4 93.8± 42.1 - 110.4 ± 0.1

Total Mujoco
582.6±
91.1

992.0±
18.0

436.0±
137.8

300.2±
132.1

682.0±
25.2

805.9±
164.1

-
1017.4±

38.1

3D Game Environment
medium-expert 33.8± 0.2 34.4± 0.5 33.1± 0.8 17.5± 4.1 00.0± 0.0 30.9± 1.8 - 34.5 ± 0.2

pen-human-v1 99.7 ± 7.4 − 2.5± 0.5 − 2.2± 1.1 − 3.0± 0.5 37.5± 15.1 − 2.7± 0.3 66.8± 21.2 − 2.8± 0.7
door-human-v1 9.4 ± 4.5 − 0.3± 0.0 − 0.3± 0.0 − 0.3± 0.0 2.5± 2.2 − 0.3± 0.0 5.7± 2.7 − 0.3± 0.0
hammer-human-v1 12.6 ± 4.9 1.0± 0.1 1.0± 0.1 1.3± 0.2 1.1± 0.4 1.0± 0.4 1.8± 1.4 1.1± 0.2
relocate-human-v1 0.6 ± 0.3 − 0.3± 0.0 − 0.3± 0.0 − 0.3± 0.0 1.0± 0.0 − 0.3± 0.0 0.1± 0.1 − 0.3± 0.0

pen-cloned-v1 99.1 ± 12.3 10.2± 8.3 6.5± 8.0 6.4± 8.6 25.5± 11.8 11.2± 9.1 46.8± 20.8 11.1± 7.1
door-cloned-v1 3.4 ± 0.9 − 0.3± 0.0 − 0.3± 0.0 − 0.3± 0.0 − 0.1± 0.0 − 0.3± 0.0 0.0± 0.0 − 0.3± 0.0
hammer-cloned-v1 8.9 ± 4.0 0.3± 0.0 0.2± 0.0 0.2± 0.0 0.2± 0.0 0.3± 0.0 6.5± 8.0 0.2± 0.0
relocate-cloned-v1 0.4 ± 0.3 − 0.3± 0.0 − 0.3± 0.0 − 0.3± 0.0 − 0.1± 0.0 − 0.3± 0.0 − 0.2± 0.0 − 0.3± 0.0

pen-expert-v1 128.8 ± 5.9 114.9± 19.7 14.5± 11.3 31.9± 10.5 76.1± 11.4 22.0± 8.0 - 108.1± 9.0
door-expert-v1 105.8 ± 0.2 − 0.3± 0.0 − 0.3± 0.0 − 0.3± 0.0 0.8± 0.6 − 0.3± 0.0 - − 0.3± 0.0
hammer-expert-v1 127.9 ± 0.5 3.0± 0.3 4.4± 2.5 3.6± 2.7 22.4± 18.5 0.5± 0.3 - 2.5± 1.7
relocate-expert-v1 110.3 ± 0.4 − 1.4± 0.2 0.0± 0.0 − 1.1± 0.1 4.2± 0.2 − 1.4± 1.3 - − 1.4± 0.3

Total Adroit
706.6±
41.6

124.0±
29.1

22.9±
23.0

37.8±
22.5

171.2±
60.2

29.4±
19.4

-
128.4±
19.0

Table 4: Normalized score averaged over the final 100 evaluations and 5 seeds. We highlight the best
performing method for each task as well for the total performance across all environments and tasks.
We compare our approach (TROFI) to a set of baselines – Behavioral Cloning (BC), Ground Truth
(GT) reward, Constant (CONS) reward, and random reward – and state-of-the-art offline inverse
reinforcement- and imitation-learning algorithms – DWBC (Xu et al., 2022) and ORIL (Zolna et al.,
2020). We provide more details about the baselines in Section 4.2 of the main paper. We test our
approach in two different set of tasks: MuJoCo and Adroit. TROFI outperforms both baselines and
state-of-the-art algorithms for the MuJoCo tasks, while for the Adroit ones – that are hard tasks to
solve with any offline reinforcement learning algorithms – the BC baseline is still the best performing
one. For OTR (Luo et al., 2023) we report the results from the original paper (which do not include
expert tasks).
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Dataset IQL Fisher-BRC TD3+BC (ours)

hopper-medium-v2 20.7± 4.5 89.7 ± 1.2 80.3± 1.2
halfcheetah-medium-v2 42.7± 0.1 43.3± 0.3 55.1 ± 0.3
walker2d-medium-v2 79.2 ± 1.0 75.3± 2.4 76.8± 0.4

hopper-medium-replay-v2 83.9± 2.2 66.7± 15.9 86.1 ± 2.3
halfcheetah-medium-replay-v2 42.7± 0.1 42.2± 0.2 45.3 ± 1.5
walker2d-medium-replay-v2 73.9 ± 1.7 57.5± 23.3 52.7± 26.4

hopper-medium-expert-v2 91.5± 14.3 99.2± 3.6 99.8 ± 3.6
halfcheetah-medium-expert-v2 89.6± 1.4 93.2 ± 0.8 92.5± 0.8
walker2d-medium-expert-v2 105.3± 3.8 101.3± 14.8 111.1 ± 0.9

hopper-expert-v2 110.0± 0.9 111.4 ± 0.2 111.3± 0.3
halfcheetah-expert-v2 92.9± 0.1 93.6± 0.5 96.1 ± 0.3
walker2d-expert-v2 108.7± 0.1 108.5± 0.1 110.4 ± 0.1

Total MuJoCo 941.3± 30.2 981.9± 63.3 1017.5 ± 38.1

pen-human-v1 67.3 ± 2.6 − 1.4± 0.4 − 2.8± 0.7
door-human-v1 − 4.1± 1.6 0.2 ± 0.3 − 0.3± 0.0
hammer-human-v1 1.0± 0.6 0.3± 0.5 1.1 ± 0.2
relocate-human-v1 0.1 ± 0.5 0.0± 0.0 − 0.3± 0.0

pen-cloned-v1 61.7 ± 4.0 − 1.1± 1.7 11.1± 7.1
door-cloned-v1 − 0.5± 0.0 − 2.0± 0.0 − 0.3 ± 0.0
hammer-cloned-v1 0.2± 0.3 0.4 ± 0.2 0.2± 0.0
relocate-cloned-v1 0.0 ± 0.0 0.0± 0.0 − 0.3± 0.0

pen-expert-v1 115.2 ± 9.2 39.1± 9.1 108.1± 9.0
door-expert-v1 104.9 ± 0.2 0.2± 0.3 − 0.3± 0.0
hammer-expert-v1 127.6 ± 0.5 2.6± 4.6 2.5± 1.7
relocate-expert-v1 105.0 ± 0.0 0.0± 0.0 − 1.4± 0.3

Total Adroit 588.3 ± 19.5 37.9± 16.1 128.4± 19.0

Table 5: Aggregate performance of different agent optimization methods. We replace the agent
optimization approach in TROFI with three distinct offline reinforcement learning algorithms: IQL
(Kostrikov et al., 2021b), Fisher-BRC (Kostrikov et al., 2021a), and TD3+BC (Fujimoto & Gu,
2021). Of the three, TD3+BC proves to be the most suitable algorithm for MuJoCo tasks, while
IQL performs better than the others on the Adroit tasks but only in the most expert datasets. In this
scenario, the BC baseline still outperforms all offline reinforcement learning algorithms.

Dataset human-generated ranking optimal ranking

halfcheetah medium-expert 90.0± 2.6 92.5± 0.8
3D game environment 33.8± 0.3 34.5± 0.2

Table 6: Comparison between simulated human-generated ranking and optimal ranking. After we
rank the trajectories following the ground truth reward, we apply noise into the ranking to simulate
how humans would order the episodes. The table shows that, although the performance degrades
slightly, TROFI is able to reache high and stable performance.
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