

000 001 002 003 004 005 A FOUNDATION MODEL WITH MULTI-VARIATE PARAL- 006 LEL ATTENTION TO GENERATE NEURONAL ACTIVITY 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

ABSTRACT

033 Learning from multi-variate time-series with heterogeneous channel configura-
034 tions remains a fundamental challenge for deep neural networks, particularly in
035 clinical domains such as intracranial electroencephalography (iEEG), where chan-
036 nel setups vary widely across subjects. In this work, we introduce multi-variate
037 parallel attention (MVPA), a novel self-attention mechanism that disentangles
038 content, temporal, and spatial attention, enabling flexible, generalizable, and effi-
039 cient modeling of time-series data with varying channel counts and configurations.
040 We use MVPA to build MVPFormer, a generative foundation model for human
041 electrophysiology, trained to predict the evolution of iEEG signals across diverse
042 subjects. To support this and future efforts by the community, we release the
043 Long-term iEEG dataset, the largest publicly available iEEG dataset to date, com-
044 prising nearly 10,000 hours of recordings from heterogeneous clinical sources.
045 MVPFormer leverages MVPA to achieve strong generalization across subjects,
046 demonstrating expert-level performance in several iEEG tasks. MVPFormer sur-
047 passes state-of-the-art (SOTA) Transformer baselines in seizure detection across
048 the Long-term, the MAYO, and the FNUSA datasets, while also achieving SOTA
049 performance on four Brain TreeBank iEEG decoding tasks (volume, pitch, on-
050 set, and speech). We further validate MVPA on standard time-series forecasting
051 and classification tasks, where it matches or exceeds the performance of existing
052 attention-based models. Together, our contributions establish MVPA as a general-
053 purpose attention mechanism for heterogeneous time-series and MVPFormer as
054 the first open-source, open-weights, and open-data iEEG foundation model with
055 SOTA clinical performance.
056
057

058 1 INTRODUCTION

059 The increasing availability of multi-variate time-series data across domains, from financial data to
060 sensor networks to clinical recordings, has driven demand for general-purpose neural architectures
061 capable of learning from such data (Nie et al., 2023; Jin et al., 2024; Wang et al., 2024b; Guetschel
062 et al., 2024). A fundamental challenge in this setting is channel heterogeneity: different sensors (or
063 channels) often carry information that is both structurally and semantically non-uniform, while the
064 number and the location of channels may vary across instances. This is especially pronounced in
065 intracranial electroencephalography (iEEG; Nunez & Srinivasan 2006), where each subject’s elec-
066 trode layout is unique and tailored to clinical needs. iEEG models (Kuhlmann et al., 2018; Cho &
067 Jang, 2020; Thuwajit et al., 2022; Wang et al., 2023; Saab et al., 2024) often require subject-specific
068 adaptation to account for new setups, yet they still struggle to generalize. Consequently, effec-
069 tive learning from multi-variate time-series demands models that are flexible and channel-agnostic,
070 without sacrificing locality or the ability to generalize.

071 In this work, we introduce multi-variate parallel attention (MVPA, Figure 1), a novel self-attention
072 mechanism addressing the structural challenges of channel heterogeneity. MVPA decomposes at-
073 tention into three components: content-, time-, and channel-based components. Thus, it allows
074 the model to separately learn the semantics of the signal, its temporal dynamics, and spatial (inter-
075 channel) structure. MVPA enables flexible and efficient processing of time-series data, without
076 relying on fixed channel positions or global positional encodings.

To highlight MVPA’s ability to handle heterogeneous and clinically relevant time-series, we apply it to the particularly challenging domain of iEEG. Indeed, as mentioned above iEEG recordings present an ideal testbed for models designed to handle variable multi-channel structure. We use MVPA to build MVPFormer, a foundation model for human electrophysiology trained via generative pre-training to predict the evolution of brain signals.

MVPFormer is trained on the Long-term iEEG dataset, the largest available iEEG corpus to date with nearly 10,000 hours of multi-channel recordings (or 540,000 channel-hours), collected over a decade in clinical settings and made publicly available as part of this work. **Using this long-term ictal iEEG dataset, we show that MVPFormer not only models neuronal activity during both normal and ictal states, but also generalizes across patients zero-shot within the same task, and outperforms previous approaches on clinically relevant benchmarks. At the same time, MVPFormer also enables diverse downstream applications through finetuning, including seizure detection on multiple other institutional datasets (Nejedly et al., 2020) and four iEEG decoding tasks from the Brain TreeBank dataset (Wang et al., 2024a).** Remarkably, MVPFormer surpasses an equivalent purely discriminative version which has not undergone generative pre-training, strengthening the validity of foundation models in iEEG.

We further evaluate MVPA on classical time-series benchmarks, including ETTh and Weather (Zhou et al., 2021; Wu et al., 2021) for forecasting and EthanolConcentration, FaceDetection, and others (Liu & Wang, 2024) for classification. Here, MVPA matches or outperforms state-of-the-art (SOTA) models. These results establish MVPA as a competitive attention mechanism for general-purpose time-series beyond iEEG.

Our contributions are: (1) **Multi-variate parallel attention (MVPA)**, a novel self-attention mechanism that separately attends to content, temporal, and spatial structure, enabling strong generalization across multi-variate time-series with heterogeneous channels; (2) **MVPFormer**, a foundation model for human electrophysiology, powered by MVPA and trained on the largest iEEG corpus available, showing superior generalization across subjects and clinical tasks compared to models which use vanilla attention like Brant-2 (Yuan et al., 2024a); (3) The release of the **Long-term iEEG dataset**, the largest iEEG dataset publicly available to date, with almost 10,000 hours of highly curated and labeled iEEG recordings.

Moreover, we make all our contributions open source, realizing the first open-data, open-code, and open-weights iEEG foundation model.

2 MULTI-VARIATE PARALLEL ATTENTION (MVPA)

This section introduces multi-variate parallel attention (MVPA), the first main contribution of this work, as shown in Figure 1. We start with vanilla attention for 1D sequences, then present dual-coded attention for 2D sequences, which has higher computational costs. Building on this, we derive MVPA, which *efficiently* attends to both temporal and spatial aspects of multi-variate time-series data.

2.1 MVPA OVERVIEW

Vanilla attention (Vaswani et al., 2017) operates on 1D sequences of embeddings $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T)$ of dimension d ($\mathbf{x}_k \in \mathbb{R}^d$). It computes the attention between two tokens at positions (i, j) as follows¹:

$$\mathbf{a}_{i,j}^{\text{vanilla}} = (\mathbf{x}_i + \mathcal{S}_i)^T W_q^T W_k (\mathbf{x}_j + \mathcal{S}_j),$$

where \mathbf{x}_i is the query token and \mathbf{x}_j the key token. \mathcal{S} is the positional encoding, a vector with the same dimensionality (d) that helps to distinguish between different positions in the sequence. W_q and W_k are the learnable query and key matrices.

While vanilla attention has been successfully applied to 1D sequences, its extension to multi-variate time series (i.e., 2D sequences) is not obvious. Specifically, we aim to process sequences of the form $(\mathbf{x}_{1,1}, \mathbf{x}_{1,2}, \dots, \mathbf{x}_{c,t}, \dots, \mathbf{x}_{C,T})$, where c indicates the space and t the time dimension, while

¹For better readability, we describe the attention computation for a single head without activation. In practice, we generalize it to multi-head attention and apply a consecutive softmax non-linearity.

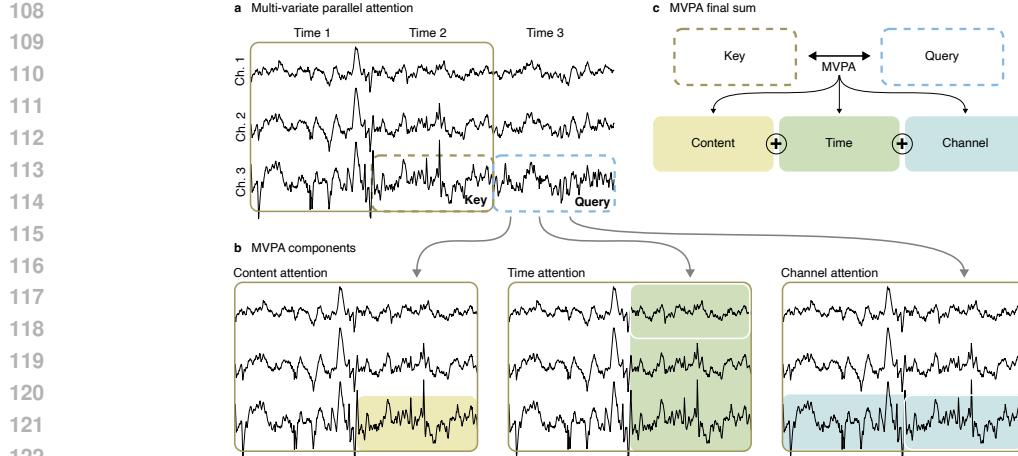


Figure 1: **Multi-variate parallel attention (MVPA).** (a) The input signal is divided into temporal and spatial segments. Each query-key interaction is computed for all keys within a local window. (b) MVPA decomposes attention into three components: content-based, computed per segment without positional encoding; time-based, shared across channels and dependent only on temporal distance; and channel-based, shared across time steps and dependent only on spatial distance. (c) The final attention is the sum of these three components, each capturing a distinct aspect of the data.

maintaining the embedding dimensionality (i.e., $\mathbf{x}_{c,t} \in \mathbb{R}^d$). One approach is to flatten the 2D data to a 1D sequence (e.g., as done by the Vision Transformer; Dosovitskiy et al. 2021); however, this will yield a loss in spatial structure. Instead, we introduce two separate learnable positional codebooks, representing space (\mathcal{C}) and time (\mathcal{T}). By equipping self-attention with this dual encoding we can treat the two dimensions individually, which is fundamental in recovering their interplay and would not be possible with vanilla attention:

$$\mathbf{a}_{c,t,c',t'}^{\text{dual}} = (\mathbf{x}_{c,t} + \mathcal{T}_t + \mathcal{C}_c)^T W_q^T W_k (\mathbf{x}_{c',t'} + \mathcal{T}_{t'} + \mathcal{C}_{c'}).$$

Dual attention allows us to exploit the relationship between time and space at the attention level, the most basic computational unit of a Transformer. We believe this allows the architecture to model the time-series at a lower level, and hence more effectively. However, the dual attention mechanism is computationally expensive, as it computes second-order correlations between time and space.

For this reason, we want to squash these cross-correlations. Specifically, we want to push as much of the spatio-temporal computation as possible to the lower levels of processing without overwhelming it. In contrast, all Transformer models equipped with vanilla attention require ancillary structures to process any relation between time and space (Nie et al., 2023; Zhang & Yan, 2023; Wen et al., 2022). Inspired by Transformer-XL (Dai et al., 2019), we encode the relative distance in the two dimensions between the segments separately and introduce new learnable bias terms (u, v, w). In contrast to Transformer-XL, however, MVPA operates on 2D signals by treating the two dimensions differently and providing a sub-quadratic solution to learn these interactions (see Appendix A.2 for a detailed comparison).

To do so, we operate the following modifications to disentangle space and time:

- $(\mathcal{T}_t + \mathcal{C}_c)^T W_q^T W_k \mathbf{x}_{c',t'} \rightarrow u^T W_{k_e} \mathbf{x}_{c',t'}$;
- $(\mathcal{T}_t + \mathcal{C}_c)^T W_q^T W_k [\mathcal{T}_{t'} | \mathcal{C}_{c'}] \rightarrow [v|w]^T W_{k_{[t|c]}} [\mathcal{T}_{t-t'} | \mathcal{C}_{c-c'}]$;

which characterize the relative error with respect to the full quadratic dual-encoding attention.

Finally, after removing the second-order effects we rearrange the expanded equation into three related groups:

$$\mathbf{a}_{c,t,c',t'}^{\text{MVPA}} = \mathbf{x}_{c,t}^T W_q^T W_{k_e} \mathbf{x}_{c',t'} + u^T W_{k_e} \mathbf{x}_{c',t'} \quad (1)$$

$$+ \mathbf{x}_{c,t}^T W_q^T W_{k_t} \mathcal{T}_{t-t'} + v^T W_{k_t} \mathcal{T}_{t-t'} \quad (2)$$

$$+ \mathbf{x}_{c,t}^T W_q^T W_{k_c} \mathcal{C}_{c-c'} + w^T W_{k_c} \mathcal{C}_{c-c'} \quad (3)$$

162 and compute the final softmax attention as:
 163

$$164 \quad A = \frac{\text{softmax}(\mathbf{a}^{\text{MVPA}})V}{\sqrt{d}} \quad (4)$$

165
 166

167 The three terms above are the attentional components of MVPA. Content-based attention only attends to the content of query and key, without any positional encoding. In this component we
 168 compute the relationship between two raw segment embeddings, so we modulate the final attention
 169 output without considering any structure of the signal. Time-based attention only attends to the
 170 query and the distance in time with the key. In this component, only the relative distance in time is
 171 considered, allowing for arbitrary signal lengths without loss of generality. Finally, channel-based
 172 attention only attends to the query and the distance in space with the key. Similarly to the time-based
 173 component, also the distance in the channel-based component is relative.
 174

175 This feature is particularly interesting for the channel-based component, given the heterogeneity of
 176 possible channel setups. Specifically, the channel component uncovers the hidden connection map
 177 between the spatial locations from its initial random initialization, as shown in Appendix G.11. In
 178 fact, while the use of the absolute position of the electrodes has produced notable work (Jirsa et al.,
 179 2023), much of the literature has shown that such information might not be necessary (Schindler
 180 et al., 2006; 2008). Therefore, our relative encoding scheme affords us maximum flexibility while
 181 not sacrificing performance, as MVPFormer outperforms the SOTA both on the seizure detection
 182 task (see Section 5.2.1) and on the four tasks of the Brain TreeBank dataset (see Section 5.2.2),
 183 which explicitly provides the absolute channel positions.
 184

185 2.2 EFFICIENT IMPLEMENTATION OF MVPA

186 As MVPA’s computational cost is still quadratic in space and time, we employ several techniques to
 187 further reduce the complexity and enable the efficient processing of very large signals. We present
 188 here the main techniques, while the details can be found in Appendix A.

189 Efficiently computing the time- and channel-based terms requires two main techniques. First, we
 190 recognize that it is unnecessary to compute the full attention matrix, which is quadratic in the con-
 191 text length (i.e., both time and space). By design, all elements of the time-based attention are the
 192 same for each channel (see Figure 1b, the green components are all equal), and all elements of the
 193 channel-based attention are the same for each time point (see Figure 1c, the blue components are all
 194 equal). Hence, complexity is quadratic in one dimension and constant in the other. We then simply
 195 repeat the elements along the right dimension at no additional cost. Second, we employ the shifting
 196 operation (Dai et al., 2019) to compute all relative embeddings in one pass.
 197

Content attention remains the most expensive component. To further reduce the cost, we make use
 of a local attention window (Child et al., 2019) that focuses on the most recent L (in our case 10
 segments, or 50 seconds) time points. Since time-based attention is not limited, the lookup window
 still spans the entire context. Thus, for $L \ll T$, the total complexity of MVPA is $O(T^2 \times C + T \times C^2)$, quadratic in each dimension but subquadratic in the context length. Combining all techniques,
 MVPA pushes the effective total context length on an NVIDIA A100-80GB GPU to over 10,000
 (e.g., 100 channels and 100 time segments).

Additionally, we use grouped query attention (Ainslie et al., 2023) to reduce the number of heads
 without loss of performance. Moreover, we develop FlashMVPA based on FlashAttention (Dao
 et al., 2022; Dao, 2024), implemented in the OpenAI Triton language, providing us with lower-level
 access to CUDA primitives and superior performance (see Appendix A).

3 MVPFORMER

MVPFormer is our novel Transformer-based predictive unimodal foundational model equipped with
 MVPA, that processes heterogeneous multi-variate iEEG data (see Figure 2). While it is customary
 for language-based Transformer models to employ a finite vocabulary of words, such a definition
 is non-trivial for iEEG. At the same time, recent works have challenged this discrete paradigm in
 favor of continuous latent representations (LeCun, 2022; Tack et al., 2025; Tschannen et al., 2025)
 and continuous chain-of-thought mechanisms (Hao et al., 2024; Geiping et al., 2025). In a similar

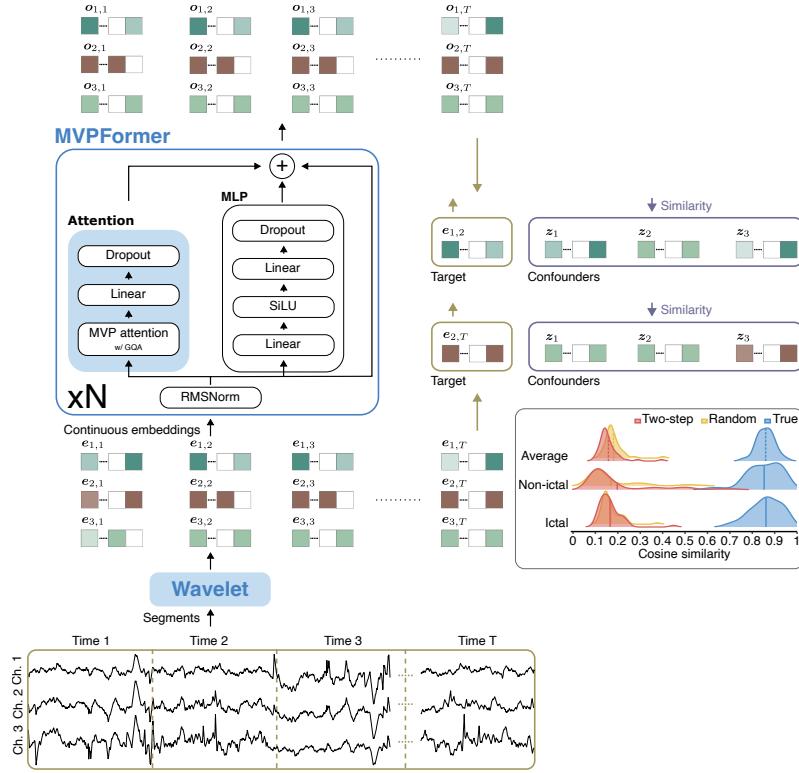


Figure 2: **MVPFormer architecture and forward pass.** iEEG signals are segmented in time and space, encoded via a wavelet-based encoder, and arranged into a 2D embedding grid. These continuous embeddings are processed by MVPA to model temporal, spatial, and content-based dependencies. MVPFormer predicts the next-in-time embedding while reducing similarity to confounders from the same or other subjects. Notched in the bottom right is the resulting cosine similarity with the true target and the confounders after training. The two-step target is the signal twice removed in the future.

vein, MVPFormer predicts the development of neuronal activity in a *continuous* embedding space governed by a wavelet encoder. We build MVPFormer following the foundational paradigm, with a pre-training dedicated to predicting the future iEEG embedding using a contrastive loss function. Moreover, we show that a successive fine-tuning using LoRA (Hu et al., 2022) and a simple classification head allows MVPFormer to perform downstream classification tasks. In particular, our results indicate that a model trained in this fashion surpasses an equivalent purely discriminative model (i.e., without generative pre-training), strengthening the validity of foundation models in the iEEG domain as well. Appendix B provides the full details on the architecture.

3.1 TRAINING

Generative pre-training MVPFormer is pre-trained to generate neuronal activity by predicting successive input segments in time. During pre-training, random input segments from batched windows are used as confounding targets ($Z = \{z_1, \dots, z_n\}$), which are plausible but different from the true target. We compute the contrastive loss as follows

$$\mathcal{L}_{c,t} = -\log \frac{\exp(\text{sim}(\mathbf{o}_{c,t}, \mathbf{e}_{c,t+1})/\tau)}{\sum_{\mathbf{z}_k \in Z} \exp(\text{sim}(\mathbf{o}_{c,t}, \mathbf{z}_k)/\tau)}, \quad (5)$$

where $\mathbf{o}_{c,t}$ is the model’s output embedding and $\mathbf{e}_{c,t+1}$ the ground-truth next-state embedding. Summing over every c, t gives us the optimization target for the generative task. The temperature τ is 0.1 and the number of confounders n is 30. The contrastive setting (Chen et al., 2020) provides a clearer distinction between segments that are effectively similar in shape, allowing MVPFormer

270 to better model the dynamics of the signal without incurring into the typical pitfalls of L2 distance
 271 (such as neural collapse; Han et al. 2022). **Given this generative setup, MVPFormer predicts the**
 272 **development in the latent space, rather than the raw signals themselves.** See Appendix C.1 for more
 273 details on the pre-training.

275 **Validation of pre-training** Given the architecture of MVPFormer, we need to ensure that the
 276 true target and the confounders are sufficiently well-separated in cosine similarity. We evaluate
 277 MVPFormer’s ability to predict embeddings of future iEEG signals by comparing the predicted
 278 embedding at time t to the ground truth embedding at $t + 1$ using the cosine similarity. To do so, we
 279 introduce two references: (1) the embedding at $t + 2$, which is highly correlated with $t + 1$, and (2) a
 280 random future segment sampled within the next two minutes. In fact, given the high auto-correlation
 281 of iEEG signals, a naïve prediction model could simply predict again time t , and be moderately
 282 successful due to its similarity with $t + 1$. Our results (see Figure 2 and Appendix F) show that
 283 the wavelet-based encoder ensures signal features are well preserved, mapping even mildly similar
 284 signals to distinct embeddings.

285 **LoRA fine-tuning for downstream tasks** For downstream tasks, we use a small classification head
 286 (i.e., a linear layer). This layer has input size equal to the decoder’s block output size, and output
 287 size equal to the dimensionality of the classification task (i.e., 2 for seizure classification). The
 288 input to this classification head is either the channel-averaged (for seizure detection) or the channel-
 289 concatenated output of the last signal segment in time (for the pitch, volume, onset, and speech
 290 tasks). The output of the classification head is then passed through a softmax to compute the binary
 291 cross-entropy loss. We further adopt LoRA (Hu et al., 2022) to perform parameter-efficient fine-
 292 tuning. We only fine-tune the q and v layers of the self-attention in the base MVPFormer model,
 293 with a LoRA rank of 8 and alpha of 16. This leads to a number of trainable parameters during
 294 fine-tuning of approximately 0.1% of the base model.

295 4 LONG-TERM iEEG DATASET

297 The lack of publicly available large-scale iEEG datasets has been a significant obstacle to the devel-
 298 opment of foundation models for this modality. In fact, while EEG datasets are abundant (Tanger-
 299 mann et al., 2012; Shoeb, 2010) and large (Obeid & Picone, 2016), with tens of thousands of record-
 300 ing hours, such resources are lacking in the iEEG domain. **Due to significant barriers tied to data**
 301 **collection and privacy, available iEEG datasets cover few hours (35 subjects and 290 hours; Nejedly**
 302 **et al. 2020) and subjects (10 subjects and 43 hours; Wang et al. 2024a), while larger datasets are**
 303 **kept private Yuan et al. (2024b).**

304 In an effort towards addressing this issue, together with this work we open-source the Long-term
 305 iEEG dataset, a large-scale iEEG dataset consisting of a total of 68 subjects, 9328 hours of recording,
 306 and 704 ictal events. To our knowledge, the Long-term iEEG dataset is the largest publicly available
 307 iEEG dataset, fully curated and labelled by experienced clinicians. Due to institutional data privacy
 308 concerns, the dataset does not contain information about the location of the channels in the brain.
 309 Appendix D reports more details and illustrates two example recordings.

311 5 EXPERIMENTS

313 5.1 SETUP

315 **Pre-training** We pre-train MVPFormer on 18 subjects, leaving the remaining 50 subjects for test-
 316 ing. MVPFormerM is pre-trained for 1.2M steps on a single node with 8 NVIDIA A100-80GB
 317 GPUs for two weeks. The chosen optimizer is FusedAdam with 0.1 weight decay, from the Deep-
 318 speed library compiled on the specific machine. The training used bf16-mixed DeepSpeed stage
 319 2 without activation checkpointing. The learning rate is fixed to 10^{-4} . The training environment
 320 includes PyTorch 2.0, PyTorch Lightning 2.0, and Triton 2.1.0.

322 **Fine-tuning** After pre-training, we further fine-tune the MVPFormer for each task. For the seizure
 323 detection task, we fine-tune on the same 18 subjects of the Long-term iEEG dataset, and then test
 in a zero-shot manner on nearly 7,000 hours of iEEG data from 50 unseen subjects, all of them

suffering from epilepsy. To keep computational cost moderate, we use a subset of the channels of each subject for testing: we select them based on a combination of variance and kurtosis, excluding the noisier ones (see Appendix E.1. In a real-world clinical scenario selection and validation would comprise a minimal additional burden for the expert. The number of channels chosen is fixed to 32 to simplify comparisons with the other baselines, but we also provide ablations using manual channel selection and no channel selection at all (see Appendix G.8. For the four tasks of the Brain TreeBank dataset, we follow the same procedure as BrainBERT (Wang et al., 2023) and PopT (Chau et al., 2025) by first fine-tuning on the specific subject on a subset of the data and then testing on the remaining data. As before, we also evaluate the robustness of MVPFormer with respect to the channel selection in Appendix G.16.

334 5.2 iEEG TASKS

335 5.2.1 SEIZURE DETECTION TASK

We begin by evaluating MVPFormer on the seizure detection task on iEEG data. First, we consider a clinically realistic setup that compares model predictions to a board-certified neurologist annotations using Cohen’s Kappa. To do so, the predictions are post-processed to yield episodic results (see Appendix E). Cohen’s Kappa (Danker-Hopfe et al., 2004; Schlägl et al., 2005; McHugh, 2012) is widely used to quantify inter-rater reliability in seizure classification. The Landis and Koch criteria (Landis & Koch, 1977) (see Appendix E) are often used in practice to evaluate human performance. Expert-level performance in the seizure classification task varies considerably, from 0.58 (Halford et al., 2015) to 0.53 (Grant et al., 2014) in EEG, to 0.57 (Quigg et al., 2015) in iEEG. We consider Kappa values above 0.53 to be expert-level. We must also consider that when comparing the decisions of human raters, only few (in the order of tens) curated episodes are evaluated. In contrast, our setup involves many more subjects and ictal events (in the order of thousands), making this task more challenging for MVPFormer. MVPFormer achieves an average Kappa of 0.61 across 50 unseen subjects from the Long-term iEEG dataset, matching human expert performance (see Figure 13). Importantly, agreement varies by subject, reflecting the clinical reality that seizure presentation complexity strongly affects classification (see Appendix G.10).

Overall, MVPFormer demonstrates expert-level seizure classification across a large, heterogeneous cohort. This performance, combined with its low false positive rate (0.15 fp/h), positions MVPFormer as a promising clinical assistant for real-world iEEG analysis.

Second, we consider a conventional evaluation (see Appendix G.3) based on F1-score, sensitivity, specificity, and number of false positives per hour (fp/h). We compare MVPFormer against three strong baselines: (1) Brant-2 (Yuan et al., 2024a), a SOTA Transformer for iEEG, fine-tuned here starting from the published weights. Brant-2 requires all subjects to have the same number of channels for classification; hence, we were not able to test all subjects with it. (2) BrainBERT (Wang et al., 2023), another SOTA iEEG model with public weights. (3) MV-Llama, an ablation of MVPFormer-S that replaces MVPA with vanilla attention, is trained identically to MVPFormer. After undergoing the same task-specific finetuning of MVPFormer, we test the considered models zero-shot across the unseen subjection of our Long-term iEEG dataset, and also apply them on the MAYO and FNUSA datasets (Nejedly et al., 2020) (see Appendix G.12).

Table 1: **Results on the iEEG seizure detection tasks.** We compare MVPFormer with multiple baselines across 3 iEEG datasets. The best results are bolded.

Model	Attention	SWEC		MAYO		FNUSA	
		Kappa	f1	f1	f1	f1	f1
MVPFormer	MVPA	0.61	0.59	0.36	0.46		
MVPFormer-S	MVPA	0.57	0.53	0.35	0.46		
MV-Llama	Vanilla	0.11	0.01	/	/		
Brant-2	Vanilla	0.06	0.01	0.19	0.46		
BrainBERT	Vanilla	0.00	0.00	/	/		

As shown in Table 1, all baselines fail to generalize on our Long-term iEEG dataset, achieving Kappa scores of just 0.11, 0.05, and 0.00, while MVPFormer achieves 0.61 and 0.57 in medium and small configurations, respectively. Specifically, BrainBERT always fails to detect a seizure, while Brant-2’s behaviour is more nuanced. We provide in Appendix G the complete per-subject statistics, including 95% confidence intervals. Moreover, MVPFormer outperforms the baselines on MAYO (highest f1-score of 0.36) and is on par on FNUSA. As a further baseline — to validate our choice of pre-training — we also compare MVPFormer-S with an equivalent model built without the generative base task (i.e., without the initial contrastive loss-based training, see Appendix G.13). With this setup, the purely discriminative model only reaches a Kappa score of 0.52, inferior to the equivalent MVPFormer-S which reached 0.54. The full set of results can be found in Appendix G.1.

5.2.2 BRAIN TREEBANK DECODING TASKS

We validate the generalization of MVPFormer by testing it on the four tasks of the Brain TreeBank dataset (Wang et al., 2024a), as described in Wang et al. (2023); Chau et al. (2025). The four tasks are: 1) discrimination of volume level (volume), 2) discrimination of pitch (pitch), 3) classification of sentence onset (onset), and 4) classification of speech (speech). All four tasks involve the discrimination of high-level cognitive behaviors from iEEG recordings. As such, they represent a significant testbed for MVPFormer outside of its design environment of seizure detection. Table 2 shows the results of MVPFormer against the SOTA baselines represented by PopT (Chau et al., 2025), BrainBERT (Wang et al., 2023), and Brant (Zhang et al., 2023), as reported by PopT (Chau et al., 2025). The full results can be found in Appendix G.2.

Table 2: **Results on the Brain TreeBank tasks.** We compare MVPFormer with multiple baselines the 4 tasks of the Brain TreeBank dataset. The models requiring the electrodes’ position are indicated by \dagger . The best results without the electrodes’ position are bolded, while the results where the electrodes’ position is beneficial are underlined.

Model	Attention	Pitch		Volume		Onset		Speech	
		acc	acc	acc	acc	acc	acc	acc	acc
MVPFormer-S	MVPA	0.83	0.88	0.87	0.90				
MV-Llama	Vanilla	0.63	0.77	0.80	0.81				
Brant	Vanilla	0.61	0.74	0.80	0.80				
BrainBERT	Vanilla	0.59	0.66	0.70	0.71				
PopT \dagger	Vanilla	0.74	0.87	<u>0.90</u>	<u>0.93</u>				
PopT	Vanilla	0.62	0.76	0.81	0.83				

The Brain TreeBank dataset contains information about the 3D location of the electrodes. On the one hand, this information is often unavailable in datasets, so we explicitly design MVPA not to require it, by autonomously building an implicit channel map (see Appendix G.11). On the other hand, PopT was specifically developed for the Brain TreeBank dataset, and therefore takes into account the electrodes’ physical location. Nonetheless, MVPFormer surpasses all baselines on the pitch and volume tasks, providing further evidence that MVPA is well-suited to iEEG tasks and generalizing the model’s ability beyond its original task. On the remaining two tasks, MVPFormer places second behind PopT, but is still superior to PopT without the electrodes’ location. These results indicate that, while the electrodes’ position might be beneficial in some instances, MVPA’s implicit channel map produces superior results overall by being more flexible and adaptable to a wider variety of existing datasets.

6 EVALUATION ON GENERAL TIME-SERIES

We have shown that MVPFormer achieves SOTA results in its native modality of iEEG. However, the design of MVPA should allow it to make use of the item and channel information intrinsic to any multi-channel time-series. To this end, we also provide a baseline evaluation of MVPA against established alternatives in the time-series domain. We compare MVPFormer with existing SOTA architectures on classical long-term forecasting and classification tasks.

432 6.1 TIME-SERIES FORECASTING
433

434 Table 3 reports the results of MVPFormer, the vanilla Transformer (Vaswani et al., 2017),
 435 PatchTST (Nie et al., 2023), TimesFM (Das et al., 2024), TimeMixer (Wang et al., 2024b), and
 436 WPMixer (Murad et al., 2025) on the ETTh1, ETTh2, and Weather datasets (Zhou et al., 2021; Wu
 437 et al., 2021). MVPFormer always equals or surpasses the baselines (see Appendix G.17 for the full
 438 results).

440 **Table 3: Results on the time-series forecasting task.** We report the mean-squared error (MSE) and
 441 mean-absolute error (MAE) averaged over all forecasting lengths.

Model	Dataset	Length	MVPFormer		Transformer		PatchTST		TimesFM		TimeMixer		WPMixer	
			MSE	MAE										
	ETTh1	Avg.	0.45	0.45	1.00	0.80	0.45	0.45	0.45	0.45	0.45	0.44	0.45	0.44
	ETTh2	Avg.	0.38	0.41	3.37	1.48	0.39	0.41	0.38	0.41	0.39	0.41	0.38	0.41
	Weather	Avg.	0.25	0.28	0.59	0.53	0.26	0.28	0.26	0.28	0.25	0.28	0.25	0.28

442 6.2 TIME-SERIES CLASSIFICATION
443

444 Moreover, we evaluate MVPA on common classification tasks, against the vanilla Transformer and
 445 PatchTST on the EthanolConcentration (EtCo), FaceDetection (FaDe), HandWriting (HaWr), Heart-
 446 beat (HaBe), JapaneseVowels (JaVo), PEMSSF (PEMS), SCP1, SCP2, SpokenArabic (SpAr), and
 447 Uwave datasets (Liu & Wang, 2024).

448 **Table 4: Accuracy on time-series classification tasks.** We report the accuracy per task.

	EtCo	FaDe	HaWr	HaBe	JaVo	PEMS	SCP1	SCP2	SpAr	Uwave
MVPFormer	0.33	0.66	0.21	0.70	0.95	0.86	0.86	0.54	0.97	0.80
Transformer	0.29	0.64	0.20	0.70	0.91	0.84	0.83	0.54	0.95	0.80
PatchTST	0.29	0.67	0.23	0.72	0.95	0.85	0.83	0.51	0.97	0.82
TimesFM	0.29	0.68	0.23	0.71	0.93	0.84	0.83	0.52	0.99	0.82

449 TimeMixer and WPMixer are forecasting-only architectures, so we could not test them. Table 4
 450 shows that MVPFormer achieves SOTA results on general classification tasks as well. At the same
 451 time, these results highlight the generalization capability of MVPFormer that, in contrast to other
 452 models, is effective in both forecasting and classification.

453 6.3 ABLATION OF THE THREE COMPONENTS
454

455 Finally, we make use of the general time-series setting to validate the contribution of the three differ-
 456 ent components of MVPA: content, time, and channel. In Sections 5.2.1 and 5.2.2 we confirmed that
 457 MVPA provides a notable increase in performance to MVPFormer in its native iEEG environment.

458 **Table 5: Ablation of the components of MVPA on the time-series forecasting task.** We report the
 459 mean-squared error (MSE) and mean-absolute error (MAE) averaged over all forecasting lengths.

Model	Dataset	Length	MVPA		Content-only		Time-only		Channel-only		None	
			MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	ETTh1	Avg.	0.45	0.45	0.46	0.45	0.46	0.45	0.46	0.45	0.47	0.46
	ETTh2	Avg.	0.38	0.41	0.38	0.40	0.38	0.41	0.38	0.41	0.40	0.41
	Weather	Avg.	0.25	0.28	0.27	0.29	0.27	0.29	0.26	0.28	0.27	0.29

459 In Table 5 we report the results of MVPA, content-only MVPA, time-only MVPA, channel-only
 460 MVPA, and no-component MVPA on the ETTh1, ETTh2, and Weather datasets. MVPA obtains the
 461 best performance over all datasets, providing further evidence that the three components jointly learn

486 the different aspects of the signal. Interestingly, the performance gap on the Weather dataset is larger,
 487 as is its number of channels: 21 instead of 7 of ETTh1 and ETTh2. This result supports our design
 488 of MVPA, which is able to take advantage of the information content in the strongly multi-variate
 489 time-series better than its simpler counterparts. The full results can be found in Appendix G.18.
 490

491 7 RELATED WORKS

494 Single-channel data has been treated as 1D sequences for tasks like speech recognition, where the
 495 signal is divided into patches that serve as tokens (Schneider et al., 2019; Gulati et al., 2020). Ex-
 496 tending vanilla attention to multi-dimensional data, such as images, is more complex. The Vision
 497 Transformer (Dosovitskiy et al., 2021) processes images by flattening 2D patches into a 1D se-
 498 quence, losing spatial structure in the process. However, this approach is inflexible and unsuitable
 499 for generalizing to images with different heights and widths. Other mechanisms (Ho et al., 2019;
 500 Huang et al., 2019; Child et al., 2019; Bulat et al., 2021; Arnab et al., 2021) alternative to vanilla
 501 attention have been developed to speed up computation in the 1D case or to extend it to 2D. We
 502 compare MVPA against such alternatives in more detail in Appendix A.2.

502 For multi-variate time-series, such as EEG, Transformers face challenges due to the need to pre-
 503 serve both time and channel information (Wen et al., 2022; Cui & Lv, 2024). Channel-independent
 504 approaches (Nie et al., 2023) reuse vanilla self-attention and discard all information content in the
 505 time dimension, while channel-mixing promises to preserve it by either fusing the channels (Zhou
 506 et al., 2022) or processing them sequentially (Zhang & Yan, 2023). For neural spike data, a fusion
 507 of channel and time aspects has been proposed (Le & Shlizerman, 2022), albeit without complete
 508 integration at the attention level. Specifically for iEEG and EEG, there exist few Transformer-based
 509 solutions (Zhang et al., 2023; Yuan et al., 2024a). Since electrode placements vary widely across
 510 subjects, these models struggle with the heterogeneous nature of the data.

511 Some models (Chau et al., 2025) tackle this issues by requiring the absolute position of the elec-
 512 trodes, limiting their applicability to datasets that do have such information. In particular, due to
 513 practical and ethical concerns, the publicly available datasets without the absolute position of the
 514 electrodes (Burrello et al., 2018; 2019; Nejedly et al., 2020; Li et al., 2021), including ours, notably
 515 outsize the ones that do (Wang et al., 2024a; Keles et al., 2024; Zada et al., 2025). Overall, the com-
 516 plex interplay between time and space, where distant brain regions may be more strongly connected
 517 than nearby ones, makes it difficult for conventional attention mechanisms to effectively process
 518 iEEG signals.

519 8 CONCLUSION

522 We introduce MVPA, a novel attention mechanism designed to effectively process multi-variate
 523 time-series data, exemplified by its application to iEEG signal analysis. MVPA enables MVPFormer,
 524 a foundation model trained on our novel Long-term iEEG dataset, to capture complex interactions
 525 between time and spatial dimensions in multi-variate time-series. We also contribute the Long-term
 526 iEEG dataset itself, as the largest iEEG dataset currently publicly available. MVPFormer is trained
 527 following the foundational paradigm to predict the next brain states, and then further fine-tuned on
 528 multiple tasks. MVPA ensures robust performance across several iEEG tasks and dataset. It reaches
 529 high inter-rater agreement (0.61 Kappa score) on our large scale and challenging Long-term iEEG
 530 dataset, notably surpassing the SOTA Brant-2 (0.08). It also achieves SOTA results on the four
 531 tasks of the Brain TreeBank dataset, even surpassing models specifically designed for them. More-
 532 over, MVPA equals or surpasses the SOTA also in classical time-series forecasting and classification
 533 tasks. Overall, our results show that MVPA affords MVPFormer superior generalization capabilities
 534 while maintaining computational efficiency and scalability, marking a significant advancement in
 535 the analysis of time-series data and iEEG in particular.

536 ETHICS STATEMENT

538 During the collection of the Long-term iEEG dataset, all the subjects gave written informed
 539 consent that their iEEG data might be used for research and teaching purposes. The decision on the
 necessity for iEEG recordings, the electrode implantation scheme, and the decision about surgical

540 therapy were made entirely on clinical grounds. These decisions were taken prior to and completely
 541 independently from the compilation of this dataset.
 542

543 **REPRODUCIBILITY STATEMENT**
 544

545 This paper describes the MVPA algorithm in Section 2 and Appendix A, and the architecture of
 546 MVPFormer in Section 3 and Appendix B. All the hyperparameters are in Appendix B.
 547

548 The setup used for training and evaluating our model are in Section 5.1.
 549

550 The Long-term iEEG dataset is publicly available in non-anonymous form. In order to preserve
 551 anonymity, we make a sample available here in the Supplementary materials, together with a code
 552 snippet for visualization.
 553

554 The code of MVPFormer is publicly available in non-anonymous form. In order to preserve
 555 anonymity, we provide an anonymized version in the Supplementary materials.
 556

555 **REFERENCES**
 556

557 Hojjat Adeli, Ziqin Zhou, and Nahid Dadmehr. Analysis of EEG records in an epileptic patient
 558 using wavelet transform. *Journal of neuroscience methods*, 123(1):69–87, 2003.
 559

560 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
 561 Sanghali. GQA: Training generalized multi-query transformer models from multi-head check-
 562 points. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
 563 cessing*, 2023.

564 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
 565 Vivit: A video vision transformer. In *Proceedings of the IEEE/CVF International Conference on
 566 Computer Vision (ICCV)*, 2021.

567 Mark P. Beenhakker and John R. Huguenard. Neurons that fire together also conspire together: Is
 568 normal sleep circuitry hijacked to generate epilepsy? *Neuron*, 2009.
 569

570 Richard F. Betzel, John D. Medaglia, Ari E. Kahn, Jonathan Soffer, Daniel R. Schonhaut, and
 571 Danielle S. Bassett. Structural, geometric and genetic factors predict interregional brain con-
 572 nectivity patterns probed by electrocorticography. *Nature Biomedical Engineering*, 2019.
 573

574 Elisa Bruno, Pedro F. Viana, Michael R. Sperling, and Mark P. Richardson. Seizure detection at
 575 home: Do devices on the market match the needs of people living with epilepsy and their care-
 576 givers? *Epilepsia*, 2020.

577 Adrian Bulat, Juan Manuel Perez Rua, Swathikiran Sudhakaran, Brais Martinez, and Georgios Tz-
 578 imiopoulos. Space-time mixing attention for video transformer. In *Advances in Neural Infor-
 579 mation Processing Systems (NeurIPS)*, 2021.

580 Alessio Burrello, Kaspar Schindler, Luca Benini, and Abbas Rahimi. One-shot learning for iEEG
 581 seizure detection using end-to-end binary operations: Local binary patterns with hyperdimen-
 582 sional computing. In *2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)*, 2018.
 583

584 Alessio Burrello, Lukas Cavigelli, Kaspar Schindler, Luca Benini, and Abbas Rahimi. Laelaps: An
 585 energy-efficient seizure detection algorithm from long-term human iEEG recordings without false
 586 alarms. In *Design, Automation & Test in Europe Conference & Exhibition (DATE)*, 2019.
 587

588 Geeling Chau, Christopher Wang, Sabera J Talukder, Vighnesh Subramaniam, Saraswati Soedar-
 589 madji, Yisong Yue, Boris Katz, and Andrei Barbu. Population Transformer: Learning population-
 590 level representations of neural activity. In *International Conference on Learning Representations
 591 (ICLR)*, 2025.

592 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 593 contrastive learning of visual representations. In *International Conference on Machine Learning
 594 (ICML)*, 2020.

594 Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
 595 transformers. *arXiv preprint arXiv:1904.10509*, 2019.
 596

597 Kyung-Ok Cho and Hyun-Jong Jang. Comparison of different input modalities and network struc-
 598 tures for deep learning-based seizure detection. *Scientific Reports*, 2020.

599 Wenhui Cui, Woojae Jeong, Philipp Thölke, Takfarinas Medani, Karim Jerbi, Anand A. Joshi,
 600 and Richard M. Leahy. Neuro-GPT: Developing a foundation model for EEG. *arXiv preprint*
 601 *arXiv:2311.03764*, 2023.

602

603 Xiandai Cui and Hui Lv. Steft: Spatio-temporal embedding fusion transformer for traffic prediction.
 604 *Electronics*, 13(19), 2024.

605

606 Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
 607 Transformer-XL: Attentive language models beyond a fixed-length context. In *Proceedings of the*
 608 *57th Annual Meeting of the Association for Computational Linguistics*, 2019.

609 Heidi Danker-Hopfe, D. Kunz, G. Gruber, G. Klösch, J. L. Lorenzo, S. L. Himanen, B. Kemp,
 610 T. Penzel, J. Röschke, H. Dorn, A. Schlägl, E. Trenker, and G. Dorffner. Interrater reliability
 611 between scorers from eight european sleep laboratories in subjects with different sleep disorders.
 612 *Journal of Sleep Research*, 13(1):63–69, 2004.

613

614 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *Inter-
 615 national Conference on Learning Representations (ICLR)*, 2024.

616

617 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
 618 memory-efficient exact attention with IO-awareness. In *Advances in Neural Information Process-
 619 ing Systems (NeurIPS)*, 2022.

620

621 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
 622 time-series forecasting. In *International Conference on Machine Learning (ICML)*, 2024.

623

624 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 625 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
 626 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 627 scale. In *International Conference on Learning Representations (ICLR)*, 2021.

628

629 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
 630 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
 631 latent reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.

632

633 Jean Gotman. A few thoughts on “what is a seizure?”. *Epilepsy & Behavior*, 22:S2–S3, 2011.

634

635 Arthur C. Grant, Samah G. Abdel-Baki, Jeremy Weedon, Vanessa Arnedo, Geetha Chari, Ewa
 636 Koziorynska, Catherine Lushbough, Douglas Maus, Tresa McSween, Katherine A. Mortati,
 637 Alexandra Reznikov, and Ahmet Omurtag. EEG interpretation reliability and interpreter con-
 638 fidence: A large single-center study. *Epilepsy & Behavior*, 32, 2014.

639

640 Pierre Guetschel, Thomas Moreau, and Michael Tangermann. S-JEPA: towards seamless cross-
 641 dataset transfer through dynamic spatial attention. In *Graz Brain-Computer Interface Conference*,
 642 2024.

643

644 Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
 645 Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer
 646 for speech recognition. *arXiv preprint arXiv:2005.08100*, 2020.

647

648 J.J. Halford, D. Shiau, J.A. Desrochers, B.J. Kolls, B.C. Dean, C.G. Waters, N.J. Azar, K.F. Haas,
 649 E. Kutluay, G.U. Martz, S.R. Sinha, R.T. Kern, K.M. Kelly, J.C. Sackellares, and S.M. LaRoche.
 650 Inter-rater agreement on identification of electrographic seizures and periodic discharges in icu
 651 eeg recordings. *Clinical Neurophysiology*, 126(9), 2015.

652

653 X.Y. Han, Vardan Papyan, and David L. Donoho. Neural collapse under MSE loss: Proximity to and
 654 dynamics on the central path. In *International Conference on Learning Representations (ICLR)*,
 655 2022.

648 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 649 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint*
 650 *arXiv:2412.06769*, 2024.

651

652 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. DeBERTa: Decoding-enhanced bert
 653 with disentangled attention. In *International Conference on Learning Representations (ICLR)*,
 654 2021.

655 Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidimensional
 656 transformers. *arXiv preprint arXiv:1912.12180*, 2019.

657

658 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 659 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
 660 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 661 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
 662 Training compute-optimal large language models. *Advances in Neural Information Processing
 663 Systems (NeurIPS)*, 36, 2022.

664 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 665 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-
 666 ference on Learning Representations (ICLR)*, 2022.

667

668 Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang, Yunchao Wei, and Wenyu Liu. CC-
 669 Net: Criss-cross attention for semantic segmentation. In *Proceedings of the IEEE/CVF Interna-
 670 tional Conference on Computer Vision (ICCV)*, 2019.

671

672 Herbert H. Jasper. Report of the committee on methods of clinical examination in electroencephalog-
 673 raphy: 1957. *Electroencephalography and Clinical Neurophysiology*, 10(2):370–375, 1958.

674

675 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
 676 uan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting by
 677 reprogramming large language models. In *International Conference on Learning Representations
 678 (ICLR)*, 2024.

679

680 Viktor Jirsa, Huifang Wang, Paul Triebkorn, Meysam Hashemi, Jayant Jha, Jorge Gonzalez-
 681 Martinez, Maxime Guye, Julia Makhalova, and Fabrice Bartolomei. Personalised virtual brain
 682 models in epilepsy. *The Lancet Neurology*, 22(5):443–454, 2023.

683

684 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 685 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 686 models. *arXiv preprint arXiv:2001.08361*, 2020.

687

688 Umit Keles, Julien Dubois, Kevin J. M. Le, J. Michael Tyszka, David A. Kahn, Chrystal M. Reed,
 689 Jeffrey M. Chung, Adam N. Mamelak, Ralph Adolphs, and Ueli Rutishauser. Multimodal single-
 690 neuron, intracranial EEG, and fMRI brain responses during movie watching in human patients.
 691 *Scientific Data*, 11(1), 2024.

692

693 Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
 694 *International Conference on Learning Representations (ICLR)*, 2020.

695

696 Levin Kuhlmann, Klaus Lehnertz, Mark P. Richardson, Björn Schelter, and Hitten P. Zaveri. Seizure
 697 prediction — ready for a new era. *Nature Reviews Neurology*, 14(10), 2018.

698

699 J. Richard Landis and Gary G. Koch. The measurement of observer agreement for categorical data.
 700 *Biometrics*, 33(1):159, 1977.

701

702 Trung Le and Eli Shlizerman. STNDT: Modeling neural population activity with spatiotemporal
 703 transformers. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

704

705 Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. *Open
 706 Review*, 62(1):1–62, 2022.

702 Adam Li, Chester Huynh, Zachary Fitzgerald, Iahn Cajigas, Damian Brusko, Jonathan Jagid, An-
 703 gel O. Claudio, Andres M. Kanner, Jennifer Hopp, Stephanie Chen, Jennifer Haagensen, Emily
 704 Johnson, William Anderson, Nathan Crone, Sara Inati, Kareem A. Zaghloul, Juan Bulacio, Jorge
 705 Gonzalez-Martinez, and Sridevi V. Sarma. Neural fragility as an EEG marker of the seizure onset
 706 zone. *Nature Neuroscience*, 24(10), 2021.

707 Xinhe Liu and Wenmin Wang. Deep time series forecasting models: A comprehensive survey.
 708 *Mathematics*, 12(10), 2024.

709

710 Michael L. Martini, Aly A. Valliani, Claire Sun, Anthony B. Costa, Shan Zhao, Fedor Panov, Saadi
 711 Ghatan, Kanaka Rajan, and Eric Karl Oermann. Deep anomaly detection of seizures with paired
 712 stereoelectroencephalography and video recordings. *Scientific Reports*, 11(1), 2021.

713

714 Marry L. McHugh. Interrater reliability: the kappa statistic. *Biochemia Medica*, 2012.

715

716 Md Mahmuddun Nabi Murad, Mehmet Aktukmak, and Yasin Yilmaz. Wpmixer: Efficient multi-
 717 resolution mixing for long-term time series forecasting. In *Proceedings of the AAAI Conference
 718 on Artificial Intelligence*, volume 39, 2025.

719

720 Petr Nejedly, Vaclav Kremen, Vladimir Sladky, Jan Cimbalnik, Petr Klimes, Filip Plesinger, Filip
 721 Mivalt, Vojtech Travnicek, Ivo Viscor, Martin Pail, Josef Halamek, Benjamin H. Brinkmann,
 722 Milan Brazdil, Pavel Jurak, and Gregory Worrell. Multicenter intracranial EEG dataset for clas-
 723 sification of graphoelements and artifactual signals. *Scientific Data*, 7(1), 2020.

724

725 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 64 words: Long-term forecasting with transformers. In *International Conference on Learning
 726 Representations (ICLR)*, 2023.

727

728 Paul L. Nunez and Ramesh Srinivasan. *Electric Fields of the Brain*. Oxford University Press, 2006.
 ISBN 9780195050387.

729

730 Iyad Obeid and Joseph Picone. The Temple University Hospital EEG data corpus. *Frontiers in
 Neuroscience*, 10, 2016.

731

732 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 733 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

734

735 James C. Pang, Kevin M. Aquino, Marianne Oldehinkel, Peter A. Robinson, Ben D. Fulcher,
 Michael Breakspear, and Alex Fornito. Geometric constraints on human brain function. *Nature*,
 618(7965), 2023.

736

737 Mark Quigg, Felice Sun, Nathan B. Fountain, Barbara C. Jobst, Victoria S. S. Wong, Emily Mirro,
 738 Sarah Brown, and David C. Spencer. Interrater reliability in interpretation of electrocorticographic
 739 seizure detections of the responsive neurostimulator. *Epilepsia*, 56(6), 2015.

740

741 Khaled Saab, Siyi Tang, Mohamed Taha, Christopher Lee-Messer, Christopher Ré, and Daniel L.
 Rubin. Towards trustworthy seizure onset detection using workflow notes. *npj Digital Medicine*,
 7(1), 2024.

742

743 Kaspar Schindler, Howan Leung, Christian E. Elger, and Klaus Lehnertz. Assessing seizure dynam-
 744 ics by analysing the correlation structure of multichannel intracranial EEG. *Brain*, 130(1):65–77,
 2006.

745

746 Kaspar A. Schindler, Stephan Bialonski, Marie-Therese Horstmann, Christian E. Elger, and Klaus
 Lehnertz. Evolving functional network properties and synchronizability during human epileptic
 747 seizures. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 18(3), 2008.

748

749 Alois Schlögl, Felix Lee, Horst Bischof, and Gert Pfurtscheller. Characterization of four-class motor
 750 imagery EEG data for the BCI-competition 2005. *Journal of Neural Engineering*, 2(4):L14–L22,
 2005.

751

752 Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised
 753 pre-training for speech recognition. In *Interspeech 2019*, 2019.

756 V. Shah, I. Obeid, J. Picone, G. Ekladious, R. Iskander, and Y. Roy. Validation of temporal scoring
 757 metrics for automatic seizure detection. In *2020 IEEE Signal Processing in Medicine and Biology*
 758 *Symposium (SPMB)*, 2020.

759

760 Mingkan Shen, Peng Wen, Bo Song, and Yan Li. An EEG based real-time epilepsy seizure detection
 761 approach using discrete wavelet transform and machine learning methods. *Biomedical Signal*
 762 *Processing and Control*, 77, 2022.

763 Ali Shoeb. CHB-MIT scalp EEG database. 2010.

764

765 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 766 Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
 767 allelism. *arXiv preprint arXiv:1909.08053*, 2019.

768

769 Leila Abrishami Shokooh, Dènahin Hinnoutondji Toffa, Philippe Pouliot, Frédéric Lesage, and
 770 Dang Khoa Nguyen. Intracranial eeg seizure onset and termination patterns and their associa-
 771 tion. *Epilepsy Research*, 176, 2021.

772

773 Xiaopeng Si, Zhuobin Yang, Xingjian Zhang, Yulin Sun, Weipeng Jin, Le Wang, Shaoya Yin,
 774 and Dong Ming. Patient-independent seizure detection based on long-term iEEG and a novel
 775 lightweight CNN. *Journal of Neural Engineering*, 20(1), 2023.

776

777 Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao, Yuan-
 778 dong Tian, Jason Weston, and Xian Li. LLM pretraining with continuous concepts. *arXiv preprint*
arXiv:2502.08524, 2025.

779

780 Michael Tangermann, Klaus-Robert Müller, Ad Aertsen, Niels Birbaumer, Christoph Braun,
 781 Clemens Brunner, Robert Leeb, Carsten Mehring, Kai J. Miller, Gernot R. Müller-Putz, Guido
 782 Nolte, Gert Pfurtscheller, Hubert Preissl, Gerwin Schalk, Alois Schlögl, Carmen Vidaurre,
 783 Stephan Waldert, and Benjamin Blankertz. Review of the BCI competition IV. *Frontiers in*
Neuroscience, 2012.

784

785 Punnawish Thuwajit, Phurin Rangpong, Phattarapong Sawangjai, Phairot Autthasan, Rattanaphon
 786 Chaisaen, Nannapas Banluesombatkul, Puttaranun Boonchit, Nattasate Tatsaringkansakul, Tha-
 787 panun Sudhawiyangkul, and Theerawit Wilairaprasitporn. EEGWaveNet: Multiscale CNN-based
 788 spatiotemporal feature extraction for EEG seizure detection. *IEEE Transactions on Industrial*
Informatics, 18(8), 2022.

789

790 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 791 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 792 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

793

794 Michael Tschannen, Cian Eastwood, and Fabian Mentzer. GIVT: Generative infinite-vocabulary
 795 transformers. In *Computer Vision – ECCV 2024*, pp. 292–309, Cham, 2025. Springer Nature
 796 Switzerland. ISBN 978-3-031-72998-0.

797

798 Anouk Van de Vel, Kristien Verhaert, and Berten Ceulemans. Critical evaluation of four differ-
 799 ent seizure detection systems tested on one patient with focal and generalized tonic and clonic
 800 seizures. *Epilepsy & Behavior*, 37, 2014.

801

802 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 803 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
mation Processing Systems (NeurIPS), 2017.

804

805 Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Lan-
 806 guage Model with JAX, 2021. URL [https://github.com/kingoflolz/](https://github.com/kingoflolz/mesh-transformer-jax)
 807 *mesh-transformer-jax*.

808

809 Christopher Wang, Vighnesh Subramaniam, Adam Uri Yaari, Gabriel Kreiman, Boris Katz, Ignacio
 810 Cases, and Andrei Barbu. BrainBERT: Self-supervised representation learning for intracranial
 811 recordings. In *International Conference on Learning Representations (ICLR)*, 2023.

810 Christopher Wang, Adam Uri Yaari, Aaditya K Singh, Vighnesh Subramaniam, Dana Rosenfarb, Jan
 811 DeWitt, Pranav Misra, Joseph R. Madsen, Scellig Stone, Gabriel Kreiman, Boris Katz, Ignacio
 812 Cases, and Andrei Barbu. Brain Treebank: Large-scale intracranial recordings from naturalistic
 813 language stimuli. In *Advances in Neural Information Processing Systems (NeurIPS) Datasets and*
 814 *Benchmarks Track*, 2024a.

815 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 816 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
 817 *International Conference on Learning Representations (ICLR)*, 2024b.

818 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
 819 Transformers in time series: A survey. *arXiv preprint arXiv:2202.07125*, 2022.

820 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transform-
 821 ers with Auto-Correlation for long-term series forecasting. In *Advances in Neural Information*
 822 *Processing Systems (NeurIPS)*, volume 34, 2021.

823 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
 824 Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
 825 *Proceedings of the AAAI Conference on Artificial Intelligence*, 2021.

826 Zhizhang Yuan, Fanqi Shen, Meng Li, Yuguo Yu, Chenhao Tan, and Yang Yang. Brant-2: Founda-
 827 tion model for brain signals. *arXiv preprint arXiv:2402.1025v4*, 2024a.

828 Zhizhang Yuan, Fanqi Shen, Meng Li, Yuguo Yu, Chenhao Tan, and Yang Yang. Brainwave: A brain
 829 signal foundation model for clinical applications. *arXiv preprint arXiv:2402.1025v7*, 2024b.

830 Zaid Zada, Samuel A. Nastase, Bobbi Aubrey, Itamar Jalon, Sebastian Michelmann, Haocheng
 831 Wang, Liat Hasenfratz, Werner Doyle, Daniel Friedman, Patricia Dugan, Lucia Melloni, Sasha
 832 Devore, Adeen Flinker, Orrin Devinsky, Ariel Goldstein, and Uri Hasson. The “Podcast” ECoG
 833 dataset for modeling neural activity during natural language comprehension. *Scientific Data*, 12
 834 (1), 2025.

835 Hitten P. Zaveri, Björn Schelter, Catherine A. Schevon, Premysl Jiruska, John G.R. Jefferys, Gregory
 836 Worrell, Andreas Schulze-Bonhage, Rasesh B. Joshi, Viktor Jirsa, Marc Goodfellow, Christian
 837 Meisel, and Klaus Lehnertz. Controversies on the network theory of epilepsy: Debates held
 838 during the ictals 2019 conference. *Seizure*, 78, 2020.

839 Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant:
 840 Foundation model for intracranial neural signal. In *Advances in Neural Information Processing*
 841 *Systems (NeurIPS)*, volume 36, 2023.

842 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 843 for multivariate time series forecasting. In *International Conference on Learning Representations*
 844 *(ICLR)*, 2023.

845 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 846 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 847 *of the AAAI Conference on Artificial Intelligence*, 2021.

848 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
 849 enhanced decomposed transformer for long-term series forecasting. In *International Conference*
 850 *on Machine Learning (ICML)*, 2022.

851 Saeedeh Ziyabari, Vinit Shah, Meysam Golmohammadi, Iyad Obeid, and Joseph Picone. Objective
 852 evaluation metrics for automatic classification of EEG events. *arXiv preprint arXiv:1712.10107*,
 853 2017.

854

855

856

857

858

859

860

861

862

863

864 A DETAILS ON MULTI-VARIATE PARALLEL ATTENTION (MVPA)
865866 Algorithm 1 illustrates the multi-variate parallel attention algorithm.
867868 **Algorithm 1:** Computation of MVPA
869870 **Input:** $\mathbf{x}_{c,t} \in \mathbb{R}^{n_{\text{embed}}}$ output token of Encoder; $n_{\text{embed}} = 768$
871 **Output:** $\mathbf{o}_{c,t} \in \mathbb{R}^{n_{\text{embed}}}$ output attention872 **Data:** t time encoding; c channel encoding; $\mathbf{u}, \mathbf{y}, \mathbf{w}$ biases; $h \in [1, \dots, n_{\text{heads}}]$;
873 $\mathbf{h}_{k,v} \in [1, \dots, n_{\text{gqa}}]$

```

874 1 def MVPAAttention( $\mathbf{x}_{c,t}$ ):
875     # Compute query separately from key and value due to GQA
876     2  $\mathbf{q}_{c,t}^h \leftarrow \text{LINEARNOBIAS}(\mathbf{x}_{c,t})$ 
877     3  $\mathbf{k}_{c,t}^{h_{k,v}}, \mathbf{v}_{c,t}^{h_{k,v}} \leftarrow \text{LINEARNOBIAS}(\mathbf{x}_{c,t})$ 
878     # Compute the three components of MVPA
879     4  $\mathbf{g}_{(c,t),(c',t')}^h \leftarrow (\mathbf{q}_{c,t}^h + \mathbf{u}^{h_{k,v}})^T \mathbf{q}_{c',t'}^h$ 
880     # Time and channel components are independent of the key
881     # content, so they do not need to be recomputed
882     5  $\mathbf{s}_t^h \leftarrow (\mathbf{q}_{c,t}^h + \mathbf{y}^{h_{k,v}})^T \mathbf{t}^{h_{k,v}}$ 
883     6  $\mathbf{l}_c^h \leftarrow (\mathbf{q}_{c,t}^h + \mathbf{w}^{h_{k,v}})^T \mathbf{c}^{h_{k,v}}$ 
884     # Shift the time and channel components to avoid
885     # recomputation, from Transformer-XL
886     7  $\mathbf{s}_{t,t'}^h \leftarrow \text{SHIFTTIME}_{t'}(\mathbf{s}_t^h)$ 
887     8  $\mathbf{l}_{c,c'}^h \leftarrow \text{SHIFTCHANNEL}_{c'}(\mathbf{l}_c^h)$ 
888     # Apply window and causal mask
889     9  $\mathbf{m}_{(c,t),(c',t')}^h \leftarrow \text{CAUSALMASK}(\mathbf{g}_{(c,t),(c',t')}^h + \mathbf{s}_{t,t'}^h + \mathbf{l}_{c,c'}^h)$ 
890    10  $\mathbf{n}_{(c,t),(c',t')}^h \leftarrow \text{WINDOWMASK}_{10}(\mathbf{m}_{(c,t),(c',t')}^h)$ 
891     # Apply structured dropout
892    11  $\mathbf{d}_{(c,t),(c',t')}^h \leftarrow \text{STRUCTUREDDROPOUT}_{0.1}(\mathbf{n}_{(c,t),(c',t')}^h)$ 
893     # Compute final attention value
894    12  $\mathbf{a}_{(c,t),(c',t')}^h \leftarrow \text{SIGMOID}(\frac{1}{\sqrt{n_{\text{embed}}}} \mathbf{d}_{(c,t),(c',t')}^h)$ 
895    13  $\mathbf{o}_{c,t}^h \leftarrow \sum_{c',t'} \mathbf{a}_{(c,t),(c',t')}^h \cdot \mathbf{v}_{(c,t),(c',t')}^{h_{k,v}}$ 
896    14 return  $\mathbf{o}_{c,t}^h$ 
897
898

```

900 A.1 FURTHER MOTIVATION OF MVPA
901902 Single-channel data can be treated equivalently to sentences, by dividing the signal into 1D patches,
903 which form the tokens. This modality has attracted considerable interest (Schneider et al., 2019;
904 Gulati et al., 2020), frequently for speech recognition tasks that are once again related to the natural
905 language domain.906 There is no straightforward extension of vanilla attention to the 2D case. The Vision Trans-
907 former (Dosovitskiy et al., 2021) processes images by extending the notion of the patches to the
908 2D case. It carves images into a collection of patches, which it then flattens into a 1D sequence.
909 Each patch has 2D coordinates (i, j) which get flattened by an arbitrary function $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
910 into a 1D index (l) . This is a simple way to recover the 1D case, but it has several drawbacks.
911 First, by flattening the patches we lose any notion of spatial structure, as nearby patches in space
912 are no longer necessarily close in the sequence. Any information about the structure of the patches
913 is lost. However, if the size of the images, the number of patches, and the flattening direction are
914 kept constant, then the Transformer might autonomously learn it. If it learns the structure, then it
915 cannot be exposed to different images as it would completely misinterpret them; if it does not learn
916 the structure, then it is missing critical information. This leads to an inflexible model which cannot
917 easily generalize to different images. One possible solution is to choose a bijective f , such as the
918 Cantor pairing function, to have a one-to-one correspondence between the position of the patch in

918 the image and in the sequence. This solution is, however, quite unintuitive. Second, the Vision
 919 Transformer does not distinguish between the two dimensions of height and width, i.e., it does not
 920 distinguish between up, down, left, and right. For images this limitation is not too impactful, as most
 921 of the information is conveyed in the closeness of two patches and not their relative position in any
 922 dimension.

923 The patching schema of the Vision Transformer is unsuitable to multi-variate time-series, as the two
 924 dimensions of time and channels require delicate handling. Transformers for time-series are a well-
 925 known problem in the field (Wen et al., 2022). Channel-independent approaches (Nie et al., 2023)
 926 reuse vanilla self-attention and discard all information content in the time dimension, while channel-
 927 mixing promises to preserve it by either fusing the channels (Zhou et al., 2022) or processing them
 928 sequentially (Zhang & Yan, 2023). The second family of solutions is more promising in addressing
 929 the issue but is still limited either with respect to computational expense or expressiveness.

930 EEG signals are multi-variate recordings of the brain. Transformer-based approaches to EEG are
 931 sparse (Si et al., 2023; Cui et al., 2023), due to the often unmanageable complexity of the data.
 932 In iEEG recordings, the subjects are implanted with electrodes directly in multiple areas of the
 933 brain for the purpose of clinical diagnosis. There is no standardized location, or even number of
 934 electrodes, for intracranial implants. This makes iEEG an extremely heterogeneous data modality,
 935 intractable for conventional attention approaches. The channels present a fundamental source of
 936 information, as electric fields spread in different areas of the brain on different time-scales and with
 937 different intensities depending on the strength of the connection between the areas. Moreover, the
 938 relationship between brain regions is not always proportional to their spatial closeness, as distant
 939 areas might be more strongly connected than close ones. There is a tremendously intricate interplay
 940 between space and time, which the Transformer must exploit.

941 A.2 COMPARISON WITH ALTERNATIVE ATTENTION MECHANISMS

943 We further compare MVPA with other existing alternatives to better characterize the features of
 944 MVPA. In particular, we draw our main inspiration for the disentanglement and relative positional
 945 encoding from Transformer-XL (Dai et al., 2019) and DeBERTa (He et al., 2021), which were the
 946 first to introduce this concept. We now compare MVPA against a selection of relevant alternative
 947 attention mechanisms.

949 Table 6: **Summary of the differences between MVPA and existing attention mechanisms.**

	Domain	Complexity	Disentangled	Relative position	Simultaneous time and space	Receptive field
950 Vanilla	1D	Quadratic	No	No	No	Global
951 Transformer-XL	1D	Quadratic	Yes	Yes	No	Global
952 DeBERTa	1D	Quadratic	Yes	No	No	Global
953 Axial	2D	Subquadratic	No	No	No	Local
954 Criss-cross	2D	Subquadratic	No	No	Yes	Local
955 Localized	2D	Quadratic	No	No	Yes	Local
956 Space-time	2D	Subquadratic	Yes	No	No	Global
957 ViViT	2D	Subquadratic	Yes	No	No	Global
958 Ours	2D	Subquadratic	Yes	Yes	Yes	Global

960 Axial attention (Ho et al., 2019) consists of two separate attention mechanisms, *RowAttention* and
 961 *ColumnAttention*, each of which attends to one row (one channel) or one column (one timepoint)
 962 only. The layers are then stacked sequentially to recover the full receptive field. MVPA, in contrast,
 963 attends to both time and space simultaneously, and has a global receptive field built-in at every layer.

965 Criss-cross attention (Huang et al., 2019) computes the attention between each point and all the other
 966 points in its row or column via the *affinity* operation. Once again, the layers are applied recursively
 967 to obtain the full receptive field. One of the most significant differences between MVPA and criss-
 968 cross attention is in the encoding of the position. In fact, MVPA treats rows and columns differently
 969 through two independent positional codebooks, while in criss-cross attention distance in rows and
 970 heights is equivalent. This is a natural consequence of the design choices, as criss-cross attention is
 971 designed for images, where the two dimensions are indeed equivalent. Moreover, MVPA again has
 a global receptive field.

972 Localized sparse transformers (Child et al., 2019) use separate heads with separate connectivity
 973 patterns to improve on the computational requirements of the full attention. As before, the full
 974 receptive field is only recovered with multiple applications. MVPA, on the other hand, computes the
 975 full 2D attention over the entire input in every head. Moreover, the separate positional codebooks
 976 allow MVPA to treat the dimensions differently, which localized sparse transformers cannot do.

977 Space-time mixing (Bulat et al., 2021) reduces the computational complexity of the full quadratic
 978 self-attention by only computing attention across the channels, and then performing a simple av-
 979 eraging in time. On the other hand, MVPA fully integrates both dimensions of the signal in the
 980 computation at the attention level.

981 Finally, ViViT (Arnab et al., 2021) disentangles space and time through the use of sequential en-
 982 coders, similar to the channels mixing approaches mentioned in Section 7.

983 Table 6 summarizes the main features of MVPA with respect to the considered alternatives.

984 A.3 EFFICIENT COMPUTATION OF MVPA

985 Vanilla attention is quadratic in the number of input elements, and this often represents a significant
 986 computational roadblock (Kitaev et al., 2020). The input becomes intractable as the number of
 987 channels increases, especially for multi-variate time-series. At the same time, more channels imply
 988 more sources of information, and we cannot simply discard them.

989 MVPA is also quadratic, but we employ a number of techniques to significantly reduce the compu-
 990 tational complexity and make the processing of very large signals feasible. Letting T be the number
 991 of time segments and C be the number of channels, the context length of the Transformer becomes
 992 $T \times C$ and number of terms necessary to compute for vanilla attention $O(T^2 \times C^2)$. Given a reason-
 993 able estimation of 100 segments and 50 channels the context length would be 5,000, until recently
 994 intractable even for language models.

995 By dividing MVPA into three components we gain considerable advantages (see Table 7 for the
 996 complexity of each term). Efficiently computing the time- and channel-based terms requires two
 997 main techniques. First, we recognize that it is not necessary to compute the full square matrix, which
 998 would be quadratic in the context length (i.e., both time and space). By design, all elements of the
 999 time-based attention are the same for each channel, and all elements of the channel-based attention
 1000 are the same for each time point. Hence, complexity is quadratic in one dimension and constant
 1001 in the other. We then simply repeat the elements along the right dimension at no additional cost.
 1002 Second, we employ the shifting operation described in Supplementary Section B of Transformer-
 1003 XL (Dai et al., 2019) to compute all relative embeddings in one pass.

	Time-based	Channel-based	Content-based (w/ window)	Content-based (vanilla)
Complexity	$O(T^2 \times C)$	$O(T \times C^2)$	$O(L^2 \times C^2)$	$O(T^2 \times C^2)$

1004 **Table 7: Complexity of each component of MVPA.** T is the number of time segments in the signal,
 1005 C is the number of channels, and L is the size of the local window. Content-based attention without
 1006 window has the same complexity as vanilla attention.

1007 Content attention, though stripped of positional encoding, remains the most expensive component.
 1008 To further reduce computational cost, with little impact to performance, we make use of a local
 1009 attention window (Child et al., 2019) which focuses on the most recent L time points discarding ones
 1010 that have little information content. Since time-based attention is not limited, the lookup window
 1011 still spans the entire context (though it is affected, see Figure 19b). Thus, for $L \ll T$, the total
 1012 complexity of MVPA is $O(T^2 \times C + T \times C^2)$, quadratic in each dimension but subquadratic in the
 1013 context length. Combining all techniques, MVPA pushes the effective total context length to over
 1014 10,000.

1015 Given the three components are independent of each other, it is possible to exclude any one and
 1016 reduce computations even more. As an additional cost-saving measure, we use grouped query atten-
 1017 tion (Ainslie et al., 2023) to reduce the number of heads without loss of performance. In summary,
 1018 MVPA correctly treats time and space as unrelated dimensions, forcing the model to consider them
 1019 separately, all with little computational overhead.

1026
1027

A.4 TRITON IMPLEMENTATION OF MVPA

1028
1029
1030
1031
1032
1033
1034
1035

MVPFormer’s training effectiveness is heavily affected by batch size, as its training routine draws the negative samples from the batch. The bigger the batch size, the more variety in the negative samples and the better the model generalizes. Given the large context size of MVPFormer, up to 10k, a pure Python implementation of scaled dot product attention would consume too much VRAM to be useful. FlashAttention (Dao et al., 2022) and FlashAttention-2 (Dao, 2024) provide the blueprint to solve this problem, though they only apply to vanilla attention. Using tiling, FlashAttention makes VRAM consumption linear instead of quadratic in the context length, enabling training on much longer context.

1036
1037
1038
1039
1040
1041
1042

We develop FlashMVPA using the same technique in the OpenAI Triton language, which gives lower-level access to CUDA primitives. While a CUDA implementation could likely deliver better raw performance, the choice of Triton is dictated by the much lower coding time, though Triton is less robust and more prone to unexpected behaviors at this point. The time-based and channel-based components of MVPA are computed using PyTorch’s own matrix-multiply, but are then shifted (Transformer-XL trick) and added using Triton, while the content-based component is fully implemented in Triton. This is due to limitations in Triton. FlashMVPA reaches 20 TFlops on an A100.

1043

Algorithm 2: Computation of FlashMVPA

1044

Input: $\mathbf{x}_{c,t} \in \mathbb{R}^{n_{\text{embed}}}$ output token of Encoder; $n_{\text{embed}} = 768$

1045

Output: $\mathbf{o}_{c,t} \in \mathbb{R}^{n_{\text{embed}}}$ output attention

1046

Data: t time encoding; c channel encoding; $\mathbf{u}, \mathbf{y}, \mathbf{w}$ biases; $h \in [1, \dots, n_{\text{heads}}]$;

1047

$h_{k,v} \in [1, \dots, n_{\text{gqa}}]$

1048

1 **def** FlashMVPAAttention($\mathbf{x}_{c,t}$):

1049

2 # Compute query separately from key and value due to GQA

1050

3 $\mathbf{q}_{c,t}^h \leftarrow \text{LINEARNOBIAS}(\mathbf{x}_{c,t})$

1051

4 $\mathbf{k}_{c,t}^{h_{k,v}}, \mathbf{v}_{c,t}^{h_{k,v}} \leftarrow \text{LINEARNOBIAS}(\mathbf{x}_{c,t})$

1052

5 # Need to compute time and channel components outside Triton

1053

6 $\mathbf{s}_t^h \leftarrow (\mathbf{q}_{c,t}^h + v^{h_{k,v}})^T \mathbf{t}^{h_{k,v}}$

1054

7 $\mathbf{l}_c^h \leftarrow (\mathbf{q}_{c,t}^h + w^{h_{k,v}})^T \mathbf{c}^{h_{k,v}}$

1055

8 # Triton MVPA combines all computations into one kernel

1056

9 $\mathbf{o}_{c,t}^h \leftarrow \text{TRITONMVPA}(\mathbf{q}_{c,t}^h, \mathbf{s}_t^h, \mathbf{l}_c^h, \mathbf{v}, \mathbf{u}, \mathbf{y}, \mathbf{w})$

1057

10 **return** $\mathbf{o}_{c,t}^h$

1058

1059

1060

1061

A.5 RELATIVE SHIFTING

1062

By design, MVPA requires the computation of relative time and channel encodings, which can notably slow down the overall operation. While this does not affect vanilla attention, other relative attentions provide us with an elegant solution to this problem. In particular, the shifting operation from Transformer-XL provides us with an efficient alternative to recomputing the time- and channel-based attention components. To keep notation simple, let $\mathbf{q}_t = \mathbf{x}_{c,t}^T \mathbf{W}_q^T$, $\mathbf{p}_c = \mathbf{x}_{c,t}^T \mathbf{W}_q^T$, $\mathbf{T}_i = \mathbf{W}_{k_i} \mathcal{T}_{T-1-i}$, and $\mathbf{C}_i = \mathbf{W}_{k_C} \mathcal{C}_{C-1-i}$. The shift in time can be performed as in the original implementation

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

$$\begin{pmatrix} \mathbf{q}_0 \mathbf{T}_0 & \mathbf{q}_0 \mathbf{T}_1 & \dots & \dots & \mathbf{q}_0 \mathbf{T}_{T-1} \\ \mathbf{q}_1 \mathbf{T}_0 & \mathbf{q}_1 \mathbf{T}_1 & \dots & \dots & \mathbf{q}_1 \mathbf{T}_{T-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{q}_{T-1} \mathbf{T}_0 & \mathbf{q}_{T-1} \mathbf{T}_1 & \dots & \dots & \mathbf{q}_{T-1} \mathbf{T}_{T-1} \end{pmatrix} \xrightarrow{\text{SHIFTTIME}} \begin{pmatrix} \mathbf{q}_0 \mathbf{T}_{T-1} & 0 & \dots & \dots & 0 \\ \mathbf{q}_1 \mathbf{T}_{T-2} & \mathbf{q}_1 \mathbf{T}_{T-1} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{q}_{T-1} \mathbf{T}_0 & \dots & \dots & \dots & \mathbf{q}_T \mathbf{T}_{T-1} \end{pmatrix} \quad (6)$$

The right triangular matrix is zeroed out as a requisite of autoregressive training, i.e., we cannot attend to keys in the future. The entire time shifting operation can be performed efficiently and quickly using tensor manipulation in PyTorch.

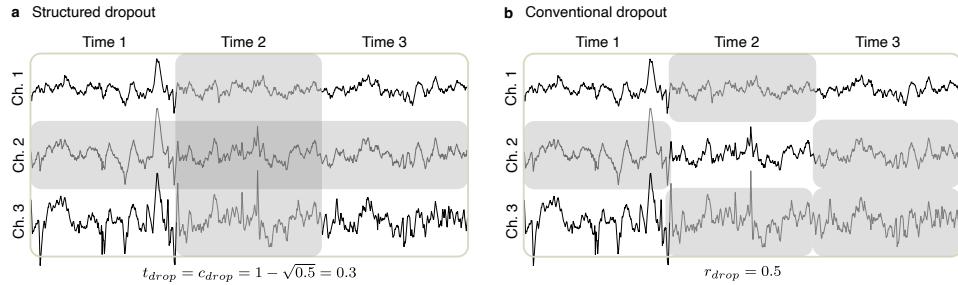
Thus, the time attention component does not require recomputation for each time position, i.e. each row in the matrix of the time component.

1080 The shift in channels is more involved

$$\begin{pmatrix} p_0 C_0 & p_0 C_1 & \dots & \dots & p_0 C_{C-1} \\ p_1 C_0 & p_1 C_1 & \dots & \dots & p_1 C_{C-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{C-1} C_0 & p_{C-1} C_1 & \dots & \dots & p_{C-1} C_{C-1} \end{pmatrix} \xrightarrow{\text{SHIFTCHANNEL}} \begin{pmatrix} p_0 C_{C-1} & p_0 C_{C-2} & \dots & \dots & p_0 C_0 \\ p_1 C_{C-2} & p_1 C_{C-1} & p_1 C_{C-2} & \dots & p_1 C_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{C-1} C_0 & \dots & \dots & \dots & p_C C_{C-1} \end{pmatrix} \quad (7)$$

1086 Here, no element is zeroed out, as all channels can attend to all other channels. The channel shifting
1087 operation does not (to our knowledge) enjoy an implementation which is as efficient as the time shifting
1088 one in PyTorch, but requires relatively complex index manipulation which cannot be streamlined.
1089

1090 As before, thanks to this shifting operation the channel attention component does not require recom-
1091 putation for each channel position.


1092 We provide a Triton implementation for both operations which is much more efficient and must be
1093 preferred when training a model.

1094

A.6 STRUCTURED ATTENTION DROPOUT

1097 Dropout is a common technique to improve the generalization performance of neural networks. In
1098 Transformers, it is often applied inside the attention block to randomly zero-out some query-key
1099 attentions, to avoid over-reliance of the model on specific connections.

1100

1101

1102 Figure 3: **Structured dropout.** (a) Our structured dropout blanks entire channels and time steps, to
1103 reduce the number of correlated segments. The dropout rate is computed to maintain the same num-
1104 ber of dropped out segments as conventional dropout. (b) Conventional dropout blanks segments
1105 randomly. This is less effective with time-series because adjacent segments in time or space contain
1106 much of the same information.

1107

1108 Dropout usually applies to all elements with equal probability and creates uniform holes in the
1109 attention matrix. This is not efficient in the case of multi-variate time-series, as for each hole the
1110 neighboring segments are likely to carry very similar information, reducing dropout’s effectiveness.
1111 We introduce a structured dropout technique which blanks entire channels and time points instead of
1112 individual segments. This technique is in principle much more effective by removing all segments
1113 which are more likely to be strongly correlated. We keep the same parameters as in conventional
1114 Dropout and compute the channel-specific and time-specific dropout rates as

1115

$$t_{\text{drop}} = c_{\text{drop}} = 1 - \sqrt{1 - r_{\text{drop}}} \quad (8)$$

1116

1117 This ensures that approximately the same overall number of elements are zeroed (see Figure 3).

1118

1119 For the specific dropout rates and the location of the structured dropout layers refer to the description
1120 of the architecture in Appendix B.

1121

A.7 PERFORMANCE COMPARISON

1122

1123 To provide a clearer evaluation of the computational performance benefits of MVPA, and in partic-
1124 ular FlashMVPA, we compare the inference speed and VRAM usage of multiple attention imple-
1125 ments. Specifically, we test:

1126

- Naïve self-attention

- FlashAttention 2
- Linear attention (Nyströmformer; Xiong et al. 2021)
- MVPA
- FlashMVPA

We test all implementations with a batch size of 64 and a size of 768, with bfloat16 numeric type, to maintain a realistic scenario. We use 12 heads and no GQA, as it is not natively implemented for Nyströmformer. We vary both the number of time windows (T) and the number of channels (C) from 1 to 50, and report the runtime and memory consumption for a forward pass. We test the attention module in isolation to avoid introducing confounding variables, and we follow the best practices in GPU benchmarking.

Tables 8 and 9 show the full quadratic scaling of MVPA and the full self-attention. However, the tricks we employ for efficient computation still results in lesser memory usage for MVPA, albeit at a higher computational cost.

On the other hand, Tables 10 and 11 report the much more favorable scaling of the two dedicated implementations, with FlashMVPA having the same memory consumption as the more optimized FlashAttention 2.

Finally, Table 12 indicates that while Nyströmformer attention has theoretically favorable linear complexity, its implementation is much less performance than either FlashAttention 2 or Flash-MVPA.

Table 8: **Computational performance of MVPA.** Runtime and VRAM consumption of the naïve implementation of MVPA.

T \ C	1	10	20	30	40	50
1	1.56 us / 0.02 GB	1.75 us / 0.05 GB	1.90 us / 0.06 GB	1.96 us / 0.07 GB	2.03 us / 0.08 GB	2.12 us / 0.10 GB
10	1.72 us / 0.05 GB	1.81 us / 0.18 GB	2.59 us / 0.43 GB	5.11 us / 0.81 GB	7.53 us / 1.31 GB	11.83 us / 1.92 GB
20	1.69 us / 0.06 GB	2.64 us / 0.43 GB	7.59 us / 1.30 GB	15.29 us / 2.64 GB	25.30 us / 4.47 GB	38.15 us / 6.75 GB
30	1.77 us / 0.07 GB	5.20 us / 0.81 GB	15.27 us / 2.64 GB	34.52 us / 5.54 GB	67.64 us / 9.50 GB	111.33 us / 14.52 GB
40	1.84 us / 0.08 GB	7.68 us / 1.31 GB	25.15 us / 4.47 GB	67.48 us / 9.50 GB	108.71 us / 16.43 GB	161.07 us / 25.25 GB
50	1.74 us / 0.10 GB	11.86 us / 1.92 GB	37.77 us / 6.75 GB	110.74 us / 14.52 GB	160.72 us / 25.25 GB	278.60 us / 38.90 GB

Table 9: **Computational performance of self-attention.** Runtime and VRAM consumption of the naïve implementation of vanilla self-attention.

T \ C	1	10	20	30	40	50
1	1.08 us / 0.03 GB	1.21 us / 0.05 GB	1.15 us / 0.06 GB	1.18 us / 0.06 GB	1.18 us / 0.07 GB	1.19 us / 0.08 GB
10	1.17 us / 0.05 GB	1.36 us / 0.16 GB	2.17 us / 0.43 GB	3.72 us / 0.84 GB	4.93 us / 1.41 GB	7.63 us / 2.11 GB
20	1.16 us / 0.06 GB	2.17 us / 0.43 GB	4.93 us / 1.41 GB	8.99 us / 2.97 GB	14.37 us / 5.12 GB	20.97 us / 7.85 GB
30	1.21 us / 0.06 GB	3.72 us / 0.84 GB	8.99 us / 2.97 GB	20.79 us / 6.41 GB	35.93 us / 11.17 GB	59.22 us / 17.25 GB
40	1.24 us / 0.07 GB	4.95 us / 1.41 GB	14.35 us / 5.12 GB	35.93 us / 11.17 GB	56.17 us / 19.56 GB	81.37 us / 30.31 GB
50	1.21 us / 0.08 GB	7.63 us / 2.11 GB	20.98 us / 7.85 GB	59.21 us / 17.25 GB	81.38 us / 30.31 GB	143.18 us / 47.03 GB

Table 10: **Computational performance of FlashMVPA.** Runtime and VRAM consumption of the Triton implementation of MVPA.

T \ C	1	10	20	30	40	50
1	1.34 us / 0.02 GB	1.40 us / 0.05 GB	1.39 us / 0.06 GB	1.42 us / 0.07 GB	1.41 us / 0.08 GB	1.49 us / 0.09 GB
10	1.41 us / 0.05 GB	1.45 us / 0.14 GB	1.78 us / 0.24 GB	2.83 us / 0.34 GB	4.10 us / 0.45 GB	4.53 us / 0.56 GB
20	1.42 us / 0.06 GB	1.69 us / 0.24 GB	4.09 us / 0.44 GB	5.66 us / 0.65 GB	10.04 us / 0.87 GB	12.10 us / 1.09 GB
30	1.42 us / 0.07 GB	2.92 us / 0.34 GB	6.00 us / 0.65 GB	12.09 us / 0.96 GB	18.93 us / 1.29 GB	23.98 us / 1.63 GB
40	1.47 us / 0.08 GB	3.98 us / 0.45 GB	12.43 us / 0.87 GB	16.17 us / 1.29 GB	27.29 us / 1.73 GB	37.68 us / 2.19 GB
50	1.44 us / 0.09 GB	4.79 us / 0.55 GB	11.69 us / 1.08 GB	23.45 us / 1.62 GB	36.28 us / 2.19 GB	60.36 us / 2.75 GB

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197

1198 Table 11: **Computational performance of FlashAttention 2.** Runtime and VRAM consumption
 1199 of FlashAttention 2, a custom CUDA implementation of self-attention.

T \ C	1	10	20	30	40	50
1	1.09 us / 0.04 GB	1.08 us / 0.05 GB	1.08 us / 0.06 GB	1.11 us / 0.06 GB	1.11 us / 0.07 GB	1.12 us / 0.08 GB
10	1.10 us / 0.05 GB	1.15 us / 0.12 GB	1.29 us / 0.21 GB	1.68 us / 0.30 GB	2.09 us / 0.39 GB	2.40 us / 0.47 GB
20	1.10 us / 0.06 GB	1.30 us / 0.21 GB	2.07 us / 0.39 GB	4.56 us / 0.55 GB	4.70 us / 0.73 GB	5.16 us / 0.90 GB
30	1.12 us / 0.06 GB	1.66 us / 0.30 GB	5.27 us / 0.55 GB	4.73 us / 0.81 GB	6.17 us / 1.07 GB	8.11 us / 1.33 GB
40	1.17 us / 0.07 GB	2.14 us / 0.39 GB	4.71 us / 0.73 GB	6.19 us / 1.07 GB	8.46 us / 1.41 GB	10.69 us / 1.76 GB
50	1.15 us / 0.08 GB	2.41 us / 0.47 GB	5.07 us / 0.90 GB	8.16 us / 1.33 GB	10.64 us / 1.76 GB	13.99 us / 2.19 GB

1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224

1225 Table 12: **Computational performance of Nyströmformer.** Runtime and VRAM consumption of
 1226 the linear attention from Nyströmformer Xiong et al. (2021).

T \ C	1	10	20	30	40	50
1	0.62 us / 0.03 GB	0.72 us / 0.05 GB	0.70 us / 0.06 GB	0.72 us / 0.07 GB	0.73 us / 0.08 GB	0.73 us / 0.09 GB
10	0.73 us / 0.05 GB	1.56 us / 0.15 GB	2.62 us / 0.32 GB	4.44 us / 0.55 GB	5.63 us / 0.85 GB	8.00 us / 1.19 GB
20	0.72 us / 0.06 GB	2.62 us / 0.32 GB	5.63 us / 0.85 GB	8.95 us / 1.60 GB	12.52 us / 2.60 GB	16.61 us / 3.81 GB
30	0.71 us / 0.07 GB	4.44 us / 0.55 GB	8.95 us / 1.60 GB	17.73 us / 3.17 GB	31.13 us / 5.27 GB	57.89 us / 7.90 GB
40	0.76 us / 0.08 GB	5.63 us / 0.85 GB	12.51 us / 2.60 GB	31.16 us / 5.27 GB	43.59 us / 8.89 GB	57.37 us / 13.45 GB
50	0.74 us / 0.09 GB	7.99 us / 1.19 GB	16.63 us / 3.81 GB	57.85 us / 7.90 GB	57.35 us / 13.45 GB	122.60 us / 20.46 GB

1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 B MVPFORMER ARCHITECTURE 1243

1244 MVPFormer is part of a family of predictive deep learning models with 74 million (MVPFormer-S)
1245 to 1.2 billion (MVPFormer-M, or simply MVPFormer for brevity) parameters based on the Trans-
1246 former (Vaswani et al., 2017) architecture, capable of generating iEEG signals.
1247

1248 **Wavelet encoder** The first processing step maps the raw iEEG signal to continuous embeddings.
1249 We begin by partitioning the raw data into segments of five seconds. Each segment passes inde-
1250 pendently through a db4 wavelet decomposition, which has been shown to be highly effective for
1251 biosignals (Adeli et al., 2003; Shen et al., 2022). Depending on the model’s overall size, it is then
1252 linearly projected onto a smaller latent space. This projection, or feature vector, is the embedding.
1253 Our method is inspired by wav2vec (Schneider et al., 2019), though we use learnable embeddings.
1254 We apply the encoding channel-wise, meaning each segment remains one-dimensional.
1255

1256 **Decoder** MVPFormer is based on the Llama2 architecture (Touvron et al., 2023) with parallel at-
1257 tention and MLP blocks inspired by Megatron-LM (Shoeybi et al., 2019). This choice was informed
1258 by the selection of a generative model powerful enough to process brain iEEG signals and compu-
1259 tationally light enough to enable extensive testing. We provide two models to evaluate the scaling
1260 of our foundational model: MVPFormer-S with 75M parameters and MVPFormer-M (or simply
1261 MVPFormer) with 1.2B parameters.
1262

1263 See Tables 13 and 14 for a breakdown of the models sizes and hyperparameters.
1264

1265 **Table 13: Breakdown of the parameters of MVPFormer-S.** The dimensions are indicated for each
1266 of the components of MVPFormer-S.
1267

Transformer	Encoder	Signal
$n_{\text{layers}} \leftarrow 12$	$n_{\text{input}} \leftarrow 2560$	$w_{\text{length}} \leftarrow 500 \text{ s}$
$n_{\text{heads}} \leftarrow 12$	$n_{\text{embed}} \leftarrow 768$	$n_{\text{segments}} \leftarrow 100$
$n_{\text{gqa}} \leftarrow 4$		$w_{\text{segment}} \leftarrow 5 \text{ s}$
$n_{\text{embed}} \leftarrow 768$		$n_{\text{negatives}} \leftarrow 30$
$n_{\text{inner}} \leftarrow 1728$		$n_{\text{local}} \leftarrow 10$
$r_{\text{drop}} \leftarrow 0.1$		

1277 **Table 14: Breakdown of the parameters of MVPFormer-M.** The dimensions are indicated for
1278 each of the components of MVPFormer-M.
1279

Transformer	Encoder	Signal
$n_{\text{layers}} \leftarrow 24$	$n_{\text{input}} \leftarrow 2560$	$w_{\text{length}} \leftarrow 500 \text{ s}$
$n_{\text{heads}} \leftarrow 16$	$n_{\text{embed}} \leftarrow 1024$	$n_{\text{segments}} \leftarrow 100$
$n_{\text{gqa}} \leftarrow 8$		$w_{\text{segment}} \leftarrow 5 \text{ s}$
$n_{\text{embed}} \leftarrow 2048$		$n_{\text{negatives}} \leftarrow 30$
$n_{\text{inner}} \leftarrow 5362$		$n_{\text{local}} \leftarrow 10$
$r_{\text{drop}} \leftarrow 0.1$		

1290 B.1 INFERENCE

1291 The full end-to-end inference procedure is reported in Algorithm 3.
1292

1293 B.2 ENCODER

1294 The Encoder block is detailed above. The algorithmic overview is presented in Algorithm 4.
1295

1296

Algorithm 3: Full inference with MVPFormer

1297

Input: $\mathbf{x} \in \mathbb{R}^{C \times T}$ raw input; C, T number of channels and length resp.; $n_{\text{layers}} = 12$

1298

Data: $c \in [1, \dots, C]$; $t \in [1, \dots, T // n_{\text{segments}} + 1]$

1299

Output: $\mathbf{o}_{c,(t-1)} \in \mathbb{R}^{n_{\text{embed}}}$ generated embedding; $n_{\text{embed}} = 768$

1300

```

1301 1 def Inference ( $\mathbf{z}_{c,t}$ ):
1302 2    $\mathbf{x}_{c,t} \leftarrow \text{SEGMENT}(\mathbf{x})$ 
1303 3    $\mathbf{e}_{c,t} \leftarrow \text{ENCODER}(\mathbf{x}_{c,t})$ 
1304 4   for  $l \leftarrow 1$  to  $n_{\text{layers}}$  do
1305 5      $\mathbf{e}_{c,t} \leftarrow \text{DECODER}(\mathbf{e}_{c,t})$ 
1306 6    $\mathbf{o}_{c,(t-1)} \leftarrow \mathbf{e}_{c,t}$ 
1307 7   return  $\mathbf{o}_{c,(t-1)}$ 

```

1308

1309

Algorithm 4: Encoder block of MVPFormer

1310

Input: $\mathbf{x}_{c,t} \in \mathbb{R}^{n_{\text{input}}}$ raw input segment; $n_{\text{input}} = 2560$; $c \in [1, \dots, C]$; $t \in [1, \dots, T]$

1311

Output: $\mathbf{o}_{c,t} \in \mathbb{R}^{n_{\text{embed}}}$ output token; $n_{\text{embed}} = 768$

1312

Data: $l = 8$ maximum decomposition level given n_{input}

1313

```

1314 1 def Encoder ( $\mathbf{x}_{c,t}$ ):
1315 2    $\mathbf{d}_{c,t} \leftarrow \text{DISCRETEWAVELETDECOMPOSITION}_{db4}(\mathbf{x}_{c,t}, l)$ 
1316 3    $\mathbf{z}_{c,t} \leftarrow \text{RMSNORM}(\mathbf{d}_{c,t})$ 
1317 4    $\mathbf{o}_{c,t} \leftarrow \text{LINEAR}(\mathbf{z}_{c,t})$ 
1318 5   return  $\mathbf{o}_{c,t}$ 

```

1319

1320

B.3 DECODER

1321

The collection of vectors resulting from the Encoder block is flattened into a 1D sequence to provide a unified input interface to the Transformer decoder blocks, consistent with conventional Transformers. All the encoded segments corresponding to a window form the input to the Transformer module, which computes the MVPA among all the segments. The segments are sequentially processed by multiple Transformer layers, composed of attention and MLP blocks in a deep network configuration. The attention blocks are masked to guarantee that MVPFormer only has access to past segments to generate the target. The model produces one output embedding for each input segment. The algorithmic overview is presented in Algorithm 5, while the MLP block in Algorithm 6.

1322

Algorithm 5: Decoder block of MVPFormer

1323

Input: $\mathbf{o}_{c,t} \in \mathbb{R}^{n_{\text{embed}}}$ input tokens; $n_{\text{embed}} = 768$

1324

Output: $\mathbf{o}_{c,t} \in \mathbb{R}^{n_{\text{embed}}}$

1325

```

1326 1 def Decoder ( $\mathbf{o}_{c,t}$ ):
1327 2    $\mathbf{z}_{c,t} \leftarrow \text{RMSNORM}(\mathbf{o}_{c,t})$ 
1328 3   # Compute attention
1329 4    $\mathbf{a}_{c,t} \leftarrow \text{MVPATTENTION}(\mathbf{z}_{c,t})$ 
1330 5    $\mathbf{d}_{c,t} \leftarrow \text{DROPOUT}(\text{LINEARNOBIA}((\mathbf{a}_{c,t}))$ 
1331 6   # Compute feedforward residuals in parallel with
1332 7   # attention (Wang, 2021)
1333 8    $\mathbf{s}_{c,t} \leftarrow \text{MLP}(\mathbf{z}_{c,t})$ 
1334 9   # Sum residuals and attention
1335 10   $\mathbf{o}_{c,t} \leftarrow \mathbf{o}_{c,t} + \mathbf{d}_{c,t} + \mathbf{s}_{c,t}$ 
1336 11  return  $\mathbf{o}_{c,t}$ 

```

1337

1338

1339

1340

1341

1342

1343

1344

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

Algorithm 6: MLP block of MVPFormer

1374 **Input:** $z_{c,t} \in \mathbb{R}^{n_{\text{embed}}}$ normalised Decoder output; $n_{\text{embed}} = 768$ 1375 **Data:** $u_{c,t}, g_{c,t} \in \mathbb{R}^{n_{\text{inner}}}$; $n_{\text{inner}} = 1728$ 1376 **Output:** $s_{c,t} \in \mathbb{R}^{n_{\text{embed}}}$ 1377 1 **def** MLP ($z_{c,t}$) :1378 2 $u_{c,t} \leftarrow \text{LINEARNOBIAS}(z_{c,t})$
1379 3 $g_{c,t} \leftarrow \text{SILU}(\text{LINEARNOBIAS}(z_{c,t}))$
1380 4 $s_{c,t} \leftarrow \text{LINEARNOBIAS}(u_{c,t} + g_{c,t})$
1381 5 **return** $s_{c,t}$

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404 **C DETAILS ON TRAINING**
14051406 **C.1 GENERATIVE PRE-TRAINING**
14071408 MVPFormer is used to generate neuronal activity while in the base prediction task. During training,
1409 the target for each output is the successive input segment in time, not in space. First, we divide each
1410 recording into windows of 500 seconds each, with a stride of five seconds. Then, each window is
1411 divided into 100 segments (each five seconds long), yielding a total of 39B total training segments.1412 For each target, we sample random input segments from the rest of the batched windows to create
1413 the confounding targets $Z = \{z_1, \dots, z_n\}$. These segments still represent actual iEEG signals, so
1414 they are plausible, but they are expected to be very different from the true target.1415 This scheme strikes the correct balance between too much similarity and too little. The objective
1416 of MVPFormer is to generate future iEEG signals, so we choose a contrastive loss to increase the
1417 cosine similarity of its output with the true target, while decreasing it with the confounding targets.
1418 As training progresses, MVPFormer starts to produce outputs that look like encoded segments, i.e.,
1419 its inputs. MVPFormer becomes more and more capable of choosing the right target and thus is able
1420 to predict the future signal.1421
1422 **Extraction of positive and negative examples** Out of the entire dataset, B windows are chosen at
1423 random to form a batch. Each window $W_{i \in [1..B]}$ has an arbitrary sample rate and C_i channels. First,
1424 the sampling rate is normalized to 512 Hz, then the windows are divided into T non-overlapping
1425 segments per-channel, leaving us with $C_i \times T$ segments per window. Each segment is passed in
1426 parallel through the encoder. For the sake of simplicity, suppose one window W^* (with C^* channels)
1427 is selected at random as the positive window, and all the others as the confounding windows. The
1428 embeddings of W^* form the input context E with length $C^* \times T$.1429 For each segment, n embeddings are selected at random from the confounding windows to form the
1430 negative samples Z . Each $Z_{c,t}$ has n elements, thus Z has size $C^* \times T \times n$. Z is excluded from
1431 backpropagation.1432 MVPFormer processes the entire E at once and produces an output O also of size $C^* \times T$. We then
1433 compute the losses and iteratively optimize to train the model.1434
1435 **Contrastive loss** We train MVPFormer using a contrastive loss (Oord et al., 2018) and an auxiliary
1436 loss. To compute the contrastive loss, we rely on having other windows in the batch, so a larger
1437 batch size leads in general to a more stable training and better generalization performance. Let
1438 e^i , $i \in [1, \dots, B]$ be the outputs of the signal Encoder and o^i , $i \in [1, \dots, B]$ the outputs of
1439 the Decoder stack, for B the batch size. For each i^* , we select at random $n_{\text{negatives}}$ elements from
1440 e^i , $i \neq i^*$ to act as our negative samples n^{i^*} . Clearly, the bigger the batch the greater the entropy.
1441 We compute the contrastive loss for each i^* as follows:

1442
1443
$$\mathcal{L}_{c,t}^i = -\log \frac{\exp(\text{sim}(o_{c,t}, e_{c(t+1)})/\tau)}{\sum_{z_k \in Z} \exp(\text{sim}(o_{c,t}, z_k)/\tau)} \quad (9)$$

1444

1445 Finally summing over every i, c, t gives us the optimization target for the generative task.1446 The loss is invariant to the channel c , which encourages all the outputs to be the same regardless of
1447 channel. The temperature τ is 0.1.1448 **C.2 GENERATION OF NEURONAL ACTIVITY**
14491450 The generation of brain signals during inference proceeds analogously as during training. However,
1451 we do not have access to the same source of entropy as in training since the batches are limited to one
1452 subject at a time. This limitation implies that the evaluation scores of MVPFormer must be more
1453 punishing than the training objective, since we cannot reliably estimate the accuracy with which
1454 MVPFormer chooses the right target. For this reason, we measure the cosine similarity directly in
1455 a three-way reference scheme. First, we consider the cosine similarity of the output with the true
1456 target. Second, we consider the similarity with the maximally correlated target. Third, we measure
1457 the cosine similarity with the highest form of entropy available, random segments in the batch that

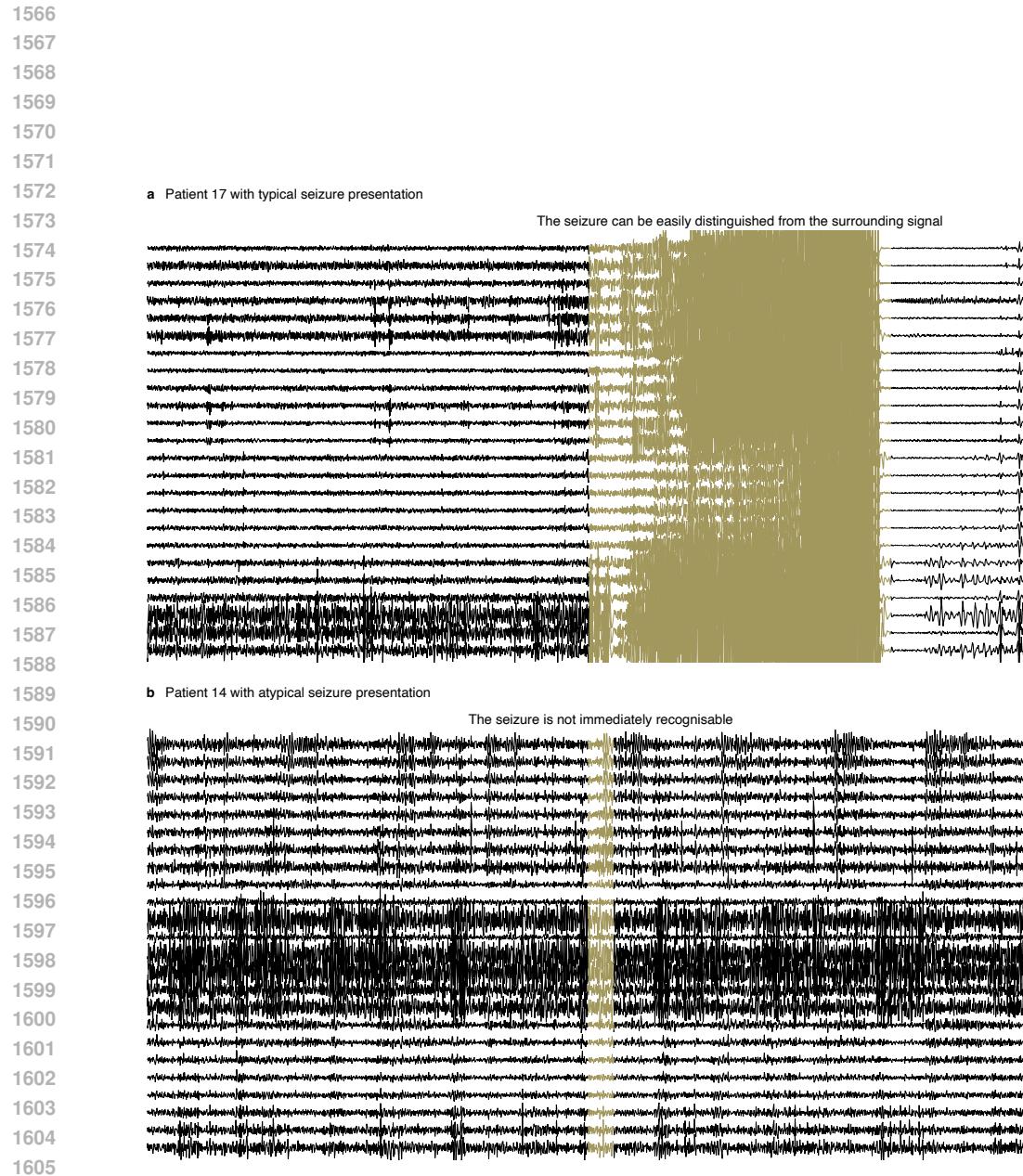
1458 are still close by in time. This measurement ensures that the difference in similarity between the true
1459 and confounding targets remains significant.
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 **D LONG-TERM iEEG DATASET**

1513

1514 The Long-term iEEG dataset is presented in Section 4. The iEEG signals were recorded intracra-
 1515 nially with a sampling rate of either 512 Hz or 1024 Hz, which was then normalized to 512 Hz before
 1516 training MVPFormer. The signals were median-referenced and digitally band-pass filtered between
 1517 0.5 and 120 Hz using a fourth-order Butterworth filter, both in a forward and backward pass to min-
 1518 imize phase distortions. All the recordings were inspected by an expert for identification of seizure
 1519 onsets and offsets, and to remove channels corrupted by artifacts.

1520 This dataset may only be used for research. For other applications any liability is denied. In partic-
 1521 ular, the dataset must not be used for diagnostic purposes.


1522 Here, Table 15 shows the full details of the dataset in a subject-by-subject breakdown. Finally,
 1523 Figure 4 shows two annotated seizures in the dataset.

1525

1526 **Table 15: Per-subject details of our Long-term iEEG dataset.** Ch. is the number of electrodes,
 1527 f_s is the sampling frequency in Hz, Rec. [h] is the length of the recording in hours, and Ev. is the
 1528 number of seizures. The entire dataset contains 68 subjects, 9328 hours of recording and 704 ictal
 1529 events.

Subject	Ch.	f_s [Hz]	Rec [h]	Ev.	Subject	Ch.	f_s [Hz]	Rec [h]	Ev.	Subject	Ch.	f_s [Hz]	Rec [h]	Ev.
ID01	88	512	293.4	2	ID24	32	1024	40.7	14	ID47	32	1024	330.4	3
ID02	66	512	235.2	2	ID25	128	512	109.4	4	ID48	57	1024	28.4	6
ID03	64	512	158.4	4	ID26	34	1024	87.6	1	ID49	60	512	140.4	6
ID04	32	1024	40.7	14	ID27	32	1024	146	8	ID50	64	1024	177.2	2
ID05	128	512	109.4	4	ID28	75	512	69	4	ID51	89	512	161.5	1
ID06	32	1024	146	8	ID29	61	1024	143.8	70	ID52	69	512	112.6	2
ID07	75	512	69	4	ID30	48	1024	40.9	27	ID53	22	1024	134.9	1
ID08	61	1024	143.8	70	ID31	32	1024	42.4	17	ID54	54	1024	202	3
ID09	48	1024	40.9	27	ID32	32	1024	212.2	2	ID55	24	1024	152.1	2
ID10	32	1024	42.4	17	ID33	104	512	53.6	1	ID56	62	1024	130.5	3
ID11	32	1024	212.2	2	ID34	56	1024	191.4	9	ID57	40	1024	90.7	12
ID12	56	1024	191.4	9	ID35	64	1024	104	7	ID58	92	512	138.2	7
ID13	64	1024	104	7	ID36	24	1024	161.4	60	ID59	54	1024	107.3	15
ID14	24	1024	161.4	60	ID37	98	512	195.9	2	ID60	74	512	50.7	8
ID15	98	512	195.9	2	ID38	34	1024	177.1	5	ID61	76	512	89.6	6
ID16	34	1024	177.1	5	ID39	60	1024	129.6	2	ID62	60	1024	235.1	7
ID17	60	1024	129.6	2	ID40	42	1024	205.1	5	ID63	64	512	179.8	4
ID18	42	1024	205.1	5	ID41	33	1024	82.7	3	ID64	56	1024	36.3	20
ID19	29	1024	21.7	25	ID42	63	1024	87.8	2	ID65	49	1024	139.7	8
ID20	88	512	293.4	2	ID43	126	512	63.2	2	ID66	39	1024	212.3	2
ID21	66	512	235.2	2	ID44	60	1024	150.3	2	ID67	63	512	111.7	4
ID22	64	512	158.4	4	ID45	47	1024	157.3	1	ID68	32	1024	167.8	3
ID23	32	1024	42.4	33	ID46	86	512	140.5	21					

1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1606 Figure 4: **iEEG activity of two patients with different ictal patterns.** (a) Patient 17 of the Long-
 1607 term iEEG dataset presents typical ictal events. The seizure can be clearly distinguished even by
 1608 a non-expert, and MVPFormer performs very well on this patient. The number of channels is re-
 1609 duced from the original recording to facilitate comparison with the more difficult presentation. (b)
 1610 Patient 14 of the Long-term iEEG dataset does not have typical events. The neuronal activity during
 1611 seizures for this patient cannot be clearly distinguished, and assessment by experts would diverge
 1612 considerably. As expected, MVPFormer has a high level of disagreement on this patient. All the
 1613 channels of the original recording are presented to exclude the chance of some channels carrying
 1614 additional information.

1615
 1616
 1617
 1618
 1619

1620 E GENERATION OF RESULTS
1621

1622 During evaluation, the target and data are prepared according to each task and model’s specification,
1623 analogously to the pre-training task. For MVPFormer, we first divide each recording into windows
1624 of 500 seconds each, with a stride of five seconds. Then, each window is divided into 100 segments
1625 (each five seconds long). In cases where datasets are too small for MVPFormer’s context window,
1626 we shorten it accordingly. The classification decision is taken on the last window.
1627

1628 E.1 CHANNEL SELECTION
1629

1630 In order to ensure a consistent setup across all baselines and to speed up evaluation we perform
1631 the seizure detection task on the Long-term iEEG dataset using a subset of the channels (see Ap-
1632 pendix G.8 for an ablation of the selection mechanism). Specifically, we always choose 32 channels
1633 to comply with the fixed-channel models such as Brant-2.

1634 First, we compute the variance and kurtosis for all channels within the first 30 minutes of each
1635 subject’s recording. We exclude channels based on the following:
1636

1637

- 1638 • Variance above the 99th percentile and below the 1st percentile
- 1639 • Kurtosis above the 95th percentile

1640 This results in a first quality filtering. Next, we rank the channels based on a simple combination of
1641 variance and kurtosis with the following:
1642

$$1643 r_C = \frac{\text{var}(C)}{1 + \text{kurt}(C)} \quad (10)$$

1644 and choose the first 32 channels. In the cases where there not enough channels, we also include
1645 some of the channels excluded above to reach 32.
1646

1647 E.2 EPISODIC SEIZURE POST-PROCESSING

1648 For episodic evaluation we apply three post-processing steps to the model output:
1649

- 1650 • Merge events happening within 5 minutes of each other
- 1651 • Remove events shorter than 20 seconds in length
- 1652 • Remove events with less than 5 positive responses

1653 Moreover, when the subject has multiple seizures in one minute we merge them into one.
1654

1655 E.3 ONLINE SEIZURE THRESHOLDING

1656 In the clinical evaluation setup we apply a simple thresholding to decide whether to report a seizure
1657 or not. We set 3 positive seconds out of 10 to be the lower limit for detecting a seizure, to deter false
1658 positives; events shorter than 3 seconds are thus not reported, and an additional latency of 3 seconds
1659 is to be considered. We find this trade-off has limited drawbacks in practice, as there is often large
1660 disagreement even among neurologists about very short events.
1661

1662 E.4 KAPPA SCORE ESTIMATION

1663 To estimate the Kappa score, we choose 300 random segments per subject to compare their classi-
1664 fication from MVPFormer and the labels. We perform multiple iterations to ensure no bias in this
1665 computation. Figure 5 indicates that our choice of 250 iterations is sufficient for stable results.
1666

1674 E.5 LANDIS AND KOCH CRITERIA
16751676 Table 16 reports the commonly used Landis and Koch criteria for qualitative inter-rater agreement
1677 estimation from Kappa scores.

Kappa	Agreement
0 – 0.20	Slight
0.21 – 0.40	Fair
0.41 – 0.60	Moderate
0.61 – 0.80	Substantial
0.81 – 1.00	Almost perfect

1687 Table 16: **Landis and Koch criteria.** Landis and Koch criteria (Landis & Koch, 1977) for eval-
1688 uating Cohen's kappa in the context of inter-rater agreement between human experts on seizure
1689 classification.1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

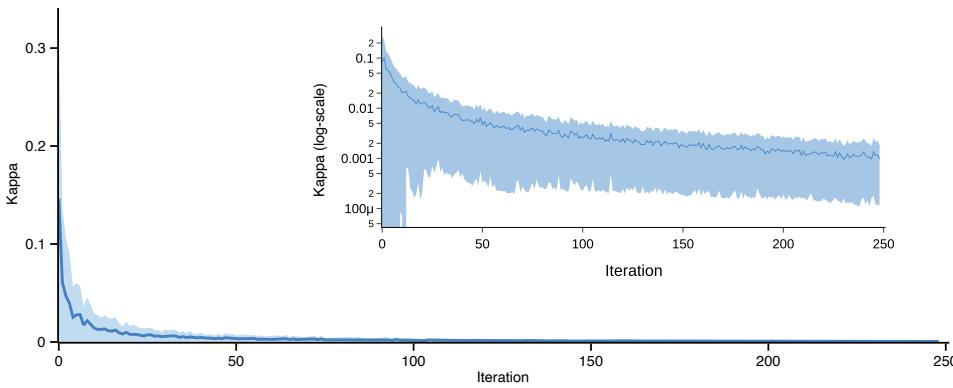
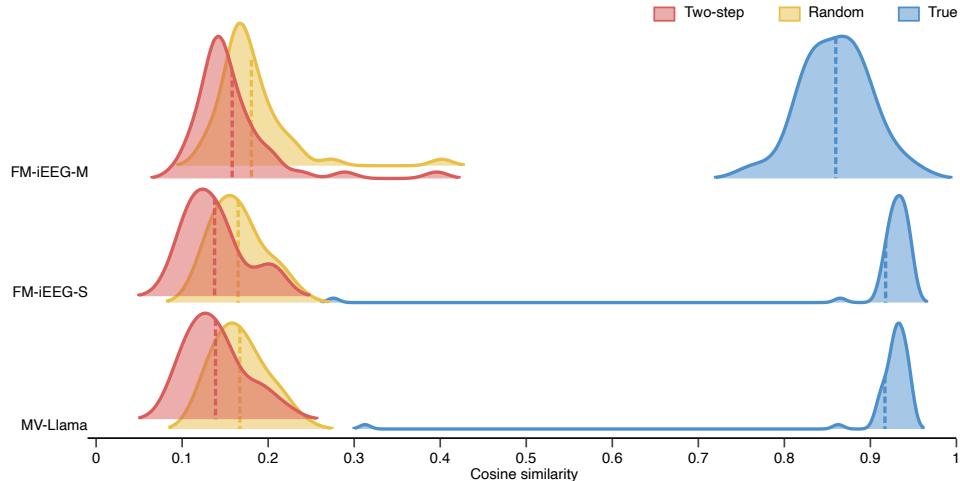



Figure 5: **Mean absolute error in Cohen’s kappa estimation.** Our estimation scheme for Cohen’s kappa converges after very few iterations. The error is computed per-subject as the absolute difference between the running averages at each two consecutive iterations; the running average is the average of all preceding steps. The average and standard deviation across all subjects is reported here. We compute up to 250 random iterations to ensure precise reporting.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782 F PREDICTION OF iEEG SIGNALS
1783

1784 We evaluate the effects of the size of the model and the attention mechanism on the iEEG prediction
1785 task. Figure 6 shows that both MVPA and the vanilla attention are effective at predicting the next
1786 brain states. Scaling up the model size from MVPFormer-S to MVPFormer-M has the effect of
1787 shortening the tail of the true distribution, effectively increasing the concentration of the cosine
1788 similarity towards the maximum.

1805
1806 **Figure 6: Performance of MVPFormer-M, MVPFormer-S, and MV-Llama on the iEEG pre-
1807 diction task.** We report the average two-step, random, and true target cosine similarities for the
1808 three different models. All three are effective at predicting iEEG activity, while the larger model
1809 takes advantage of the increased embedding size by increasing the concentration of cosine simili-
1810 ties towards 1.

1811 Complete details are available for the iEEG prediction performance of MVPFormer-M (see Ap-
1812 pendix F.1, MVPFormer-S (see Appendix F.2), and MV-Llama (see Appendix F.3).
1813

1836
1837

F.1 PREDICTION OF iEEG AND ICTAL ACTIVITY

1838 MVPFormer is primarily a neuronal prediction model, trained to generate neuronal activity re-
1839 gardless of whether such activity is pathological or physiological. To understand the behavior of
1840 MVPFormer with anomalous brain states, we evaluate its performance in generating ictal neuronal
1841 activity. The precise relationship between ictal and interictal states is a point of ongoing discus-
1842 sion (Beenhakker & Huguenard, 2009; Zaveri et al., 2020), but many consider an approach to
1843 seizures as anomalies (Martini et al., 2021) the most appropriate. The Long-term iEEG dataset
1844 contains many ictal events, so we are able to evaluate the performance of MVPFormer in generat-
1845 ing anomalous activity. In particular, in this dataset the ratio between non-ictal and ictal states is
1846 approximately 500:1.

1846

1847 Figure 7 shows that ictal states are not anomalous for MVPFormer. In particular, the prediction
1848 similarity of MVPFormer does not degrade when generating ictal activity. Moreover, the prediction
1849 similarity in the ictal state is neither significantly different from the average similarity nor from the
1850 non-ictal similarity. This indicates that MVPFormer’s understanding of the mechanisms of genera-
1851 tion of neuronal activity encompasses the pathological ictal state as well. Therefore, MVPFormer
1852 must model patterns found both in physiological and pathological brain states. Finally, MVPFormer
1853 incorporates a model of seizure generation as a by-product of its predictive task, which is particularly
1854 noteworthy.

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

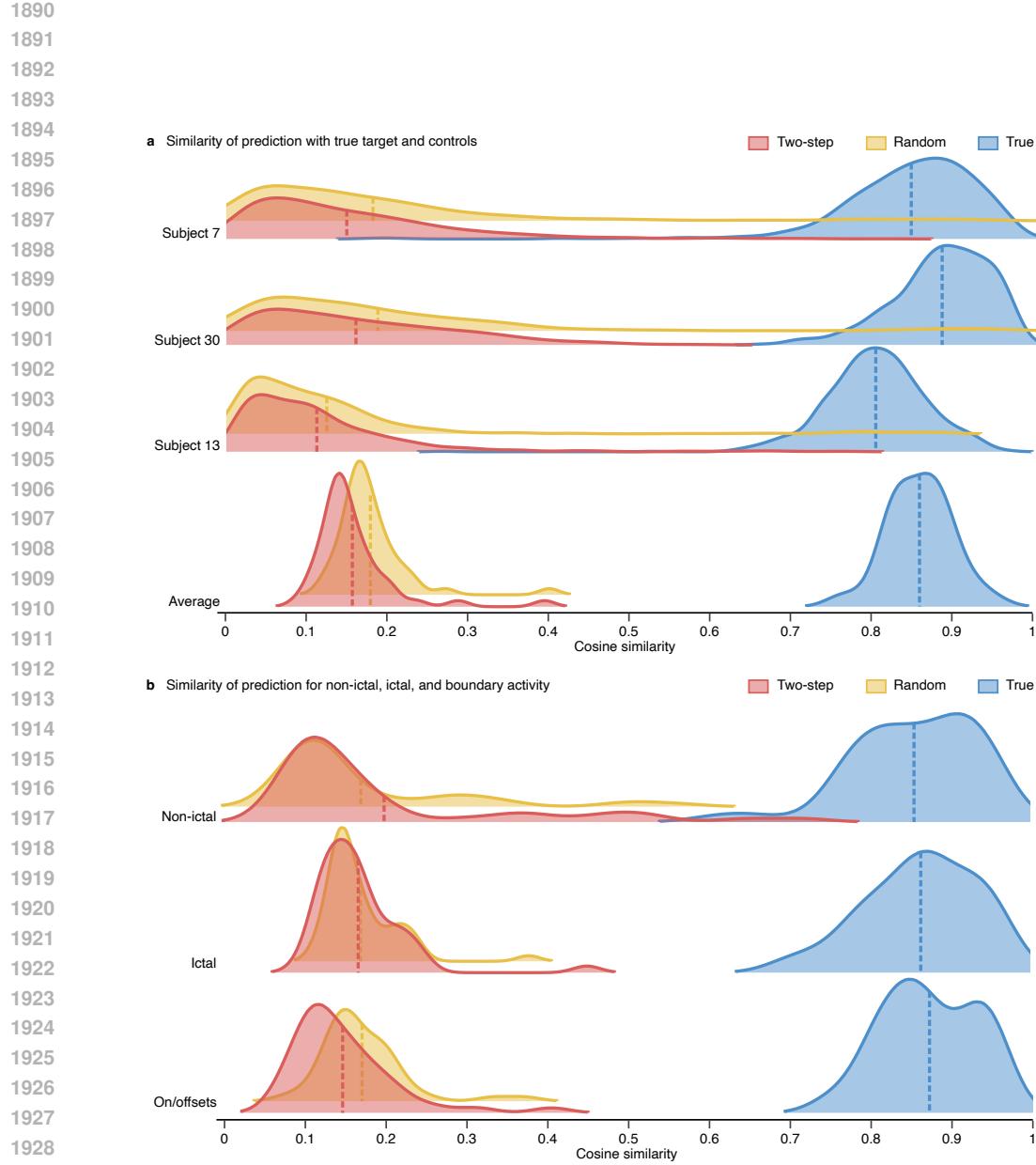
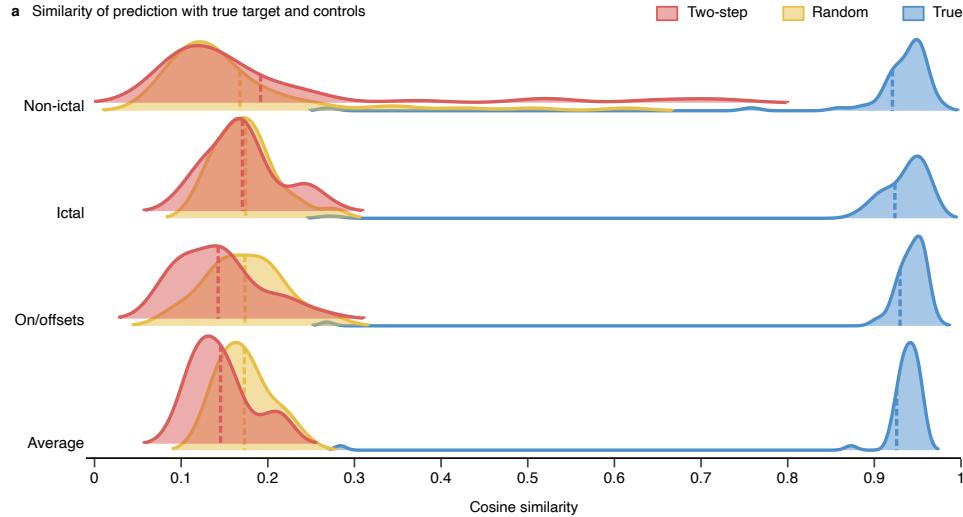


Figure 7: **Performance of MVPFormer on the prediction task.** (a) A three-reference evaluation scheme is used to assess MVPFormer’s performance. The true target is the immediate future, i.e. the next five seconds of iEEG signal. The two-step target is the signal twice removed in the future, i.e. the five seconds of iEEG signal coming after the true target. Finally, the random target is chosen from iEEG signals which are close by in time with the true target. The distribution of the average similarity across the entire recording is shown together with the similarity within three representative subjects (with maximum, median, and minimum average similarity). (b) The prediction similarity is computed again for all three targets, distinguishing between targets which lie within an ictal event, without, or at the boundary. There is no significant difference in the performance of MVPFormer in predicting ictal or non-ictal activity, indicating that MVPFormer can encompass anomalous brain states as well, together with the transitions between physiological and anomalous.

1944
1945


F.2 EFFECTS OF THE SCALE OF THE MODEL

1946
1947

Figure 8 shows the full details on the performance of MVPFormer-S on the Long-term iEEG dataset in the iEEG prediction task.

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

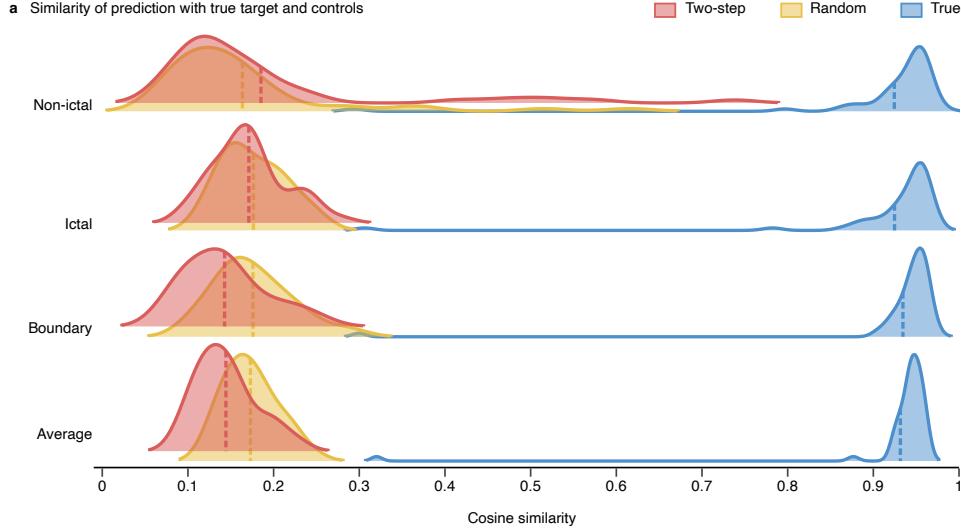
1993

1994

1995

1996

1997


1998
1999

F.3 EFFECTS OF THE ATTENTION MECHANISM

2000
2001

Figure 9 shows that vanilla attention is also effective in predicting the development of iEEG signal.

2002

2003
2004

a Similarity of prediction with true target and controls

Two-step Random True

2005
20062007
20082009
20102011
20122013
20142015
20162017
20182019
2020

Non-ictal

Ictal

Boundary

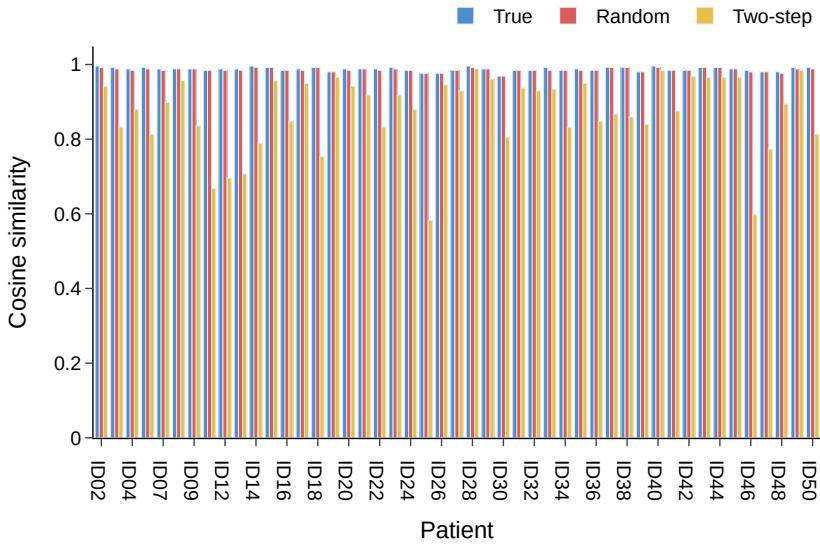
Average

Cosine similarity

2019
2020

Figure 9: **Performance of MV-Llama on the prediction task.** The prediction similarity is computed for all three targets, distinguishing between targets which lie within an ictal event or without. There is no significant difference in the performance of MV-Llama in predicting ictal or non-ictal activity. This indicates that vanilla attention with a proper positional encoding scheme can effectively generate neuronal activity. However, this does not translate to improved performance in the seizure classification task (see Table 21 vs. Table 20)

2021
20222023
20242025
20262027
20282029
20302031
20322033
20342035
20362037
20382039
20402041
20422043
20442045
20462047
20482049
2050


2051

2052
2053

F.4 PER-SUBJECT COSINE SIMILARITY

2054
2055
2056

We provide a detailed per-subject breakdown of the maximum cosine similarity measure for MVP-Former. Figure 10 shows the per-patient global similarity. Figure 11 shows the per-patient similarity within an anomaly. Figure 12 shows the per-patient similarity at the boundary of an anomaly.

2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078

2079
2080
2081
Figure 10: **Breakdown of total cosine similarity per-patient.** Maximum cosine similarity of MVP-
Former’s output with the true, random, and two-step targets over the entire Long-term iEEG dataset.
The data is shown patient-by-patient.

2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

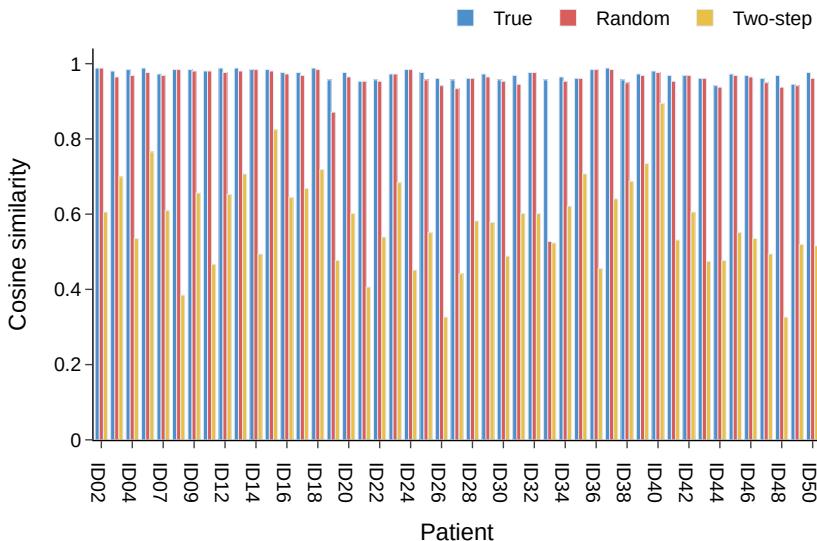


Figure 11: **Breakdown of anomaly cosine similarity per-patient.** Maximum cosine similarity of MVPFormer’s output with the true, random, and two-step targets while within an anomaly (seizure) in the Long-term iEEG dataset. The data is shown patient-by-patient.

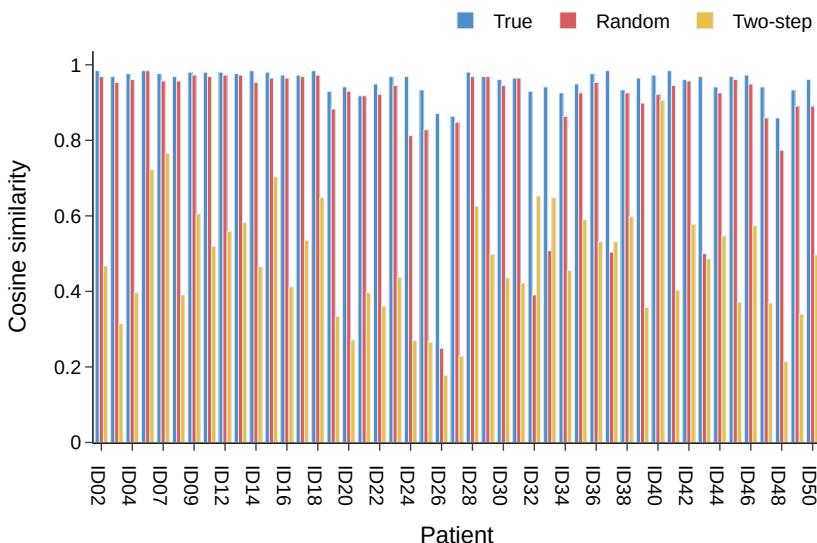
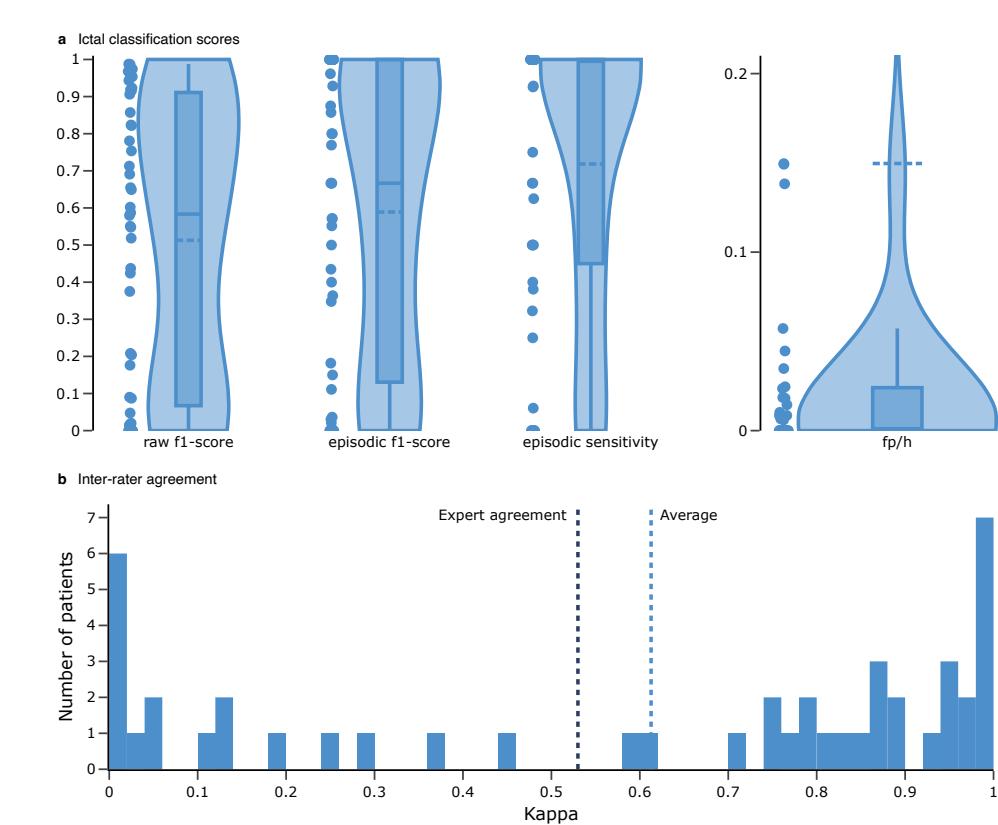


Figure 12: **Breakdown of boundary cosine similarity per-patient.** Maximum cosine similarity of MVPFormer’s output with the true, random, and two-step targets while in the onset and offset zones of seizures in the Long-term iEEG dataset. The data is shown patient-by-patient.

2160 **G ADDITIONAL RESULTS**
21612162 **G.1 SEIZURE DETECTION**
21632164 Table 17 reports a summary of the seizure detection results across all datasets and architectures.
21652166 Table 17: **Results on seizure detection.** We compare MVPFormer with Brant-2, the current SOTA
2167 Transformer model for iEEG, and MV-Llama, our vanilla attention-based baseline.
2168


Model	Attention	Kappa	Long-term			MAYO			FNUSA			
			Episodic		Raw	Raw		Raw	Raw		Raw	
			f1	sens	fp/h	f1	sens	spec	f1	sens	spec	
MVPFormer	MVPA	0.61	0.59	0.72	0.15	0.51	0.36	0.38	0.91	0.46	0.94	0.10
MVPFormer-S	MVPA	0.57	0.53	0.71	0.12	0.49	0.35	0.41	0.88	0.46	0.99	0.03
Brant-2	Vanilla	0.06	0.01	0.01	0.11	0.00	0.19	1.00	0.18	0.46	0.99	0.02
BrainBERT	Vanilla	0.00	0.00	0.00	0.00	0.00	/	/	/	/	/	/
MV-Llama	Vanilla	0.11	0.01	0.01	0.02	0.00	/	/	/	/	/	/

2178 **G.2 BRAIN TREEBANK DECODING TASKS**
21792180 Table 18 reports a summary of the decoding tasks of the Brain TreeBank dataset.
21812182 Table 18: **Results on Brain TreeBank iEEG tasks.** We compare MVPFormer with multiple
2183 Transformer-based architectures on the four tasks of the Brain TreeBank dataset (Wang et al.,
2184 2024a). The best results are bolded, while the results where the electrode position is beneficial
2185 are underlined.
2186

Model	Attention	Electrode location	Pitch	Volume	Onset	Speech
MVPFormer	MVPA	No	0.83 (0.02)	0.88 (0.01)	0.87 (0.02)	0.90 (0.02)
MV-Llama	Vanilla	No	0.62 (0.03)	0.77 (0.02)	0.80 (0.03)	0.81 (0.02)
Brant	Vanilla	No	0.61 (0.03)	0.74 (0.03)	0.80 (0.04)	0.80 (0.03)
PopT w/o encoding	Vanilla	No	0.62 (0.07)	0.76 (0.07)	0.81 (0.09)	0.83 (0.10)
PopT (BrainBERT)	Vanilla	Yes	0.74 (0.03)	0.87 (0.03)	<u>0.90</u> (0.01)	<u>0.93</u> (0.02)
PopT (TOTEM)	Vanilla	Yes	0.64 (0.03)	0.79 (0.02)	<u>0.90</u> (0.02)	0.88 (0.05)

2214 G.3 CONVENTIONAL EVALUATION
2215

2216 In addition to our clinically motivated evaluation (see Section 5.2.1), we assess all our models using
2217 conventional machine learning metrics for seizure detection: F1-score, sensitivity, and false positive
2218 rate. These metrics are commonly used in benchmarking seizure detection models (Ziyabari et al.,
2219 2017; Shah et al., 2020), and allow comparison with prior work. The full seizure detection results
2220 of MVPFormer are shown in Table 17 and Figure 13.

2248 Figure 13: **Performance of MVPFormer on the classification task.** (a) The F1-score, sensitivity,
2249 and fp/h are reported. Raw results are computed without any post-processing of MVPFormer’s
2250 output, while episodic results follow a common post-processing procedure which merge close ictal
2251 classifications. (b) Cohen’s Kappa is used to measure the agreement between the artificial
2252 assistant and the human expert. The average kappa is 0.61, competitive with the values obtained
2253 between human experts. The distribution of kappa values clearly indicates that a minority of subjects are the
2254 source of most disagreement, consistent with the variability of inter-rater agreement among human
2255 experts.

2256 We evaluate against two baselines: Brant-2 (Yuan et al., 2024a), a SOTA Transformer model for
2257 iEEG, and MV-Llama, an ablation of MVPFormer-S that uses standard attention instead of MVPA
2258 (see Appendix G.5). Brant-2 is fine-tuned with its published pre-trained weights and protocol. MV-
2259 Llama is trained identically to MVPFormer-S.

2260 We report both raw and episodic metrics. Episodic metrics reflect clinically meaningful detections
2261 by grouping predictions into events (Ziyabari et al., 2017). The detailed results are provided in
2262 Tables 25 and 19.

2264 The similarity between raw and episodic F1-scores suggests that MVPFormer naturally learns to
2265 detect seizure episodes of realistic length and frequency. On the 50-subject Long-term test set, the
2266 false positive rate is 0.15 fp/h (0.12 for MVPFormer-S), comparable to commercial EEG devices
2267 used in clinical practice (Van de Vel et al., 2014; Bruno et al., 2020). As expected in a real-world
2268 dataset, false positive rates vary considerably across subjects, with 81% having fewer than 0.05 fp/h.

2268
 2269 **Table 19: Details of seizure detection results of MVPFormer with 18 subject pre-training.**
 2270 Kappa is the inter-rater agreement. The classification metrics report the raw and episodic met-
 2271 rics relevant for the seizure classification task. The similarity reports the breakdown of the cosine
 2272 similarity in each of the considered scenarios.

2273 Subject	2274 Kappa	2275 95% CI	Classification metrics						Similarity						
			2276 Raw			2277 Episodic			2278 True			2279 Random			
			2281 f1-score	2282 f1-score	2283 sensitivity	2284 fp/h	2285 average	2286 ictal	2287 non-ictal	2288 average	2289 ictal	2290 non-ictal	2291 average	2292 ictal	
ID19	0.00	0.00	0.01	0.35	0.25	0.14	0.30	0.27	0.25	0.14	0.15	0.10	0.16	0.14	0.10
ID20	0.87	0.05	0.92	0.57	1.00	0.01	0.89	0.95	0.91	0.17	0.19	0.12	0.14	0.17	0.12
ID21	0.82	0.09	0.59	0.67	1.00	0.01	0.92	0.92	0.93	0.16	0.15	0.16	0.13	0.22	0.18
ID22	0.99	0.02	0.94	1.00	1.00	0.00	0.89	0.92	0.90	0.15	0.15	0.10	0.12	0.15	0.08
ID23	0.12	0.03	0.21	0.11	0.06	0.02	0.88	0.95	0.94	0.22	0.22	0.20	0.20	0.21	0.20
ID24	0.92	0.01	0.91	0.93	0.93	0.02	0.80	0.93	0.89	0.13	0.13	0.09	0.14	0.11	0.14
ID25	0.00	0.00	0.00	0.00	0.00	0.00	0.84	0.90	0.90	0.17	0.24	0.14	0.15	0.20	0.13
ID26	0.03	0.03	0.02	0.04	1.00	0.61	0.88	0.96	0.94	0.16	0.21	0.09	0.13	0.16	0.10
ID27	0.99	0.01	0.95	1.00	1.00	0.00	0.88	0.95	0.95	0.20	0.23	0.20	0.17	0.23	0.21
ID28	0.83	0.04	0.82	0.86	0.75	0.00	0.85	0.89	0.61	0.26	0.14	0.07	0.16	0.15	0.10
ID29	0.71	0.02	0.58	0.43	0.32	0.03	0.86	0.92	0.92	0.14	0.14	0.11	0.11	0.12	0.13
ID30	0.95	0.01	0.92	0.96	0.93	0.00	0.89	0.95	0.94	0.17	0.17	0.13	0.14	0.16	0.14
ID31	0.99	0.00	0.97	1.00	1.00	0.00	0.88	0.95	0.95	0.18	0.21	0.13	0.15	0.22	0.17
ID32	1.00	0.00	0.97	1.00	1.00	0.00	0.93	0.93	0.94	0.17	0.15	0.12	0.13	0.16	0.11
ID33	0.06	0.07	0.00	0.00	0.00	0.15	0.95	0.96	0.95	0.39	0.38	0.31	0.39	0.45	0.46
ID34	0.99	0.01	0.97	1.00	1.00	0.00	0.89	0.94	0.92	0.14	0.14	0.09	0.11	0.14	0.12
ID35	0.98	0.01	0.96	1.00	1.00	0.00	0.86	0.93	0.94	0.18	0.15	0.25	0.17	0.17	0.35
ID36	0.60	0.03	0.78	0.57	0.40	0.00	0.91	0.95	0.94	0.19	0.20	0.13	0.16	0.18	0.14
ID37	1.00	0.00	0.97	1.00	1.00	0.00	0.77	0.74	0.66	0.16	0.12	0.29	0.14	0.15	0.49
ID38	0.99	0.01	0.99	1.00	1.00	0.00	0.82	0.85	0.77	0.15	0.13	0.13	0.13	0.14	0.09
ID39	0.99	0.02	0.92	1.00	1.00	0.00	0.83	0.70	0.83	0.16	0.12	0.10	0.14	0.12	0.10
ID40	1.00	0.01	0.99	1.00	1.00	0.00	0.87	0.88	0.90	0.15	0.13	0.09	0.13	0.13	0.11
ID41	0.13	0.03	0.18	0.15	1.00	0.41	0.86	0.79	0.86	0.16	0.15	0.10	0.13	0.15	0.10
ID42	0.96	0.03	0.86	1.00	1.00	0.00	0.82	0.80	0.79	0.15	0.14	0.07	0.13	0.15	0.07
ID43	0.89	0.04	0.69	1.00	1.00	0.00	0.80	0.77	0.84	0.13	0.14	0.12	0.10	0.15	0.11
ID44	0.90	0.12	0.42	0.67	0.50	0.00	0.82	0.89	0.89	0.11	0.14	0.49	0.08	0.09	0.65
ID45	0.37	0.09	0.09	0.18	1.00	0.06	0.82	0.87	0.77	0.14	0.16	0.09	0.12	0.14	0.16
ID46	0.45	0.04	0.44	0.55	0.38	0.00	0.85	0.87	0.61	0.18	0.14	0.28	0.16	0.11	0.51
ID47	0.77	0.09	0.60	0.50	1.00	0.02	0.84	0.81	0.83	0.16	0.15	0.12	0.14	0.16	0.09
ID48	0.87	0.01	0.71	1.00	1.00	0.00	0.80	0.83	0.79	0.12	0.12	0.08	0.10	0.11	0.09
ID49	0.25	0.04	0.20	0.36	1.00	0.15	0.89	0.79	0.86	0.23	0.14	0.35	0.23	0.17	0.53
ID50	0.97	0.05	0.82	1.00	1.00	0.00	0.86	0.90	0.84	0.16	0.24	0.11	0.14	0.21	0.10
ID51	0.75	0.11	0.38	0.40	1.00	0.02	0.87	0.78	0.89	0.26	0.14	0.28	0.28	0.24	0.39
ID52	0.85	0.05	0.65	1.00	1.00	0.00	0.82	0.84	0.79	0.21	0.18	0.11	0.19	0.16	0.14
ID53	0.00	0.00	0.00	0.00	1.00	3.43	0.82	0.77	0.79	0.17	0.17	0.09	0.14	0.15	0.11
ID54	0.01	0.02	0.02	0.02	0.67	0.89	0.82	0.71	0.83	0.16	0.14	0.12	0.13	0.14	0.09
ID55	0.86	0.07	0.75	0.80	1.00	0.01	0.84	0.87	0.80	0.18	0.18	0.11	0.16	0.19	0.14
ID56	0.79	0.06	0.55	0.80	0.67	0.00	0.87	0.81	0.79	0.19	0.18	0.12	0.17	0.20	0.18
ID57	0.00	0.00	0.00	0.00	0.00	0.00	0.87	0.87	0.81	0.16	0.21	0.14	0.13	0.17	0.17
ID58	0.30	0.11	0.00	0.00	0.00	0.01	0.86	0.84	0.77	0.21	0.22	0.33	0.20	0.24	0.30
ID59	0.00	0.00	0.00	0.00	0.00	0.00	0.82	0.85	0.80	0.17	0.14	0.09	0.16	0.12	0.11
ID60	0.20	0.03	0.09	0.67	0.50	0.00	0.87	0.88	0.93	0.15	0.14	0.56	0.12	0.11	0.37
ID61	0.14	0.09	0.00	0.00	0.00	0.04	0.89	0.87	0.89	0.18	0.16	0.11	0.15	0.13	0.11
ID62	0.79	0.04	0.65	0.88	1.00	0.01	0.83	0.86	0.92	0.14	0.13	0.52	0.13	0.12	0.72
ID63	0.76	0.05	0.52	0.77	0.62	0.00	0.82	0.86	0.86	0.15	0.16	0.09	0.13	0.15	0.06
ID64	0.95	0.07	0.55	1.00	1.00	0.00	0.86	0.87	0.85	0.15	0.15	0.16	0.12	0.14	0.10
ID65	0.04	0.02	0.05	0.03	0.50	1.14	0.83	0.87	0.85	0.13	0.15	0.09	0.10	0.13	0.08
ID66	0.61	0.19	0.00	0.00	0.00	0.01	0.75	0.80	0.76	0.12	0.13	0.06	0.10	0.11	0.08
ID67	0.04	0.01	0.05	0.03	0.50	1.06	0.83	0.82	0.81	0.20	0.15	0.07	0.19	0.12	0.10
ID68	0.66	0.18	0.00	0.00	0.00	0.01	0.84	0.80	0.82	0.17	0.22	0.15	0.14	0.19	0.16

2302
 2303 These results confirm that MVPFormer performs competitively on conventional seizure detection
 2304 benchmarks, while also offering robust generalization to clinically realistic evaluation settings.
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321

2322
2323

G.4 EFFECTS OF THE SCALE OF THE MODEL

2324
2325
2326
2327
2328

The performance improvements of LLMs as a function of their model sizes have also been widely reported (Hoffmann et al., 2022; Kaplan et al., 2020). According to Chinchilla’s scaling law the training dataset is already not large enough to fully train MVPFormer-S (75M parameters), so we investigate whether a larger model (MVPFormer-M, 1.2B parameters) can provide any improvement in performance.

2329
2330
2331
2332
2333
2334
2335

Figure 14 shows the seizure detection performance of MVPFormer-S on the Long-term iEEG dataset (see Table 20). As noted in the main results, MVPFormer-M marginally improves seizure detection results over MVPFormer-S. In particular, it reaches higher F1-score but higher fp/h rate as well, with small net improvement. Therefore, we have shown that the amount of iEEG data currently available is not sufficient to fully take advantage of the increase in model size of Transformers. We hope that making the Long-term iEEG dataset publicly available will increase overall availability and unlock further model scaling potential.

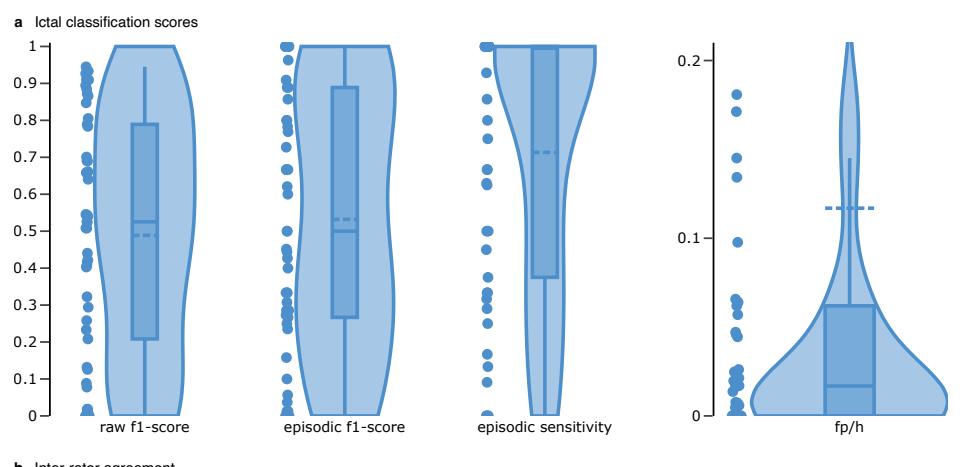
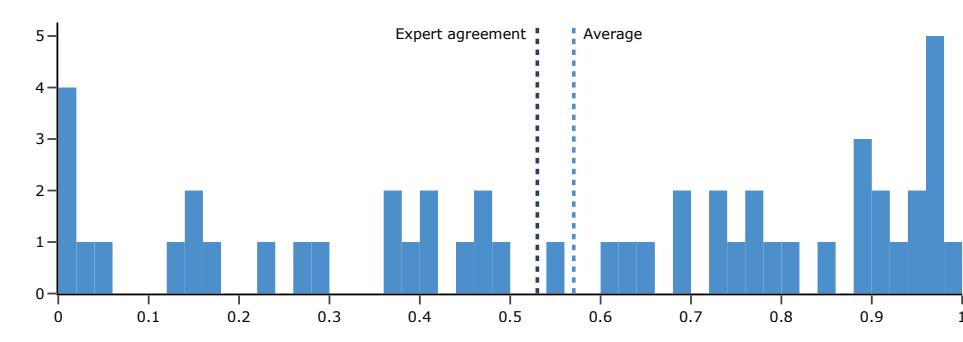


2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
23492350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
23612362
2363
2364
2365
2366
2367
2368
2369

Figure 14: **Seizure detection with 18 patient pre-training.** (a) Seizure detection results of MVPFormer-S on unseen subjects: the F1-score, sensitivity, and fp/h are reported. Raw results are computed without any post-processing of MVPFormer’s output, while episodic results follow a common post-processing procedure which merge close ictal classifications. (b) Cohen’s Kappa is used to measure the agreement between MVPFormer-S and the human expert. The average kappa is 0.57, competitive with the values obtained between human experts. The distribution of kappa values clearly indicates that a minority of subjects are the source of most disagreement, consistent with the variability of inter-rater agreement among human experts.

2370
2371
2372
2373
2374
2375

2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386

2387 Table 20: **Details of seizure detection results of MVPFormer-S.** Kappa is the inter-rater agreement.
 2388 The classification metrics report the raw and episodic metrics relevant for the seizure classification
 2389 task. The similarity reports the breakdown of the cosine similarity in each of the considered
 2390 scenarios.

2391 Subject	2392 Kappa	2393 95% CI	Classification metrics						Similarity						
			2394 Raw	2395 F1-score	2396 Episodic	2397 sensitivity	2398 fp/h	2399 average	2400 True	2401 ictal	2402 non-ictal	2403 average	2404 ictal	2405 non-ictal	
ID19	0.01	0.00	0.02	0.33	0.50	1.11	0.28	0.27	0.27	0.21	0.20	0.25	0.21	0.20	0.23
ID20	0.79	0.06	0.87	0.44	1.00	0.02	0.95	0.96	0.95	0.18	0.21	0.12	0.15	0.17	0.12
ID21	0.73	0.11	0.51	0.50	1.00	0.02	0.94	0.93	0.95	0.16	0.18	0.18	0.13	0.24	0.20
ID22	0.97	0.02	0.91	1.00	1.00	0.00	0.94	0.89	0.95	0.15	0.16	0.09	0.12	0.17	0.07
ID23	0.15	0.03	0.21	0.16	0.09	0.05	0.95	0.95	0.95	0.25	0.28	0.23	0.22	0.24	0.24
ID24	0.94	0.01	0.91	0.96	0.93	0.00	0.93	0.94	0.93	0.19	0.19	0.12	0.16	0.17	0.17
ID25	0.13	0.09	0.00	0.00	0.00	0.06	0.94	0.96	0.96	0.17	0.19	0.15	0.14	0.18	0.15
ID26	0.04	0.03	0.02	0.04	1.00	0.59	0.95	0.97	0.96	0.17	0.22	0.12	0.14	0.18	0.11
ID27	0.88	0.03	0.78	0.89	1.00	0.01	0.95	0.96	0.96	0.22	0.24	0.21	0.19	0.25	0.24
ID28	0.89	0.03	0.87	0.86	0.75	0.00	0.95	0.96	0.95	0.17	0.19	0.09	0.13	0.17	0.12
ID29	0.45	0.03	0.42	0.27	0.29	0.18	0.95	0.95	0.95	0.16	0.15	0.14	0.12	0.13	0.13
ID30	0.63	0.02	0.66	0.67	0.63	0.17	0.95	0.96	0.96	0.19	0.19	0.15	0.16	0.18	0.16
ID31	0.98	0.00	0.93	1.00	1.00	0.00	0.95	0.96	0.96	0.19	0.24	0.11	0.16	0.24	0.18
ID32	0.99	0.03	0.93	1.00	1.00	0.00	0.95	0.91	0.96	0.18	0.13	0.16	0.15	0.18	0.12
ID33	0.48	0.14	0.00	0.00	0.00	0.02	0.93	0.95	0.93	0.23	0.28	0.19	0.21	0.26	0.21
ID34	0.78	0.03	0.85	0.78	1.00	0.03	0.95	0.95	0.95	0.15	0.15	0.10	0.11	0.15	0.13
ID35	0.77	0.03	0.79	0.80	0.86	0.02	0.92	0.94	0.92	0.17	0.19	0.19	0.15	0.17	0.22
ID36	0.41	0.03	0.54	0.43	0.32	0.06	0.96	0.96	0.95	0.22	0.23	0.14	0.19	0.21	0.17
ID37	0.50	0.09	0.44	0.31	1.00	0.05	0.92	0.91	0.91	0.16	0.15	0.33	0.14	0.17	0.69
ID38	0.94	0.02	0.94	0.91	1.00	0.01	0.93	0.95	0.91	0.14	0.15	0.11	0.11	0.16	0.08
ID39	0.97	0.03	0.89	1.00	1.00	0.00	0.93	0.90	0.92	0.16	0.13	0.11	0.14	0.13	0.11
ID40	0.91	0.04	0.91	0.89	0.80	0.00	0.94	0.95	0.95	0.15	0.16	0.10	0.13	0.14	0.12
ID41	0.28	0.05	0.41	0.33	1.00	0.15	0.95	0.91	0.94	0.16	0.16	0.14	0.13	0.16	0.11
ID42	0.98	0.03	0.89	1.00	1.00	0.00	0.93	0.91	0.92	0.15	0.17	0.08	0.12	0.16	0.08
ID43	0.92	0.03	0.69	1.00	1.00	0.00	0.93	0.90	0.95	0.14	0.14	0.10	0.11	0.16	0.12
ID44	0.90	0.12	0.32	0.67	0.50	0.00	0.93	0.95	0.92	0.12	0.12	0.51	0.09	0.10	0.64
ID45	0.01	0.02	0.00	0.01	1.00	0.99	0.94	0.95	0.93	0.15	0.18	0.13	0.12	0.14	0.14
ID46	0.39	0.04	0.42	0.45	0.33	0.02	0.94	0.95	0.76	0.18	0.15	0.36	0.16	0.12	0.53
ID47	0.06	0.05	0.09	0.06	1.00	0.30	0.94	0.93	0.94	0.18	0.20	0.12	0.15	0.18	0.12
ID48	0.85	0.01	0.70	1.00	1.00	0.00	0.93	0.93	0.92	0.12	0.11	0.06	0.10	0.12	0.09
ID49	0.54	0.05	0.54	0.60	1.00	0.06	0.95	0.92	0.93	0.22	0.14	0.26	0.21	0.19	0.51
ID50	0.97	0.05	0.81	1.00	1.00	0.00	0.93	0.95	0.94	0.17	0.19	0.12	0.14	0.23	0.11
ID51	0.70	0.12	0.55	0.33	1.00	0.02	0.93	0.91	0.93	0.23	0.15	0.20	0.23	0.28	0.26
ID52	0.37	0.05	0.54	0.27	1.00	0.10	0.93	0.94	0.95	0.16	0.18	0.10	0.13	0.16	0.10
ID53	0.47	0.08	0.40	0.25	1.00	0.04	0.93	0.90	0.93	0.19	0.17	0.13	0.15	0.16	0.12
ID54	0.01	0.01	0.01	0.01	0.67	1.51	0.94	0.88	0.94	0.18	0.19	0.14	0.14	0.16	0.10
ID55	0.41	0.09	0.29	0.29	1.00	0.07	0.94	0.94	0.94	0.20	0.18	0.14	0.17	0.20	0.17
ID56	0.72	0.08	0.52	0.67	0.67	0.01	0.94	0.91	0.88	0.19	0.18	0.13	0.17	0.19	0.16
ID57	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.94	0.89	0.14	0.13	0.14	0.11	0.09	0.16
ID58	0.29	0.11	0.00	0.00	0.00	0.01	0.94	0.94	0.86	0.21	0.22	0.18	0.20	0.24	0.15
ID59	0.16	0.06	0.13	0.24	0.13	0.00	0.92	0.94	0.91	0.14	0.14	0.11	0.12	0.12	0.09
ID60	0.23	0.03	0.13	0.50	0.38	0.02	0.95	0.96	0.98	0.14	0.14	0.61	0.11	0.12	0.37
ID61	0.36	0.09	0.08	0.29	0.17	0.00	0.96	0.96	0.96	0.19	0.17	0.16	0.16	0.16	0.14
ID62	0.81	0.05	0.69	1.00	1.00	0.00	0.92	0.93	0.97	0.14	0.14	0.43	0.11	0.11	0.73
ID63	0.64	0.05	0.64	0.73	1.00	0.02	0.93	0.94	0.95	0.15	0.17	0.09	0.12	0.16	0.07
ID64	0.60	0.02	0.66	0.62	0.45	0.00	0.95	0.95	0.95	0.16	0.17	0.13	0.13	0.14	0.11
ID65	0.75	0.05	0.51	0.77	0.62	0.00	0.94	0.95	0.94	0.14	0.17	0.08	0.11	0.14	0.09
ID66	0.90	0.10	0.53	0.80	1.00	0.00	0.87	0.92	0.92	0.13	0.13	0.08	0.10	0.13	0.08
ID67	0.15	0.05	0.26	0.10	0.25	0.13	0.94	0.94	0.94	0.22	0.17	0.11	0.21	0.13	0.10
ID68	0.69	0.13	0.23	0.40	0.33	0.01	0.94	0.92	0.95	0.15	0.13	0.31	0.10	0.10	0.10

2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429

2430
2431

G.5 EFFECTS OF THE ATTENTION MECHANISM

2432
2433
2434
2435
2436

To assess the validity of our MVPA scheme, we train MV-Llama, a model almost equivalent to MVPFormer-S that uses vanilla attention instead of MVPA. While MV-Llama uses vanilla attention, it is still based on the SOTA Llama2 architecture. We also re-use the vanilla positional encoding, with a simple adjustment to recover a one-to-one correspondence between the positional encoding and the position of the patch in the time-series (the Cantor pairing function, see App. A.1).

2437
2438
2439
2440

Table 17 in the main text indicates that vanilla attention does not perform seizure detection at a level comparable to MVPA. In particular, the performance of MV-Llama is poor, indicating that it cannot generalize to this task. We argue this is due to higher flexibility of the internal representations generated by MVPA, which better lend themselves to further tasks, such as seizure classification.

2441
2442
2443
2444
2445

Table 21: **Details of seizure detection results of MV-Llama with 18 subject pre-training.** Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the seizure classification task. The similarity reports the breakdown of the cosine similarity in each of the considered scenarios.

2446

Subject	Kappa	95% CI	Classification metrics				Similarity								
			Raw		Episodic		True		Random			Two-step			
Subject	Kappa	95% CI	fl-score	f1-score	sensitivity	fp/h	average	ictal	non-ictal	average	ictal	non-ictal	average	ictal	non-ictal
ID19	0.00	0.00	0.01	0.12	0.06	0.00	0.32	0.31	0.29	0.23	0.23	0.23	0.23	0.22	0.22
ID20	0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.97	0.95	0.18	0.21	0.14	0.15	0.18	0.13
ID21	0.00	0.00	0.00	0.00	0.00	0.00	0.95	0.90	0.96	0.16	0.15	0.15	0.13	0.23	0.20
ID22	0.34	0.12	0.00	0.00	0.00	0.03	0.95	0.78	0.95	0.15	0.13	0.08	0.12	0.16	0.07
ID23	0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.96	0.96	0.25	0.26	0.20	0.22	0.24	0.24
ID24	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.94	0.93	0.19	0.20	0.19	0.16	0.18	0.17
ID25	0.02	0.06	0.00	0.00	0.00	0.17	0.95	0.96	0.96	0.17	0.19	0.16	0.14	0.18	0.15
ID26	0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.97	0.96	0.18	0.22	0.10	0.14	0.18	0.12
ID27	0.27	0.11	0.00	0.00	0.00	0.01	0.96	0.96	0.96	0.22	0.25	0.19	0.19	0.25	0.24
ID28	0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.96	0.96	0.17	0.19	0.08	0.13	0.17	0.13
ID29	0.00	0.00	0.00	0.00	0.00	0.00	0.95	0.95	0.96	0.16	0.15	0.09	0.12	0.13	0.13
ID30	0.01	0.06	0.00	0.00	0.00	0.22	0.96	0.96	0.96	0.19	0.20	0.15	0.16	0.19	0.17
ID31	0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.96	0.96	0.20	0.24	0.16	0.16	0.24	0.18
ID32	0.12	0.09	0.00	0.00	0.00	0.05	0.95	0.88	0.96	0.18	0.16	0.16	0.15	0.18	0.12
ID33	0.00	0.00	0.00	0.00	0.00	0.00	0.93	0.95	0.92	0.23	0.24	0.19	0.21	0.25	0.20
ID34	0.00	0.00	0.00	0.00	0.00	0.00	0.95	0.95	0.96	0.15	0.16	0.12	0.11	0.15	0.12
ID35	0.38	0.12	0.00	0.00	0.00	0.01	0.93	0.94	0.92	0.17	0.18	0.16	0.14	0.17	0.18
ID36	0.17	0.09	0.00	0.00	0.00	0.08	0.96	0.96	0.96	0.22	0.24	0.16	0.19	0.21	0.17
ID37	0.00	0.00	0.00	0.00	0.00	0.00	0.92	0.88	0.87	0.16	0.15	0.36	0.14	0.16	0.57
ID38	0.00	0.00	0.00	0.00	0.00	0.00	0.93	0.95	0.91	0.14	0.16	0.10	0.11	0.16	0.07
ID39	0.00	0.00	0.00	0.00	0.00	0.00	0.93	0.87	0.94	0.16	0.14	0.08	0.13	0.13	0.11
ID40	0.02	0.06	0.00	0.00	0.00	0.04	0.94	0.95	0.95	0.15	0.17	0.10	0.12	0.15	0.12
ID41	0.72	0.22	0.00	0.00	0.00	0.00	0.96	0.92	0.95	0.16	0.15	0.13	0.13	0.15	0.11
ID42	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.92	0.94	0.15	0.18	0.09	0.12	0.17	0.08
ID43	0.31	0.11	0.00	0.00	0.00	0.01	0.94	0.91	0.96	0.15	0.11	0.12	0.11	0.17	0.12
ID44	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.96	0.86	0.12	0.12	0.37	0.09	0.10	0.50
ID45	0.42	0.14	0.00	0.00	0.00	0.04	0.94	0.95	0.93	0.15	0.15	0.12	0.12	0.14	0.15
ID46	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.96	0.80	0.18	0.14	0.28	0.16	0.12	0.53
ID47	0.29	0.12	0.00	0.00	0.00	0.04	0.95	0.94	0.95	0.18	0.20	0.14	0.15	0.18	0.13
ID48	0.00	0.00	0.00	0.00	0.00	0.00	0.93	0.94	0.93	0.12	0.12	0.07	0.09	0.12	0.09
ID49	0.00	0.03	0.00	0.00	0.00	0.01	0.95	0.93	0.92	0.21	0.14	0.29	0.20	0.19	0.46
ID50	0.06	0.07	0.00	0.00	0.00	0.01	0.94	0.96	0.94	0.17	0.21	0.12	0.14	0.23	0.11
ID51	0.00	0.00	0.00	0.00	0.00	0.00	0.93	0.90	0.92	0.22	0.15	0.18	0.21	0.28	0.21
ID52	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.95	0.95	0.16	0.17	0.12	0.13	0.17	0.10
ID53	0.00	0.00	0.00	0.00	0.00	0.00	0.95	0.93	0.94	0.19	0.20	0.11	0.16	0.17	0.12
ID54	0.52	0.10	0.17	0.33	0.25	0.01	0.94	0.89	0.95	0.18	0.16	0.12	0.15	0.16	0.10
ID55	0.00	0.00	0.00	0.00	0.00	0.00	0.95	0.95	0.95	0.20	0.21	0.13	0.17	0.20	0.17
ID56	0.68	0.21	0.00	0.00	0.00	0.00	0.94	0.91	0.89	0.19	0.18	0.15	0.16	0.18	0.15
ID57	0.09	0.08	0.00	0.00	0.00	0.04	0.95	0.95	0.90	0.14	0.13	0.10	0.10	0.09	0.14
ID58	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.94	0.88	0.21	0.22	0.15	0.19	0.23	0.17
ID59	0.16	0.06	0.13	0.24	0.13	0.00	0.93	0.94	0.93	0.14	0.15	0.06	0.11	0.12	0.10
ID60	0.23	0.03	0.13	0.50	0.38	0.02	0.95	0.96	0.98	0.14	0.15	0.62	0.11	0.12	0.41
ID61	0.36	0.09	0.08	0.29	0.17	0.00	0.96	0.96	0.97	0.19	0.20	0.18	0.16	0.16	0.15
ID62	0.81	0.05	0.69	1.00	1.00	0.00	0.92	0.93	0.97	0.13	0.13	0.52	0.10	0.10	0.74
ID63	0.64	0.05	0.64	0.73	1.00	0.02	0.94	0.95	0.95	0.16	0.18	0.11	0.12	0.16	0.07
ID64	0.60	0.02	0.66	0.62	0.45	0.00	0.95	0.95	0.96	0.16	0.18	0.12	0.13	0.15	0.11
ID65	0.75	0.05	0.51	0.77	0.62	0.00	0.95	0.95	0.95	0.14	0.15	0.11	0.11	0.14	0.09
ID66	0.90	0.10	0.53	0.80	1.00	0.00	0.88	0.93	0.92	0.12	0.14	0.08	0.09	0.13	0.08
ID67	0.15	0.05	0.26	0.10	0.25	0.13	0.95	0.95	0.94	0.22	0.17	0.09	0.20	0.14	0.10
ID68	0.69	0.13	0.23	0.40	0.33	0.01	0.86	0.91	0.89	0.16	0.17	0.10	0.20	0.16	0.08

2475
2476
2477
2478
2479
2480
2481
2482
2483

2484 G.6 SEIZURE DETECTION WITH BRANT-2
24852486 Table 22 presents the detailed subject-by-subject breakdown of the performance of Brant-2.
24872488
2489 Table 22: **Details of seizure detection results of Brant-2 with 18 subject pre-training.** Kappa is
2490 the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for
2491 the seizure classification task.

2492 2493	2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534	2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534	2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534	2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534	Classification metrics			
				Raw	Episodic			
	Subject	Kappa	95% CI	f1-score	f1-score	sensitivity	fp/h	
2535	ID19	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
2536	ID20	0.00	0.00	0.00	0.00	0.00	0.00	
2537	ID21	0.00	0.00	0.00	0.00	0.00	0.01	
2538	ID22	0.00	0.00	0.00	0.00	0.00	0.02	
2539	ID23	0.00	0.00	0.00	0.00	0.00	0.00	
2540	ID24	-0.02	0.03	0.00	0.00	0.00	0.29	
2541	ID25	0.00	0.00	0.00	0.00	0.00	0.00	
2542	ID26	0.00	0.00	0.00	0.00	0.00	0.00	
2543	ID27	0.00	0.06	0.00	0.00	0.00	0.11	
2544	ID28	-0.01	0.02	0.00	0.00	0.00	0.52	
2545	ID29	0.00	0.00	0.00	0.00	0.00	0.00	
2546	ID30	0.00	0.00	0.00	0.00	0.00	0.00	
2547	ID31	0.00	0.00	0.00	0.00	0.00	0.00	
2548	ID32	0.00	0.00	0.00	0.00	0.00	0.00	
2549	ID33	0.48	0.14	0.00	0.00	0.00	0.02	
2550	ID34	0.17	0.09	0.00	0.00	0.00	0.05	
2551	ID35	0.03	0.07	0.00	0.00	0.00	0.07	
2552	ID36	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
2553	ID37	0.00	0.00	0.00	0.00	0.00	0.00	
2554	ID38	0.48	0.15	0.00	0.00	0.00	0.01	
2555	ID39	0.07	0.08	0.00	0.00	0.00	0.07	
2556	ID40	0.32	0.12	0.00	0.00	0.00	0.03	
2557	ID41	0.00	0.00	0.00	0.00	0.00	0.16	
2558	ID42	0.00	0.06	0.00	0.00	0.00	0.14	
2559	ID43	0.00	0.00	0.00	0.00	0.00	0.00	
2560	ID44	0.00	0.00	0.00	0.00	0.00	0.00	
2561	ID45	0.00	0.00	0.00	0.00	0.00	0.00	
2562	ID46	0.00	0.06	0.00	0.00	0.00	0.02	
2563	ID47	0.00	0.00	0.00	0.00	0.00	0.14	
2564	ID48	0.00	0.00	0.00	0.00	0.00	0.00	
2565	ID49	0.16	0.09	0.00	0.00	0.00	0.02	
2566	ID50	0.00	0.00	0.00	0.00	0.00	0.02	
2567	ID51	0.00	0.00	0.00	0.00	0.00	0.87	
2568	ID52	0.00	0.04	0.00	0.00	0.00	0.20	
2569	ID53	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
2570	ID54	0.00	0.00	0.00	0.00	0.00	0.00	
2571	ID55	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
2572	ID56	0.01	0.06	0.00	0.00	0.00	0.16	
2573	ID57	0.00	0.03	0.00	0.00	0.00	0.01	
2574	ID58	-0.01	0.05	0.00	0.00	0.00	0.12	
2575	ID59	0.00	0.05	0.00	0.00	0.00	0.10	
2576	ID60	0.08	0.03	0.03	0.29	0.29	0.10	
2577	ID61	0.69	0.20	0.00	0.00	0.00	0.01	
2578	ID62	-0.01	0.03	0.00	0.00	0.00	0.43	
2579	ID63	0.00	0.00	0.00	0.00	0.00	0.00	
2580	ID64	0.01	0.02	0.01	0.07	0.15	1.10	
2581	ID65	0.00	0.00	0.00	0.00	0.00	0.00	
2582	ID66	0.03	0.07	0.00	0.00	0.00	0.10	
2583	ID67	-0.01	0.04	0.00	0.00	0.00	0.12	
2584	ID68	0.34	0.12	0.00	0.00	0.00	0.02	

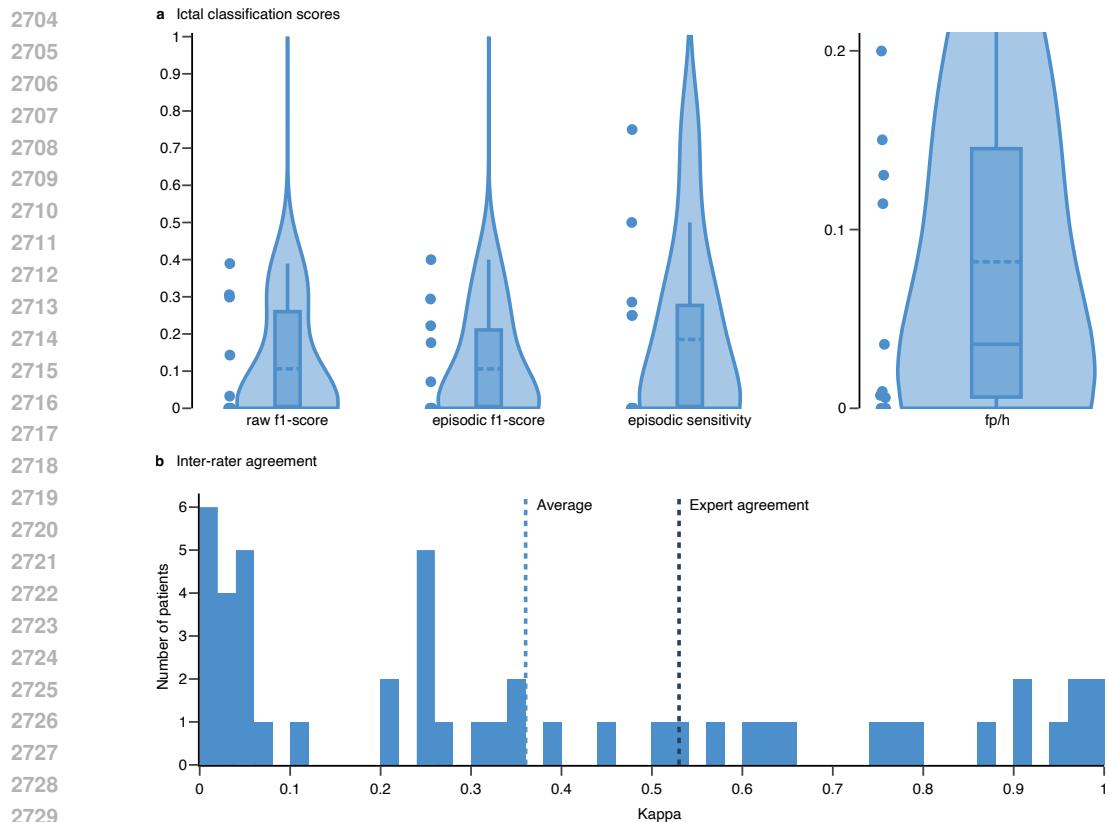
G.7 SEIZURE DETECTION WITH BRAINBERT

Table 23 presents the detailed subject-by-subject breakdown of the performance of BrainBERT.

Table 23: **Details of seizure detection results of BrainBERT with 18 subject pre-training.** Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the seizure classification task.

Subject	Kappa	95% CI	Raw		Episodic	
			f1-score	f1-score	sensitivity	fp/h
ID19	0.00	0.00	0.00	0.00	0.00	0.00
ID20	0.00	0.00	0.00	0.00	0.00	0.00
ID21	0.00	0.00	0.00	0.00	0.00	0.00
ID22	0.00	0.00	0.00	0.00	0.00	0.00
ID23	0.00	0.00	0.00	0.00	0.00	0.00
ID24	0.00	0.00	0.00	0.00	0.00	0.00
ID25	0.00	0.00	0.00	0.00	0.00	0.00
ID26	0.00	0.00	0.00	0.00	0.00	0.00
ID27	0.00	0.00	0.00	0.00	0.00	0.00
ID28	0.00	0.00	0.00	0.00	0.00	0.00
ID29	0.00	0.00	0.00	0.00	0.00	0.00
ID30	0.00	0.00	0.00	0.00	0.00	0.00
ID31	0.00	0.00	0.00	0.00	0.00	0.00
ID32	0.00	0.00	0.00	0.00	0.00	0.00
ID33	0.00	0.00	0.00	0.00	0.00	0.00
ID34	0.00	0.00	0.00	0.00	0.00	0.00
ID35	0.00	0.00	0.00	0.00	0.00	0.00
ID36	0.00	0.00	0.00	0.00	0.00	0.00
ID37	0.00	0.00	0.00	0.00	0.00	0.00
ID38	0.00	0.00	0.00	0.00	0.00	0.00
ID39	0.00	0.00	0.00	0.00	0.00	0.00
ID40	0.00	0.00	0.00	0.00	0.00	0.00
ID41	0.00	0.00	0.00	0.00	0.00	0.00
ID42	0.00	0.00	0.00	0.00	0.00	0.00
ID43	0.00	0.00	0.00	0.00	0.00	0.00
ID44	0.00	0.00	0.00	0.00	0.00	0.00
ID45	0.00	0.00	0.00	0.00	0.00	0.00
ID46	0.00	0.00	0.00	0.00	0.00	0.00
ID47	0.00	0.00	0.00	0.00	0.00	0.00
ID48	0.00	0.00	0.00	0.00	0.00	0.00
ID49	0.00	0.00	0.00	0.00	0.00	0.00
ID50	0.00	0.00	0.00	0.00	0.00	0.00
ID51	0.00	0.00	0.00	0.00	0.00	0.00
ID52	0.00	0.00	0.00	0.00	0.00	0.00
ID53	0.00	0.00	0.00	0.00	0.00	0.00
ID54	0.00	0.00	0.00	0.00	0.00	0.00
ID55	0.00	0.00	0.00	0.00	0.00	0.00
ID56	0.00	0.00	0.00	0.00	0.00	0.00
ID57	0.00	0.00	0.00	0.00	0.00	0.00
ID58	0.00	0.00	0.00	0.00	0.00	0.00
ID59	0.00	0.00	0.00	0.00	0.00	0.00
ID60	0.00	0.00	0.00	0.00	0.00	0.00
ID61	0.00	0.00	0.00	0.00	0.00	0.00
ID62	0.00	0.00	0.00	0.00	0.00	0.00
ID63	0.00	0.00	0.00	0.00	0.00	0.00
ID64	0.00	0.00	0.00	0.00	0.00	0.00
ID65	0.00	0.00	0.00	0.00	0.00	0.00
ID66	0.00	0.00	0.00	0.00	0.00	0.00
ID67	0.00	0.00	0.00	0.00	0.00	0.00
ID68	0.00	0.00	0.00	0.00	0.00	0.00

2592 G.8 EFFECTS OF THE SELECTION OF CHANNELS
25932594 As discussed in previous sections, the number of channels can vary considerably across subjects.
25952596 We test three different scenarios:
25972598


- 2599 • Automatic channel selection (Appendix G.3)
- 2600 • Manual channel selection
- 2601 • Evaluation with all channels

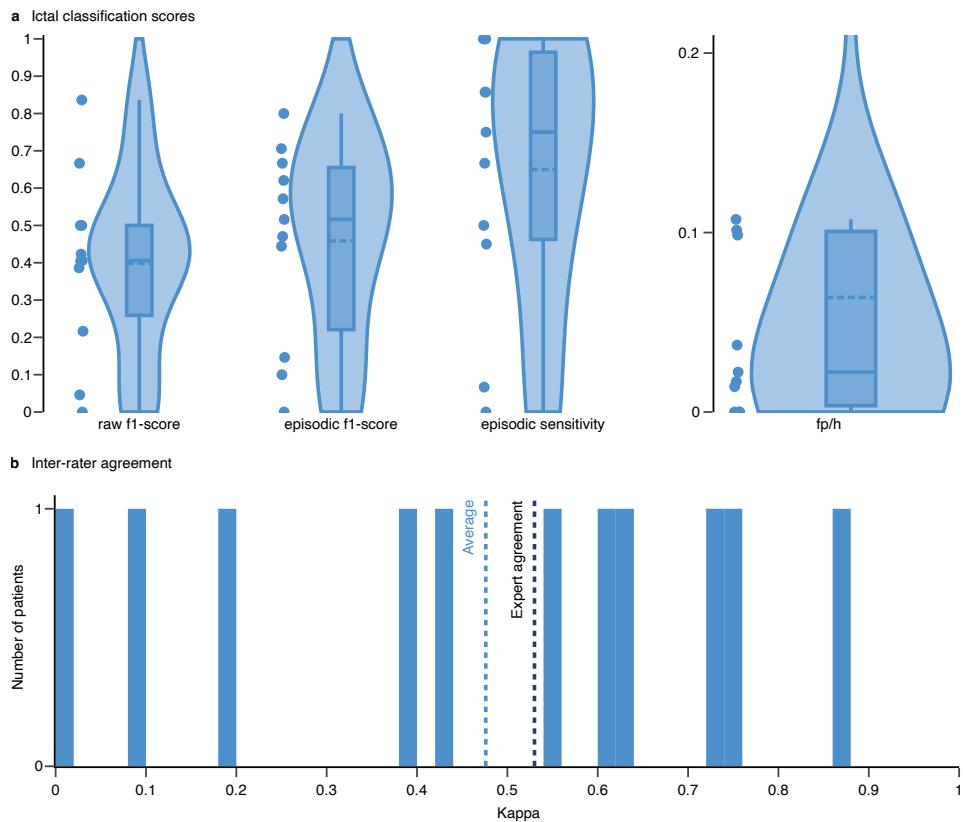
2602 Beyond the automatic channel selection we use for the main results, we also select a subset of the
2603 channels (up to 50) which visually appear least noisy and most relevant. We also test the effect of
2604 including all channels, expecting it to decrease both the speed and performance due to the decrease
2605 of the overall signal-to-noise ratio.2606 Figure 15 shows that the performance decreases when we use a manual channel selection (for a
2607 detailed breakdown see Table 24). While this non-expert selection only has a minor impact on the
2608 overall performance, it still is notable that a standardized procedure produces better results.2609
2610 **Figure 15: Seizure detection with 18 patient pre-training and evaluation on a manual subset
2611 of channels.** (a) Seizure detection results of MVPFormer-S on unseen subjects evaluated on a
2612 manual subset of channels: the F1-score, sensitivity, and fp/h are reported. Raw results are computed
2613 without any post-processing of MVPFormer’s output, while episodic results follow a common post-
2614 processing procedure which merge close ictal classifications. (b) Cohen’s Kappa is used to measure
2615 the agreement between MVPFormer-S and the human expert. The average kappa is 0.54, lower than
2616 with the automatic channel selection routine. The distribution of kappa values clearly indicates that
2617 a minority of subjects are the source of most disagreement, consistent with the variability of inter-
2618 rater agreement among human experts.
2619 Figure 16 shows that the performance decreases when we use all channels (for a detailed breakdown
2620 see Table 25). This is expected, as the noise contained in the entire recording increases together

Table 24: **Details of seizure detection results of MVPFormer-S with evaluation on a manual subset of channels.** Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the seizure classification task. The similarity reports the breakdown of the cosine similarity in each of the considered scenarios.

Subject	Kappa	95% CI	Raw		Episodic	
			f1-score	f1-score	sensitivity	fp/h
ID19	-0.05	0.02	0.00	0.00	0.00	0.97
ID20	0.98	0.03	0.87	0.80	1.00	0.00
ID21	0.92	0.07	0.86	0.80	1.00	0.00
ID22	0.98	0.02	0.89	1.00	1.00	0.00
ID23	0.26	0.03	0.17	0.14	0.09	0.16
ID24	0.91	0.01	0.90	0.93	0.93	0.02
ID25	0.35	0.12	0.00	0.00	0.00	0.03
ID26	0.08	0.06	0.03	0.11	1.00	0.18
ID27	0.99	0.01	0.93	1.00	1.00	0.00
ID28	0.71	0.04	0.68	0.75	0.75	0.01
ID29	0.25	0.05	0.29	0.20	0.13	0.03
ID30	0.92	0.01	0.88	0.93	0.93	0.05
ID31	0.98	0.00	0.95	1.00	1.00	0.00
ID32	1.00	0.02	0.92	1.00	1.00	0.00
ID33	0.00	0.05	0.00	0.00	0.00	0.26
ID34	0.89	0.03	0.91	0.90	1.00	0.01
ID35	0.85	0.03	0.87	0.82	1.00	0.03
ID36	0.50	0.03	0.62	0.51	0.37	0.03
ID37	0.74	0.09	0.69	0.50	1.00	0.02
ID38	0.94	0.02	0.95	0.91	1.00	0.01
ID39	0.92	0.05	0.89	0.80	1.00	0.01
ID40	0.95	0.03	0.95	0.91	1.00	0.00
ID41	0.61	0.05	0.65	0.67	1.00	0.04
ID42	0.86	0.05	0.84	0.80	1.00	0.01
ID43	0.90	0.03	0.64	1.00	1.00	0.00
ID44	0.00	0.00	0.00	0.00	0.00	0.00
ID45	0.01	0.02	0.00	0.01	1.00	1.06
ID46	0.60	0.04	0.56	0.69	0.52	0.00
ID47	0.26	0.08	0.29	0.16	1.00	0.09
ID48	0.68	0.02	0.62	0.80	0.67	0.00
ID49	0.85	0.03	0.79	0.86	1.00	0.01
ID50	0.69	0.09	0.60	0.44	1.00	0.03
ID51	0.35	0.09	0.23	0.15	1.00	0.07
ID52	0.23	0.05	0.35	0.18	1.00	0.16
ID53	0.12	0.06	0.21	0.09	1.00	0.16
ID54	0.01	0.02	0.01	0.01	0.67	1.72
ID55	0.37	0.08	0.35	0.29	1.00	0.07
ID56	0.72	0.08	0.60	0.67	0.67	0.01
ID57	0.00	0.00	0.00	0.00	0.00	0.00
ID58	0.22	0.07	0.25	0.18	0.29	0.09
ID59	0.00	0.00	0.00	0.00	0.00	0.00
ID60	0.33	0.02	0.23	0.46	0.38	0.04
ID61	0.00	0.00	0.00	0.00	0.00	0.00
ID62	0.69	0.06	0.45	0.77	0.71	0.00
ID63	0.94	0.02	0.90	1.00	1.00	0.00
ID64	0.60	0.02	0.64	0.62	0.50	0.06
ID65	0.50	0.06	0.35	0.59	0.62	0.03
ID66	0.70	0.11	0.36	0.57	1.00	0.01
ID67	0.26	0.07	0.15	0.33	0.25	0.01
ID68	0.65	0.19	0.00	0.00	0.00	0.01

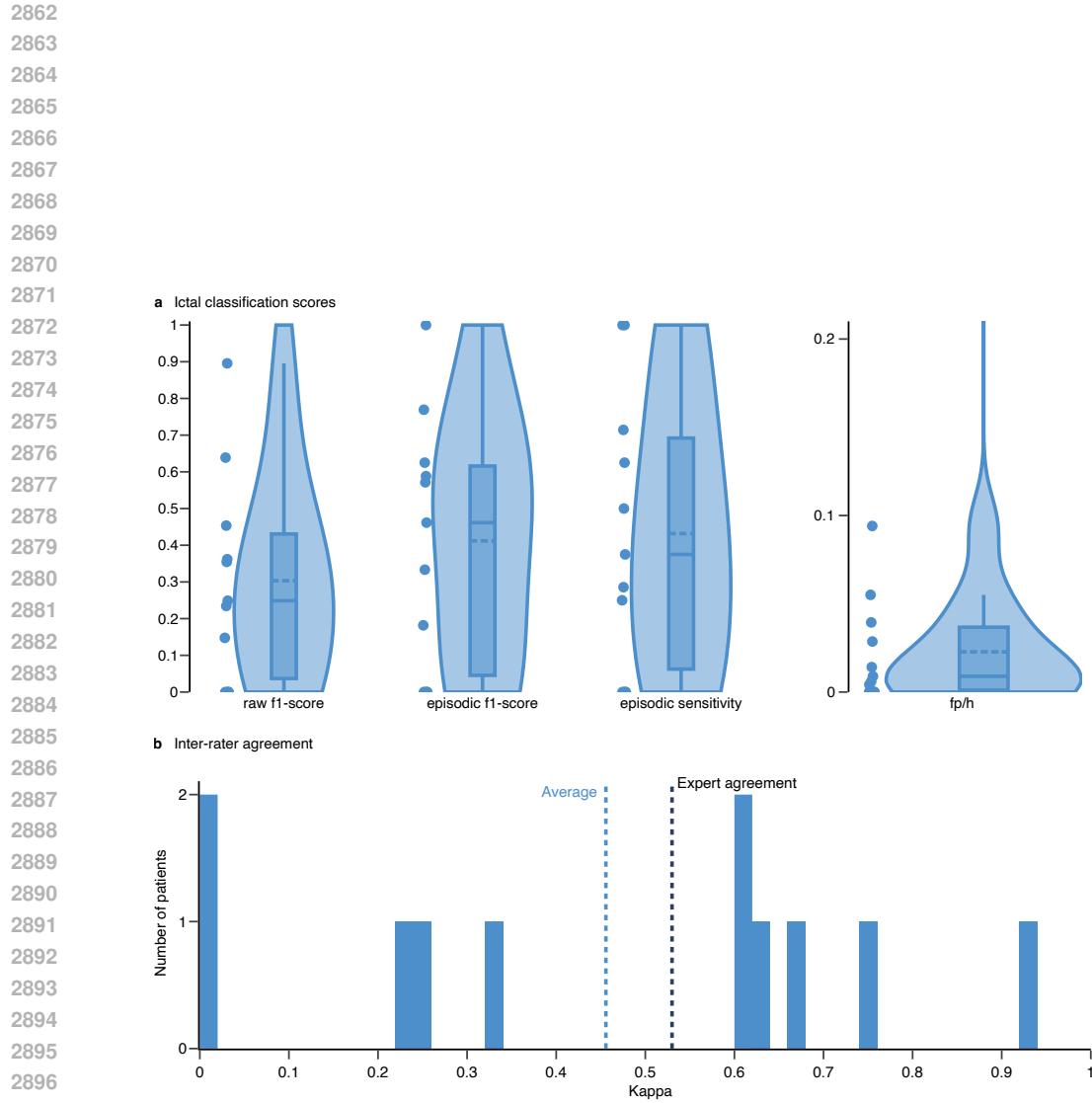
2700 with the information content. MVPFormer’s ability to generalize is not affected by the number
 2701 of channels, but the noise affects the performance. Therefore, the optimal real-world operation of
 2702 MVPFormer is obtained by selecting a subset of channels for detection.
 2703

2730 **Figure 16: Seizure detection with 18 patient pre-training and evaluation on all channels. (a)**
 2731 Seizure detection results of MVPFormer-S on the unseen patients evaluated on all channels: the
 2732 F1-score, sensitivity, and fp/h are reported. The performance metrics are reduced with respect to the
 2733 results obtained when selecting a subset of the channels. MVPFormer is not affected by the number
 2734 of channels, but the increase of noise emerging from all the channels contributes to a reduction in
 2735 performance. **(b)** The average kappa is 0.36, reduced from the evaluation on a subset of channels.


2754
 2755
 2756
 2757
 2758
Table 25: Details of seizure detection results of MVPFormer-S with evaluation on all channels.
 2759 **Kappa** is the inter-rater agreement. The classification metrics report the raw and episodic metrics
 2760 relevant for the seizure classification task.
 2761

2762 2763 Subject	2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807	2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807	2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807	Classification metrics			
			2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807	2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807	2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807	2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807	2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
2764	ID19	-0.05	0.02	0.00	0.00	0.00	0.00
2765	ID20	0.84	0.09	0.47	0.50	0.50	0.50
2766	ID21	0.86	0.10	0.40	0.80	1.00	1.00
2767	ID22	0.91	0.04	0.81	0.89	1.00	1.00
2768	ID23	0.25	0.03	0.17	0.14	0.09	0.09
2769	ID24	0.91	0.01	0.90	0.93	0.93	0.93
2770	ID25	0.45	0.10	0.17	0.25	0.25	0.25
2771	ID26	0.25	0.08	0.04	0.22	1.00	1.00
2772	ID27	0.98	0.01	0.93	1.00	1.00	1.00
2773	ID28	0.64	0.07	0.42	0.67	0.50	0.50
2774	ID29	0.05	0.02	0.04	0.07	0.29	0.29
2775	ID30	0.20	0.03	0.31	0.19	0.11	0.11
2776	ID31	0.98	0.00	0.95	1.00	1.00	1.00
2777	ID32	0.98	0.04	0.92	1.00	1.00	1.00
2778	ID33	0.01	0.06	0.00	0.00	0.00	0.00
2779	ID34	0.04	0.02	0.06	0.04	1.00	1.00
2780	ID35	0.61	0.05	0.63	0.55	0.43	0.43
2781	ID36	0.50	0.03	0.62	0.51	0.37	0.37
2782	ID37	0.03	0.03	0.02	0.04	1.00	1.00
2783	ID38	0.97	0.01	0.97	1.00	1.00	1.00
2784	ID39	0.77	0.08	0.52	0.67	1.00	1.00
2785	ID40	0.37	0.06	0.50	0.31	0.80	0.80
2786	ID41	0.52	0.05	0.47	0.55	1.00	1.00
2787	ID42	0.63	0.07	0.54	0.57	1.00	1.00
2788	ID43	0.94	0.04	0.71	1.00	1.00	1.00
2789	ID44	0.00	0.02	0.00	0.00	0.00	0.00
2790	ID45	0.00	0.02	0.00	0.00	0.00	0.00
2791	ID46	0.06	0.03	0.03	0.06	0.19	0.19
2792	ID47	0.23	0.08	0.29	0.16	1.00	1.00
2793	ID48	0.25	0.03	0.18	0.31	0.33	0.33
2794	ID49	0.40	0.05	0.47	0.40	1.00	1.00
2795	ID50	0.05	0.04	0.05	0.06	1.00	1.00
2796	ID51	0.06	0.06	0.05	0.07	1.00	1.00
2797	ID52	0.00	0.01	0.01	0.01	1.00	1.00
2798	ID53	0.13	0.07	0.21	0.09	1.00	1.00
2799	ID54	0.01	0.02	0.01	0.01	0.67	0.67
2800	ID55	0.37	0.08	0.35	0.29	1.00	1.00
2801	ID56	0.33	0.07	0.34	0.31	0.67	0.67
2802	ID57	0.00	0.00	0.00	0.00	0.00	0.00
2803	ID58	0.29	0.12	0.00	0.00	0.00	0.00
2804	ID59	0.02	0.05	0.00	0.00	0.00	0.00
2805	ID60	0.00	0.00	0.00	0.00	0.00	0.00
2806	ID61	0.00	0.00	0.00	0.00	0.00	0.00
2807	ID62	0.04	0.05	0.03	0.07	0.29	0.29
2808	ID63	0.21	0.05	0.39	0.18	0.75	0.75
2809	ID64	0.25	0.03	0.30	0.29	0.25	0.25
2810	ID65	0.04	0.07	0.00	0.00	0.00	0.00
2811	ID66	0.76	0.16	0.31	0.40	0.50	0.50
2812	ID67	0.17	0.07	0.14	0.22	0.25	0.25
2813	ID68	0.61	0.18	0.00	0.00	0.00	0.01

2808 G.9 EFFECTS OF THE SCALE OF THE PRE-TRAINING DATASET
2809


2810 The performance of LLMs as the size of their training dataset increases has been investigated quite
2811 thoroughly (Hoffmann et al., 2022; Kaplan et al., 2020), giving rise to a variety of scaling laws.
2812 Following Chinchilla’s scaling law, a model with 75 million parameters like MVPFormer-S should
2813 be trained with around 2 billion tokens, while we only have 400 million at our disposal.

2814 The architecture of the model and the nature of the training data, however, make it unclear whether
2815 such laws can be adopted for MVPFormer as well. We investigate this behavior by continuing the
2816 training of MVPFormer-S on 40 more subjects, to bring the total to 58 pre-training subjects for
2817 almost 7,000 hours of iEEG recordings. In particular, MVPFormer is initially trained on 304 ictal
2818 events, and then further on 323 more. Therefore, we are left with 10 unseen subject to test the
2819 downstream seizure detection task.

2847 Figure 17: **Seizure detection with 58 patient pre-training and manual channel selection.** (a)
2848 Seizure detection results of MVPFormer-S on the 10 remaining unseen patients using manual channel
2849 selection: the F1-score, sensitivity, and fp/h are reported. All performance metrics are improved
2850 with respect to the original MVPFormer model. The raw and episodic F1-scores are significantly
2851 different here, indicating that MVPFormer benefits of the episode merging effect of post-processing
2852 on these patients. The false positive rate has decreased further with the scale of the pre-training
2853 dataset. (b) Inter-rater agreement of MVPFormer with the human expert: Cohen’s kappa is used to
2854 measure the agreement between the artificial assistant and the human expert. The average kappa is
2855 increased to 0.48. The distribution of kappa values again indicates that there is considerable vari-
2856 ability in the agreement.

2857 Figure 17 shows the performance of the 58-subject MVPFormer-S on the 10 unseen subjects using
2858 a manual subset of channels (for a detailed breakdown see Table 26). On the other hand, Figure 18
2859 shows the results of the original MVPFormer-S model on those same 10 subjects (for a detailed
2860 breakdown see Table 27). All performance metrics improve with a growing pre-training dataset
2861 size, although on a small test cohort, indicating that increasing the number of subjects in the pre-
2862 training dataset has a net positive effect on the downstream classification task.

2898 **Figure 18: Seizure detection with 18 subjects pre-training on a selection of 10 unseen subjects**
 2899 **and manual channel selection.** (a) Seizure detection results of MVPFormer-S on the 10 subjects
 2900 excluded from the 58-subjects model using manual channel selection: the F1-score, sensitivity, and
 2901 fp/h are reported. The raw and episodic F1-scores are significantly different here, indicating that
 2902 MVPFormer benefits of the episode merging effect of post-processing on these patients. These re-
 2903 sults are a subset of those presented in the Results section. (b) Inter-rater agreement of MVPFormer
 2904 with the human expert: Cohen's kappa is used to measure the agreement between the artificial as-
 2905 sistant and the human expert. The average kappa is 0.46, reduced from the overall results indicating
 2906 that these subjects are more difficult than average. The distribution of kappa values again indicates
 2907 that there is considerable variability in the agreement.

2916
2917
2918
29192920 Table 26: **Details of seizure detection results of MVPFormer-S with 58 patient pre-training and**
2921 **manual channel selection.** Kappa is the inter-rater agreement. The classification metrics report the
2922 raw and episodic metrics relevant for the seizure classification task.

2923	2924	2925	Classification metrics				
			2926	Raw		Episodic	
2927	2928	2929	2930	2931	2932	2933	2934
2935	2936	2937	2938	2939	2940	2941	2942
2943	2944	2945	2946	2947	2948	2949	2950
ID59	0.07	0.06	0.05	0.10	0.07	0.07	
ID60	0.54	0.02	0.39	0.47	0.50	0.50	
ID61	0.00	0.00	0.00	0.00	0.00	0.00	
ID62	0.65	0.05	0.50	0.71	0.86	0.86	
ID63	0.76	0.04	0.84	0.67	1.00	1.00	
ID64	0.60	0.02	0.67	0.62	0.45	0.45	
ID65	0.50	0.04	0.41	0.52	1.00	1.00	
ID66	0.79	0.12	0.50	0.57	1.00	1.00	
ID67	0.22	0.04	0.22	0.15	0.75	0.75	
ID68	0.73	0.09	0.42	0.80	0.67	0.00	

2943 Table 27: **Details of seizure detection results of MVPFormer-S with 18 patient pre-training on**
2944 **a selection of 10 subjects and manual channel selection.** Kappa is the inter-rater agreement. The
2945 classification metrics report the raw and episodic metrics relevant for the seizure classification task.

2951	2952	Classification metrics				
		2953	Raw		Episodic	
2954	2955	2956	2957	2958	2959	2960
2961	2962	2963	2964	2965	2966	2967
2968	2969	2970	2971	2972	2973	2974
ID59	0.00	0.00	0.00	0.00	0.00	0.00
ID60	0.33	0.02	0.23	0.46	0.38	0.04
ID61	0.00	0.00	0.00	0.00	0.00	0.00
ID62	0.69	0.06	0.45	0.77	0.71	0.00
ID63	0.94	0.02	0.90	1.00	1.00	0.00
ID64	0.60	0.02	0.64	0.62	0.50	0.06
ID65	0.50	0.06	0.35	0.59	0.62	0.03
ID66	0.70	0.11	0.36	0.57	1.00	0.01
ID67	0.26	0.07	0.15	0.33	0.25	0.01
ID68	0.65	0.19	0.00	0.00	0.00	0.01

2970
2971

G.10 PATIENT CLASSIFICATION DIFFICULTY

2972
2973
2974
2975
2976
2977

In the medical practice each patient has unique seizure presentations, though they might be broadly grouped into different categories (Shokooh et al., 2021). As an effect, some patients have seizures which can be considered more typical (Figure 4a), and hence easier to detect, while others might have very atypical events (Figure 4b). There might be broad disagreement among neurologists over these atypical seizures, and at the same time no disagreement at all over the typical patients (Gotman, 2011).

2978
2979
2980
2981
2982
2983
2984
2985

This phenomenon intuitively creates a difficulty scale among the patients, which also affects MVP-Former and contributes to the spread of performance between the model and the human expert. To better assess the impact of this latent patient classification difficulty we performed a multiple correlation analysis using the total recording length, the number of seizures, and the frequency of seizures to predict the kappa score, yielding an R^2 of 0.054. The model performance is thus independent of the three variables, and we believe the difficulty might help explain most of the variance. The literature supports this hypothesis, as the subjects themselves can account for up to 65% of the variance (Grant et al., 2014) while the clinical setup itself has no impact.

2986
2987
2988
2989
2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

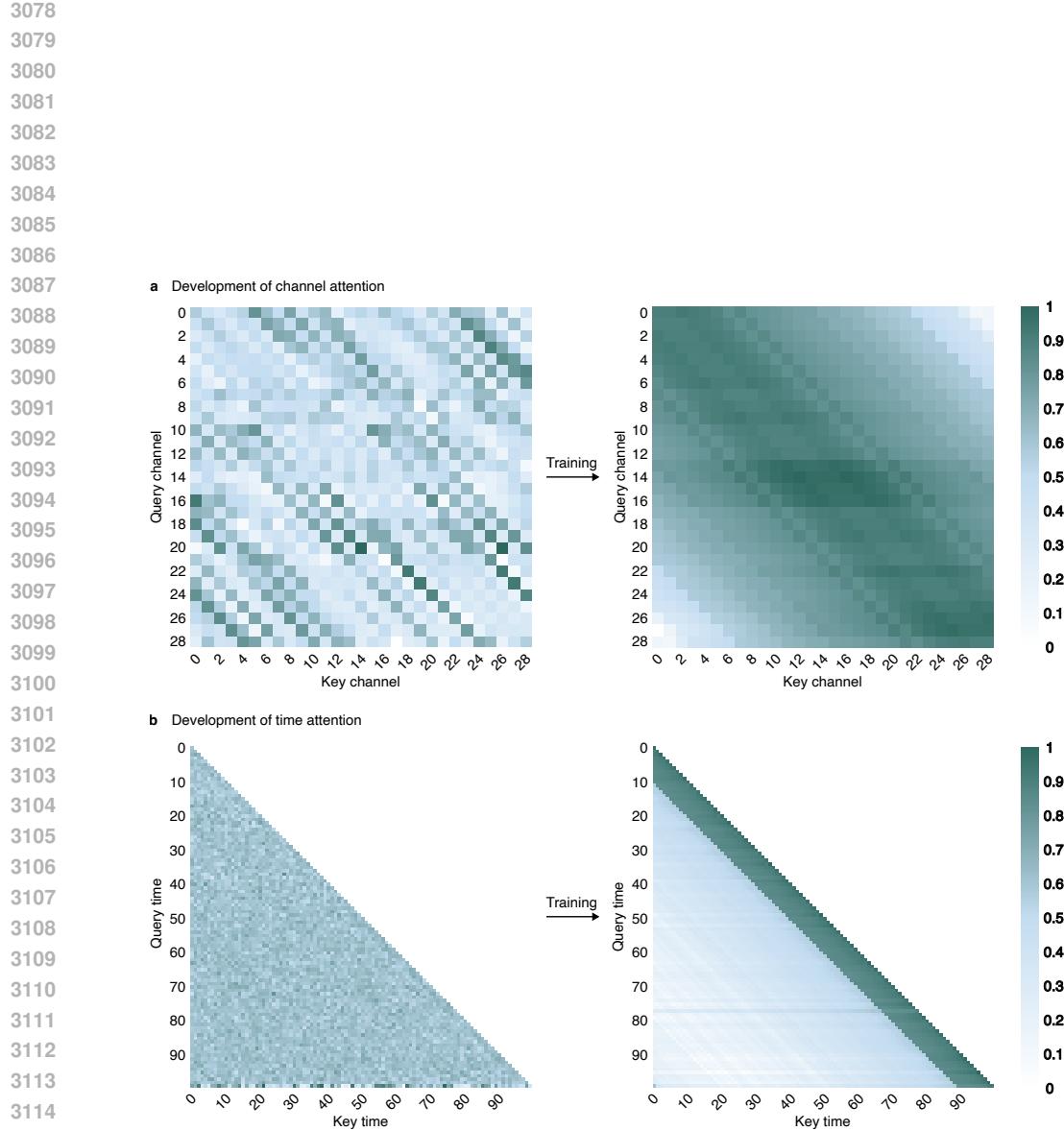
3023

3024
3025

G.11 CHANNEL CONNECTIVITY MAP

3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036

Generating future iEEG signal embedding implicitly places the greatest emphasis on the dimension of time, but to do so it is necessary to consider the interactions between channels as well. MVPFormer thus takes into consideration all electrodes concurrently, as electric potentials flow across different areas and circuits in the brain following their intrinsic connections and constraints (Betzell et al., 2019; Pang et al., 2023). The number of channels depends on the number of electrodes decided for a specific patient and the clinical setup. As iEEG implantations are decided on a case-by-case basis by a physician, there is no uniform standard on where to place the electrodes, in contrast with the 10-20 system (Jasper, 1958) for EEG. Therefore, we cannot give MVPFormer any a priori knowledge of how the channels will interact in space, and the model has to learn it on its own. MVPA enables our model to dynamically learn these connections to build an internal map of the flow, becoming independent from a specific electrode configuration.


3037
3038
3039
3040
3041
3042
3043

It is well-known that two neighboring brain regions might not be as strongly connected as two faraway regions. The relationship between the electrodes (and hence the channels) mirrors this behavior. To truly understand the link between two channels the model must build a map of the connection strength between different brain areas and how these connections impact the diffusion of electric fields across channels. In MVPA, this understanding is the underpinning of the channel-based component. In particular, the complex interplay between the query, the channel codebook, and the channel attention, acts as the first level of processing. Further, the deep structure with multiple layers provides more representational power, as is typical of deep models.

3044
3045
3046
3047
3048
3049
3050
3051
3052
3053

Figure 19 shows that the channel-based MVPA component encodes a form of the brain connectivity map. Initially, the map is random as MVPA is randomly initialized. As training progresses, the attention magnitude among the channels starts to differentiate, building a map of the connection strength. The map is dominated by the diagonal component, which indicates that in general neighboring channels are more related than distant channels. However, it is possible to clearly distinguish clusters of strongly connected electrodes and also skipped connections, which possibly refer to strong connections between distant regions. Since the channel distance is relative, it can apply to arbitrary clinical setups and is not limited to already seen channels. Moreover, as the channel attention is a function of both the query content and the channel distance, the combination of the two can effectively modulate the attention even on unseen subjects.

3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

3132 **G.12 RESULTS ON THE MAYO AND FNUSA DATASETS**
3133

3134 We test MVPFormer additionally against Brant-2 on the iEEG MAYO and FNUSA datasets. Both
3135 datasets are single-channel iEEG datasets containing both physiological and pathological activity.
3136 We use these datasets to evaluate MVPFormer’s performance on extremely noisy data, and to com-
3137 pare its resilience with the SOTA.

3138 The MAYO dataset contains 24 patients for a total of 130 hours of data. In particular, 36% of the
3139 data is non-ictal, 9% is ictal, and 53% is noise. Moreover, 18 subjects contain no ictal activity and 9
3140 patients are fully noise, with 13 being majority noise. The FNUSA dataset contains 14 patients for
3141 a total of 160 hours. 48% of the dataset is non-ictal, 27% is ictal, and 23% is noise. Moreover, the
3142 data of 2 subjects is completely noise, and the data of 3 other subjects is fully ictal. Both datasets are
3143 much smaller in scale than the Long-term iEEG dataset, and are heavily dominated by noise, both
3144 artifact and powerline. In particular, the Long-term iEEG dataset is almost 2,000 times larger and is
3145 also carefully evaluated by an expert neurologist to remove channels which contain too much noise
3146 or artifacts.

3147 As we wish to assess MVPFormer in a realistic, real-world scenario, we do not remove any noise
3148 from the dataset but test them as-is. In particular, we consider noise and physiological activity as
3149 one category, and pathological activity as another. However, kappa scores are not meaningful with
3150 such small datasets, therefore we provide the aggregate F1-score, and the average sensitivity and
3151 specificity. Specifically, given the fact that many patients do not contain ictal activity, we do not
3152 compute the average F1-score across subjects, but pool together all subject’s results and compute
3153 the aggregate F1-score.

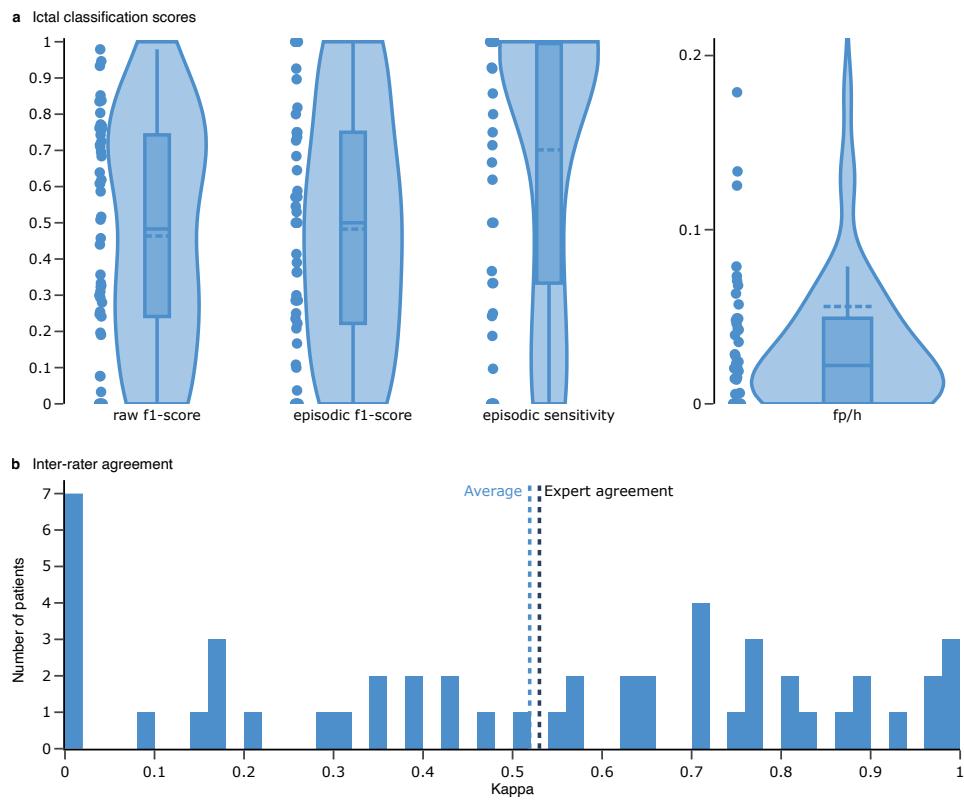
3154 We use the same MVPFormer models pre-trained on our Long-term iEEG dataset, and train a spe-
3155 cific classification head for either MAYO or FNUSA by fine-tuning on the first four patients. Then,
3156 we test on the remaining patients. We also use the Brant-2 model whose pre-trained weights are pub-
3157 licly available, and fine-tune in the same manner as MVPFormer using the fine-tuning code provided
3158 by the authors.

3159 The results can be found in Tables 28 and 29. Given the very low signal-to-noise ratio of both
3160 datasets, overall performance is affected. On the FNUSA dataset, where the amount of noise is
3161 more moderate, all models perform similarly, with MVPFormer-M showing a higher specificity.
3162 However, MVPFormer has a clear advantage on the MAYO dataset, with almost double the F1-score
3163 with respect to Brant-2. The difference between MVPFormer-S and MVPFormer-M is minimal, as
3164 the sizes of the datasets involved are too small to fully train a very large model such as MVPFormer-
3165 M (see Appendix G.4 for more information).

3166
3167 **Table 28: Summary of seizure detection results of all models on the MAYO iEEG dataset.**
3168 Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics
3169 relevant for the seizure classification task.

3170 Model	F1-score	Sensitivity	Specificity
3171 MVPFormer-M	0.36	0.38	0.91
3172 MVPFormer-S	0.35	0.41	0.88
3173 Brant-2	0.19	1.00	0.18

3174
3175
3176 **Table 29: Summary of seizure detection results of all models on the FNUSA iEEG dataset.**
3177 Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics
3178 relevant for the seizure classification task.


3179 Model	F1-score	Sensitivity	Specificity
3180 MVPFormer-M	0.46	0.94	0.10
3181 MVPFormer-S	0.46	0.99	0.03
3182 Brant-2	0.46	0.99	0.02

3186
3187

G.13 ABLATION OF THE PREDICTION TASK

3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198

We design MVPFormer with a two-phase training regime. First, during the generative pre-training task MVPFormer learns to predict the neuronal activity. Second, during the classification task it needs to correctly classify ictal periods. To determine the significance of the generative task on the classification task, we train MVPFormer only on the classification task and compare its performance with the full architecture on the manual selection of channels. Figure 20 and Table 30 clearly indicate that the generative task is of fundamental importance to the overall architecture, with a Kappa score decrease to 0.52. This is below the original result of 0.54 and below the human agreement threshold. Moreover, the distribution of agreement has flattened, with an overall decrease of performance across the board and an increase of subjects with no agreement. This suggests that without pre-training the generalization capability of MVPFormer suffers. Therefore, the generative task is necessary and is a significant contributor to learning.

3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212

3224

3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Figure 20: **Seizure detection with no generative pre-training and 18 subjects classification training on the manual selection of channels.** (a) Seizure detection results of MVPFormer-S on 40 unseen subjects which are part of the training set for the 58-subjects model and manual selection of channels: the F1-score, sensitivity, and fp/h are reported. The raw and episodic F1-scores are notably lower here with respect to the 58-subjects model. This is expected given the 58-subject model is pre-trained on these subjects. These results are a subset of those presented in the Results section. (b) Cohen's kappa is used to measure the agreement between the artificial assistant and the human expert. The average kappa is 0.56, competitive with expert agreement but, as expected, reduced from the 58-subjects pre-trained model.

Table 30: **Seizure detection with no generative pre-training and 18 subjects classification training on the manual selection of channels.** Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the seizure classification task.

Subject	Kappa	95% CI	Raw		Episodic	
			f1-score	f1-score	sensitivity	fp/h
ID19	0.37	0.02	0.46	0.30	0.19	0.05
ID20	0.99	0.02	0.98	1.00	1.00	0.00
ID21	0.47	0.09	0.30	0.29	1.00	0.04
ID22	0.74	0.06	0.70	0.73	1.00	0.02
ID23	0.37	0.02	0.51	0.36	0.24	0.07
ID24	0.88	0.01	0.84	0.90	0.93	0.05
ID25	0.00	0.00	0.00	0.00	0.00	0.00
ID26	0.43	0.10	0.19	0.29	1.00	0.06
ID27	0.95	0.02	0.84	1.00	1.00	0.00
ID28	0.73	0.04	0.80	0.75	0.75	0.01
ID29	0.17	0.05	0.28	0.17	0.10	0.01
ID30	0.90	0.01	0.85	0.93	0.93	0.05
ID31	0.98	0.00	0.95	1.00	1.00	0.00
ID32	0.98	0.05	0.93	1.00	1.00	0.00
ID33	0.00	0.00	0.00	0.00	0.00	0.00
ID34	0.78	0.03	0.84	0.82	1.00	0.02
ID35	0.71	0.03	0.77	0.74	1.00	0.05
ID36	0.59	0.03	0.68	0.53	0.37	0.01
ID37	0.66	0.10	0.61	0.50	1.00	0.02
ID38	0.59	0.05	0.64	0.59	1.00	0.04
ID39	0.76	0.09	0.71	0.57	1.00	0.02
ID40	0.67	0.05	0.77	0.57	0.80	0.02
ID41	0.75	0.05	0.72	0.75	1.00	0.02
ID42	0.97	0.04	0.74	1.00	1.00	0.00
ID43	0.15	0.09	0.00	0.00	0.00	0.06
ID44	0.98	0.03	0.76	1.00	1.00	0.00
ID45	0.03	0.05	0.03	0.04	1.00	0.33
ID46	0.60	0.03	0.62	0.68	0.62	0.03
ID47	0.79	0.08	0.72	0.55	1.00	0.02
ID48	0.88	0.01	0.76	1.00	1.00	0.00
ID49	0.08	0.03	0.08	0.11	1.00	0.71
ID50	0.36	0.08	0.36	0.24	1.00	0.07
ID51	0.52	0.10	0.32	0.22	1.00	0.04
ID52	0.50	0.07	0.29	0.50	1.00	0.04
ID53	0.20	0.07	0.33	0.10	1.00	0.13
ID54	0.61	0.12	0.31	0.29	0.33	0.01
ID55	0.35	0.08	0.25	0.25	1.00	0.08
ID56	0.82	0.06	0.61	0.80	0.67	0.00
ID57	0.00	0.00	0.00	0.00	0.00	0.00
ID58	0.17	0.04	0.20	0.21	0.71	0.26
ID59	0.00	0.00	0.00	0.00	0.00	0.00
ID60	0.16	0.03	0.08	0.36	0.25	0.02
ID61	0.00	0.00	0.00	0.00	0.00	0.00
ID62	0.42	0.06	0.44	0.41	0.86	0.07
ID63	0.54	0.09	0.25	0.57	0.50	0.01
ID64	0.62	0.02	0.59	0.65	0.50	0.03
ID65	0.31	0.04	0.24	0.39	1.00	0.18
ID66	0.69	0.11	0.52	0.50	1.00	0.02
ID67	0.00	0.06	0.00	0.00	0.00	0.13
ID68	0.78	0.15	0.33	0.50	0.33	0.00

3294 G.14 RESILIENCE TO NOISE
32953296 A critical aspect of any clinical environment are the perturbations and noise in the recorder signal.
3297 The Long-term iEEG dataset is collected in a real-world environment and is pre-processed following
3298 the indications of an expert neurologist, to guarantee a clinically-relevant scenario to test any model,
3299 including our MVPFormer against.3300 In addition to the inherent noise of the iEEG signal, we now further disturb the recordings using
3301 white gaussian noise to evaluate the resilience of MVPFormer to additional perturbations. Specifi-
3302 cally, we add noise to achieve an SNR of 30dB (Table 32), 40dB (Table 33), 50dB (Table 34), and
3303 60dB (Table 35) to understand the behavior of MVPFormer.3304
3305 Table 31: **Results on seizure detection with noise.** We evaluate MVPFormer’s performance on the
3306 seizure detection task at varying levels of injected white gaussian noise.
3307

SNR	Kappa	Episodic			Raw
		f1	sens	fp/h	f1
None	0.61	0.59	0.72	0.15	0.51
60dB	0.58	0.54	0.71	0.12	0.49
50dB	0.54	0.50	0.72	0.13	0.47
40dB	0.36	0.34	0.74	0.46	0.31
30dB	0.12	0.12	0.71	1.22	0.10

3317 A summary of the results is presented in Table 31. Remarkably, the performance remains above
3318 the expert-level threshold until 40dB of SNR, indicating that MVPFormer is resilient to noise. In
3319 particular, while sensitivity remains high, the number of false positives rapidly increases. This is
3320 consistent with the fact that seizures often appear as high-frequency activity, which can mislead the
3321 model when in a noisy environment.
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Table 32: **Details of seizure detection results of MVPFormer-S with 30dB SNR.** Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the seizure classification task. The similarity reports the breakdown of the cosine similarity in each of the considered scenarios.

Subject	Kappa	95% CI	Classification metrics			
			Raw		Episodic	
			f1-score	f1-score	sensitivity	fp/h
ID19	0.01	0.00	0.02	0.28	0.62	2.07
ID20	0.05	0.04	0.09	0.04	1.00	0.36
ID21	0.01	0.03	0.01	0.02	1.00	0.78
ID22	0.08	0.04	0.06	0.12	1.00	0.36
ID23	-0.04	0.01	0.00	0.06	0.15	2.90
ID24	0.06	0.01	0.06	0.12	0.50	2.24
ID25	0.01	0.02	0.00	0.02	0.50	2.19
ID26	0.00	0.01	0.00	0.01	1.00	3.11
ID27	0.00	0.00	0.00	0.02	0.75	3.54
ID28	0.23	0.05	0.26	0.35	0.75	0.15
ID29	0.03	0.01	0.02	0.05	0.26	2.03
ID30	0.01	0.00	0.02	0.35	0.56	1.05
ID31	0.08	0.01	0.09	0.18	1.00	3.54
ID32	0.02	0.03	0.02	0.02	1.00	0.79
ID33	0.23	0.10	0.00	0.00	0.00	0.06
ID34	0.01	0.01	0.01	0.04	1.00	2.40
ID35	0.03	0.01	0.05	0.05	0.86	2.10
ID36	0.00	0.00	0.01	0.13	0.45	2.13
ID37	0.01	0.02	0.01	0.01	1.00	1.61
ID38	0.33	0.05	0.48	0.34	1.00	0.11
ID39	0.42	0.07	0.40	0.36	1.00	0.05
ID40	0.06	0.03	0.09	0.08	0.80	0.42
ID41	0.00	0.01	0.01	0.03	1.00	2.49
ID42	0.10	0.04	0.15	0.14	1.00	0.28
ID43	0.77	0.05	0.57	0.80	1.00	0.02
ID44	0.21	0.09	0.00	0.00	0.00	0.08
ID45	0.01	0.03	0.00	0.02	1.00	0.80
ID46	0.18	0.03	0.14	0.25	0.43	0.31
ID47	0.00	0.01	0.00	0.01	1.00	2.80
ID48	0.90	0.01	0.77	1.00	1.00	0.00
ID49	0.01	0.01	0.01	0.05	1.00	1.48
ID50	0.02	0.02	0.02	0.02	1.00	0.94
ID51	0.22	0.08	0.11	0.11	1.00	0.11
ID52	0.04	0.02	0.05	0.03	1.00	0.99
ID53	0.01	0.02	0.01	0.01	1.00	2.18
ID54	0.00	0.01	0.00	0.01	1.00	4.02
ID55	0.00	0.01	0.00	0.01	1.00	2.60
ID56	0.01	0.01	0.01	0.02	0.67	1.79
ID57	-0.01	0.03	0.01	0.07	0.08	0.19
ID58	0.00	0.01	0.00	0.01	0.14	1.86
ID59	0.16	0.06	0.11	0.20	0.13	0.03
ID60	0.26	0.02	0.27	0.11	0.50	1.16
ID61	0.02	0.04	0.00	0.00	0.00	0.35
ID62	0.13	0.05	0.18	0.13	1.00	0.40
ID63	0.13	0.03	0.12	0.12	1.00	0.31
ID64	0.01	0.01	0.02	0.19	0.45	1.79
ID65	0.02	0.03	0.01	0.03	0.25	0.87
ID66	0.62	0.14	0.28	0.25	0.50	0.02
ID67	0.03	0.02	0.05	0.02	0.50	1.47
ID68	0.57	0.09	0.32	0.40	0.67	0.03

3402

3403

3404

3405

3406 Table 33: **Details of seizure detection results of MVPFormer-S with 40dB SNR.** Kappa is the
 3407 inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the
 3408 seizure classification task. The similarity reports the breakdown of the cosine similarity in each of
 3409 the considered scenarios.

3410

3411

Subject	Kappa	95% CI	Classification metrics			
			Raw	Episodic	sensitivity	fp/h
f1-score	f1-score					
ID19	0.01	0.00	0.02	0.28	0.44	1.24
ID20	0.05	0.04	0.11	0.03	1.00	0.39
ID21	0.03	0.04	0.04	0.04	1.00	0.42
ID22	0.81	0.05	0.74	0.73	1.00	0.02
ID23	0.11	0.02	0.10	0.12	0.15	1.06
ID24	0.50	0.02	0.52	0.55	0.86	0.44
ID25	0.01	0.02	0.00	0.03	0.50	1.11
ID26	0.01	0.02	0.01	0.02	1.00	1.27
ID27	0.04	0.02	0.03	0.05	0.88	1.65
ID28	0.18	0.04	0.26	0.21	0.75	0.32
ID29	0.53	0.03	0.44	0.27	0.29	0.19
ID30	0.30	0.01	0.27	0.40	0.93	1.76
ID31	0.79	0.01	0.80	0.81	1.00	0.19
ID32	0.20	0.07	0.21	0.15	1.00	0.11
ID33	0.54	0.15	0.00	0.00	0.00	0.02
ID34	0.36	0.04	0.53	0.33	1.00	0.19
ID35	0.42	0.04	0.61	0.44	0.86	0.13
ID36	0.19	0.02	0.17	0.21	0.37	0.77
ID37	0.05	0.04	0.08	0.05	1.00	0.36
ID38	0.93	0.03	0.95	0.91	1.00	0.01
ID39	0.90	0.07	0.83	0.80	1.00	0.01
ID40	0.83	0.04	0.84	0.73	0.80	0.01
ID41	0.02	0.01	0.02	0.03	1.00	2.29
ID42	0.87	0.05	0.84	0.80	1.00	0.01
ID43	0.93	0.03	0.71	1.00	1.00	0.00
ID44	0.72	0.21	0.00	0.00	0.00	0.01
ID45	0.01	0.02	0.01	0.02	1.00	0.80
ID46	0.37	0.04	0.33	0.41	0.52	0.16
ID47	0.01	0.02	0.01	0.01	1.00	1.63
ID48	0.88	0.01	0.73	1.00	1.00	0.00
ID49	0.20	0.04	0.25	0.26	1.00	0.24
ID50	0.99	0.03	0.89	1.00	1.00	0.00
ID51	0.38	0.10	0.22	0.18	1.00	0.06
ID52	0.09	0.03	0.18	0.06	1.00	0.57
ID53	0.03	0.04	0.07	0.03	1.00	0.50
ID54	0.00	0.01	0.00	0.02	1.00	1.85
ID55	0.02	0.02	0.02	0.02	1.00	1.16
ID56	0.47	0.07	0.43	0.36	0.67	0.05
ID57	0.00	0.00	0.00	0.00	0.00	0.00
ID58	0.07	0.06	0.07	0.07	0.14	0.15
ID59	0.18	0.06	0.10	0.24	0.13	0.00
ID60	0.32	0.02	0.18	0.33	0.38	0.14
ID61	0.24	0.05	0.17	0.36	0.67	0.13
ID62	0.78	0.05	0.60	0.93	1.00	0.00
ID63	0.64	0.05	0.67	0.73	1.00	0.02
ID64	0.56	0.02	0.52	0.62	0.60	0.19
ID65	0.39	0.06	0.35	0.43	0.62	0.07
ID66	0.79	0.13	0.38	0.50	0.50	0.00
ID67	0.03	0.02	0.05	0.02	0.50	1.43
ID68	0.52	0.11	0.14	0.25	0.33	0.02

3453

3454

3455

Table 34: **Details of seizure detection results of MVPFormer-S with 50dB SNR.** Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the seizure classification task. The similarity reports the breakdown of the cosine similarity in each of the considered scenarios.

Subject	Kappa	95% CI	Classification metrics			
			Raw		Episodic	
			f1-score	f1-score	sensitivity	fp/h
ID19	0.01	0.00	0.02	0.33	0.50	1.15
ID20	0.76	0.10	0.82	0.33	1.00	0.01
ID21	0.50	0.09	0.38	0.31	1.00	0.04
ID22	0.97	0.03	0.89	1.00	1.00	0.00
ID23	0.11	0.03	0.15	0.09	0.06	0.19
ID24	0.91	0.01	0.87	0.93	0.93	0.02
ID25	0.13	0.06	0.05	0.15	0.25	0.07
ID26	0.03	0.04	0.02	0.05	1.00	0.47
ID27	0.68	0.04	0.66	0.73	1.00	0.04
ID28	0.86	0.03	0.87	0.86	0.75	0.00
ID29	0.52	0.03	0.49	0.31	0.29	0.13
ID30	0.74	0.01	0.73	0.76	0.78	0.17
ID31	0.98	0.00	0.92	1.00	1.00	0.00
ID32	0.87	0.09	0.76	0.67	1.00	0.01
ID33	0.50	0.15	0.00	0.00	0.00	0.02
ID34	0.79	0.03	0.85	0.75	1.00	0.03
ID35	0.71	0.04	0.75	0.75	0.86	0.03
ID36	0.46	0.03	0.58	0.43	0.30	0.04
ID37	0.46	0.09	0.42	0.29	1.00	0.05
ID38	0.90	0.03	0.95	0.91	1.00	0.01
ID39	0.99	0.03	0.89	1.00	1.00	0.00
ID40	0.82	0.04	0.88	0.80	0.80	0.00
ID41	0.23	0.04	0.29	0.22	1.00	0.25
ID42	0.99	0.02	0.92	1.00	1.00	0.00
ID43	0.93	0.03	0.71	1.00	1.00	0.00
ID44	0.89	0.15	0.32	0.67	0.50	0.00
ID45	0.01	0.02	0.00	0.01	1.00	0.99
ID46	0.40	0.04	0.42	0.45	0.33	0.02
ID47	0.04	0.04	0.07	0.05	1.00	0.38
ID48	0.86	0.01	0.70	1.00	1.00	0.00
ID49	0.44	0.05	0.49	0.55	1.00	0.07
ID50	0.98	0.05	0.81	1.00	1.00	0.00
ID51	0.73	0.12	0.55	0.40	1.00	0.02
ID52	0.26	0.05	0.42	0.19	1.00	0.15
ID53	0.26	0.08	0.30	0.14	1.00	0.09
ID54	0.01	0.01	0.01	0.02	1.00	1.41
ID55	0.12	0.06	0.12	0.12	1.00	0.20
ID56	0.72	0.07	0.54	0.67	0.67	0.01
ID57	0.00	0.00	0.00	0.00	0.00	0.00
ID58	0.33	0.12	0.00	0.00	0.00	0.01
ID59	0.11	0.06	0.08	0.12	0.07	0.00
ID60	0.23	0.03	0.15	0.50	0.38	0.02
ID61	0.41	0.08	0.08	0.29	0.17	0.00
ID62	0.82	0.04	0.64	1.00	1.00	0.00
ID63	0.79	0.04	0.75	0.89	1.00	0.01
ID64	0.62	0.02	0.66	0.65	0.50	0.03
ID65	0.63	0.06	0.43	0.67	0.62	0.01
ID66	0.84	0.16	0.38	0.50	0.50	0.00
ID67	0.12	0.04	0.23	0.07	0.25	0.22
ID68	0.65	0.13	0.22	0.33	0.33	0.01

Table 35: **Details of seizure detection results of MVPFormer-S with 60dB SNR.** Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the seizure classification task. The similarity reports the breakdown of the cosine similarity in each of the considered scenarios.

Subject	Kappa	95% CI	Raw		Episodic	
			f1-score	f1-score	sensitivity	fp/h
ID19	0.01	0.00	0.02	0.33	0.50	1.15
ID20	0.87	0.06	0.91	0.57	1.00	0.01
ID21	0.74	0.11	0.49	0.50	1.00	0.02
ID22	0.97	0.02	0.91	1.00	1.00	0.00
ID23	0.10	0.03	0.17	0.10	0.06	0.09
ID24	0.94	0.01	0.90	0.96	0.93	0.00
ID25	0.18	0.09	0.00	0.00	0.00	0.06
ID26	0.03	0.03	0.02	0.04	1.00	0.62
ID27	0.85	0.03	0.78	0.89	1.00	0.01
ID28	0.81	0.04	0.85	0.86	0.75	0.00
ID29	0.44	0.03	0.44	0.28	0.29	0.17
ID30	0.68	0.01	0.68	0.70	0.70	0.20
ID31	0.98	0.00	0.93	1.00	1.00	0.00
ID32	1.00	0.02	0.93	1.00	1.00	0.00
ID33	0.51	0.15	0.00	0.00	0.00	0.02
ID34	0.76	0.03	0.87	0.82	1.00	0.02
ID35	0.74	0.04	0.79	0.80	0.86	0.02
ID36	0.43	0.03	0.52	0.40	0.28	0.06
ID37	0.61	0.08	0.54	0.40	1.00	0.03
ID38	0.92	0.02	0.95	0.91	1.00	0.01
ID39	0.98	0.03	0.89	1.00	1.00	0.00
ID40	0.88	0.04	0.91	0.89	0.80	0.00
ID41	0.29	0.04	0.37	0.29	1.00	0.18
ID42	0.98	0.02	0.87	1.00	1.00	0.00
ID43	0.89	0.04	0.56	1.00	1.00	0.00
ID44	0.88	0.11	0.32	0.67	0.50	0.00
ID45	0.01	0.02	0.00	0.01	1.00	0.94
ID46	0.40	0.04	0.43	0.47	0.33	0.01
ID47	0.04	0.05	0.08	0.06	1.00	0.31
ID48	0.87	0.01	0.70	1.00	1.00	0.00
ID49	0.54	0.05	0.52	0.63	1.00	0.05
ID50	0.96	0.05	0.81	1.00	1.00	0.00
ID51	0.83	0.13	0.67	0.50	1.00	0.01
ID52	0.35	0.05	0.52	0.25	1.00	0.11
ID53	0.46	0.09	0.40	0.22	1.00	0.05
ID54	0.01	0.01	0.01	0.01	0.67	1.49
ID55	0.46	0.09	0.35	0.36	1.00	0.05
ID56	0.72	0.07	0.52	0.67	0.67	0.01
ID57	0.00	0.00	0.00	0.00	0.00	0.00
ID58	0.30	0.12	0.00	0.00	0.00	0.01
ID59	0.20	0.06	0.13	0.24	0.13	0.00
ID60	0.26	0.03	0.15	0.50	0.38	0.02
ID61	0.35	0.09	0.08	0.29	0.17	0.00
ID62	0.84	0.04	0.67	1.00	1.00	0.00
ID63	0.70	0.05	0.67	0.80	1.00	0.01
ID64	0.65	0.02	0.67	0.67	0.50	0.00
ID65	0.70	0.06	0.51	0.77	0.62	0.00
ID66	0.88	0.09	0.53	0.80	1.00	0.00
ID67	0.15	0.05	0.24	0.10	0.25	0.14
ID68	0.76	0.13	0.26	0.40	0.33	0.01

3564
3565

G.15 EVALUATION OF MAXIMUM PERFORMANCE

3566
3567
3568
3569
3570
3571
3572
3573
3574

To better characterize MVPFormer’s ability to generalize to unseen subjects, we perform the seizure detection task on 40 subjects in two different scenarios. First, we use a model that is pre-trained on those 40 subjects (see Figure 21 and Table 36) to determine MVPFormer’s maximum performance on the manual selection of channels. Second, we use a model for which those 40 subjects are unseen (see Figure 22 and Table 37). As expected, with a Kappa score of 0.73 the model trained on the testing subjects achieves superior agreement even to human experts, and can therefore be seen as having learned the training set. On the other hand, as seen with previous results as well, in the unseen subject scenario MVPFormer reaches a Kappa score of 0.56, indicating a high degree of generalization.

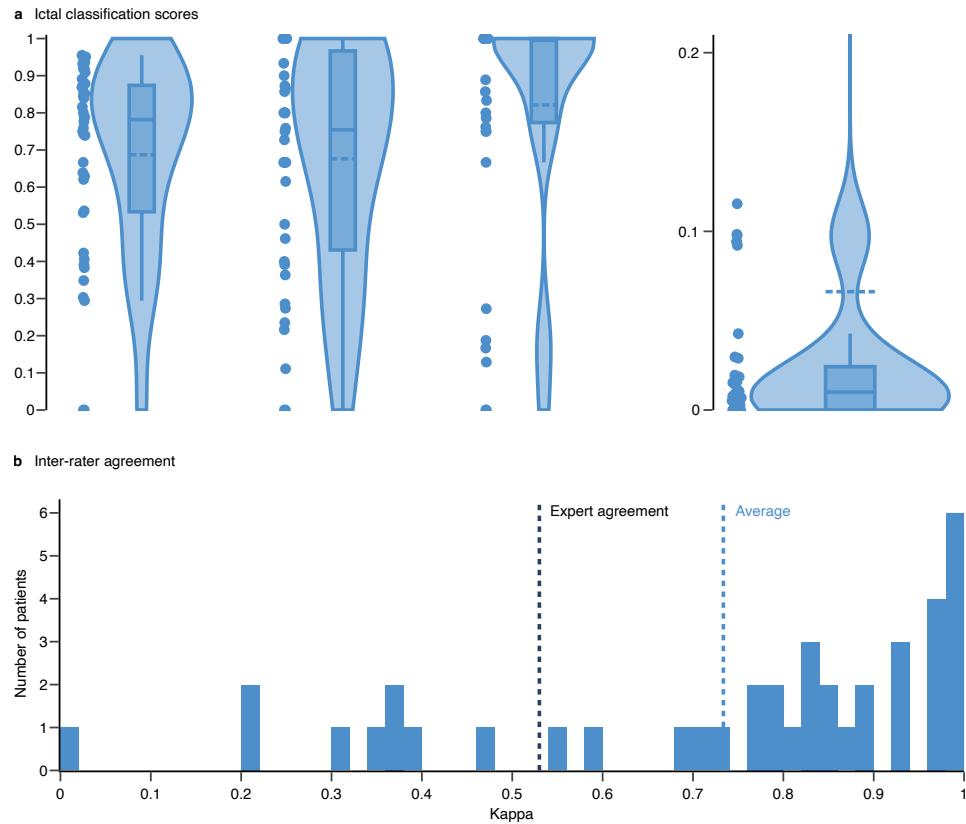
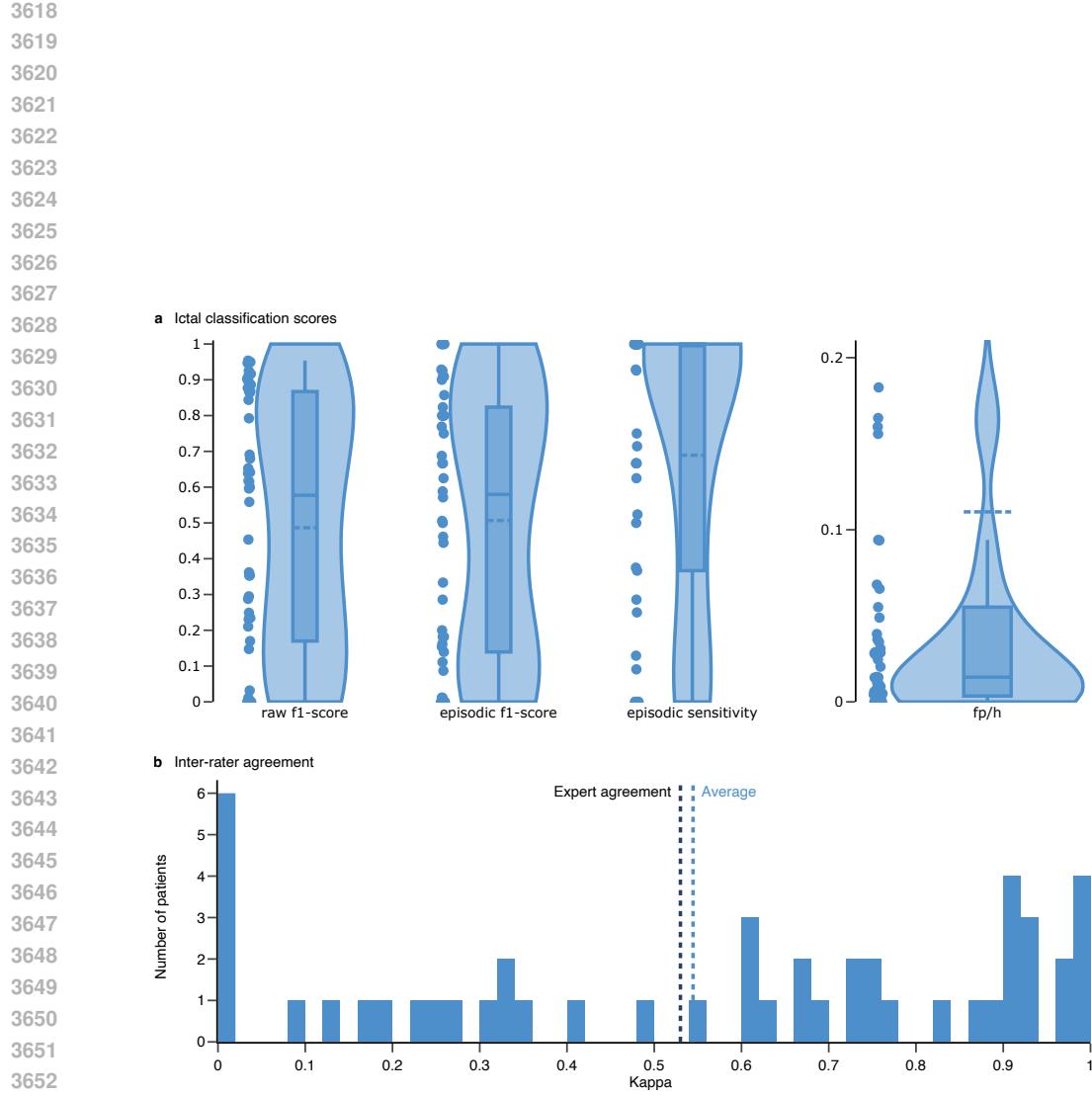


3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
35883601
3602
3603
3604
3605
3606
3607

Figure 21: **Seizure detection with 58 subject pre-training and evaluation on 40 pre-trained subjects on the manual selection of channels.** (a) Seizure detection results of MVPFormer-S on 40 previously seen subjects using the manual selection of channels: the F1-score, sensitivity, and fp/h are reported. The performance metrics are notably improved due to testing on previously seen subjects. (b) Cohen’s kappa is used to measure the agreement between the artificial assistant and the human expert. The average kappa is 0.73, notably improved from the baseline.

3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

3672
 3673
 3674 **Table 36: Details of seizure detection results of MVPFormer-S with 58 subject pre-training**
 3675 **and evaluation on 40 pre-trained subjects using the manual selection of channels.** Kappa is the
 3676 inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the
 3677 seizure classification task.

3678 3679	3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725	Classification metrics					
		3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725	3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725	Raw		Episodic	
			f1-score	f1-score	sensitivity	fp/h	
3680	ID19	0.36	0.02	0.29	0.29	0.19	0.09
3681	ID20	0.92	0.05	0.92	0.67	1.00	0.01
3682	ID21	0.75	0.12	0.62	0.50	1.00	0.02
3683	ID22	0.77	0.06	0.78	0.73	1.00	0.02
3684	ID23	0.36	0.02	0.39	0.39	0.27	0.09
3685	ID24	0.69	0.02	0.64	0.76	0.79	0.10
3686	ID25	0.43	0.15	0.00	0.00	0.00	0.01
3687	ID26	0.98	0.04	0.80	1.00	1.00	0.00
3688	ID27	0.80	0.04	0.74	0.80	0.75	0.01
3689	ID28	0.62	0.05	0.54	0.67	0.75	0.03
3690	ID29	0.24	0.05	0.30	0.22	0.13	0.01
3691	ID30	0.85	0.01	0.79	0.87	0.89	0.10
3692	ID31	0.97	0.00	0.94	1.00	1.00	0.00
3693	ID32	0.99	0.03	0.92	1.00	1.00	0.00
3694	ID33	0.00	0.00	0.00	0.00	0.00	0.00
3695	ID34	0.88	0.03	0.88	0.90	1.00	0.01
3696	ID35	0.92	0.02	0.89	0.93	1.00	0.01
3697	ID36	0.26	0.04	0.42	0.27	0.17	0.02
3698	ID37	0.93	0.07	0.85	0.80	1.00	0.01
3699	ID38	0.98	0.01	0.95	1.00	1.00	0.00
3700	ID39	0.87	0.06	0.84	0.80	1.00	0.01
3701	ID40	0.77	0.05	0.82	0.62	0.80	0.02
3702	ID41	0.99	0.02	0.94	1.00	1.00	0.00
3703	ID42	0.99	0.01	0.95	1.00	1.00	0.00
3704	ID43	0.83	0.05	0.79	0.80	1.00	0.02
3705	ID44	0.98	0.02	0.87	1.00	1.00	0.00
3706	ID45	0.91	0.13	0.67	0.67	1.00	0.01
3707	ID46	0.80	0.02	0.76	0.86	0.76	0.00
3708	ID47	0.93	0.07	0.84	0.86	1.00	0.00
3709	ID48	0.97	0.01	0.93	1.00	1.00	0.00
3710	ID49	0.67	0.05	0.74	0.67	1.00	0.04
3711	ID50	0.81	0.08	0.75	0.67	1.00	0.01
3712	ID51	0.71	0.12	0.53	0.40	1.00	0.02
3713	ID52	0.36	0.05	0.63	0.24	1.00	0.12
3714	ID53	0.99	0.04	0.91	1.00	1.00	0.00
3715	ID54	0.55	0.09	0.35	0.36	0.67	0.03
3716	ID55	0.98	0.03	0.85	1.00	1.00	0.00
3717	ID56	0.85	0.05	0.87	0.75	1.00	0.02
3718	ID57	0.20	0.01	0.38	0.11	0.83	1.74
3719	ID58	0.40	0.04	0.41	0.46	0.86	0.09
3720	ID59	0.00	0.00	0.00	0.00	0.00	0.00
3721	ID60	0.16	0.03	0.08	0.36	0.25	0.02
3722	ID61	0.00	0.00	0.00	0.00	0.00	0.00
3723	ID62	0.42	0.06	0.44	0.41	0.86	0.07
3724	ID63	0.54	0.09	0.25	0.57	0.50	0.01
3725	ID64	0.62	0.02	0.59	0.65	0.50	0.03
3726	ID65	0.31	0.04	0.24	0.39	1.00	0.18
3727	ID66	0.69	0.11	0.52	0.50	1.00	0.02
3728	ID67	0.00	0.06	0.00	0.00	0.00	0.13
3729	ID68	0.78	0.15	0.33	0.50	0.33	0.00

3726
3727
3728
3729
3730
3731

Table 37: **Details of seizure detection results of MVPFormer-S with 18 subjects pre-training on a selection of 40 unseen subjects using the manual selection of channels.** Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the seizure classification task.

Subject	Kappa	95% CI	Classification metrics			
			Raw		Episodic	
	f1-score	f1-score	sensitivity	fp/h		
ID19	-0.05	0.02	0.00	0.00	0.00	0.97
ID20	0.98	0.03	0.87	0.80	1.00	0.00
ID21	0.92	0.07	0.86	0.80	1.00	0.00
ID22	0.98	0.02	0.89	1.00	1.00	0.00
ID23	0.26	0.03	0.17	0.14	0.09	0.16
ID24	0.91	0.01	0.90	0.93	0.93	0.02
ID25	0.35	0.12	0.00	0.00	0.00	0.03
ID26	0.08	0.06	0.03	0.11	1.00	0.18
ID27	0.99	0.01	0.93	1.00	1.00	0.00
ID28	0.71	0.04	0.68	0.75	0.75	0.01
ID29	0.25	0.05	0.29	0.20	0.13	0.03
ID30	0.92	0.01	0.88	0.93	0.93	0.05
ID31	0.98	0.00	0.95	1.00	1.00	0.00
ID32	1.00	0.02	0.92	1.00	1.00	0.00
ID33	0.00	0.05	0.00	0.00	0.00	0.26
ID34	0.89	0.03	0.91	0.90	1.00	0.01
ID35	0.85	0.03	0.87	0.82	1.00	0.03
ID36	0.50	0.03	0.62	0.51	0.37	0.03
ID37	0.74	0.09	0.69	0.50	1.00	0.02
ID38	0.94	0.02	0.95	0.91	1.00	0.01
ID39	0.92	0.05	0.89	0.80	1.00	0.01
ID40	0.95	0.03	0.95	0.91	1.00	0.00
ID41	0.61	0.05	0.65	0.67	1.00	0.04
ID42	0.86	0.05	0.84	0.80	1.00	0.01
ID43	0.90	0.03	0.64	1.00	1.00	0.00
ID44	0.00	0.00	0.00	0.00	0.00	0.00
ID45	0.01	0.02	0.00	0.01	1.00	1.06
ID46	0.60	0.04	0.56	0.69	0.52	0.00
ID47	0.26	0.08	0.29	0.16	1.00	0.09
ID48	0.68	0.02	0.62	0.80	0.67	0.00
ID49	0.85	0.03	0.79	0.86	1.00	0.01
ID50	0.69	0.09	0.60	0.44	1.00	0.03
ID51	0.35	0.09	0.23	0.15	1.00	0.07
ID52	0.23	0.05	0.35	0.18	1.00	0.16
ID53	0.12	0.06	0.21	0.09	1.00	0.16
ID54	0.01	0.02	0.01	0.01	0.67	1.72
ID55	0.37	0.08	0.35	0.29	1.00	0.07
ID56	0.72	0.08	0.60	0.67	0.67	0.01
ID57	0.00	0.00	0.00	0.00	0.00	0.00
ID58	0.22	0.07	0.25	0.18	0.29	0.09

3775
3776
3777
3778
3779

3780 G.16 EFFECTS OF THE NUMBER OF CHANNELS ON THE BRAIN TREEBANK DATASET
37813782 To better evaluate the robustness of MVPFormer to an increasing number of channels, we evaluate
3783 the four tasks of the BrainTreeBank with a range of 10 to 50 channels. The performance of MVP-
3784 Former moderately increases with no reduction with the channel number, as reported in PopT (Chau
3785 et al., 2025) as well, indicating that our model is robust to the number of channels.
37863787 **Table 38: Effects of the number of channels on the four tasks of the Brain TreeBank dataset.**
3788 Evaluation of the performance of MVPFormer with respect to number of channels for fine-tuning
3789 and testing.

3790	Channels	Pitch	Volume	Onset	Speech
3791	10	0.81 (0.01)	0.85 (0.01)	0.86 (0.02)	0.87 (0.02)
3792	20	0.82 (0.01)	0.87 (0.01)	0.87 (0.02)	0.88 (0.02)
3793	30	0.82 (0.02)	0.87 (0.01)	0.87 (0.02)	0.89 (0.02)
3794	40	0.83 (0.01)	0.87 (0.01)	0.87 (0.02)	0.89 (0.02)
3795	50	0.83 (0.01)	0.88 (0.01)	0.87 (0.02)	0.90 (0.02)

3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

3834 G.17 EVALUATION ON TRADITIONAL LONG-TERM FORECASTING TASK
3835

3836 To provide a comprehensive evaluation of MVPA, we compare MVPFormer with existing SOTA
3837 architectures on a classical long-term forecasting task. Table 39 reports the results of MVPFormer,
3838 the vanilla Transformer (Vaswani et al., 2017), PatchTST (Nie et al., 2023), TimesFM (Das et al.,
3839 2024), TimeMixer (Wang et al., 2024b), and WPMixer (Chau et al., 2025) on the ETTh1, ETTh2,
3840 and Weather datasets (Zhou et al., 2021; Wu et al., 2021). These datasets represent a well-known
3841 benchmark that allows us to decouple MVPFormer from the specific clinical setting. The lookback
3842 window is fixed to 96, while the forecast is performed at lengths of 96, 192, 336, and 720. These
3843 settings are well established in the literature (Wang et al., 2024b). MVPFormer notably surpasses the
3844 vanilla Transformer and is competitive with established architectures designed specifically for this
3845 task, achieving the best or second best result in most cases. Moreover, MVPFormer is on average
3846 2x faster to train than the vanilla Transformer and 1.4x faster than PatchTST — still slower than
3847 TimeMixer, which is a fully MLP-based model —, making it an excellent choice in many scenarios.
3848 Therefore, we have shown that MVPFormer and MVPA have a wide applicability and transfer their
3849 performance from the clinical task — for which they were designed — to more general time-series
3850 tasks as well.

3851 **Table 39: Classical time-series forecasting benchmark. MVPFormer is compared with multiple**
3852 **SOTA architectures on the time-series forecasting task using the ETTh1, ETTh2, and Weather**
3853 **datasets.** The lookback window is fixed at 96 and the forecasting length varies between 96 to 720.
3854 The vanilla Transformer is also included as a point of comparison. In bold are the best MSE results,
3855 in italics are the second best. MVPFormer notably outperforms the vanilla Transformer and is
3856 competitive with all baselines, having either the best or second best result in most cases.

Model	MVPFormer (ours)		Transformer		PatchTST		TimesFM		TimeMixer		WPMixer		
Metric	Length	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96	0.38	0.40	0.83	0.72	0.38	0.40	0.39	0.41	0.37	0.40	0.39	0.40
	192	0.45	0.44	0.96	0.78	0.43	0.43	0.46	0.44	0.44	0.43	0.43	0.42
	336	0.49	0.46	1.04	0.83	0.47	0.46	0.49	0.45	0.50	0.46	0.49	0.45
	720	0.49	0.48	1.16	0.86	0.52	0.51	0.50	0.48	0.49	0.48	0.49	0.47
ETTh2	96	0.30	0.35	2.64	1.30	0.31	0.35	0.30	0.45	0.29	0.35	0.30	0.35
	192	0.37	0.40	3.48	1.47	0.38	0.40	0.37	0.40	0.37	0.39	0.37	0.40
	336	0.42	0.43	4.07	1.62	0.43	0.44	0.43	0.44	0.43	0.44	0.42	0.43
	720	0.43	0.45	3.28	1.52	0.43	0.45	0.44	0.45	0.47	0.47	0.45	0.46
Weather	96	0.17	0.22	0.33	0.38	0.17	0.22	0.17	0.21	0.16	0.21	0.17	0.21
	192	0.21	0.26	0.51	0.50	0.22	0.26	0.22	0.26	0.21	0.25	0.22	0.25
	336	0.28	0.30	0.62	0.56	0.28	0.30	0.28	0.30	0.26	0.29	0.26	0.30
	720	0.35	0.35	0.91	0.70	0.36	0.35	0.35	0.35	0.35	0.35	0.35	0.35

3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

3888 G.18 ABLATION OF THE THREE COMPONENTS ON TRADITIONAL LONG-TERM FORECASTING
3889 TASK
38903891 MVPA is composed of three components (content, time, and channel attention) which process dif-
3892 ferent aspects of the time-series in parallel. We evaluate the impact of the components on the long-
3893 term forecasting tasks as above. Table 40 reports the results of full MVPA (all three components),
3894 content-only attention, time-only attention, channel-only attention, and no attention on the ETTh1,
3895 ETTh2, and Weather datasets (Zhou et al., 2021; Wu et al., 2021).3896 Full MVPA is consistently the better performer, except on the 96 and 720 lengths of the ETTh2
3897 dataset. Notably, MVPA outperforms all variants by a greater margin on the Weather dataset, which
3898 has the most number of channels (21 vs 7 of ETTh1 and ETTh2). This suggests that strongly multi-
3899 variate time-series provide a considerable advantage to MVPA, which is consistent with its design.3900
3901 Table 40: **Ablation of the three components on the classical time-series forecasting benchmark.**
3902 **MVPA is compared with ablated variants of its three components on the time-series forecasting**
3903 **task using the ETTh1, ETTh2, and Weather datasets.** The lookback window is fixed at 96 and
3904 the forecasting length varies between 96 to 720. The vanilla Transformer is also included as a point
3905 of comparison. In bold are the best MSE results.

3906 Metric	3907 Model	3908 MVPA				3909 Content-only		3910 Time-only		3911 Channel-only		3912 None	
		3913 Length	3914 MSE	3915 MAE	3916 MSE	3917 MAE	3918 MSE	3919 MAE	3920 MSE	3921 MAE	3922 MSE	3923 MAE	
3924 ETTh1	96	3925 0.38	3926 0.40	3927 0.39	3928 0.40	3929 0.39	3930 0.40	3931 0.39	3932 0.40	3933 0.40	3934 0.41	3935 0.40	
	192	0.45	0.44	0.45	0.44	0.45	0.44	0.45	0.45	0.45	0.46	0.45	
	336	0.49	0.46	0.49	0.46	0.49	0.46	0.49	0.46	0.46	0.50	0.49	
	720	0.49	0.48	0.49	0.48	0.49	0.48	0.49	0.48	0.49	0.48	0.48	
3936 ETTh2	96	3937 0.30	3938 0.35	3939 0.31	3940 0.35	0.29	3942 0.35	3943 0.30	3944 0.35	3945 0.30	3946 0.35	3947 0.30	3948 0.35
	192	0.37	0.40	0.37	0.39	0.38	0.40	0.37	0.40	0.38	0.39	0.38	0.39
	336	0.42	0.43	0.43	0.43	0.42	0.43	0.42	0.43	0.43	0.43	0.43	0.43
	720	0.43	0.45	0.42	0.44	0.43	0.44	0.42	0.44	0.47	0.47	0.47	0.47
3949 Weather	96	0.17	0.22	0.19	0.23	0.19	0.23	0.18	0.22	0.19	0.23	0.19	0.23
	192	0.21	0.26	0.23	0.26	0.23	0.26	0.22	0.26	0.23	0.26	0.23	0.26
	336	0.28	0.30	0.29	0.30	0.29	0.30	0.28	0.30	0.29	0.30	0.29	0.30
	720	0.35	0.35	0.36	0.35	0.36	0.35	0.35	0.35	0.36	0.35	0.36	0.35