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ABSTRACT

Learning from multi-variate time-series with heterogeneous channel configura-
tions remains a fundamental challenge for deep neural networks, particularly in
clinical domains such as intracranial electroencephalography (iEEG), where chan-
nel setups vary widely across subjects. In this work, we introduce multi-variate
parallel attention (MVPA), a novel self-attention mechanism that disentangles
content, temporal, and spatial attention, enabling flexible, generalizable, and effi-
cient modeling of time-series data with varying channel counts and configurations.
We use MVPA to build MVPFormer, a generative foundation model for human
electrophysiology, trained to predict the evolution of iEEG signals across diverse
subjects. To support this and future efforts by the community, we release the
Long-term iEEG dataset, the largest publicly available iEEG dataset to date, com-
prising nearly 10,000 hours of recordings from heterogeneous clinical sources.
MVPFormer leverages MVPA to achieve strong generalization across subjects,
demonstrating expert-level performance in several iEEG tasks. MVPFormer sur-
passes state-of-the-art (SOTA) Transformer baselines in seizure detection across
the Long-term, the MAYO, and the FNUSA datasets, while also achieving SOTA
performance on four Brain TreeBank iEEG decoding tasks (volume, pitch, on-
set, and speech). We further validate MVPA on standard time-series forecasting
and classification tasks, where it matches or exceeds the performance of existing
attention-based models. Together, our contributions establish MVPA as a general-
purpose attention mechanism for heterogeneous time-series and MVPFormer as
the first open-source, open-weights, and open-data iEEG foundation model with
SOTA clinical performance.

1 INTRODUCTION

The increasing availability of multi-variate time-series data across domains, from financial data to
sensor networks to clinical recordings, has driven demand for general-purpose neural architectures
capable of learning from such data (Nie et al.,|2023; Jin et al., [2024} |Wang et al., |2024b; |Guetschel
et al.l 2024). A fundamental challenge in this setting is channel heterogeneity: different sensors (or
channels) often carry information that is both structurally and semantically non-uniform, while the
number and the location of channels may vary across instances. This is especially pronounced in
intracranial electroencephalography (iEEG; Nunez & Srinivasan|[2006), where each subject’s elec-
trode layout is unique and tailored to clinical needs. iEEG models (Kuhlmann et al.} 2018} |Cho &
Jang, 2020; Thuwajit et al., 2022; Wang et al.| {2023} [Saab et al., [ 2024)) often require subject-specific
adaptation to account for new setups, yet they still struggle to generalize. Consequently, effec-
tive learning from multi-variate time-series demands models that are flexible and channel-agnostic,
without sacrificing locality or the ability to generalize.

In this work, we introduce multi-variate parallel attention (MVPA, Figure EI) a novel self-attention
mechanism addressing the structural challenges of channel heterogeneity. MVPA decomposes at-
tention into three components: content-, time-, and channel-based components. Thus, it allows
the model to separately learn the semantics of the signal, its temporal dynamics, and spatial (inter-
channel) structure. MVPA enables flexible and efficient processing of time-series data, without
relying on fixed channel positions or global positional encodings.
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To highlight MVPA’s ability to handle heterogeneous and clinically relevant time-series, we apply
it to the particularly challenging domain of iEEG. Indeed, as mentioned above iEEG recordings
present an ideal testbed for models designed to handle variable multi-channel structure. We use
MVPA to build MVPFormer, a foundation model for human electrophysiology trained via generative
pre-training to predict the evolution of brain signals.

MVPFormer is trained on the Long-term iEEG dataset, the largest available iEEG corpus to date
with nearly 10,000 hours of multi-channel recordings (or 540,000 channel-hours), collected over
a decade in clinical settings and made publicly available as part of this work. Using this long-
term ictal iEEG dataset, we show that MVPFormer not only models neuronal activity during both
normal and ictal states, but also generalizes across patients zero-shot within the same task, and
outperforms previous approaches on clinically relevant benchmarks. At the same time, MVPFormer
also enables diverse downstream applications through finetuning, including seizure detection on
multiple other institutional datasets (Nejedly et al 2020) and four iEEG decoding tasks from the
Brain TreeBank dataset (Wang et al., [2024a)). Remarkably, MVPFormer surpasses an equivalent
purely discriminative version which has not undergone generative pre-training, strengthening the
validity of foundation models in iEEG.

We further evaluate MVPA on classical time-series benchmarks, including ETTh and Weather (Zhou
et al.l 2021} [Wu et al, [2021) for forecasting and EthanolConcentration, FaceDetection, and oth-
ers (Liu & Wangl 2024) for classification. Here, MVPA matches or outperforms state-of-the-art
(SOTA) models. These results establish MVPA as a competitive attention mechanism for general-
purpose time-series beyond iEEG.

Our contributions are: (1) Multi-variate parallel attention (MVPA), a novel self-attention mecha-
nism that separately attends to content, temporal, and spatial structure, enabling strong generaliza-
tion across multi-variate time-series with heterogeneous channels; (2) MVPFormer, a foundation
model for human electrophysiology, powered by MVPA and trained on the largest iEEG corpus
available, showing superior generalization across subjects and clinical tasks compared to models
which use vanilla attention like Brant-2 (Yuan et al.l [2024a); (3) The release of the Long-term
iEEG dataset, the largest iEEG dataset publicly available to date, with almost 10,000 hours of
highly curated and labeled iEEG recordings.

Moreover, we make all our contributions open source, realizing the first open-data, open-code, and
open-weights iEEG foundation model.

2  MULTI-VARIATE PARALLEL ATTENTION (MVPA)

This section introduces multi-variate parallel attention (MVPA), the first main contribution of this
work, as shown in Figure [II We start with vanilla attention for 1D sequences, then present dual-
coded attention for 2D sequences, which has higher computational costs. Building on this, we
derive MVPA, which efficiently attends to both temporal and spatial aspects of multi-variate time-
series data.

2.1 MVPA OVERVIEW

Vanilla attention (Vaswani et al.,[2017) operates on 1D sequences of embeddings (1, €2, ..., 1) of
dimension d (x;, € R?). It computes the attention between two tokens at positions (i, j) as follow
ay™i = (z; + S)T WIW), (z; +S;)

i,j

where x; is the query token and x; the key token. S is the positional encoding, a vector with the
same dimensionality (d) that helps to distinguish between different positions in the sequence. W,
and W), are the learnable query and key matrices.

While vanilla attention has been successfully applied to 1D sequences, its extension to multi-variate
time series (i.e., 2D sequences) is not obvious. Specifically, we aim to process sequences of the
form (x1,1,®1,2,..., Tct, -, T, 1), Where ¢ indicates the space and ¢ the time dimension, while

'For better readability, we describe the attention computation for a single head without activation. In prac-
tice, we generalize it to multi-head attention and apply a consecutive softmax non-linearity.
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Figure 1: Multi-variate parallel attention (MVPA). (a) The input signal is divided into temporal
and spatial segments. Each query-key interaction is computed for all keys within a local window. (b)
MVPA decomposes attention into three components: content-based, computed per segment without
positional encoding; time-based, shared across channels and dependent only on temporal distance;
and channel-based, shared across time steps and dependent only on spatial distance. (c¢) The final
attention is the sum of these three components, each capturing a distinct aspect of the data.

maintaining the embedding dimensionality (i.e., z.;, € R). One approach is to flatten the 2D data
to a 1D sequence (e.g., as done by the Vision Transformer; |Dosovitskiy et al.|[2021)); however,
this will yield a loss in spatial structure. Instead, we introduce two separate learnable positional
codebooks, representing space (C) and time (7). By equipping self-attention with this dual encoding
we can treat the two dimensions individually, which is fundamental in recovering their interplay and
would not be possible with vanilla attention:

1 Ty T
al v = (@eq + To+ Co) "W Wi(er o + T + Cor).
Dual attention allows us to exploit the relationship between time and space at the attention level, the
most basic computational unit of a Transformer. We believe this allows the architecture to model

the time-series at a lower level, and hence more effectively. However, the dual attention mechanism
is computationally expensive, as it computes second-order correlations between time and space.

For this reason, we want to squash these cross-correlations. Specifically, we want to push as much of
the spatio-temporal computation as possible to the lower levels of processing without overwhelming
it. In contrast, all Transformer models equipped with vanilla attention require ancillary structures
to process any relation between time and space (Nie et al.| [2023} [Zhang & Yan| [2023} Wen et al.,
2022). Inspired by Transformer-XL (Dai et al.l 2019), we encode the relative distance in the two
dimensions between the segments separately and introduce new learnable bias terms (u, v, w). In
contrast to Transformer-XL, however, MVPA operates on 2D signals by treating the two dimensions
differently and providing a sub-quadratic solution to learn these interactions (see Appendix [A.2]for
a detailed comparison).

To do so, we operate the following modifications to disentangle space and time:
s (Te+C)"WI Wi o — u Wi, e 4
© (Ti + C)TW] Wil Ter|Cor] = [w|w]" Wiy, [Ti—tr|Ceer];
which characterize the relative error with respect to the full quadratic dual-encoding attention.

Finally, after removing the second-order effects we rearrange the expanded equation into three re-
lated groups:

alg,lec)é,t/ = wf,thT Wy xer ¢ + uTWkea:c/,t/ Content-based attention (1)
+ mZthT Wi, Te—vr + v Wi, Tiv Time-based attention 2)
+al WIWy Comor + W Wi Comer Channel-based attention 3)
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and compute the final softmax attention as:
softmax(aMYPA )V

Vd

A= 4)

The three terms above are the attentional components of MVPA. Content-based attention only at-
tends to the content of query and key, without any positional encoding. In this component we
compute the relationship between two raw segment embeddings, so we modulate the final attention
output without considering any structure of the signal. Time-based attention only attends to the
query and the distance in time with the key. In this component, only the relative distance in time is
considered, allowing for arbitrary signal lengths without loss of generality. Finally, channel-based
attention only attends to the query and the distance in space with the key. Similarly to the time-based
component, also the distance in the channel-based component is relative.

This feature is particularly interesting for the channel-based component, given the heterogeneity of
possible channel setups. Specifically, the channel component uncovers the hidden connection map
between the spatial locations from its initial random initialization, as shown in Appendix In
fact, while the use of the absolute position of the electrodes has produced notable work (Jirsa et al.,
2023)), much of the literature has shown that such information might not be necessary (Schindler
et al., 20065 |2008). Therefore, our relative encoding scheme affords us maximum flexibility while
not sacrificing performance, as MVPFormer outperforms the SOTA both on the seizure detection
task (see Section [5.2.1) and on the four tasks of the Brain TreeBank dataset (see Section [5.2.2),
which explicitly provides the absolute channel positions.

2.2  EFFICIENT IMPLEMENTATION OF MVPA

As MVPA’s computational cost is still quadratic in space and time, we employ several techniques to
further reduce the complexity and enable the efficient processing of very large signals. We present
here the main techniques, while the details can be found in Appendix

Efficiently computing the time- and channel-based terms requires two main techniques. First, we
recognize that it is unnecessary to compute the full attention matrix, which is quadratic in the con-
text length (i.e., both time and space). By design, all elements of the time-based attention are the
same for each channel (see Figure [T, the green components are all equal), and all elements of the
channel-based attention are the same for each time point (see Figure|[Ik, the blue components are all
equal). Hence, complexity is quadratic in one dimension and constant in the other. We then simply
repeat the elements along the right dimension at no additional cost. Second, we employ the shifting
operation (Dai et al.,|2019) to compute all relative embeddings in one pass.

Content attention remains the most expensive component. To further reduce the cost, we make use
of a local attention window (Child et al., 2019) that focuses on the most recent L (in our case 10
segments, or 50 seconds) time points. Since time-based attention is not limited, the lookup window
still spans the entire context. Thus, for L < T, the total complexity of MVPA is O(T? x C + T x
C?), quadratic in each dimension but subquadratic in the context length. Combining all techniques,
MVPA pushes the effective total context length on an NVIDIA A100-80GB GPU to over 10,000
(e.g., 100 channels and 100 time segments).

Additionally, we use grouped query attention (Ainslie et al., 2023) to reduce the number of heads
without loss of performance. Moreover, we develop FlashMVPA based on FlashAttention (Dao
et al., [2022; |Daol 2024)), implemented in the OpenAl Triton language, providing us with lower-level
access to CUDA primitives and superior performance (see Appendix [A).

3 MVPFORMER

MVPFormer is our novel Transformer-based predictive unimodal foundational model equipped with
MVPA, that processes heterogeneous multi-variate iEEG data (see Figure[2). While it is customary
for language-based Transformer models to employ a finite vocabulary of words, such a definition
is non-trivial for iEEG. At the same time, recent works have challenged this discrete paradigm in
favor of continuous latent representations (LeCunl 2022} |Tack et al., 2025} Tschannen et al., [2025])
and continuous chain-of-thought mechanisms (Hao et al., 2024; |Geiping et al.| [2025). In a similar
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Figure 2: MVPFormer architecture and forward pass. iEEG signals are segmented in time and
space, encoded via a wavelet-based encoder, and arranged into a 2D embedding grid. These con-
tinuous embeddings are processed by MVPA to model temporal, spatial, and content-based depen-
dencies. MVPFormer predicts the next-in-time embedding while reducing similarity to confounders
from the same or other subjects. Notched in the bottom right is the resulting cosine similarity with
the true target and the confounders after training. The two-step target is the signal twice removed in
the future.

vein, MVPFormer predicts the development of neuronal activity in a continuous embedding space
governed by a wavelet encoder. We build MVPFormer following the foundational paradigm, with
a pre-training dedicated to predicting the future iEEG embedding using a contrastive loss function.
Moreover, we show that a successive fine-tuning using LoRA (Hu et al |2022) and a simple clas-
sification head allows MVPFormer to perform downstream classification tasks. In particular, our
results indicate that a model trained in this fashion surpasses an equivalent purely discriminative
model (i.e., without generative pre-training), strengthening the validity of foundation models in the
iEEG domain as well. Appendix [B]provides the full details on the architecture.

3.1 TRAINING

Generative pre-training MVPFormer is pre-trained to generate neuronal activity by predicting
successive input segments in time. During pre-training, random input segments from batched win-
dows are used as confounding targets (Z = {z1, ..., 25, }), which are plausible but different from the
true target. We compute the contrastive loss as follows

exp(sim(o¢ ¢, €c.t41)/T) 5)
>z ez exp(sim(oc s, 2x)/7) ’

where o ; is the model’s output embedding and e, ;1 the ground-truth next-state embedding. Sum-
ming over every c, t gives us the optimization target for the generative task. The temperature 7 is
0.1 and the number of confounders n is 30. The contrastive setting (Chen et al., [2020) provides
a clearer distinction between segments that are effectively similar in shape, allowing MVPFormer

L.t = —log
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to better model the dynamics of the signal without incurring into the typical pitfalls of L2 distance
(such as neural collapse; |[Han et al.|2022). Given this generative setup, MVPFormer predicts the
development in the latent space, rather than the raw signals themselves. See Appendix [C.I|for more
details on the pre-training.

Validation of pre-training Given the architecture of MVPFormer, we need to ensure that the
true target and the confounders are sufficiently well-separated in cosine similarity. We evaluate
MVPFormer’s ability to predict embeddings of future iEEG signals by comparing the predicted
embedding at time ¢ to the ground truth embedding at ¢ + 1 using the cosine similarity. To do so, we
introduce two references: (1) the embedding at ¢ 4 2, which is highly correlated with ¢ 4+ 1, and (2) a
random future segment sampled within the next two minutes. In fact, given the high auto-correlation
of iEEG signals, a naive prediction model could simply predict again time ¢, and be moderately
successful due to its similarity with ¢ + 1. Our results (see Figure 2] and Appendix [F) show that
the wavelet-based encoder ensures signal features are well preserved, mapping even mildly similar
signals to distinct embeddings.

LoRA fine-tuning for downstream tasks For downstream tasks, we use a small classification head
(i.e., a linear layer). This layer has input size equal to the decoder’s block output size, and output
size equal to the dimensionality of the classification task (i.e., 2 for seizure classification). The
input to this classification head is either the channel-averaged (for seizure detection) or the channel-
concatenated output of the last signal segment in time (for the pitch, volume, onset, and speech
tasks). The output of the classification head is then passed through a softmax to compute the binary
cross-entropy loss. We further adopt LoRA (Hu et al.| 2022) to perform parameter-efficient fine-
tuning. We only fine-tune the ¢ and v layers of the self-attention in the base MVPFormer model,
with a LoRA rank of 8 and and alpha of 16. This leads to a number of trainable parameters during
fine-tuning of approximately 0.1% of the base model.

4 LONG-TERM IEEG DATASET

The lack of publicly available large-scale iEEG datasets has been a significant obstacle to the devel-
opment of foundation models for this modality. In fact, while EEG datasets are abundant (Tanger-
mann et al.,|2012;Shoeb, |2010) and large (Obeid & Piconel [2016), with tens of thousands of record-
ing hours, such resources are lacking in the iEEG domain. Due to significant barriers tied to data
collection and privacy, available iEEG datasets cover few hours (35 subjects and 290 hours; [Nejedly
et al.|2020) and subjects (10 subjects and 43 hours; Wang et al.||2024a)), while larger datasets are
kept private|Yuan et al.| (2024b).

In an effort towards addressing this issue, together with this work we open-source the Long-term
iEEG dataset, a large-scale iEEG dataset consisting of a total of 68 subjects, 9328 hours of recording,
and 704 ictal events. To our knowledge, the Long-term iEEG dataset is the largest publicly available
iEEG dataset, fully curated and labelled by experienced clinicians. Due to institutional data privacy
concerns, the dataset does not contain information about the location of the channels in the brain.
Appendix [D|reports more details and illustrates two example recordings.

5 EXPERIMENTS

5.1 SETUP

Pre-training We pre-train MVPFormer on 18 subjects, leaving the remaining 50 subjects for test-
ing. MVPFormerM is pre-trained for 1.2M steps on a single node with 8§ NVIDIA A100-80GB
GPUs for two weeks. The chosen optimizer is FusedAdam with 0.1 weight decay, from the Deep-
speed library compiled on the specific machine. The training used bf16-mixed DeepSpeed stage
2 without activation checkpointing. The learning rate is fixed to 10~%. The training environment
includes PyTorch 2.0, PyTorch Lightning 2.0, and Triton 2.1.0.

Fine-tuning After pre-training, we further fine-tune the MVPFormer for each task. For the seizure
detection task, we fine-tune on the same 18 subjects of the Long-term iEEG dataset, and then test
in a zero-shot manner on nearly 7,000 hours of iEEG data from 50 unseen subjects, all of them
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suffering from epilepsy. To keep computational cost moderate, we use a subset of the channels of
each subject for testing: we select them based on a combination of variance and kurtosis, excluding
the noisier ones (see Appendix [E-] In a real-world clinical scenario selection and validation would
comprise a minimal additional burden for the expert. The number of channels chosen is fixed to
32 to simplify comparisons with the other baselines, but we also provide ablations using manual
channel selection and no channel selection at all (see Appendix [G.8] For the four tasks of the Brain
TreeBank dataset, we follow the same procedure as BrainBERT (Wang et al.,[2023)) and PopT (Chau
et al., [2025) by first fine-tuning on the specific subject on a subset of the data and then testing on
the remaining data. As before, we also evaluate the robustness of MVPFormer with respect to the
channel selection in Appendix [G.16]

5.2 1EEG TASKS
5.2.1 SEIZURE DETECTION TASK

We begin by evaluating MVPFormer on the seizure detection task on iEEG data. First, we con-
sider a clinically realistic setup that compares model predictions to a board-certified neurologist
annotations using Cohen’s Kappa. To do so, the predictions are post-processed to yield episodic
results (see Appendix[E). Cohen’s Kappa (Danker-Hopfe et al., 2004} [Schl6gl et al., [2005; McHughl
2012) is widely used to quantify inter-rater reliability in seizure classification. The Landis and
Koch criteria (Candis & Kochl [1977) (see Appendix [E) are often used in practice to evaluate human
performance. Expert-level performance in the seizure classification task varies considerably, from
0.58 (Halford et al.,|2015)) to 0.53 (Grant et al.,|2014) in EEG, to 0.57 (Quigg et al.| 2015) in iEEG.
We consider Kappa values above 0.53 to be expert-level. We must also consider that when compar-
ing the decisions of human raters, only few (in the order of tens) curated episodes are evaluated. In
contrast, our setup involves many more subjects and ictal events (in the order of thousands), mak-
ing this task more challenging for MVPFormer. MVPFormer achieves an average Kappa of 0.61
across 50 unseen subjects from the Long-term iEEG dataset, matching human expert performance
(see Figure[T3). Importantly, agreement varies by subject, reflecting the clinical reality that seizure
presentation complexity strongly affects classification (see Appendix [G.10).

Overall, MVPFormer demonstrates expert-level seizure classification across a large, heterogeneous
cohort. This performance, combined with its low false positive rate (0.15 fp/h), positions MVP-
Former as a promising clinical assistant for real-world iEEG analysis.

Second, we consider a conventional evaluation (see Appendix [G.3) based on Fl-score, sensitiv-
ity, specificity, and number of false positives per hour (fp/h). We compare MVPFormer against
three strong baselines: (1) Brant-2 (Yuan et al., [2024a), a SOTA Transformer for iEEG, fine-tuned
here starting from the published weights. Brant-2 requires all subjects to have the same number
of channels for classification; hence, we were not able to test all subjects with it. (2) Brain-
BERT (Wang et al.| 2023)), another SOTA iEEG model with public weights. (3) MV-Llama, an
ablation of MVPFormer-S that replaces MVPA with vanilla attention, is trained identically to MVP-
Former. After undergoing the same task-specific finetuning of MVPFormer, we test the considered
models zero-shot across the unseen subjection of our Long-term iEEG dataset, and also apply them
on the MAYO and FNUSA datasets (Nejedly et al.| [2020) (see Appendix[G.12)).

Table 1: Results on the iEEG seizure detection tasks. We compare MVPFormer with multiple
baselines across 3 iEEG datasets. The best results are bolded.
SWEC MAYO FNUSA

Model Attention Kappa fl fl fl
MVPFormer MVPA 0.61 0.59 0.36 0.46
MVPFormer-S MVPA 0.57 0.53 0.35 0.46

MV-Llama Vanilla 0.11 0.01 / /
Brant-2 Vanilla 0.06 0.01 0.19 0.46
BrainBERT Vanilla 0.00 0.00 / /
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As shown in Table [T} all baselines fail to generalize on our Long-term iEEG dataset, achieving
Kappa scores of just 0.11, 0.05, and 0.00, while MVPFormer achieves 0.61 and 0.57 in medium
and small configurations, respectively. Specifically, BrainBERT always fails to detect a seizure,
while Brant-2’s behaviour is more nuanced. We provide in Appendix [G] the complete per-subject
statistics, including 95% confidence intervals. Moreover, MVPFormer outperforms the baselines on
MAYO (highest f1-score of 0.36) and is on par on FNUSA. As a further baseline — to validate our
choice of pre-training — we also compare MVPFormer-S with an equivalent model built without
the generative base task (i.e., without the initial contrastive loss-based training, see Appendix[G.T3).
With this setup, the purely discriminative model only reaches a Kappa score of 0.52, inferior to the
equivalent MVPFormer-S which reached 0.54. The full set of results can be found in Appendix[G.1]

5.2.2 BRAIN TREEBANK DECODING TASKS

We validate the generalization of MVPFormer by testing it on the four tasks of the Brain TreeBank
dataset (Wang et al.,|2024a)), as described in Wang et al.|(2023); |Chau et al.|(2025)). The four tasks
are: 1) discrimination of volume level (volume), 2) discrimination of pitch (pitch), 3) classifica-
tion of sentence onset (onset), and 4) classification of speech (speech). All four tasks involve the
discrimination of high-level cognitive behaviors from iEEG recordings. As such, they represent a
significant testbed for MVPFormer outside of its design environment of seizure detection. Table [2]
shows the results of MVPFormer against the SOTA baselines represented by PopT (Chau et al.,
2025)), BrainBERT (Wang et al.| 2023)), and Brant (Zhang et al., 2023)), as reported by PopT (Chau
et al.l [2025)). The full results can be found in Appendix|G.2]

Table 2: Results on the Brain TreeBank tasks. We compare MVPFormer with multiple baselines
the 4 tasks of the Brain TreeBank dataset. The models requiring the electrodes’ position are indi-
cated by 1. The best results without the electrodes’ position are bolded, while the results where the
electrodes’ position is beneficial are underlined.

Pitch Volume Onset Speech

Model Attention acc acc acc acc
MVPFormer-S MVPA 0.83 0.88 0.87 0.90
MV-Llama Vanilla 063 0.77 0.80 0.81

Brant Vanilla 0.61 0.74 0.80 0.80
BrainBERT Vanilla 0.59 0.66 0.70 0.71
PopT t Vanilla 074 0.87 090  0.93
PopT Vanilla 0.62 0.76 0.81 0.83

The Brain TreeBank dataset contains information about the 3D location of the electrodes. On the one
hand, this information is often unavailable in datasets, so we explicitly design MVPA not to require
it, by autonomously building an implicit channel map (see Appendix [G.I1). On the other hand,
PopT was specifically developed for the Brain TreeBank dataset, and therefore takes into account
the electrodes’ physical location. Nonetheless, MVPFormer surpasses all baselines on the pitch and
volume tasks, providing further evidence that MVPA is well-suited to iEEG tasks and generalizing
the model’s ability beyond its original task. On the remaining two tasks, MVPFormer places second
behind PopT, but is still superior to PopT without the electrodes’ location. These results indicate
that, while the electrodes’ position might be beneficial in some instances, MVPA’s implicit channel
map produces superior results overall by being more flexible and adaptable to a wider variety of
existing datasets.

6 EVALUATION ON GENERAL TIME-SERIES

We have shown that MVPFormer achieves SOTA results in its native modality of iEEG. However,
the design of MVPA should allow it to make use of the tiem and channel information intrinsic to
any multi-channel time-series. To this end, we also provide a baseline evaluation of MVPA against
established alternatives in the time-series domain. We compare MVPFormer with existing SOTA
architectures on classical long-term forecasting and classification tasks.
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6.1 TIME-SERIES FORECASTING

Table [3| reports the results of MVPFormer, the vanilla Transformer (Vaswani et al., |2017),
PatchTST (Nie et al., [2023), TimesFM (Das et all 2024), TimeMixer (Wang et al., [2024b)), and
WPMixer (Murad et al., [2025) on the ETTh1, ETTh2, and Weather datasets (Zhou et al., 2021 [Wu
et al.| 2021). MVPFormer always equals or surpasses the baselines (see Appendix [G.17|for the full
results).

Table 3: Results on the time-series forecasting task. We report the mean-squared error (MSE) and
mean-absolute error (MAE) averaged over all forecasting lengths.
Model MVPFormer  Transformer PatchTST TimesFM TimeMixer =~ WPMixer

Dataset Length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETThl Avg. 045 045 1.00 080 045 045 045 045 045 044 045 044
ETTh2  Avg. 038 041 337 148 039 041 038 041 039 041 038 041
Weather  Avg. 025 028 059 053 026 028 026 028 025 028 025 0.28

6.2 TIME-SERIES CLASSIFICATION

Moreover, we evaluate MVPA on common classification tasks, against the vanilla Transformer and
PatchTST on the EthanolConcentration (EtCo), FaceDetection (FaDe), HandWriting (HaWr), Heart-
beat (HaBe), JapaneseVowels (JaVo), PEMS-SF (PEMS), SCP1, SCP2, SpokenArabic (SpAr), and
Uwave datasets (Liu & Wangl 2024).

Table 4: Accuracy on time-series classification tasks. We report the accuracy per task.
EtCo FaDe HaWr HaBe JaVo PEMS SCP1 SCP2 SpAr Uwave

MVPFormer 033 0.66 0.21 070 095 0.86 08 054 097 0.80
Transformer 029 0.64 0.20 070 091 0.84 083 054 095 0.80
PatchTST 029 0.67 0.23 072 095 0.85 083 051 097 0382
TimesFM 029 0.68 0.23 0.71 093 0.84 083 052 099 0382

TimeMixer and WPMixer are forecasting-only architectures, so we could not test them. Table [
shows that MVPFormer achieves SOTA results on general classification tasks as well. At the same
time, these results highlight the generalization capability of MVPFormer that, in contrast to other
models, is effective in both forecasting and classification.

6.3 ABLATION OF THE THREE COMPONENTS

Finally, we make use of the general time-series setting to validate the contribution of the three differ-
ent components of MVPA: content, time, and channel. In Sections[5.2.T)and[5.2.2) we confirmed that
MVPA provides a notable increase in performance to MVPFormer in its native iEEG environment.

Table 5: Ablation of the components of MVPA on the time-series forecasting task. We report the
mean-squared error (MSE) and mean-absolute error (MAE) averaged over all forecasting lengths.
Model MVPA Content-only Time-only Channel-only None

Dataset Length  MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETThl Avg. 045 045 046 045 046 045 046 045 047 046
ETTh2  Avg. 038 041 038 040 038 041 038 041 040 041
Weather Avg. 025 028 027 029 027 029 026 028 027 029

In Table [5] we report the results of MVPA, content-only MVPA, time-only MVPA, channel-only
MVPA, and no-component MVPA on the ETTh1, ETTh2, and Weather datasets. MVPA obtains the
best performance over all datasets, providing further evidence that the three components jointly learn
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the different aspects of the signal. Interestingly, the performance gap on the Weather dataset is larger,
as is its number of channels: 21 instead of 7 of ETTh1 and ETTh2. This result supports our design
of MVPA, which is able to take advantage of the information content in the strongly multi-variate
time-series better than its simpler counterparts. The full results can be found in Appendix [G.T§]

7 RELATED WORKS

Single-channel data has been treated as 1D sequences for tasks like speech recognition, where the
signal is divided into patches that serve as tokens (Schneider et al., |2019; |Gulati et al., [2020). Ex-
tending vanilla attention to multi-dimensional data, such as images, is more complex. The Vision
Transformer (Dosovitskiy et al.l 2021 processes images by flattening 2D patches into a 1D se-
quence, losing spatial structure in the process. However, this approach is inflexible and unsuitable
for generalizing to images with different heights and widths. Other mechanisms (Ho et al.| 2019
Huang et al.| [2019; [Child et al., 2019; |[Bulat et al., 2021} |Arnab et al.l [2021) alternative to vanilla
attention have been developed to speed up computation in the 1D case or to extend it to 2D. We
compare MVPA against such alternatives in more detail in Appendix[A.2]

For multi-variate time-series, such as EEG, Transformers face challenges due to the need to pre-
serve both time and channel information (Wen et al., [2022} |Cui & Lv} 2024). Channel-independent
approaches (Nie et al., 2023)) reuse vanilla self-attention and discard all information content in the
time dimension, while channel-mixing promises to preserve it by either fusing the channels (Zhou
et al., 2022) or processing them sequentially (Zhang & Yan, |2023). For neural spike data, a fusion
of channel and time aspects has been proposed (Le & Shlizerman), [2022)), albeit without complete
integration at the attention level. Specifically for iEEG and EEG, there exist few Transformer-based
solutions (Zhang et al.| 2023} 'Yuan et al., 2024a). Since electrode placements vary widely across
subjects, these models struggle with the heterogeneous nature of the data.

Some models (Chau et al.| [2025) tackle this issues by requiring the absolute position of the elec-
trodes, limiting their applicability to datasets that do have such information. In particular, due to
practical and ethical concerns, the publicly available datasets without the absolute position of the
electrodes (Burrello et al., 2018520195 Nejedly et al., 2020; Li et al.,[2021)), including ours, notably
outsize the ones that do (Wang et al.|[2024a; |[Keles et al.||2024;|Zada et al.,[2025). Overall, the com-
plex interplay between time and space, where distant brain regions may be more strongly connected
than nearby ones, makes it difficult for conventional attention mechanisms to effectively process
iEEG signals.

8 CONCLUSION

We introduce MVPA, a novel attention mechanism designed to effectively process multi-variate
time-series data, exemplified by its application to iEEG signal analysis. MVPA enables MVPFormer,
a foundation model trained on our novel Long-term iEEG dataset, to capture complex interactions
between time and spatial dimensions in multi-variate time-series. We also contribute the Long-term
iEEG dataset itself, as the largest iEEG dataset currently publicly available. MVPFormer is trained
following the foundational paradigm to predict the next brain states, and then further fine-tuned on
multiple tasks. MVPA ensures robust performance across several iEEG tasks and dataset. It reaches
high inter-rater agreement (0.61 Kappa score) on our large scale and challenging Long-term iEEG
dataset, notably surpassing the SOTA Brant-2 (0.08). It also achieves SOTA results on the four
tasks of the Brain TreeBank dataset, even surpassing models specifically designed for them. More-
over, MVPA equals or surpasses the SOTA also in classical time-series forecasting and classification
tasks. Overall, our results show that MVPA affords MVPFormer superior generalization capabilities
while maintaining computational efficiency and scalability, marking a significant advancement in
the analysis of time-series data and iEEG in particular.

ETHICS STATEMENT

During the collection of the Long-term iEEG dataset, all the subjects gave written informed con-
sent that their iEEG data might be used for research and teaching purposes. The decision on the
necessity for iEEG recordings, the electrode implantation scheme, and the decision about surgical
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therapy were made entirely on clinical grounds. These decisions were taken prior to and completely
independently from the compilation of this dataset.

REPRODUCIBILITY STATEMENT

This paper describes the MVPA algorithm in Section [2] and Appendix |A] and the architecture of
MVPFormer in Section [3|and Appendix [B] All the hyperparameters are in Appendix

The setup used for training and evaluating our model are in Section[5.1]

The Long-term iEEG dataset is publicly available in non-anonymous form. In order to preserve
anonymity, we make a sample available here in the Supplementary materials, together with a code
snippet for visualization.

The code of MVPFormer is publicly available in non-anonymous form. In order to preserve
anonymity, we provide an anonymized version in the Supplementary materials.
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A DETAILS ON MULTI-VARIATE PARALLEL ATTENTION (MVPA)

Algorithm [T]illustrates the multi-variate parallel attention algorithm.

Algorithm 1: Computation of MVPA

Input: x.; € R™m output token of Encoder; nemped = 768
Output: o, ; € R™m output attention
Data: ¢ time encoding; ¢ channel encoding; u, y, w biases; h € [1,. .., Nheads);
hk,v € [17 s 7ngqa]
def MVPAttention (@cy):
# Compute query separately from key and value due to GQA
q)!, < LINEARNOBIAS (. )

Rivo . i
k., v.s" < LINEARNOBIAS(z. ;)

# Compute the three components of MVPA

gé”c)t)’(c,,t,) (g, +ul)Tgl

# Time and channel components are independent of the key
content, so they do not need to be recomputed

Si}tL — (th + yhk,u)Tthk,v

li} — (qZ:L,t + whk,u)TChk,'U

# Shift the time and channel components to avoid
recomputation, from Transformer-XL

s,/ < SHIFTTIMEy (s}!)

1" , < SHIFTCHANNEL. (")

c,c’

# Apply window and causal mask

ML, ) (1) & CAUSALMASK(9(, ) (oo ) + 81 +100)
n?c,t),(c’,t/) — WINDOWMASKH)(m?cyt)’(c,’t,))

# Apply structured dropout

d\.. ;) (er.r) & STRUCTUREDDROPOUTo.1 (R, ;) (s 1))

# Compute final attention value
h 1 h

A1) (o1 17 € SIGMOID( e d 1y (0 11)
h h R, v

Oc < Za,t/ ety (e t) " Viep), (e )

return o,

A.1 FURTHER MOTIVATION OF MVPA

Single-channel data can be treated equivalently to sentences, by dividing the signal into 1D patches,
which form the tokens. This modality has attracted considerable interest (Schneider et al.| 2019;
Gulati et al.,|2020), frequently for speech recognition tasks that are once again related to the natural
language domain.

There is no straightforward extension of vanilla attention to the 2D case. The Vision Trans-
former (Dosovitskiy et al.| [2021)) processes images by extending the notion of the patches to the
2D case. It carves images into a collection of patches, which it then flattens into a 1D sequence.
Each patch has 2D coordinates (4, j) which get flattened by an arbitrary function f : N x N — N
into a 1D index (). This is a simple way to recover the 1D case, but it has several drawbacks.
First, by flattening the patches we lose any notion of spatial structure, as nearby patches in space
are no longer necessarily close in the sequence. Any information about the structure of the patches
is lost. However, if the size of the images, the number of patches, and the flattening direction are
kept constant, then the Transformer might autonomously learn it. If it learns the structure, then it
cannot be exposed to different images as it would completely misinterpret them; if it does not learn
the structure, then it is missing critical information. This leads to an inflexible model which cannot
easily generalize to different images. One possible solution is to choose a bijective f, such as the
Cantor pairing function, to have a one-to-one correspondence between the position of the patch in

17



Under review as a conference paper at ICLR 2026

the image and in the sequence. This solution is, however, quite unintuitive. Second, the Vision
Transformer does not distinguish between the two dimensions of height and width, i.e., it does not
distinguish between up, down, left, and right. For images this limitation is not too impactful, as most
of the information is conveyed in the closeness of two patches and not their relative position in any
dimension.

The patching schema of the Vision Transformer is unsuitable to multi-variate time-series, as the two
dimensions of time and channels require delicate handling. Transformers for time-series are a well-
known problem in the field (Wen et al., [2022). Channel-independent approaches (Nie et al., [2023))
reuse vanilla self-attention and discard all information content in the time dimension, while channel-
mixing promises to preserve it by either fusing the channels (Zhou et al.| [2022)) or processing them
sequentially (Zhang & Yan, |[2023). The second family of solutions is more promising in addressing
the issue but is still limited either with respect to computational expense or expressiveness.

EEG signals are multi-variate recordings of the brain. Transformer-based approaches to EEG are
sparse (Si et al.l 2023 (Cu1 et al., |2023)), due to the often unmanageable complexity of the data.
In iEEG recordings, the subjects are implanted with electrodes directly in multiple areas of the
brain for the purpose of clinical diagnosis. There is no standardized location, or even number of
electrodes, for intracranial implants. This makes iIEEG an extremely heterogeneous data modality,
intractable for conventional attention approaches. The channels present a fundamental source of
information, as electric fields spread in different areas of the brain on different time-scales and with
different intensities depending on the strength of the connection between the areas. Moreover, the
relationship between brain regions is not always proportional to their spatial closeness, as distant
areas might be more strongly connected than close ones. There is a tremendously intricate interplay
between space and time, which the Transformer must exploit.

A.2 COMPARISON WITH ALTERNATIVE ATTENTION MECHANISMS

We further compare MVPA with other existing alternatives to better characterize the features of
MVPA. In particular, we draw our main inspiration for the disentanglement and relative positional
encoding from Transformer-XL (Dai et al., 2019) and DeBERTa (He et al [2021), which were the
first to introduce this concept. We now compare MVPA against a selection of relevant alternative
attention mechanisms.

Table 6: Summary of the differences between MVPA and existing attention mechanisms.

Domain  Complexity Disentangled  Relative position ~ Simultaneous time and space ~ Receptive field

Vanilla 1D Quadratic No No No Global
Transformer-XL 1D Quadratic Yes Yes No Global
DeBERTa 1D Quadratic Yes No No Global
Axial 2D Subquadratic No No No Local

Criss-cross 2D Subquadratic No No Yes Local

Localized 2D Quadratic No No Yes Local

Space-time 2D Subquadratic ~ Yes No No Global
ViViT 2D Subquadratic  Yes No No Global
Ours 2D Subquadratic  Yes Yes Yes Global

Axial attention (Ho et al.,|2019) consists of two separate attention mechanisms, RowAttention and
ColumnAttention, each of which attends to one row (one channel) or one column (one timepoint)
only. The layers are then stacked sequentially to recover the full receptive field. MVPA, in contrast,
attends to both time and space simultaneously, and has a global receptive field built-in at every layer.

Criss-cross attention (Huang et al.,[2019) computes the attention between each point and all the other
points in its row or column via the affinity operation. Once again, the layers are applied recursively
to obtain the full receptive field. One of the most significant differences between MVPA and criss-
cross attention is in the encoding of the position. In fact, MVPA treats rows and columns differently
through two independent positional codebooks, while in criss-cross attention distance in rows and
heights is equivalent. This is a natural consequence of the design choices, as criss-cross attention is
designed for images, where the two dimensions are indeed equivalent. Moreover, MVPA again has
a global receptive field.
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Localized sparse transformers (Child et al.l [2019) use separate heads with separate connectivity
patterns to improve on the computational requirements of the full attention. As before, the full
receptive field is only recovered with multiple applications. MVPA, on the other hand, computes the
full 2D attention over the entire input in every head. Moreover, the separate positional codebooks
allow MVPA to treat the dimensions differently, which localized sparse transformers cannot do.

Space-time mixing (Bulat et al., [2021)) reduces the computational complexity of the full quadratic
self-attention by only computing attention across the channels, and then performing a simple av-
eraging in time. On the other hand, MVPA fully integrates both dimensions of the signal in the
computation at the attention level.

Finally, ViViT (Arnab et al., [2021)) disentangles space and time through the use of sequential en-
coders, similar to the channels mixing approaches mentioned in Section [7]

Table [6| summarizes the main features of MVPA with respect to the considered alternatives.

A.3 EFFICIENT COMPUTATION OF MVPA

Vanilla attention is quadratic in the number of input elements, and this often represents a significant
computational roadblock (Kitaev et al.l |2020). The input becomes intractable as the number of
channels increases, especially for multi-variate time-series. At the same time, more channels imply
more sources of information, and we cannot simply discard them.

MVPA is also quadratic, but we employ a number of techniques to significantly reduce the compu-
tational complexity and make the processing of very large signals feasible. Letting 7" be the number
of time segments and C' be the number of channels, the context length of the Transformer becomes
T x C and number of terms necessary to compute for vanilla attention O(T? x C?). Given a reason-
able estimation of 100 segments and 50 channels the context length would be 5,000, until recently
intractable even for language models.

By dividing MVPA into three components we gain considerable advantages (see Table [/| for the
complexity of each term). Efficiently computing the time- and channel-based terms requires two
main techniques. First, we recognize that it is not necessary to compute the full square matrix, which
would be quadratic in the context length (i.e., both time and space). By design, all elements of the
time-based attention are the same for each channel, and all elements of the channel-based attention
are the same for each time point. Hence, complexity is quadratic in one dimension and constant
in the other. We then simply repeat the elements along the right dimension at no additional cost.
Second, we employ the shifting operation described in Supplementary Section B of Transformer-
XL (Dai et al., 2019) to compute all relative embeddings in one pass.

Time-based Channel-based Content-based (w/ window) Content-based (vanilla)
Complexity O(T? x C) O(T x C?) O(L? x C?) O(T? x C?%)

Table 7: Complexity of each component of MVPA. T’ is the number of time segments in the signal,
C'is the number of channels, and L is the size of the local window. Content-based attention without
window has the same complexity as vanilla attention.

Content attention, though stripped of positional encoding, remains the most expensive component.
To further reduce computational cost, with little impact to performance, we make use of a local
attention window (Child et al.,[2019) which focuses on the most recent L time points discarding ones
that have little information content. Since time-based attention is not limited, the lookup window
still spans the entire context (though it is affected, see Figure [I9p). Thus, for L < T, the total
complexity of MVPA is O(T? x C + T x C?), quadratic in each dimension but subquadratic in the
context length. Combining all techniques, MVPA pushes the effective total context length to over
10,000.

Given the three components are independent of each other, it is possible to exclude any one and
reduce computations even more. As an additional cost-saving measure, we use grouped query atten-
tion (Ainslie et al.| [2023) to reduce the number of heads without loss of performance. In summary,
MVPA correctly treats time and space as unrelated dimensions, forcing the model to consider them
separately, all with little computational overhead.
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A.4 TRITON IMPLEMENTATION OF MVPA

MVPFormer’s training effectiveness is heavily affected by batch size, as its training routine draws
the negative samples from the batch. The bigger the batch size, the more variety in the negative
samples and the better the model generalizes. Given the large context size of MVPFormer, up to 10k,
a pure Python implementation of scaled dot product attention would consume too much VRAM to be
useful. FlashAttention (Dao et al.,[2022) and FlashAttention-2 (Daol [2024)) provide the blueprint to
solve this problem, though they only apply to vanilla attention. Using tiling, FlashAttention makes
VRAM consumption linear instead of quadratic in the context length, enabling training on much
longer context.

We develop FlashMVPA using the same technique in the OpenAl Triton language, which gives
lower-level access to CUDA primitives. While a CUDA implementation could likely deliver better
raw performance, the choice of Triton is dictated by the much lower coding time, though Triton is
less robust and more prone to unexpected behaviors at this point. The time-based and channel-based
components of MVPA are computed using PyTorch’s own matrix-multiply, but are then shifted
(Transformer-XL trick) and added using Triton, while the content-based component is fully imple-
mented in Triton. This is due to limitations in Triton. FlashMVPA reaches 20 TFlops on an A100.

Algorithm 2: Computation of FlashMVPA

Input: x.; € R™m output token of Encoder; nemped = 768
Output: o.; € R™m< output attention
Data: ¢ time encoding; ¢ channel encoding; u, y, w biases; h € [1,. .., Nheads);
hkﬂ, € [1, A ,ngqa]
def FlashMVPAttention (@c4):
# Compute query separately from key and value due to GQA
q)!, < LINEARNOBIAS ()

Ao hkv
k.y",v.y" < LINEARNOBIAS(z. )

)
# Need to compute time and channel components outside Triton
sl (gl + ol ) Tth
I (gl +whee)Tehee
# Triton MVPA combines all computations into one kernel
ol', < TRITONMVPA(q",, sl', Il' v, u,y, w)

h
return o,

A.5 RELATIVE SHIFTING

By design, MVPA requires the computation of relative time and channel encodings, which can no-
tably slow down the overall operation. While this does not affect vanilla attention, other relative
attentions provide us with an elegant solution to this problem. In particular, the shifting opera-
tion from Transformer-XL provides us with an efficient alternative to recomputing the time— and
channel-based attention components. To keep notation simple, let ¢; = x7, WT P = T, WT
T, = Wi, Tr—1-i, and C; = Wy Cc_1—,. The shift in time can be performed as in the orlgmal
implementation

qOTO q()Tl cee e quT,1 qOTTfl 0 e 0
a1 Ty aly ... ... @Tr, surrtve | A1 Tr—2 @Tr—1 0 0
qr1Ty qrTy ... ... qr1Tr qr-1Ty cer wonoqrTry

(6)
The right triangular matrix is zeroed out as a requisite of autoregressive training, i.e., we cannot
attend to keys in the future. The entire time shifting operation can be performed efficiently and
quickly using tensor manipulation in PyTorch.

Thus, the time attention component does not require recomputation for each time position, i.e. each
row in the matrix of the time component.
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The shift in channels is more involved

poCo pCi ... ... poCc poCc-1 poCo-2 . ... poCo
p1Co piCi ... ... piCc surcnanne, | P1ICc—2 P1Cc—1 p1Cc—2 ... p1Cy
pc-1Co pc-1C1 ... ... pc-1Cc pc-1Co e s .. pcCc
(N

Here, no element is zeroed out, as all channels can attend to all other channels. The channel shifting
operation does not (to our knowledge) enjoy an implementation which as efficient as the time shifting
one in PyTorch, but requires relatively complex index manipulation which cannot be streamlined.

As before, thanks to this shifting operation the channel attention component does not require recom-
putation for each channel position.

We provide a Triton implementation for both operations which is much more efficient and must be
preferred when training a model.

A.6 STRUCTURED ATTENTION DROPOUT

Dropout is a common technique to improve the generalization performance of neural networks. In
Transformers, it is often applied inside the attention block to randomly zero-out some query-key
attentions, to avoid over-reliance of the model on specific connections.

a Structured dropout b Conventional dropout

Time 1 Time 2 Time 3
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< | W W e W
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Figure 3: Structured dropout. (a) Our structured dropout blanks entire channels and time steps, to
reduce the number of correlated segments. The dropout rate is computed to maintain the same num-
ber of dropped out segments as conventional dropout. (b) Conventional dropout blanks segments
randomly. This is less effective with time-series because adjacent segments in time or space contain
much of the same information.

Dropout usually applies to all elements with equal probability and creates uniform holes in the
attention matrix. This is not efficient in the case of multi-variate time-series, as for each hole the
neighboring segments are likely to carry very similar information, reducing dropout’s effectiveness.
We introduce a structured dropout technique which blanks entire channels and time points instead of
individual segments. This technique is in principle much more effective by removing all segments
which are more likely to be strongly correlated. We keep the same parameters as in conventional
Dropout and compute the channel-specific and time-specific dropout rates as

tdrop = Cdrop = 1- \V 1- T"drop (8)

This ensures that approximately the same overall number of elements are zeroed (see Figure 3).

For the specific dropout rates and the location of the structured dropout layers refer to the description
of the architecture in Appendix

A.7 PERFORMANCE COMPARISON

To provide a clearer evaluation of the computational performance benefits of MVPA, and in particu-
lar FlashMVPA, we compare the inference speed and VRAM usage of multiple attention implemen-
tations. Specifically, we test:

¢ Naive self-attention
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FlashAttention 2

e Linear attention (Nystromformer;
e MVPA

FlashMVPA

We test all implementations with a batch size of 64 and a size of 768, with bfloat16 numeric type,
to maintain a realistic scenario. We use 12 heads and no GQA, as it is not natively implemented for
Nystromformer. We vary both the number of time windows (T) and the number of channels (C) from
1 to 50, and report the runtime and memory consumption for a forward pass. We test the attention
module in isolation to avoid introducing confounding variables, and we follow the best practices in
GPU benchmarking.

Tables [8] and 0] show the full quadratic scaling of MVPA and the full self-attention. However, the
tricks we employ for efficient computation still results in lesser memory usage for MVPA, albeit at
a higher computational cost.

On the other hand, Tables [T0] and [IT] report the much more favorable scaling of the two dedicated
implementations, with FlashMVPA having the same memory consumption as the more optimized
FlashAttention 2.

Finally, Table [I2] indicates that while Nystromformer attention has theoretically favorable linear
complexity, its implementation is much less performance than either FlashAttention 2 or Flash-
MVPA.

Table 8: Computational performance of MVPA. Runtime and VRAM consumption of the naive

implementation of MVPA.
T\C |1 10 20 30 40 50
1 156us/0.02GB  1.75us/0.05GB  1.90us/0.06GB  196us/0.07GB  2.03us/0.08GB  2.12us/0.10GB
10 | 1.72us/0.05GB 1.81us/0.18GB  259us/043GB  5.11us/0.81GB  7.53us/1.31GB 11.83us/1.92 GB
20 | 1.69us/0.06GB  2.64us/043GB  7.59us/1.30GB  15.29us/2.64GB  2530us/447GB  38.15us/6.75GB
30 | 1.77us/0.07GB  520us/0.81GB  1527us/2.64GB 34.52us/554GB  67.64us/950GB 11133 us/14.52GB
40 | 1.84us/0.08GB 7.68us/131GB  25.15us/447GB 67.48us/9.50GB  108.71us/1643GB 161.07 us/25.25 GB
50 | 1.74us/0.10GB 11.86us/1.92GB 37.77us/6.75GB 110.74us/14.52GB  160.72us/25.25GB  278.60 us / 38.90 GB

Table 9: Computational performance of self-attention. Runtime and VRAM consumption of the
naive implementation of vanilla self-attention.

T\C |1 10 20 30 40 50

1 1.08us/0.03GB 1.21us/0.05GB 1.15us/0.06 GB 1.18 us /0.06 GB 1.18 us /0.07 GB 1.19us /0.08 GB

10 1.17us/0.05GB 1.36us/0.16 GB 2.17us/043GB  3.72us/0.84 GB 493us/1.41 GB 7.63us/2.11 GB

20 1.16us /0.06 GB  2.17us/043GB 493us/141GB  8.99us/2.97 GB 1437us/5.12GB 2097 us/7.85 GB
30 121us/0.06 GB 3.72us/0.84GB 899us/297GB  20.79us/6.41GB  3593us/11.17GB 59.22us/17.25 GB
40 1.24us/0.07GB  495us/1.41GB 14.35us/5.12GB 3593 us/11.17GB  56.17us/19.56 GB  81.37 us/30.31 GB
50 1.21us/0.08GB 7.63us/2.11GB 20.98us/7.85GB 59.21us/17.25GB 81.38us/30.31 GB 143.18 us/47.03 GB

Table 10: Computational performance of FlashMVPA. Runtime and VRAM consumption of the
Triton implementation of MVPA.

T\C |1 10 20 30 40 50

1 1.34us/0.02GB  1.40us/0.05GB 1.39us/0.06 GB 1.42us/0.07 GB 1.41us/0.08 GB 1.49us /0.09 GB
10 1.41us/0.05GB 1.45us/0.14GB 1.78us/0.24GB  2.83us/0.34GB  4.10us/0.45GB  4.53us/0.56 GB
20 1.42us/0.06GB 1.69us/0.24GB 4.09us/0.44GB  5.66us/0.65 GB 10.04us/0.87GB  12.10us/1.09 GB
30 1.42us/0.07GB  2.92us/0.34GB 6.00us/0.65 GB 12.09us/0.96 GB 1893us/1.29GB 23.98us/1.63 GB
40 1.47us/0.08GB 398us/045GB 12.43us/0.87GB 16.17us/1.29GB 27.29us/1.73GB 37.68 us/2.19 GB
50 144us/0.09GB 4.79us/0.55GB 11.69us/1.08 GB 23.45us/1.62GB 36.28us/2.19GB 60.36 us/2.75 GB
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Table 11: Computational performance of FlashAttention 2. Runtime and VRAM consumption
of FlashAttention 2, a custom CUDA implementation of self-attention.

T\C |1 10 20 30 40 50

1 1.09us/0.04GB 1.08us/0.05GB 1.08us/0.06GB 1.11us/0.06 GB 1.11us/0.07 GB 1.12us /0.08 GB
10 1.10us/0.05GB  1.15us/0.12GB  1.29us/0.21GB 1.68us/0.30GB 2.09us/0.39GB  2.40us/0.47 GB
20 1.10us/0.06 GB  1.30us/0.21 GB 2.07us/039GB 4.56us/0.55GB 4.70us/0.73GB  5.16us/0.90 GB
30 1.12us/0.06 GB  1.66us/0.30GB 5.27us/0.55GB 4.73us/0.81GB 6.17us/1.07GB  8.11us/1.33 GB
40 1.17us /0.07GB  2.14us/039GB 4.71us/0.73GB 6.19us/1.07GB 8.46us/1.41 GB 10.69 us / 1.76 GB
50 1.15us/0.08 GB 241us/047GB 5.07us/090GB 8.16us/1.33GB 10.64us/1.76 GB 13.99us/2.19 GB

Table 12: Computational performance of Nystromformer. Runtime and VRAM consumption of
the linear attention from Nystromformer Xiong et al.|(2021]).

T\C

1

10

20

30

40

50

1

10
20
30
40
50

0.62 us/0.03 GB
0.73 us /0.05 GB
0.72 us / 0.06 GB
0.71us/0.07 GB
0.76 us / 0.08 GB
0.74 us /0.09 GB

0.72 us / 0.05 GB
1.56 us /0.15 GB
2.62us/0.32 GB
4.44us/0.55 GB
5.63 us/0.85 GB
7.99us/1.19 GB

0.70 us / 0.06 GB
2.62us/0.32 GB
5.63us/0.85 GB
8.95us /1.60 GB
12.51 us /2.60 GB
16.63 us/3.81 GB
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0.72us/0.07 GB
4.44 us /0.55 GB
8.95us/1.60 GB
17.73 us /3.17 GB
31.16 us/5.27 GB
57.85us/7.90 GB

0.73 us /0.08 GB
5.63us/0.85 GB
12.52 us / 2.60 GB
31.13us/5.27 GB
43.59 us / 8.89 GB
57.35us/13.45GB

0.73 us /0.09 GB
8.00us/1.19 GB
16.61 us /3.81 GB
57.89 us /7.90 GB
57.37us/13.45 GB
122.60 us / 20.46 GB
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B MVPFORMER ARCHITECTURE

MVPFormer is part of a family of predictive deep learning models with 74 million (M VPFormer-S)
to 1.2 billion (MVPFormer-M, or simply MVPFormer for brevity) parameters based on the Trans-
former (Vaswani et al., 2017)) architecture, capable of generating iEEG signals.

Wavelet encoder The first processing step maps the raw iEEG signal to continuous embeddings.
We begin by partitioning the raw data into segments of five seconds. Each segment passes inde-
pendently through a db4 wavelet decomposition, which has been shown to be highly effective for
biosignals (Adeli et al., 2003} |Shen et al., 2022)). Depending on the model’s overall size, it is then
linearly projected onto a smaller latent space. This projection, or feature vector, is the embedding.
Our method is inspired by wav2vec (Schneider et al.,|2019), though we use learnable embeddings.
We apply the encoding channel-wise, meaning each segment remains one-dimensional.

Decoder MVPFormer is based on the Llama2 architecture (Touvron et al., [2023) with parallel at-
tention and MLP blocks inspired by Megatron-LM (Shoeybi et al.,|2019). This choice was informed
by the selection of a generative model powerful enough to process brain iEEG signals and compu-
tationally light enough to enable extensive testing. We provide two models to evaluate the scaling
of our foundational model: MVPFormer-S with 75M parameters and MVPFormer-M (or simply
MVPFormer) with 1.2B parameters.

See Tables|13|and|14|for a breakdown of the models sizes and hyperparameters.

Table 13: Breakdown of the parameters of MVPFormer-S. The dimensions are indicated for each
of the components of MVPFormer-S.

Transformer Encoder Signal

Nayers < 12 Ninput < 2560 Wiength <— 500's
Nheads < 12 Nembed <— 168 Tsegments < 100

Ngga < 4 Wsegment < OS
Tembed <— 708 Nnegatives € 30
Ninner <— 1728 Niocal <— 10
Tdrop < 0.1

Table 14: Breakdown of the parameters of MVPFormer-M. The dimensions are indicated for
each of the components of MVPFormer-M.

Transformer Encoder Signal

Niayers < 24 Ninput <= 2960 Wiengn <= 5008
Nheads < 16 Nembed < 1024 Ngegments <— 100
Ngga < 8 Wsegment <— DS
Tembed < 2048 Nnegatives < 30
Ninner <— D362 Niocal <— 10
Tdrop < 0.1

B.1 INFERENCE

The full end-to-end inference procedure is reported in Algorithm 3]

B.2 ENCODER

The Encoder block is detailed above. The algorithmic overview is presented in Algorithm 4]
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Algorithm 3: Full inference with MVPFormer

Input: © € RE*T raw input; C, T number of channels and length resp.; Niayers = 12

Data: ce [1,...,Cl;t € [1,...,T//Nscgments + 1]
Output: o, ;1) € R" generated embedding; nembed = 768
def Inference (z.4):
X < SEGMENT(x)
€.t < ENCODER(x, )
for [ <— 1 to nygyers do
| ec: < DECODER(e.)

Oc,(t—1) < €ct
return o. ;1)

Algorithm 4: Encoder block of MVPFormer

Input: ., € R™" raw input segment; ninpy = 2560; c € [1,...,Cl;t € [1,...

Output: o.; € R™m output token; nembea = 768
Data: | = 8 maximum decomposition level given 7nput
def Encoder (T.¢+):
d.,; < DISCRETEWAVELETDECOMPOSITION gp4 (e 1, {)
Zct < RMSNORM(d, ;)
O, < LINEAR(z. )
return o, ;

B.3 DECODER

The collection of vectors resulting from the Encoder block is flattened into a 1D sequence to provide
a unified input interface to the Transformer decoder blocks, consistent with conventional Transform-
ers. All the encoded segments corresponding to a window form the input to the Transformer module,
which computes the MVPA among all the segments. The segments are sequentially processed by
multiple Transformer layers, composed of attention and MLP blocks in a deep network config-
uration. The attention blocks are masked to guarantee that MVPFormer only has access to past
segments to generate the target. The model produces one output embedding for each input segment.
The algorithmic overview is presented in Algorithm[5] while the MLP block in Algorithm [6]

Algorithm 5: Decoder block of MVPFormer

Input: o.; € R"™ input tokens; Nemped = 768
Output: o, ; € RMembe

def Decoder (0.4) :

Zc,t < RMSNORM(o, 1)

# Compute attention

@t < MVPATTENTION(Z, ()

d.+ < DROPOUT(LINEARNOBIAS((ac,:))

attention (Wang|, |2021))
Se,t — MLP(ZC’t)
# Sum residuals and attention
Oct < Oct + dc,t + Scpt
return o, ;

# Compute feedforward residuals in parallel with
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Algorithm 6: MLP block of MVPFormer

Input: z.; € R"m normalised Decoder output; nempeq = 768
Data: u, s, g € R njpper = 1728
Output: s.; € RMembed

1 def MLP (2z.):

2 U, < LINEARNOBIAS(2z. ;)

3 gc,t < SILU(LINEARNOBIAS(2z.))

4 Sc,t < LINEARNOBIAS(uc; + ge.t)

5 return s. ;
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C DETAILS ON TRAINING

C.1 GENERATIVE PRE-TRAINING

MVPFormer is used to generate neuronal activity while in the base prediction task. During training,
the target for each output is the successive input segment in time, not in space. First, we divide each
recording into windows of 500 seconds each, with a stride of five seconds. Then, each window is
divided into 100 segments (each five seconds long), yielding a total of 39B total training segments.

For each target, we sample random input segments from the rest of the batched windows to create
the confounding targets Z = {z1, ..., z,}. These segments still represent actual iEEG signals, so
they are plausible, but they are expected to be very different from the true target.

This scheme strikes the correct balance between too much similarity and too little. The objective
of MVPFormer is to generate future iEEG signals, so we choose a contrastive loss to increase the
cosine similarity of its output with the true target, while decreasing it with the confounding targets.
As training progresses, MVPFormer starts to produce outputs that look like encoded segments, i.e.,
its inputs. MVPFormer becomes more and more capable of choosing the right target and thus is able
to predict the future signal.

Extraction of positive and negative examples Out of the entire dataset, B windows are chosen at
random to form a batch. Each window W¢ [y ) has an arbitrary sample rate and C; channels. First,
the sampling rate is normalized to 512 Hz, then the windows are divided into 7" non-overlapping
segments per-channel, leaving us with C; x T segments per window. Each segment is passed in
parallel through the encoder. For the sake of simplicity, suppose one window W* (with C* channels)
is selected at random as the positive window, and all the others as the confounding windows. The
embeddings of W* form the input context £ with length C* x T

For each segment, n embeddings are selected at random from the confounding windows to form the
negative samples Z. Each Z,; has n elements, thus Z has size C* x T' x n. Z is excluded from
backpropagation.

MVPFormer processes the entire F at once and produces an output O also of size C* x T'. We then
compute the losses and iteratively optimize to train the model.

Contrastive loss We train MVPFormer using a contrastive loss (Oord et al., 2018)) and an auxiliary
loss. To compute the contrastive loss, we rely on having other windows in the batch, so a larger
batch size leads in general to a more stable training and better generalization performance. Let
e', i € [1,...,B] be the outputs of the signal Encoder and o', i € [1,..., B] the outputs of
the Decoder stack, for B the batch size. For each i*, we select at random 7ipegatives €lements from
e',i # i* to act as our negative samples n**. Clearly, the bigger the batch the greater the entropy.
We compute the contrastive loss for each ¢* as follows:

eXP(Sim(Oc,m ec(t+1))/T)
szeZ exp(Sim(OC,tv zk)/T)

L, =—log ©)

Finally summing over every i, c, t gives us the optimization target for the generative task.

The loss is invariant to the channel ¢, which encourages all the outputs to be the same regardless of
channel. The temperature 7 is 0.1.

C.2 GENERATION OF NEURONAL ACTIVITY

The generation of brain signals during inference proceeds analogously as during training. However,
we do not have access to the same source of entropy as in training since the batches are limited to one
subject at a time. This limitation implies that the evaluation scores of MVPFormer must be more
punishing than the training objective, since we cannot reliably estimate the accuracy with which
MVPFormer chooses the right target. For this reason, we measure the cosine similarity directly in
a three-way reference scheme. First, we consider the cosine similarity of the output with the true
target. Second, we consider the similarity with the maximally correlated target. Third, we measure
the cosine similarity with the highest form of entropy available, random segments in the batch that
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are still close by in time. This measurement ensures that the difference in similarity between the true
and confounding targets remains significant.
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D LONG-TERM IEEG DATASET

The Long-term iEEG dataset is presented in Section 4} The iEEG signals were recorded intracra-
nially with a sampling rate of either 512 Hz or 1024 Hz, which was then normalized to 512 Hz before
training MVPFormer. The signals were median-referenced and digitally band-pass filtered between
0.5 and 120 Hz using a fourth-order Butterworth filter, both in a forward and backward pass to min-
imize phase distortions. All the recordings were inspected by an expert for identification of seizure
onsets and offsets, and to remove channels corrupted by artifacts.

This dataset may only be used for research. For other applications any liability is denied. In partic-
ular, the dataset must not be used for diagnostic purposes.

Here, Table shows the full details of the dataset in a subject-by-subject breakdown. Finally,
Figure 4] shows two annotated seizures in the dataset.

Table 15: Per-subject details of our Long-term iEEG dataset. Ch. is the number of electrodes,
fs is the sampling frequency in Hz, Rec. [h] is the length of the recording in hours, and Ev. is the
number of seizures. The entire dataset contains 68 subjects, 9328 hours of recording and 704 ictal
events.

Subject Ch. f,[Hz] Rec[h] Ev. ] Subject Ch. f,[Hz] Rec[h] Ev. | Subject Ch. f,[Hz] Rec[h] Evw.
D01 88 512 293.4 2 D24 32 1024 40.7 14 | ID47 32 1024 330.4 3
D02 66 512 235.2 2 | ID25 128 512 109.4 4 1D48 57 1024 28.4 6
D03 64 512 158.4 4 1D26 34 1024 87.6 1 1D49 60 512 1404 6
D04 32 1024 40.7 14 | ID27 32 1024 146 8 1D50 64 1024 177.2 2
1D05 128 512 109.4 4 1D28 75 512 69 4 ID51 89 512 161.5 1
1D06 32 1024 146 8 | ID29 61 1024 143.8 70 | ID52 69 512 112.6 2
D07 75 512 69 4 1D30 48 1024 40.9 27 | ID53 22 1024 134.9 1
1D08 61 1024 143.8 70 | ID31 32 1024 42.4 17 | ID54 54 1024 202 3
D09 48 1024 40.9 27 1D32 32 1024 212.2 2 ID55 24 1024 152.1 2
D10 32 1024 424 17 | ID33 104 512 53.6 1 ID56 62 1024 130.5 3
ID11 32 1024 212.2 2 1D34 56 1024 191.4 9 ID57 40 1024 90.7 12
D12 56 1024 191.4 9 | ID35 64 1024 104 7 ID58 92 512 138.2 7
D13 64 1024 104 7 1D36 24 1024 161.4 60 | ID59 54 1024 107.3 15
D14 24 1024 161.4 60 | ID37 98 512 195.9 2 1D60 74 512 50.7 8
D15 98 512 195.9 2 1D38 34 1024 177.1 5 D61 76 512 89.6 6
D16 34 1024 177.1 5 | ID39 60 1024 129.6 2 1D62 60 1024 235.1 7
D17 60 1024 129.6 2 1D40 42 1024 205.1 5 1D63 64 512 179.8 4
D18 42 1024 205.1 5 | ID41 33 1024 82.7 3 D64 56 1024 36.3 20
D19 29 1024 21.7 25 1D42 63 1024 87.8 2 D65 49 1024 139.7 8
1D20 88 512 293.4 2 | ID43 126 512 63.2 2 D66 39 1024 212.3 2
ID21 66 512 235.2 2 D44 60 1024 150.3 2 1ID67 63 512 111.7 4
D22 64 512 158.4 4 | ID45 47 1024 157.3 1 1D68 32 1024 167.8 3
1D23 32 1024 424 33  ID46 86 512 140.5 21
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a Patient 17 with typical seizure presentation

The seizure can be easily dlstinguished from the surrounding signal
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b Patient 14 with atypical seizure presentation

The seizure is not immediately recognisable
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Figure 4: iEEG activity of two patients with different ictal patterns. (a) Patient 17 of the Long-
term iEEG dataset presents typical ictal events. The seizure can be clearly distinguished even by
a non-expert, and MVPFormer performs very well on this patient. The number of channels is re-
duced from the original recording to facilitate comparison with the more difficult presentation. (b)
Patient 14 of the Long-term iEEG dataset does not have typical events. The neuronal activity during
seizures for this patient cannot be clearly distinguished, and assessment by experts would diverge
considerably. As expected, MVPFormer has a high level of disagreement on this patient. All the
channels of the original recording are presented to exclude the chance of some channels carrying
additional information.
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E GENERATION OF RESULTS

During evaluation, the target and data are prepared according to each task and model’s specification,
analogously to the pre-training task. For MVPFormer, we first divide each recording into windows
of 500 seconds each, with a stride of five seconds. Then, each window is divided into 100 segments
(each five seconds long). In cases where datasets are too small for MVPFormer’s context window,
we shorten it accordingly. The classification decision is taken on the last window.

E.1 CHANNEL SELECTION

In order to ensure a consistent setup across all baselines and to speed up evaluation we perform
the seizure detection task on the Long-term iEEG dataset using a subset of the channels (see Ap-
pendix[G.8]for an ablation of the selection mechanism). Specifically, we always choose 32 channels
to comply with the fixed-channel models such as Brant-2.

First, we compute the variance and kurtosis for all channels within the first 30 minutes of each
subject’s recording. We exclude channels based on the following:

 Variance above the 99th percentile and below the 1st percentile

 Kurtosis above the 95th percentile

This results in a first quality filtering. Next, we rank the channels based on a simple combination of
variance and kurtosis with the following:

var(C')

~ 1+ kurt(C) (19)

rc

and choose the first 32 channels. In the cases where there not enough channels, we also include
some of the channels excluded above to reach 32.

E.2 EPISODIC SEIZURE POST-PROCESSING
For episodic evaluation we apply three post-processing steps to the model output:

* Merge events happening within 5 minutes of each other
* Remove events shorter than 20 seconds in length

* Remove events with less than 5 positive responses

Moreover, when the subject has multiple seizures in one minute we merge them into one.

E.3 ONLINE SEIZURE THRESHOLDING

In the clinical evaluation setup we apply a simple thresholding to decide whether to report a seizure
or not. We set 3 positive seconds out of 10 to be the lower limit for detecting a seizure, to deter false
positives; events shorter than 3 seconds are thus not reported, and an additional latency of 3 seconds
is to be considered. We find this trade-off has limited drawbacks in practice, as there is often large
disagreement even among neurologists about very short events.

E.4 KAPPA SCORE ESTIMATION
To estimate the Kappa score, we choose 300 random segments per subject to compare their classi-

fication from MVPFormer and the labels. We perform multiple iterations to ensure no bias in this
computation. Figure [5]indicates that our choice of 250 iterations is sufficient for stable results.
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E.5 LANDIS AND KOCH CRITERIA

Table 16| reports the commonly used Landis and Koch criteria for qualitative inter-rater agreement
estimation from Kappa scores.

Kappa Agreement
0-0.20 Slight

0.21 -0.40 Fair
0.41-0.60 Moderate

0.61 —0.80  Substantial
0.81 —1.00  Almost perfect

Table 16: Landis and Koch criteria. Landis and Koch criteria (Landis & Kochl [1977) for eval-
uating Cohen’s kappa in the context of inter-rater agreement between human experts on seizure
classification.

32



Under review as a conference paper at ICLR 2026

. 2
0.3 014
5
° 2
8 001
? 5 M
14 AN/
02 S o R NSV
©  0.001- AR
© Q
Q Q 54
g N] 2
* 100} |
5 T T T T T
0.1+ 0 50 100 150 200 250
Iteration
0 T T T T T
0 50 100 150 200 250

Iteration

Figure 5: Mean absolute error in Cohen’s kappa estimation. Our estimation scheme for Cohen’s
kappa converges after very few iterations. The error is computed per-subject as the absolute dif-
ference between the running averages at each two consecutive iterations; the running average is the
average of all preceding steps. The average and standard deviation across all subjects is reported
here. We compute up to 250 random iterations to ensure precise reporting.
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F PREDICTION OF IEEG SIGNALS

We evaluate the effects of the size of the model and the attention mechanism on the iEEG prediction
task. Figure [ shows that both MVPA and the vanilla attention are effective at predicting the next
brain states. Scaling up the model size from MVPFormer-S to MVPFormer-M has the effect of
shortening the tail of the true distribution, effectively increasing the concentration of the cosine
similarity towards the maximum.

] Two-step Random [] True

FM-iEEG-M
r
1
L]
1
1
L]
H 1
FM-EEG-S 1 !
MV-Llama -
T T T T T T T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cosine similarity

Figure 6: Performance of MVPFormer-M, MVPFormer-S, and MV-Llama on the iEEG pre-
diction task. We report the average two-step, random, and true target cosine similarities for the
three different models. All three are effective at predicting iEEG activity, while the larger model
takes advantage of the increased embedding size by increasing the concentration of cosine similari-
ties towards 1.

Complete details are available for the iEEG prediction performance of MVPFormer-M (see Ap-
pendix [F.I] MVPFormer-S (see Appendix [F.2), and MV-Llama (see Appendix [F.3).
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F.1 PREDICTION OF IEEG AND ICTAL ACTIVITY

MVPFormer is primarily a neuronal prediction model, trained to generate neuronal activity re-
gardless of whether such activity is pathological or physiological. To understand the behavior of
MVPFormer with anomalous brain states, we evaluate its performance in generating ictal neuronal
activity. The precise relationship between ictal and interictal states is a point of ongoing discus-
sion (Beenhakker & Huguenard, 2009; Zaveri et al., |2020), but many consider an approach to
seizures as anomalies (Martini et al, [2021) the most appropriate. The Long-term iEEG dataset
contains many ictal events, so we are able to evaluate the performance of MVPFormer in generat-
ing anomalous activity. In particular, in this dataset the ratio between non-ictal and ictal states is
approximately 500:1.

Figure [/| shows that ictal states are not anomalous for MVPFormer. In particular, the prediction
similarity of MVPFormer does not degrade when generating ictal activity. Moreover, the prediction
similarity in the ictal state is neither significantly different from the average similarity nor from the
non-ictal similarity. This indicates that MVPFormer’s understanding of the mechanisms of genera-
tion of neuronal activity encompasses the pathological ictal state as well. Therefore, MVPFormer
must model patterns found both in physiological and pathological brain states. Finally, MVPFormer
incorporates a model of seizure generation as a by-product of its predictive task, which is particularly
noteworthy.
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Figure 7: Performance of MVPFormer on the prediction task. (a) A three-reference evaluation
scheme is used to assess MVPFormer’s performance. The true target is the immediate future, i.e.
the next five seconds of iEEG signal. The two-step target is the signal twice removed in the future,
i.e. the five seconds of iEEG signal coming after the true target. Finally, the random target is chosen
from iEEG signals which are close by in time with the true target. The distribution of the average
similarity across the entire recording is shown together with the similarity within three representative
subjects (with maximum, median, and minimum average similarity). (b) The prediction similarity is
computed again for all three targets, distinguishing between targets which lie within an ictal event,
without, or at the boundary. There is no significant difference in the performance of MVPFormer
in predicting ictal or non-ictal activity, indicating that MVPFormer can encompass anomalous brain
states as well, together with the transitions between physiological and anomalous.
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F.2 EFFECTS OF THE SCALE OF THE MODEL

Figure[8]shows the full details on the performance of MVPFormer-S on the Long-term iEEG dataset
in the iEEG prediction task.

a Similarity of prediction with true target and controls [] Two-step Random [] True

Non-ictal = U

Ictal

Onloffsets

Average

T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cosine similarity

Figure 8: Performance of MVPFormer-S on the prediction task. Performance of MVPFormer-S
in generating neuronal activity of unseen test subjects. The prediction similarity is computed for all
three targets, distinguishing between targets which lie within an ictal event or without. There is no
significant difference in the performance of MVPFormer-S in predicting ictal or non-ictal activity.
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F.3 EFFECTS OF THE ATTENTION MECHANISM

Figure 9] shows that vanilla attention is also effective in predicting the development of iEEG signal.

a Similarity of prediction with true target and controls [] Two-step Random [ True

Non-ictal

Ictal

Boundary

Average

T T T T T T T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cosine similarity

Figure 9: Performance of MV-Llama on the prediction task. The prediction similarity is com-
puted for all three targets, distinguishing between targets which lie within an ictal event or without.
There is no significant difference in the performance of MV-Llama in predicting ictal or non-ictal
activity. This indicates that vanilla attention with a proper positional encoding scheme can effec-
tively generate neuronal activity. However, this does not translate to improved performance in the
seizure classification task (see Table 2] vs. Table 20)
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F.4 PER-SUBJECT COSINE SIMILARITY

We provide a detailed per-subject breakdown of the maximum cosine similarity measure for MVP-
Former. Figure[T0|shows the per-patient global similarity. Figure[IT|shows the per-patient similarity
within an anomaly. Figure[T2]shows the per-patient similarity at the boundary of an anomaly.
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Figure 10: Breakdown of total cosine similarity per-patient. Maximum cosine similarity of MVP-
Former’s output with the true, random, and two-step targets over the entire Long-term iEEG dataset.
The data is shown patient-by-patient.
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G ADDITIONAL RESULTS

G.1 SEIZURE DETECTION

Table[T7|reports a summary of the seizure detection results across all datasets and architectures.

Table 17: Results on seizure detection. We compare MVPFormer with Brant-2, the current SOTA
Transformer model for iEEG, and MV-Llama, our vanilla attention-based baseline.

Long-term MAYO FNUSA
Episodic Raw Raw Raw
Model Attention Kappa fl sens fp/h fl fl sens spec fl sens  spec

MVPFormer MVPA 0.61 059 072 0.15 051 036 038 091 046 094 0.10
MVPFormer-S MVPA 0.57 0.53 071 0.12 049 035 041 0.88 046 0.99 0.03
Brant-2 Vanilla 0.06 0.01 0.01 0.11 0.00 0.19 1.00 0.18 046 0.99 0.02
BrainBERT Vanilla 0.00 0.00 0.00 0.00 0.00 / / / / / /
MV-Llama Vanilla 0.11 0.01 0.01 0.02 0.00 / / / / / /

G.2 BRAIN TREEBANK DECODING TASKS

Table [I8|reports a summary of the decoding tasks of the Brain TreeBank dataset.

Table 18: Results on Brain TreeBank iEEG tasks. We compare MVPFormer with multiple
Transformer-based architectures on the four tasks of the Brain TreeBank dataset (Wang et al.,
2024a). The best results are bolded, while the results where the electrodess position is beneficial
are underlined.

Model Attention  Electrode location  Pitch Volume Onset Speech

MVPFormer MVPA No 0.83 (0.02) 0.88(0.01) 0.87 (0.02) 0.90 (0.02)
MV-Llama Vanilla No 0.62(0.03) 0.77 (0.02) 0.80(0.03) 0.81(0.02)
Brant Vanilla No 0.61 (0.03) 0.74 (0.03) 0.80(0.04) 0.80(0.03)
PopT w/o encoding  Vanilla No 0.62 (0.07) 0.76 (0.07) 0.81 (0.09) 0.83(0.10)
PopT (BrainBERT)  Vanilla Yes 0.74 (0.03) 0.87(0.03) 0.90(0.01) 0.93 (0.02)
PopT (TOTEM) Vanilla Yes 0.64 (0.03) 0.79 (0.02) 0.90 (0.02) 0.88 (0.05)
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G.3 CONVENTIONAL EVALUATION

In addition to our clinically motivated evaluation (see Section[5.2.1)), we assess all our models using
conventional machine learning metrics for seizure detection: F1-score, sensitivity, and false positive
rate. These metrics are commonly used in benchmarking seizure detection models
2017} [Shah et al, [2020), and allow comparison with prior work. The full seizure detection results
of MVPFormer are shown in Table[T7)and Figure[T3]
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Figure 13: Performance of MVPFormer on the classification task. (a) The F1-score, sensitivity,
and fp/h are reported. Raw results are computed without any post-processing of MVPFormer’s
output, while episodic results follow a common post-processing procedure which merge close ictal
classifications. (b) Cohen’s Kappa is used to measure the agreement between the artificial assistant
and the human expert. The average kappa is 0.61, competitive with the values obtained between
human experts. The distribution of kappa values clearly indicates that a minority of subjects are the
source of most disagreement, consistent with the variability of inter-rater agreement among human
experts.

We evaluate against two baselines: Brant-2 (Yuan et al] [2024a), a SOTA Transformer model for
iEEG, and MV-Llama, an ablation of MVPFormer-S that uses standard attention instead of MVPA
(see Appendix [G.5). Brant-2 is fine-tuned with its published pre-trained weights and protocol. MV-
Llama is trained identically to MVPFormer-S.

We report both raw and episodic metrics. Episodic metrics reflect clinically meaningful detections
by grouping predictions into events (Ziyabari et all, 2017). The detailed results are provided in
Tables[25]and [T0]

The similarity between raw and episodic Fl-scores suggests that MVPFormer naturally learns to
detect seizure episodes of realistic length and frequency. On the 50-subject Long-term test set, the
false positive rate is 0.15 fp/h (0.12 for MVPFormer-S), comparable to commercial EEG devices
used in clinical practice (Van de Vel et al, 2014}, Bruno et al} [2020). As expected in a real-world
dataset, false positive rates vary considerably across subjects, with 81% having fewer than 0.05 fp/h.
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Table 19: Details of seizure detection results of MVPFormer with 18 subject pre-training.
Kappa is the inter-rater agreement. The classification metrics report the raw and episodic met-
rics relevant for the seizure classification task. The similarity reports the breakdown of the cosine
similarity in each of the considered scenarios.

Classification metrics Similarity
Raw Episodic True Random Two-step
Subject Kappa 95% CI ~fl-score fl-score sensitivity fp/h average ictal non-ictal average ictal non-ictal average ictal non-ictal
D19 0.00 0.00 0.01 0.35 0.25 0.14 | 0.30 027 0.25 0.14 0.15 0.10 0.16 0.14 0.10
D20 0.87 0.05 0.92 0.57 1.00 0.01 | 0.89 0.95 091 | 0.17 0.19 0.12 0.14 0.17 0.12
D21 0.82 0.09 0.59 0.67 1.00 0.01 | 0.92 092 093 0.16 0.15 0.16 0.13 022 0.18
1D22 0.99 0.02 0.94 1.00 1.00 0.00 | 0.89 0.92  0.90 ‘ 0.15 0.15 0.10 0.12 0.15 0.08
1D23 0.12 0.03 0.21 0.11 0.06 0.02 | 0.88 0.95 0.94 0.22 022 0.20 0.20 0.21 0.20
D24 0.92 0.01 0.91 0.93 0.93 0.02 | 0.80 093 0.89 ‘ 0.13 0.13  0.09 0.14 0.11 0.14
ID25 0.00 0.00 0.00 0.00 0.00 0.00 | 0.84 0.90 0.90 0.17 024 0.14 0.15 020 0.13
1D26 0.03 0.03 0.02 0.04 1.00 0.61 | 0.88 0.96 0.94 ‘ 0.16 021 0.09 0.13 0.16 0.10
1D27 0.99 0.01 0.95 1.00 1.00 0.00 | 0.88 095 095 0.20 023 0.20 0.17 023 0.21
1D28 0.83 0.04 0.82 0.86 0.75 0.00 | 0.85 0.89 0.61 | 0.26 0.14 0.07 0.16 0.15 0.10
D29 0.71 0.02 0.58 0.43 0.32 0.03 | 0.86 092 0.92 0.14 0.14 0.11 0.11 0.12 0.13
ID30 0.95 0.01 0.92 0.96 0.93 0.00 | 0.89 095 0.94 | 0.17 0.17 0.13 0.14 0.16 0.14
ID31 0.99 0.00 0.97 1.00 1.00 0.00 | 0.88 095 0.95 0.18 021 0.13 0.15 022 0.17
1D32 1.00 0.00 0.97 1.00 1.00 0.00 | 0.93 093 0.94 ‘ 0.17 0.15 0.12 0.13 0.16 0.11
1D33 0.06 0.07 0.00 0.00 0.00 0.15 | 0.95 0.96 0.95 0.39 0.38 0.31 0.39 045 0.46
1D34 0.99 0.01 0.97 1.00 1.00 0.00 | 0.89 0.94 092 ‘ 0.14 0.14 0.09 0.11 0.14  0.12
ID35 0.98 0.01 0.96 1.00 1.00 0.00 | 0.86 093 0.94 0.18 0.15 025 0.17 0.17 035
ID36 0.60 0.03 0.78 0.57 0.40 0.00 | 091 095 0.94 ‘ 0.19 020 0.13 0.16 0.18 0.14
ID37 1.00 0.00 0.97 1.00 1.00 0.00 | 0.77 0.74  0.66 0.16 0.12 029 0.14 0.15 049
1D38 0.99 0.01 0.99 1.00 1.00 0.00 | 0.82 0.85 0.77 ‘ 0.15 0.13 0.13 0.13 0.14  0.09
D39 0.99 0.02 0.92 1.00 1.00 0.00 | 0.83 0.70 0.83 0.16 0.12 0.10 0.14 0.12  0.10
1D40 1.00 0.01 0.99 1.00 1.00 0.00 | 0.87 0.88 0.90 | 0.15 0.13  0.09 0.13 0.13  0.11
D41 0.13 0.03 0.18 0.15 1.00 0.41 | 0.86 0.79 0.86 0.16 0.15 0.10 0.13 0.15 0.10
1D42 0.96 0.03 0.86 1.00 1.00 0.00 | 0.82 0.80 0.79 | 0.15 0.14  0.07 0.13 0.15 0.07
1D43 0.89 0.04 0.69 1.00 1.00 0.00 | 0.80 0.77 0.84 0.13 0.14 0.12 0.10 0.15 0.11
1D44 0.90 0.12 0.42 0.67 0.50 0.00 | 0.82 0.89 0.89 ‘ 0.11 0.14 049 0.08 0.09 0.65
1D45 0.37 0.09 0.09 0.18 1.00 0.06 | 0.82 0.87 0.77 0.14 0.16 0.09 0.12 0.14 0.16
1D46 0.45 0.04 0.44 0.55 0.38 0.00 | 0.85 0.87 0.61 ‘ 0.18 0.14 0.28 0.16 0.11 0.51
1D47 0.77 0.09 0.60 0.50 1.00 0.02 | 0.84 0.81 0.83 0.16 0.15 0.12 0.14 0.16  0.09
1D48 0.87 0.01 0.71 1.00 1.00 0.00 | 0.80 0.83 0.79 ‘ 0.12 0.12  0.08 0.10 0.11  0.09
ID49 0.25 0.04 0.20 0.36 1.00 0.15 | 0.89 0.79  0.86 0.23 0.14 035 0.23 0.17 0.3
ID50 0.97 0.05 0.82 1.00 1.00 0.00 | 0.86 0.90 0.84 ‘ 0.16 024 0.11 0.14 0.21 0.10
ID51 0.75 0.11 0.38 0.40 1.00 0.02 | 0.87 0.78 0.89 0.26 0.14 0.28 0.28 024 0.39
1D52 0.85 0.05 0.65 1.00 1.00 0.00 | 0.82 0.84 0.79 | 0.21 0.18 0.11 0.19 0.16 0.14
ID53 0.00 0.00 0.00 0.00 1.00 3.43 | 0.82 0.77 0.79 0.17 0.17 0.09 0.14 0.15 0.11
ID54 0.01 0.02 0.02 0.02 0.67 0.89 | 0.82 0.71 0.83 | 0.16 0.14  0.12 0.13 0.14  0.09
ID55 0.86 0.07 0.75 0.80 1.00 0.01 | 0.84 0.87 0.80 0.18 0.18 0.11 0.16 0.19 0.14
1ID56 0.79 0.06 0.55 0.80 0.67 0.00 | 0.87 0.81 0.79 ‘ 0.19 0.18 0.12 0.17 0.20 0.18
ID57 0.00 0.00 0.00 0.00 0.00 0.00 | 0.87 0.87 0.81 0.16 021 0.14 0.13 0.17 0.17
ID58 0.30 0.11 0.00 0.00 0.00 0.01 | 0.86 0.84 0.77 ‘ 0.21 022 0.33 0.20 0.24  0.30
ID59 0.00 0.00 0.00 0.00 0.00 0.00 | 0.82 0.85 0.80 0.17 0.14  0.09 0.16 0.12 0.1
1D60 0.20 0.03 0.09 0.67 0.50 0.00 | 0.87 0.88 093 ‘ 0.15 0.14 0.56 0.12 0.11 0.37
ID61 0.14 0.09 0.00 0.00 0.00 0.04 | 0.89 0.87 0.89 0.18 0.16 0.11 0.15 0.13 0.11
1D62 0.79 0.04 0.65 0.88 1.00 0.01 | 0.83 0.86 0.92 | 0.14 0.13  0.52 0.13 0.12  0.72
1D63 0.76 0.05 0.52 0.77 0.62 0.00 | 0.82 0.86 0.86 0.15 0.16 0.09 0.13 0.15 0.06
ID64 0.95 0.07 0.55 1.00 1.00 0.00 | 0.86 0.87 0.85 | 0.15 0.15 0.16 0.12 0.14 0.10
1D65 0.04 0.02 0.05 0.03 0.50 1.14 | 0.83 0.87 0.85 0.13 0.15 0.09 0.10 0.13  0.08
ID66 0.61 0.19 0.00 0.00 0.00 0.01 | 0.75 0.80 0.76 | 0.12 0.13  0.06 0.10 0.11 0.08
1D67 0.04 0.01 0.05 0.03 0.50 1.06 | 0.83 0.82 0.81 0.20 0.15 0.07 0.19 0.12 0.10
D68 0.66 0.18 0.00 0.00 0.00 0.01 | 0.84 0.80 0.82 ‘ 0.17 022 0.15 0.14 0.19 0.16

These results confirm that MVPFormer performs competitively on conventional seizure detection
benchmarks, while also offering robust generalization to clinically realistic evaluation settings.
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G.4 EFFECTS OF THE SCALE OF THE MODEL

The performance improvements of LLMs as a function of their model sizes have also been widely
reported (Hoffmann et al, 2022} [Kaplan et al., [2020). According to Chinchilla’s scaling law the
training dataset is already not large enough to fully train MVPFormer-S (75M parameters), so we
investigate whether a larger model (MVPFormer-M, 1.2B parameters) can provide any improvement
in performance.

Figure[[4]shows the seizure detection performance of MVPFormer-S on the Long-term iEEG dataset
(see Table[20). As noted in the main results, MVPFormer-M marginally improves seizure detection
results over MVPFormer-S. In particular, it reaches higher F1-score but higher fp/h rate as well, with
small net improvement. Therefore, we have shown that the amount of iEEG data currently available
is not sufficient to fully take advantage of the increase in model size of Transformers. We hope that
making the Long-term iEEG dataset publicly available will increase overall availability and unlock
further model scaling potential.
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Figure 14: Seizure detection with 18 patient pre-training. (a) Seizure detection results of
MVPFormer-S on unseen subjects: the Fl-score, sensitivity, and fp/h are reported. Raw results
are computed without any post-processing of MVPFormer’s output, while episodic results follow a
common post-processing procedure which merge close ictal classifications. (b) Cohen’s Kappa is
used to measure the agreement between MVPFormer-S and the human expert. The average kappa is
0.57, competitive with the values obtained between human experts. The distribution of kappa values
clearly indicates that a minority of subjects are the source of most disagreement, consistent with the
variability of inter-rater agreement among human experts.

44



Under review as a conference paper at ICLR 2026

Table 20: Details of seizure detection results of MVPFormer-S. Kappa is the inter-rater agree-
ment. The classification metrics report the raw and episodic metrics relevant for the seizure classifi-
cation task. The similarity reports the breakdown of the cosine similarity in each of the considered
scenarios.

Classification metrics Similarity
Raw Episodic True Random Two-step
Subject Kappa 95% CI ~fl-score fl-score sensitivity fp/h  average ictal non-ictal average ictal non-ictal average ictal non-ictal
ID19 0.01 0.00 0.02 0.33 0.50 111 | 0.28 027 027 0.21 020 025 0.21 020 023
ID20 0.79 0.06 0.87 0.44 1.00 0.02 | 0.95 0.96 0.95 | 0.18 021 0.12 0.15 0.17 0.12
D21 0.73 0.11 0.51 0.50 1.00 0.02 | 0.94 093 0.95 0.16 0.18 0.18 0.13 0.24  0.20
1D22 0.97 0.02 0.91 1.00 1.00 0.00 | 0.94 0.89 0.95 | 0.15 0.16 0.09 0.12 0.17 0.07
D23 0.15 0.03 0.21 0.16 0.09 0.05 | 0.95 095 0.95 0.25 0.28 023 0.22 024 0.24
D24 0.94 0.01 0.91 0.96 0.93 0.00 | 0.93 0.94 0.93 | 0.19 0.19 0.12 0.16 0.17 0.17
ID25 0.13 0.09 0.00 0.00 0.00 0.06 | 0.94 0.96 0.96 0.17 0.19 0.15 0.14 0.18 0.15
1D26 0.04 0.03 0.02 0.04 1.00 0.59 | 0.95 097 0.96 | 0.17 022 0.12 0.14 0.18 0.11
D27 0.88 0.03 0.78 0.89 1.00 0.01 | 0.95 0.96 0.96 0.22 0.24 021 0.19 025 024
D28 0.89 0.03 0.87 0.86 0.75 0.00 | 0.95 0.96 0.95 | 0.17 0.19  0.09 0.13 0.17 0.12
ID29 0.45 0.03 0.42 0.27 0.29 0.18 | 0.95 0.95 0.95 0.16 0.15 0.14 0.12 0.13 0.13
ID30 0.63 0.02 0.66 0.67 0.63 0.17 | 0.95 0.96 0.96 | 0.19 0.19 0.15 0.16 0.18 0.16
ID31 0.98 0.00 0.93 1.00 1.00 0.00 | 0.95 0.96  0.96 0.19 0.24 0.11 0.16 024 0.18
ID32 0.99 0.03 0.93 1.00 1.00 0.00 | 0.95 0.91 0.96 | 0.18 0.13  0.16 0.15 0.18 0.12
ID33 0.48 0.14 0.00 0.00 0.00 0.02 | 0.93 0.95 093 0.23 0.28 0.19 0.21 026 0.21
ID34 0.78 0.03 0.85 0.78 1.00 0.03 | 0.95 0.95 0.95 | 0.15 0.15 0.10 0.11 0.15 0.13
ID35 0.77 0.03 0.79 0.80 0.86 0.02 | 0.92 094 0.92 0.17 0.19  0.19 0.15 0.17 0.22
ID36 0.41 0.03 0.54 0.43 0.32 0.06 | 0.96 0.96  0.95 | 0.22 023 0.14 0.19 021 0.17
ID37 0.50 0.09 0.44 0.31 1.00 0.05 | 0.92 091 091 0.16 0.15 033 0.14 0.17  0.69
ID38 0.94 0.02 0.94 0.91 1.00 0.01 | 0.93 095 091 | 0.14 0.15 0.11 0.11 0.16  0.08
ID39 0.97 0.03 0.89 1.00 1.00 0.00 | 0.93 0.90 0.92 0.16 0.13  0.11 0.14 0.13  0.11
1D40 0.91 0.04 0.91 0.89 0.80 0.00 | 0.94 095 0.95 | 0.15 0.16 0.10 0.13 0.14  0.12
ID41 0.28 0.05 0.41 0.33 1.00 0.15 | 0.95 091 094 0.16 0.16 0.14 0.13 0.16 0.11
ID42 0.98 0.03 0.89 1.00 1.00 0.00 | 0.93 091 0.92 | 0.15 0.17  0.08 0.12 0.16  0.08
1D43 0.92 0.03 0.69 1.00 1.00 0.00 | 0.93 0.90 0.95 0.14 0.14 0.10 0.11 0.16 0.12
ID44 0.90 0.12 0.32 0.67 0.50 0.00 | 0.93 095 0.92 | 0.12 0.12 051 0.09 0.10 0.64
1D45 0.01 0.02 0.00 0.01 1.00 0.99 | 0.94 095 0.93 0.15 0.18 0.13 0.12 0.14 0.14
ID46 0.39 0.04 0.42 0.45 0.33 0.02 | 0.94 0.95 0.76 | 0.18 0.15 036 0.16 0.12  0.53
D47 0.06 0.05 0.09 0.06 1.00 0.30 | 0.94 093 0.94 0.18 0.20 0.12 0.15 0.18 0.12
1D48 0.85 0.01 0.70 1.00 1.00 0.00 | 0.93 0.93  0.92 | 0.12 0.11  0.06 0.10 0.12 0.09
ID49 0.54 0.05 0.54 0.60 1.00 0.06 | 0.95 092 093 0.22 0.14 026 0.21 0.19 051
ID50 0.97 0.05 0.81 1.00 1.00 0.00 | 0.93 095 0.94 | 0.17 0.19  0.12 0.14 023 0.11
ID51 0.70 0.12 0.55 0.33 1.00 0.02 | 0.93 091 093 0.23 0.15 020 0.23 0.28 0.26
ID52 0.37 0.05 0.54 0.27 1.00 0.10 | 0.93 094 0.95 | 0.16 0.18 0.10 0.13 0.16 0.10
ID53 0.47 0.08 0.40 0.25 1.00 0.04 | 0.93 0.90 0.93 0.19 0.17 0.3 0.15 0.16 0.12
ID54 0.01 0.01 0.01 0.01 0.67 151 | 0.94 0.88 0.94 | 0.18 0.19 0.14 0.14 0.16 0.10
ID55 0.41 0.09 0.29 0.29 1.00 0.07 | 0.94 094 0.94 0.20 0.18 0.14 0.17 020 0.17
ID56 0.72 0.08 0.52 0.67 0.67 0.01 | 0.94 091 0.88 | 0.19 0.18 0.13 0.17 0.19 0.16
ID57 0.00 0.00 0.00 0.00 0.00 0.00 | 0.94 094 0.89 0.14 0.13  0.14 0.11 0.09 0.16
ID58 0.29 0.11 0.00 0.00 0.00 0.01 | 0.94 0.94 0.86 | 0.21 022 0.18 0.20 024 0.15
ID59 0.16 0.06 0.13 0.24 0.13 0.00 | 0.92 094 091 0.14 0.14 0.11 0.12 0.12  0.09
ID60 0.23 0.03 0.13 0.50 0.38 0.02 | 0.95 0.96 0.98 | 0.14 0.14  0.61 0.11 0.12  0.37
ID61 0.36 0.09 0.08 0.29 0.17 0.00 | 0.96 0.96 0.96 0.19 0.17 0.16 0.16 0.16 0.14
ID62 0.81 0.05 0.69 1.00 1.00 0.00 | 0.92 093 0.97 | 0.14 0.14 043 0.11 0.11 0.73
ID63 0.64 0.05 0.64 0.73 1.00 0.02 | 0.93 0.94  0.95 0.15 0.17  0.09 0.12 0.16  0.07
D64 0.60 0.02 0.66 0.62 0.45 0.00 | 0.95 095 0.95 | 0.16 0.17  0.13 0.13 0.14 0.11
ID65 0.75 0.05 0.51 0.77 0.62 0.00 | 0.94 0.95 094 0.14 0.17  0.08 0.11 0.14  0.09
ID66 0.90 0.10 0.53 0.80 1.00 0.00 | 0.87 092 0.92 | 0.13 0.13  0.08 0.10 0.13  0.08
D67 0.15 0.05 0.26 0.10 0.25 0.13 | 0.94 094 0.94 0.22 0.17  0.11 0.21 0.13  0.10
ID68 0.69 0.13 0.23 0.40 0.33 0.01 | 0.94 092 0.95 | 0.15 0.13 031 0.10 0.10 0.10
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G.5 EFFECTS OF THE ATTENTION MECHANISM

To assess the validity of our MVPA scheme, we train MV-Llama, a model almost equivalent to
MVPFormer-S that uses vanilla attention instead of MVPA. While MV-Llama uses vanilla attention,
it is still based on the SOTA Llama2 architecture. We also re-use the vanilla positional encoding,
with a simple adjustment to recover a one-to-one correspondence between the positional encoding
and the position of the patch in the time-series (the Cantor pairing function, see App. [A-T).

Table [17] in the main text indicates that vanilla attention does not perform seizure detection at a
level comparable to MVPA. In particular, the performance of MV-Llama is poor, indicating that it
cannot generalize to this task. We argue this is due to higher flexibility of the internal representations
generated by MVPA, which better lend themselves to further tasks, such as seizure classification.

Table 21: Details of seizure detection results of MV-Llama with 18 subject pre-training. Kappa
is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant
for the seizure classification task. The similarity reports the breakdown of the cosine similarity in
each of the considered scenarios.

Classification metrics Similarity
Raw Episodic True Random Two-step
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h average ictal non-ictal average ictal non-ictal average ictal non-ictal
D19 0.00 0.00 0.01 0.12 0.06 0.00 | 0.32 031 0.29 0.23 023 023 0.23 022 022
1D20 0.00 0.00 0.00 0.00 0.00 0.00 | 0.96 097 0.95 | 0.18 021 0.14 0.15 0.18 0.13
ID21 0.00 0.00 0.00 0.00 0.00 0.00 | 0.95 0.90 0.96 0.16 0.15 0.15 0.13 023 0.20
D22 0.34 0.12 0.00 0.00 0.00 0.03 | 0.95 0.78 0.95 | 0.15 0.13  0.08 0.12 0.16 0.07
D23 0.00 0.00 0.00 0.00 0.00 0.00 | 0.96 0.96 0.96 0.25 0.26 0.20 0.22 024 0.24
1D24 0.00 0.00 0.00 0.00 0.00 0.00 | 0.94 094 0.93 | 0.19 0.20 0.19 0.16 0.18 0.17
ID25 0.02 0.06 0.00 0.00 0.00 0.17 | 0.95 0.96 0.96 0.17 0.19 0.16 0.14 0.18 0.15
ID26 0.00 0.00 0.00 0.00 0.00 0.00 | 0.96 097 0.96 | 0.18 022 0.10 0.14 0.18 0.12
D27 0.27 0.11 0.00 0.00 0.00 0.01 | 0.96 0.96 0.96 0.22 0.25 0.19 0.19 025 0.24
D28 0.00 0.00 0.00 0.00 0.00 0.00 | 0.96 0.96 0.96 | 0.17 0.19 0.08 0.13 0.17 0.13
D29 0.00 0.00 0.00 0.00 0.00 0.00 | 0.95 095 0.96 0.16 0.15  0.09 0.12 0.13  0.13
1D30 0.01 0.06 0.00 0.00 0.00 0.22 | 0.96 0.96 0.96 | 0.19 0.20 0.15 0.16 0.19 0.17
ID31 0.00 0.00 0.00 0.00 0.00 0.00 | 0.96 0.96 0.96 0.20 0.24 0.16 0.16 024 0.18
D32 0.12 0.09 0.00 0.00 0.00 0.05 | 0.95 0.88 0.96 | 0.18 0.16 0.16 0.15 0.18 0.12
ID33 0.00 0.00 0.00 0.00 0.00 0.00 | 0.93 095 0.92 0.23 024 0.19 0.21 025 0.20
ID34 0.00 0.00 0.00 0.00 0.00 0.00 | 0.95 0.95 0.96 | 0.15 0.16 0.12 0.11 0.15 0.12
ID35 0.38 0.12 0.00 0.00 0.00 0.01 | 0.93 094 0.92 0.17 0.18 0.16 0.14 0.17 0.18
ID36 0.17 0.09 0.00 0.00 0.00 0.08 | 0.96 0.96 0.96 | 0.22 0.24 0.16 0.19 021 0.17
ID37 0.00 0.00 0.00 0.00 0.00 0.00 | 0.92 0.88 0.87 0.16 0.15 0.36 0.14 0.16 0.57
ID38 0.00 0.00 0.00 0.00 0.00 0.00 | 0.93 095 091 | 0.14 0.16  0.10 0.11 0.16 0.07
D39 0.00 0.00 0.00 0.00 0.00 0.00 | 0.93 0.87 0.94 0.16 0.14 0.08 0.13 0.13  0.11
1D40 0.02 0.06 0.00 0.00 0.00 0.04 | 0.94 095 0.95 | 0.15 0.17 0.10 0.12 0.15 0.12
D41 0.72 0.22 0.00 0.00 0.00 0.00 | 0.96 092 095 0.16 0.15 0.13 0.13 0.15 0.11
D42 0.00 0.00 0.00 0.00 0.00 0.00 | 0.94 092 0.94 | 0.15 0.18 0.09 0.12 0.17 0.08
D43 0.31 0.11 0.00 0.00 0.00 0.01 | 0.94 091 0.96 0.15 0.11  0.12 0.11 0.17 0.12
1D44 0.00 0.00 0.00 0.00 0.00 0.00 | 0.94 0.96 0.86 | 0.12 0.12 037 0.09 0.10 0.50
ID45 0.42 0.14 0.00 0.00 0.00 0.04 | 0.94 095 0.93 0.15 0.15 0.12 0.12 0.14 0.15
1D46 0.00 0.00 0.00 0.00 0.00 0.00 | 0.94 0.96 0.80 | 0.18 0.14 028 0.16 0.12  0.53
D47 0.29 0.12 0.00 0.00 0.00 0.04 | 0.95 094 0.95 0.18 020 0.14 0.15 0.18 0.13
1D48 0.00 0.00 0.00 0.00 0.00 0.00 | 0.93 094 0.93 | 0.12 0.12 0.07 0.09 012 0.09
D49 0.00 0.03 0.00 0.00 0.00 0.01 | 0.95 093 0.92 0.21 0.14 029 0.20 0.19 046
ID50 0.06 0.07 0.00 0.00 0.00 0.01 | 0.94 096 0.94 | 0.17 021 0.12 0.14 023 0.11
ID51 0.00 0.00 0.00 0.00 0.00 0.00 | 0.93 090 0.92 0.22 0.15 0.18 0.21 028 0.21
ID52 0.00 0.00 0.00 0.00 0.00 0.00 | 0.94 095 0.95 | 0.16 0.17 0.12 0.13 0.17 0.10
1D53 0.00 0.00 0.00 0.00 0.00 0.00 | 0.95 093 0.94 0.19 0.20 0.11 0.16 0.17 0.12
ID54 0.52 0.10 0.17 0.33 0.25 0.01 | 0.94 0.89 0.95 | 0.18 0.16 0.12 0.15 0.16 0.10
ID55 0.00 0.00 0.00 0.00 0.00 0.00 | 0.95 095 0.95 0.20 0.21 0.13 0.17 020 0.17
ID56 0.68 0.21 0.00 0.00 0.00 0.00 | 0.94 091 0.89 | 0.19 0.18 0.15 0.16 0.18 0.15
ID57 0.09 0.08 0.00 0.00 0.00 0.04 | 0.95 0.95 0.90 0.14 0.13  0.10 0.10 0.09 0.14
1D58 0.00 0.00 0.00 0.00 0.00 0.00 | 0.94 094 0.88 | 0.21 022 0.15 0.19 023 0.17
ID59 0.16 0.06 0.13 0.24 0.13 0.00 | 0.93 094 0.93 0.14 0.15 0.06 0.11 0.12 0.10
ID60 0.23 0.03 0.13 0.50 0.38 0.02 | 0.95 0.96 0.98 | 0.14 0.15 0.62 0.11 0.12 041
ID61 0.36 0.09 0.08 0.29 0.17 0.00 | 0.96 0.96 0.97 0.19 0.20 0.18 0.16 0.16 0.15
—ID62 | 0.81 0.05 0.69 1.00 1.00 0.00 | 0.92 093 0.97 | 0.13 0.13 052 0.10 0.10 0.74
1D63 0.64 0.05 0.64 0.73 1.00 0.02 | 0.94 095 0.95 0.16 0.18 0.11 0.12 0.16 0.07
D64 0.60 0.02 0.66 0.62 0.45 0.00 | 0.95 0.95 0.96 | 0.16 0.18 0.12 0.13 0.15 0.11
ID65 0.75 0.05 0.51 0.77 0.62 0.00 | 0.95 095 0.95 0.14 0.15 0.11 0.11 0.14  0.09
ID66 0.90 0.10 0.53 0.80 1.00 0.00 | 0.88 093 0.92 | 0.12 0.14 0.08 0.09 0.13  0.08
ID67 0.15 0.05 0.26 0.10 0.25 0.13 | 0.95 095 0.94 0.22 0.17  0.09 0.20 0.14 0.10
D68 0.69 0.13 0.23 0.40 0.33 0.01 | 0.86 091 0.89 | 0.16 0.17  0.10 0.20 0.16 0.08

46



Under review as a conference paper at ICLR 2026

G.6 SEIZURE DETECTION WITH BRANT-2

Table 22| presents the detailed subject-by-subject breakdown of the performance of Brant-2.

Table 22: Details of seizure detection results of Brant-2 with 18 subject pre-training. Kappa is
the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for

the seizure classification task.
Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
ID19 N.A. N.A. N.A. N.A. N.A. N.A.
D20 0.00 0.00 0.00 0.00 0.00 0.00
D21 0.00 0.00 0.00 0.00 0.00 0.01
D22 0.00 0.00 0.00 0.00 0.00 0.02
D23 0.00 0.00 0.00 0.00 0.00 0.00
D24 -0.02 0.03 0.00 0.00 0.00 0.29
ID25 0.00 0.00 0.00 0.00 0.00 0.00
ID26 0.00 0.00 0.00 0.00 0.00 0.00
D27 0.00 0.06 0.00 0.00 0.00 0.11
D28 -0.01 0.02 0.00 0.00 0.00 0.52
D29 0.00 0.00 0.00 0.00 0.00 0.00
ID30 0.00 0.00 0.00 0.00 0.00 0.00
D31 0.00 0.00 0.00 0.00 0.00 0.00
D32 0.00 0.00 0.00 0.00 0.00 0.00
ID33 0.48 0.14 0.00 0.00 0.00 0.02
ID34 0.17 0.09 0.00 0.00 0.00 0.05
ID35 0.03 0.07 0.00 0.00 0.00 0.07
ID36 N.A. N.A. N.A. N.A. N.A. N.A.
ID37 0.00 0.00 0.00 0.00 0.00 0.00
ID38 0.48 0.15 0.00 0.00 0.00 0.01
ID39 0.07 0.08 0.00 0.00 0.00 0.07
D40 0.32 0.12 0.00 0.00 0.00 0.03
D41 0.00 0.00 0.00 0.00 0.00 0.16
D42 0.00 0.06 0.00 0.00 0.00 0.14
D43 0.00 0.00 0.00 0.00 0.00 0.00
D44 0.00 0.00 0.00 0.00 0.00 0.00
ID45 0.00 0.00 0.00 0.00 0.00 0.00
D46 0.00 0.06 0.00 0.00 0.00 0.02
D47 0.00 0.00 0.00 0.00 0.00 0.14
D48 0.00 0.00 0.00 0.00 0.00 0.00
ID49 0.16 0.09 0.00 0.00 0.00 0.02
ID50 0.00 0.00 0.00 0.00 0.00 0.02
ID51 0.00 0.00 0.00 0.00 0.00 0.87
ID52 0.00 0.04 0.00 0.00 0.00 0.20
ID53 N.A. N.A. N.A. N.A. N.A. N.A.
ID54 0.00 0.00 0.00 0.00 0.00 0.00
ID55 N.A. N.A. N.A. N.A. N.A. N.A.
ID56 0.01 0.06 0.00 0.00 0.00 0.16
ID57 0.00 0.03 0.00 0.00 0.00 0.01
ID58 -0.01 0.05 0.00 0.00 0.00 0.12
ID59 0.00 0.05 0.00 0.00 0.00 0.10
ID60 0.08 0.03 0.03 0.29 0.29 0.10
ID61 0.69 0.20 0.00 0.00 0.00 0.01
ID62 -0.01 0.03 0.00 0.00 0.00 0.43
ID63 0.00 0.00 0.00 0.00 0.00 0.00
ID64 0.01 0.02 0.01 0.07 0.15 1.10
ID65 0.00 0.00 0.00 0.00 0.00 0.00
ID66 0.03 0.07 0.00 0.00 0.00 0.10
ID67 -0.01 0.04 0.00 0.00 0.00 0.12
ID68 0.34 0.12 0.00 0.00 0.00 0.02
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G.7 SEIZURE DETECTION WITH BRAINBERT

Table 23| presents the detailed subject-by-subject breakdown of the performance of BrainBERT.

Table 23: Details of seizure detection results of BrainBERT with 18 subject pre-training. Kappa
is the inter-rater agreement. The classification metrics report the raw and episodic metrics relevant

for the seizure classification task.
Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
D19 0.00 0.00 0.00 0.00 0.00 0.00
1D20 0.00 0.00 0.00 0.00 0.00 0.00
D21 0.00 0.00 0.00 0.00 0.00 0.00
D22 0.00 0.00 0.00 0.00 0.00 0.00
D23 0.00 0.00 0.00 0.00 0.00 0.00
D24 0.00 0.00 0.00 0.00 0.00 0.00
D25 0.00 0.00 0.00 0.00 0.00 0.00
ID26 0.00 0.00 0.00 0.00 0.00 0.00
1D27 0.00 0.00 0.00 0.00 0.00 0.00
D28 0.00 0.00 0.00 0.00 0.00 0.00
D29 0.00 0.00 0.00 0.00 0.00 0.00
1D30 0.00 0.00 0.00 0.00 0.00 0.00
D31 0.00 0.00 0.00 0.00 0.00 0.00
D32 0.00 0.00 0.00 0.00 0.00 0.00
1D33 0.00 0.00 0.00 0.00 0.00 0.00
1D34 0.00 0.00 0.00 0.00 0.00 0.00
1D35 0.00 0.00 0.00 0.00 0.00 0.00
D36 0.00 0.00 0.00 0.00 0.00 0.00
D37 0.00 0.00 0.00 0.00 0.00 0.00
1D38 0.00 0.00 0.00 0.00 0.00 0.00
D39 0.00 0.00 0.00 0.00 0.00 0.00
1D40 0.00 0.00 0.00 0.00 0.00 0.00
1D41 0.00 0.00 0.00 0.00 0.00 0.00
1D42 0.00 0.00 0.00 0.00 0.00 0.00
D43 0.00 0.00 0.00 0.00 0.00 0.00
D44 0.00 0.00 0.00 0.00 0.00 0.00
1D45 0.00 0.00 0.00 0.00 0.00 0.00
1D46 0.00 0.00 0.00 0.00 0.00 0.00
D47 0.00 0.00 0.00 0.00 0.00 0.00
ID48 0.00 0.00 0.00 0.00 0.00 0.00
D49 0.00 0.00 0.00 0.00 0.00 0.00
ID50 0.00 0.00 0.00 0.00 0.00 0.00
ID51 0.00 0.00 0.00 0.00 0.00 0.00
ID52 0.00 0.00 0.00 0.00 0.00 0.00
ID53 0.00 0.00 0.00 0.00 0.00 0.00
ID54 0.00 0.00 0.00 0.00 0.00 0.00
ID55 0.00 0.00 0.00 0.00 0.00 0.00
ID56 0.00 0.00 0.00 0.00 0.00 0.00
ID57 0.00 0.00 0.00 0.00 0.00 0.00
ID58 0.00 0.00 0.00 0.00 0.00 0.00
ID59 0.00 0.00 0.00 0.00 0.00 0.00
1D60 0.00 0.00 0.00 0.00 0.00 0.00
D61 0.00 0.00 0.00 0.00 0.00 0.00
1D62 0.00 0.00 0.00 0.00 0.00 0.00
1D63 0.00 0.00 0.00 0.00 0.00 0.00
D64 0.00 0.00 0.00 0.00 0.00 0.00
D65 0.00 0.00 0.00 0.00 0.00 0.00
1D66 0.00 0.00 0.00 0.00 0.00 0.00
1D67 0.00 0.00 0.00 0.00 0.00 0.00
D68 0.00 0.00 0.00 0.00 0.00 0.00
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G.8 EFFECTS OF THE SELECTION OF CHANNELS

As discussed in previous sections, the number of channels can vary considerably across subjects.

We test three different scenarios:

* Automatic channel selection (Appendix [G.3)
* Manual channel selection

¢ Evaluation with all channels

Beyond the automatic channel selection we use for the main results, we also select a subset of the
channels (up to 50) which visually appear least noisy and most relevant. We also test the effect of
including all channels, expecting it to decrease both the speed and performance due to the decrease
of the overall signal-to-noise ratio.

Figure [T3] shows that the performance decreases when we use a manual channel selection (for a
detailed breakdown see Table [24). While this non-expert selection only has a minor impact on the
overall performance, it still is notable that a standardized procedure produces better results.
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Figure 15: Seizure detection with 18 patient pre-training and evaluation on a manual subset
of channels. (a) Seizure detection results of MVPFormer-S on unseen subjects evaluated on a
manual subset of channels: the F1-score, sensitivity, and fp/h are reported. Raw results are computed
without any post-processing of MVPFormer’s output, while episodic results follow a common post-
processing procedure which merge close ictal classifications. (b) Cohen’s Kappa is used to measure
the agreement between MVPFormer-S and the human expert. The average kappa is 0.54, lower than
with the automatic channel selection routine. The distribution of kappa values clearly indicates that
a minority of subjects are the source of most disagreement, consistent with the variability of inter-
rater agreement among human experts.

Figure[T6]shows that the performance decreases when we use all channels (for a detailed breakdown
see Table 25). This is expected, as the noise contained in the entire recording increases together
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Table 24: Details of seizure detection results of MVPFormer-S with evaluation on a manual
subset of channels. Kappa is the inter-rater agreement. The classification metrics report the raw
and episodic metrics relevant for the seizure classification task. The similarity reports the breakdown
of the cosine similarity in each of the considered scenarios.

Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
D19 -0.05 0.02 0.00 0.00 0.00 0.97
1D20 0.98 0.03 0.87 0.80 1.00 0.00
1D21 0.92 0.07 0.86 0.80 1.00 0.00
D22 0.98 0.02 0.89 1.00 1.00 0.00
1D23 0.26 0.03 0.17 0.14 0.09 0.16
1D24 0.91 0.01 0.90 0.93 0.93 0.02
D25 0.35 0.12 0.00 0.00 0.00 0.03
1D26 0.08 0.06 0.03 0.11 1.00 0.18
1D27 0.99 0.01 0.93 1.00 1.00 0.00
1D28 0.71 0.04 0.68 0.75 0.75 0.01
D29 0.25 0.05 0.29 0.20 0.13 0.03
D30 0.92 0.01 0.88 0.93 0.93 0.05
ID31 0.98 0.00 0.95 1.00 1.00 0.00
1D32 1.00 0.02 0.92 1.00 1.00 0.00
1D33 0.00 0.05 0.00 0.00 0.00 0.26
ID34 0.89 0.03 0.91 0.90 1.00 0.01
ID35 0.85 0.03 0.87 0.82 1.00 0.03
1D36 0.50 0.03 0.62 0.51 0.37 0.03
D37 0.74 0.09 0.69 0.50 1.00 0.02
ID38 0.94 0.02 0.95 091 1.00 0.01
1D39 0.92 0.05 0.89 0.80 1.00 0.01
D40 0.95 0.03 0.95 091 1.00 0.00
D41 0.61 0.05 0.65 0.67 1.00 0.04
D42 0.86 0.05 0.84 0.80 1.00 0.01
1D43 0.90 0.03 0.64 1.00 1.00 0.00
1D44 0.00 0.00 0.00 0.00 0.00 0.00
1D45 0.01 0.02 0.00 0.01 1.00 1.06
1D46 0.60 0.04 0.56 0.69 0.52 0.00
D47 0.26 0.08 0.29 0.16 1.00 0.09
1D48 0.68 0.02 0.62 0.80 0.67 0.00
1D49 0.85 0.03 0.79 0.86 1.00 0.01
1D50 0.69 0.09 0.60 0.44 1.00 0.03
ID51 0.35 0.09 0.23 0.15 1.00 0.07
1D52 0.23 0.05 0.35 0.18 1.00 0.16
ID53 0.12 0.06 0.21 0.09 1.00 0.16
1D54 0.01 0.02 0.01 0.01 0.67 1.72
ID55 0.37 0.08 0.35 0.29 1.00 0.07
ID56 0.72 0.08 0.60 0.67 0.67 0.01
ID57 0.00 0.00 0.00 0.00 0.00 0.00
1D58 0.22 0.07 0.25 0.18 0.29 0.09
1D59 0.00 0.00 0.00 0.00 0.00 0.00
ID60 0.33 0.02 0.23 0.46 0.38 0.04
D61 0.00 0.00 0.00 0.00 0.00 0.00
1D62 0.69 0.06 0.45 0.77 0.71 0.00
1D63 0.94 0.02 0.90 1.00 1.00 0.00
D64 0.60 0.02 0.64 0.62 0.50 0.06
1D65 0.50 0.06 0.35 0.59 0.62 0.03
1D66 0.70 0.11 0.36 0.57 1.00 0.01
1D67 0.26 0.07 0.15 0.33 0.25 0.01
1D68 0.65 0.19 0.00 0.00 0.00 0.01
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with the information content. MVPFormer’s ability to generalize is not affected by the number
of channels, but the noise affects the performance. Therefore, the optimal real-world operation of
MVPFormer is obtained by selecting a subset of channels for detection.
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Figure 16: Seizure detection with 18 patient pre-training and evaluation on all channels. (a)
Seizure detection results of MVPFormer-S on the unseen patients evaluated on all channels: the
F1-score, sensitivity, and fp/h are reported. The performance metrics are reduced with respect to the
results obtained when selecting a subset of the channels. MVPFormer is not affected by the number
of channels, but the increase of noise emerging from all the channels contributes to a reduction in
performance. (b) The average kappa is 0.36, reduced from the evaluation on a subset of channels.
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Table 25: Details of seizure detection results of MVPFormer-S with evaluation on all channels.
Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics

relevant for the seizure classification task.
Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
D19 -0.05 0.02 0.00 0.00 0.00 0.00
1D20 0.84 0.09 0.47 0.50 0.50 0.50
D21 0.86 0.10 0.40 0.80 1.00 1.00
D22 091 0.04 0.81 0.89 1.00 1.00
D23 0.25 0.03 0.17 0.14 0.09 0.09
1D24 0.91 0.01 0.90 0.93 0.93 0.93
D25 0.45 0.10 0.17 0.25 0.25 0.25
1D26 0.25 0.08 0.04 0.22 1.00 1.00
1D27 0.98 0.01 0.93 1.00 1.00 1.00
1D28 0.64 0.07 0.42 0.67 0.50 0.50
D29 0.05 0.02 0.04 0.07 0.29 0.29
D30 0.20 0.03 0.31 0.19 0.11 0.11
ID31 0.98 0.00 0.95 1.00 1.00 1.00
1D32 0.98 0.04 0.92 1.00 1.00 1.00
D33 0.01 0.06 0.00 0.00 0.00 0.00
ID34 0.04 0.02 0.06 0.04 1.00 1.00
ID35 0.61 0.05 0.63 0.55 0.43 0.43
1D36 0.50 0.03 0.62 0.51 0.37 0.37
1D37 0.03 0.03 0.02 0.04 1.00 1.00
1D38 0.97 0.01 0.97 1.00 1.00 1.00
1D39 0.77 0.08 0.52 0.67 1.00 1.00
1D40 0.37 0.06 0.50 0.31 0.80 0.80
1D41 0.52 0.05 0.47 0.55 1.00 1.00
1D42 0.63 0.07 0.54 0.57 1.00 1.00
1D43 0.94 0.04 0.71 1.00 1.00 1.00
D44 0.00 0.02 0.00 0.00 0.00 0.00
1D45 0.00 0.02 0.00 0.00 0.00 0.00
1D46 0.06 0.03 0.03 0.06 0.19 0.19
1D47 0.23 0.08 0.29 0.16 1.00 1.00
1D48 0.25 0.03 0.18 0.31 0.33 0.33
1D49 0.40 0.05 0.47 0.40 1.00 1.00
D50 0.05 0.04 0.05 0.06 1.00 1.00
ID51 0.06 0.06 0.05 0.07 1.00 1.00
1D52 0.00 0.01 0.01 0.01 1.00 1.00
ID53 0.13 0.07 0.21 0.09 1.00 1.00
1D54 0.01 0.02 0.01 0.01 0.67 0.67
ID55 0.37 0.08 0.35 0.29 1.00 1.00
ID56 0.33 0.07 0.34 0.31 0.67 0.67
ID57 0.00 0.00 0.00 0.00 0.00 0.00
1D58 0.29 0.12 0.00 0.00 0.00 0.00
ID59 0.02 0.05 0.00 0.00 0.00 0.00
1D60 0.00 0.00 0.00 0.00 0.00 0.00
D61 0.00 0.00 0.00 0.00 0.00 0.00
D62 0.04 0.05 0.03 0.07 0.29 0.29
1D63 0.21 0.05 0.39 0.18 0.75 0.75
1D64 0.25 0.03 0.30 0.29 0.25 0.25
ID65 0.04 0.07 0.00 0.00 0.00 0.00
1D66 0.76 0.16 0.31 0.40 0.50 0.50
1D67 0.17 0.07 0.14 0.22 0.25 0.25
1D68 0.61 0.18 0.00 0.00 0.00 0.01
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G.9 EFFECTS OF THE SCALE OF THE PRE-TRAINING DATASET

The performance of LLMs as the size of their training dataset increases has been investigated quite
thoroughly (Hoffmann et al, 2022} [Kaplan et al., [2020), giving rise to a variety of scaling laws.
Following Chinchilla’s scaling law, a model with 75 million parameters like MVPFormer-S should
be trained with around 2 billion tokens, while we only have 400 million at our disposal.

The architecture of the model and the nature of the training data, however, make it unclear whether
such laws can be adopted for MVPFormer as well. We investigate this behavior by continuing the
training of MVPFormer-S on 40 more subjects, to bring the total to 58 pre-training subjects for
almost 7,000 hours of iEEG recordings. In particular, MVPFormer is initially trained on 304 ictal
events, and then further on 323 more. Therefore, we are left with 10 unseen subject to test the
downstream seizure detection task.
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Figure 17: Seizure detection with 58 patient pre-training and manual channel selection. (a)
Seizure detection results of MVPFormer-S on the 10 remaining unseen patients using manual chan-
nel selection: the F1-score, sensitivity, and fp/h are reported. All performance metrics are improved
with respect to the original MVPFormer model. The raw and episodic F1-scores are significantly
different here, indicating that MVPFormer benefits of the episode merging effect of post-processing
on these patients. The false positive rate has decreased further with the scale of the pre-training
dataset. (b) Inter-rater agreement of MVPFormer with the human expert: Cohen’s kappa is used to
measure the agreement between the artificial assistant and the human expert. The average kappa is
increased to 0.48. The distribution of kappa values again indicates that there is considerable vari-
ability in the agreement.

Figure [T7)shows the performance of the 58-subject MVPFormer-S on the 10 unseen subjects using
a manual subset of channels (for a detailed breakdown see Table[26). On the other hand, Figure [I8]
shows the results of the original MVPFormer-S model on those same 10 subjects (for a detailed
breakdown see Table 27). All performance metrics improve with a growing pre-training dataset
size, although on a small test cohort, indicating that increasing the number of subjects in the pre-
training dataset has a net positive effect on the downstream classification task.
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Figure 18: Seizure detection with 18 subjects pre-training on a selection of 10 unseen subjects
and manual channel selection. (a) Seizure detection results of MVPFormer-S on the 10 subjects
excluded from the 58-subjects model using manual channel selection: the F1-score, sensitivity, and
fp/h are reported. The raw and episodic Fl-scores are significantly different here, indicating that
MVPFormer benefits of the episode merging effect of post-processing on these patients. These re-
sults are a subset of those presented in the Results section. (b) Inter-rater agreement of MVPFormer
with the human expert: Cohen’s kappa is used to measure the agreement between the artificial as-
sistant and the human expert. The average kappa is 0.46, reduced from the overall results indicating
that these subjects are more difficult than average. The distribution of kappa values again indicates
that there is considerable variability in the agreement.
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Table 26: Details of seizure detection results of MVPFormer-S with 58 patient pre-training and
manual channel selection. Kappa is the inter-rater agreement. The classification metrics report the
raw and episodic metrics relevant for the seizure classification task.

Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
ID59 0.07 0.06 0.05 0.10 0.07 0.07
ID60 0.54 0.02 0.39 0.47 0.50 0.50
ID61 0.00 0.00 0.00 0.00 0.00 0.00
ID62 0.65 0.05 0.50 0.71 0.86 0.86
D63 0.76 0.04 0.84 0.67 1.00 1.00
ID64 0.60 0.02 0.67 0.62 0.45 0.45
ID65 0.50 0.04 0.41 0.52 1.00 1.00
ID66 0.79 0.12 0.50 0.57 1.00 1.00
D67 0.22 0.04 0.22 0.15 0.75 0.75
ID68 0.73 0.09 0.42 0.80 0.67 0.00

Table 27: Details of seizure detection results of MVPFormer-S with 18 patient pre-training on
a selection of 10 subjects and manual channel selection. Kappa is the inter-rater agreement. The
classification metrics report the raw and episodic metrics relevant for the seizure classification task.

Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
ID59 0.00 0.00 0.00 0.00 0.00 0.00
1D60 0.33 0.02 0.23 0.46 0.38 0.04
D61 0.00 0.00 0.00 0.00 0.00 0.00
1ID62 0.69 0.06 0.45 0.77 0.71 0.00
1ID63 0.94 0.02 0.90 1.00 1.00 0.00
1D64 0.60 0.02 0.64 0.62 0.50 0.06
ID65 0.50 0.06 0.35 0.59 0.62 0.03
1ID66 0.70 0.11 0.36 0.57 1.00 0.01
ID67 0.26 0.07 0.15 0.33 0.25 0.01
1ID68 0.65 0.19 0.00 0.00 0.00 0.01
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G.10 PATIENT CLASSIFICATION DIFFICULTY

In the medical practice each patient has unique seizure presentations, though they might be broadly
grouped into different categories (Shokooh et al.l [2021). As an effect, some patients have seizures
which can be considered more typical (Figure 4h), and hence easier to detect, while others might
have very atypical events (Figure dp). There might be broad disagreement among neurologists over
these atypical seizures, and at the same time no disagreement at all over the typical patients (Gotman,
201T).

This phenomenon intuitively creates a difficulty scale among the patients, which also affects MVP-
Former and contributes to the spread of performance between the model and the human expert.
To better assess the impact of this latent patient classification difficulty we performed a multiple
correlation analysis using the total recording length, the number of seizures, and the frequency of
seizures to predict the kappa score, yielding an R? of 0.054. The model performance is thus inde-
pendent of the three variables, and we believe the difficulty might help explain most of the variance.
The literature supports this hypothesis, as the subjects themselves can account for up to 65% of the
variance (Grant et al.| 2014)) while the clinical setup itself has no impact.
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G.11 CHANNEL CONNECTIVITY MAP

Generating future iEEG signal embedding implicitly places the greatest emphasis on the dimension
of time, but to do so it is necessary to consider the interactions between channels as well. MVP-
Former thus takes into consideration all electrodes concurrently, as electric potentials flow across
different areas and circuits in the brain following their intrinsic connections and constraints (Bet-
zel et al., 2019} [Pang et al. 2023). The number of channels depends on the number of electrodes
decided for a specific patient and the clinical setup. As iEEG implantations are decided on a case-by-
case basis by a physician, there is no uniform standard on where to place the electrodes, in contrast
with the 10-20 system (Jasper, |1958) for EEG. Therefore, we cannot give MVPFormer any a pri-
ori knowledge of how the channels will interact in space, and the model has to learn it on its own.
MVPA enables our model to dynamically learn these connections to build an internal map of the
flow, becoming independent from a specific electrode configuration.

It is well-known that two neighboring brain regions might not be as strongly connected as two
faraway regions. The relationship between the electrodes (and hence the channels) mirrors this
behavior. To truly understand the link between two channels the model must build a map of the
connection strength between different brain areas and how these connections impact the diffusion
of electric fields across channels. In MVPA, this understanding is the underpinning of the channel-
based component. In particular, the complex interplay between the query, the channel codebook, and
the channel attention, acts as the first level of processing. Further, the deep structure with multiple
layers provides more representational power, as is typical of deep models.

Figure [T9)shows that the channel-based MVPA component encodes a form of the brain connectivity
map. Initially, the map is random as MVPA is randomly initialized. As training progresses, the atten-
tion magnitude among the channels starts to differentiate, building a map of the connection strength.
The map is dominated by the diagonal component, which indicates that in general neighboring chan-
nels are more related than distant channels. However, it is possible to clearly distinguish clusters of
strongly connected electrodes and also skipped connections, which possibly refer to strong connec-
tions between distant regions. Since the channel distance is relative, it can apply to arbitrary clinical
setups and is not limited to already seen channels. Moreover, as the channel attention is a function of
both the query content and the channel distance, the combination of the two can effectively modulate
the attention even on unseen subjects.
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Figure 19: Attention components before and after training. (a) The channel-based attention
component is randomly initialized. At the end of training, it shows the diagonal structure which
indicates that the relationship between the channels is mainly one of proximity. This is expected, as
nearby channels are expected to be more closely related, and showcases MVPA’s learning outcome.
(b) The time-based attention component is also randomly initialized. At the end of training, it
shows that segments which are close in time are more related. Particularly, few closest segments
are attended to more strongly, as the content-based attention’s lookback windows is limited to a few
segments.
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G.12 RESULTS ON THE MAYO AND FNUSA DATASETS

We test MVPFormer additionally against Brant-2 on the iEEG MAYO and FNUSA datasets. Both
datasets are single-channel iEEG datasets containing both physiological and pathological activity.
We use these datasets to evaluate MVPFormer’s performance on extremely noisy data, and to com-
pare its resilience with the SOTA.

The MAYO dataset contains 24 patients for a total of 130 hours of data. In particular, 36% of the
data is non-ictal, 9% is ictal, and 53% is noise. Moreover, 18 subjects contain no ictal activity and 9
patients are fully noise, with 13 being majority noise. The FNUSA dataset contains 14 patients for
a total of 160 hours. 48% of the dataset is non-ictal, 27% is ictal, and 23% is noise. Moreover, the
data of 2 subjects is completely noise, and the data of 3 other subjects is fully ictal. Both datasets are
much smaller in scale than the Long-term iEEG dataset, and are heavily dominated by noise, both
artifact and powerline. In particular, the Long-term iEEG dataset is almost 2,000 times larger and is
also carefully evaluated by an expert neurologist to remove channels which contain too much noise
or artifacts.

As we wish to assess MVPFormer in a realistic, real-world scenario, we do not remove any noise
from the dataset but test them as-is. In particular, we consider noise and physiological activity as
one category, and pathological activity as another. However, kappa scores are not meaningful with
such small datasets, therefore we provide the aggregate Fl-score, and the average sensitivity and
specificity. Specifically, given the fact that many patients do not contain ictal activity, we do not
compute the average F1-score across subjects, but pool together all subject’s results and compute
the aggregate F1-score.

We use the same MVPFormer models pre-trained on our Long-term iEEG dataset, and train a spe-
cific classification head for either MAYO or FNUSA by fine-tuning on the first four patients. Then,
we test on the remaining patients. We also use the Brant-2 model whose pre-trained weights are pub-
licly available, and fine-tune in the same manner as MVPFormer using the fine-tuning code provided
by the authors.

The results can be found in Tables and Given the very low signal-to-noise ratio of both
datasets, overall performance is affected. On the FNUSA dataset, where the amount of noise is
more moderate, all models perform similarly, with MVPFormer-M showing a higher specificity.
However, MVPFormer has a clear advantage on the MAYO dataset, with almost double the F1-score
with respect to Brant-2. The difference between MVPFormer-S and MVPFormer-M is minimal, as
the sizes of the datasets involved are too small to fully train a very large model such as MVPFormer-
M (see Appendix for more information).

Table 28: Summary of seizure detection results of all models on the MAYO iEEG dataset.
Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics
relevant for the seizure classification task.

Model Fl-score Sensitivity Specificity
MVPFormer-M  0.36 0.38 0.91
MVPFormer-S  0.35 0.41 0.88
Brant-2 0.19 1.00 0.18

Table 29: Summary of seizure detection results of all models on the FNUSA iEEG dataset.
Kappa is the inter-rater agreement. The classification metrics report the raw and episodic metrics
relevant for the seizure classification task.

Model Fl-score Sensitivity  Specificity
MVPFormer-M  0.46 0.94 0.10
MVPFormer-S  0.46 0.99 0.03
Brant-2 0.46 0.99 0.02
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G.13 ABLATION OF THE PREDICTION TASK

We design MVPFormer with a two-phase training regime. First, during the generative pre-training
task MVPFormer learns to predict the neuronal activity. Second, during the classification task it
needs to correctly classify ictal periods. To determine the significance of the generative task on the
classification task, we train MVPFormer only on the classification task and compare its performance
with the full architecture on the manual selection of channels. Figure [20]and Table 30| clearly indi-
cate that the generative task is of fundamental importance to the overall architecture, with a Kappa
score decrease to 0.52. This is below the original result of 0.54 and below the human agreement
threshold. Moreover, the distribution of agreement has flattened, with an overall decrease of perfor-
mance across the board and an increase of subjects with no agreement. This suggests that without
pre-training the generalization capability of MVPFormer suffers. Therefore, the generative task is
necessary and is a significant contributor to learning.
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Figure 20: Seizure detection with no generative pre-training and 18 subjects classification
training on the manual selection of channels. (a) Seizure detection results of MVPFormer-S
on 40 unseen subjects which are part of the training set for the 58-subjects model and manual se-
lection of channels: the F1-score, sensitivity, and fp/h are reported. The raw and episodic F1-scores
are notably lower here with respect to the 58-subjects model. This is expected given the 58-subject
model is pre-trained on these subjects. These results are a subset of those presented in the Results
section. (b) Cohen’s kappa is used to measure the agreement between the artificial assistant and
the human expert. The average kappa is 0.56, competitive with expert agreement but, as expected,
reduced from the 58-subjects pre-trained model.
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Table 30: Seizure detection with no generative pre-training and 18 subjects classification train-
ing on the manual selection of channels. Kappa is the inter-rater agreement. The classification
metrics report the raw and episodic metrics relevant for the seizure classification task.

Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
D19 0.37 0.02 0.46 0.30 0.19 0.05
ID20 0.99 0.02 0.98 1.00 1.00 0.00
1D21 0.47 0.09 0.30 0.29 1.00 0.04
D22 0.74 0.06 0.70 0.73 1.00 0.02
1D23 0.37 0.02 0.51 0.36 0.24 0.07
D24 0.88 0.01 0.84 0.90 0.93 0.05
D25 0.00 0.00 0.00 0.00 0.00 0.00
1D26 0.43 0.10 0.19 0.29 1.00 0.06
D27 0.95 0.02 0.84 1.00 1.00 0.00
D28 0.73 0.04 0.80 0.75 0.75 0.01
1D29 0.17 0.05 0.28 0.17 0.10 0.01
D30 0.90 0.01 0.85 0.93 0.93 0.05
ID31 0.98 0.00 0.95 1.00 1.00 0.00
1D32 0.98 0.05 0.93 1.00 1.00 0.00
ID33 0.00 0.00 0.00 0.00 0.00 0.00
D34 0.78 0.03 0.84 0.82 1.00 0.02
ID35 0.71 0.03 0.77 0.74 1.00 0.05
1D36 0.59 0.03 0.68 0.53 0.37 0.01
1D37 0.66 0.10 0.61 0.50 1.00 0.02
1D38 0.59 0.05 0.64 0.59 1.00 0.04
1D39 0.76 0.09 0.71 0.57 1.00 0.02
1D40 0.67 0.05 0.77 0.57 0.80 0.02
D41 0.75 0.05 0.72 0.75 1.00 0.02
D42 0.97 0.04 0.74 1.00 1.00 0.00
1D43 0.15 0.09 0.00 0.00 0.00 0.06
1D44 0.98 0.03 0.76 1.00 1.00 0.00
1D45 0.03 0.05 0.03 0.04 1.00 0.33
D46 0.60 0.03 0.62 0.68 0.62 0.03
1D47 0.79 0.08 0.72 0.55 1.00 0.02
1D48 0.88 0.01 0.76 1.00 1.00 0.00
D49 0.08 0.03 0.08 0.11 1.00 0.71
D50 0.36 0.08 0.36 0.24 1.00 0.07
ID51 0.52 0.10 0.32 0.22 1.00 0.04
D52 0.50 0.07 0.29 0.50 1.00 0.04
ID53 0.20 0.07 0.33 0.10 1.00 0.13
1D54 0.61 0.12 0.31 0.29 0.33 0.01
ID55 0.35 0.08 0.25 0.25 1.00 0.08
1ID56 0.82 0.06 0.61 0.80 0.67 0.00
ID57 0.00 0.00 0.00 0.00 0.00 0.00
1D58 0.17 0.04 0.20 0.21 0.71 0.26
D59 0.00 0.00 0.00 0.00 0.00 0.00
1D60 0.16 0.03 0.08 0.36 0.25 0.02
D61 0.00 0.00 0.00 0.00 0.00 0.00
1D62 0.42 0.06 0.44 0.41 0.86 0.07
1D63 0.54 0.09 0.25 0.57 0.50 0.01
ID64 0.62 0.02 0.59 0.65 0.50 0.03
ID65 0.31 0.04 0.24 0.39 1.00 0.18
D66 0.69 0.11 0.52 0.50 1.00 0.02
1D67 0.00 0.06 0.00 0.00 0.00 0.13
ID68 0.78 0.15 0.33 0.50 0.33 0.00
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G.14 RESILIENCE TO NOISE

A critical aspect of any clinical environment are the perturbations and noise in the recorder signal.
The Long-term iEEG dataset is collected in a real-world environment and is pre-processed following
the indications of an expert neurologist, to guarantee a clinically-relevant scenario to test any model,
including our MVPFormer against.

In addition to the inherent noise of the iEEG signal, we now further disturb the recordings using
white gaussian noise to evaluate the resilience of MVPFormer to additional perturbations. Specifi-
cally, we add noise to achieve an SNR of 30dB (Table 32)), 40dB (Table [33), 50dB (Table [34), and
60dB (Table[33) to understand the behavior of MVPFormer.

Table 31: Results on seizure detection with noise. We evaluate MVPFormer’s performance on the
seizure detection task at varying levels of injected white gaussian noise.

Episodic Raw
SNR Kappa fl sens fp/h fl
None 0.61 0.59 0.72 0.15 0.51
60dB 0.58 054 071 0.12 049
50dB 0.54 0.50 0.72 0.13 047
40dB  0.36 034 0.74 046 0.31
30dB  0.12 0.12 071 122 0.10

A summary of the results is presented in Table 31} Remarkably, the performance remains above
the expert-level threshold until 40dB of SNR, indicating that MVPFormer is resilient to noise. In
particular, while sensitivity remains high, the number of false positives rapidly increases. This is
consistent with the fact that seizures often appear as high-frequency activity, which can mislead the
model when in a noisy environment.
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Table 32: Details of seizure detection results of MVPFormer-S with 30dB SNR. Kappa is the
inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the
seizure classification task. The similarity reports the breakdown of the cosine similarity in each of

the considered scenarios.
Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
ID19 0.01 0.00 0.02 0.28 0.62 2.07
D20 0.05 0.04 0.09 0.04 1.00 0.36
D21 0.01 0.03 0.01 0.02 1.00 0.78
ID22 0.08 0.04 0.06 0.12 1.00 0.36
1D23 -0.04 0.01 0.00 0.06 0.15 2.90
D24 0.06 0.01 0.06 0.12 0.50 2.24
D25 0.01 0.02 0.00 0.02 0.50 2.19
ID26 0.00 0.01 0.00 0.01 1.00 3.11
D27 0.00 0.00 0.00 0.02 0.75 3.54
1D28 0.23 0.05 0.26 0.35 0.75 0.15
D29 0.03 0.01 0.02 0.05 0.26 2.03
ID30 0.01 0.00 0.02 0.35 0.56 1.05
ID31 0.08 0.01 0.09 0.18 1.00 3.54
1D32 0.02 0.03 0.02 0.02 1.00 0.79
1D33 0.23 0.10 0.00 0.00 0.00 0.06
1D34 0.01 0.01 0.01 0.04 1.00 2.40
1D35 0.03 0.01 0.05 0.05 0.86 2.10
1D36 0.00 0.00 0.01 0.13 0.45 2.13
D37 0.01 0.02 0.01 0.01 1.00 1.61
D38 0.33 0.05 0.48 0.34 1.00 0.11
D39 0.42 0.07 0.40 0.36 1.00 0.05
1D40 0.06 0.03 0.09 0.08 0.80 0.42
1D41 0.00 0.01 0.01 0.03 1.00 2.49
D42 0.10 0.04 0.15 0.14 1.00 0.28
D43 0.77 0.05 0.57 0.80 1.00 0.02
ID44 0.21 0.09 0.00 0.00 0.00 0.08
1D45 0.01 0.03 0.00 0.02 1.00 0.80
1D46 0.18 0.03 0.14 0.25 0.43 0.31
D47 0.00 0.01 0.00 0.01 1.00 2.80
ID48 0.90 0.01 0.77 1.00 1.00 0.00
1D49 0.01 0.01 0.01 0.05 1.00 1.48
ID50 0.02 0.02 0.02 0.02 1.00 0.94
ID51 0.22 0.08 0.11 0.11 1.00 0.11
D52 0.04 0.02 0.05 0.03 1.00 0.99
ID53 0.01 0.02 0.01 0.01 1.00 2.18
ID54 0.00 0.01 0.00 0.01 1.00 4.02
ID55 0.00 0.01 0.00 0.01 1.00 2.60
ID56 0.01 0.01 0.01 0.02 0.67 1.79
ID57 -0.01 0.03 0.01 0.07 0.08 0.19
ID58 0.00 0.01 0.00 0.01 0.14 1.86
ID59 0.16 0.06 0.11 0.20 0.13 0.03
1D60 0.26 0.02 0.27 0.11 0.50 1.16
D61 0.02 0.04 0.00 0.00 0.00 0.35
1D62 0.13 0.05 0.18 0.13 1.00 0.40
D63 0.13 0.03 0.12 0.12 1.00 0.31
D64 0.01 0.01 0.02 0.19 0.45 1.79
D65 0.02 0.03 0.01 0.03 0.25 0.87
1D66 0.62 0.14 0.28 0.25 0.50 0.02
1D67 0.03 0.02 0.05 0.02 0.50 1.47
1ID68 0.57 0.09 0.32 0.40 0.67 0.03
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Table 33: Details of seizure detection results of MVPFormer-S with 40dB SNR. Kappa is the
inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the
seizure classification task. The similarity reports the breakdown of the cosine similarity in each of

the considered scenarios.
Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
ID19 0.01 0.00 0.02 0.28 0.44 1.24
1D20 0.05 0.04 0.11 0.03 1.00 0.39
D21 0.03 0.04 0.04 0.04 1.00 0.42
ID22 0.81 0.05 0.74 0.73 1.00 0.02
1D23 0.11 0.02 0.10 0.12 0.15 1.06
D24 0.50 0.02 0.52 0.55 0.86 0.44
D25 0.01 0.02 0.00 0.03 0.50 1.11
ID26 0.01 0.02 0.01 0.02 1.00 1.27
D27 0.04 0.02 0.03 0.05 0.88 1.65
1D28 0.18 0.04 0.26 0.21 0.75 0.32
D29 0.53 0.03 0.44 0.27 0.29 0.19
ID30 0.30 0.01 0.27 0.40 0.93 1.76
ID31 0.79 0.01 0.80 0.81 1.00 0.19
1D32 0.20 0.07 0.21 0.15 1.00 0.11
1D33 0.54 0.15 0.00 0.00 0.00 0.02
1D34 0.36 0.04 0.53 0.33 1.00 0.19
1D35 0.42 0.04 0.61 0.44 0.86 0.13
1D36 0.19 0.02 0.17 0.21 0.37 0.77
D37 0.05 0.04 0.08 0.05 1.00 0.36
1D38 0.93 0.03 0.95 0.91 1.00 0.01
D39 0.90 0.07 0.83 0.80 1.00 0.01
1D40 0.83 0.04 0.84 0.73 0.80 0.01
1D41 0.02 0.01 0.02 0.03 1.00 2.29
D42 0.87 0.05 0.84 0.80 1.00 0.01
D43 0.93 0.03 0.71 1.00 1.00 0.00
ID44 0.72 0.21 0.00 0.00 0.00 0.01
1D45 0.01 0.02 0.01 0.02 1.00 0.80
1D46 0.37 0.04 0.33 0.41 0.52 0.16
D47 0.01 0.02 0.01 0.01 1.00 1.63
ID48 0.88 0.01 0.73 1.00 1.00 0.00
1D49 0.20 0.04 0.25 0.26 1.00 0.24
ID50 0.99 0.03 0.89 1.00 1.00 0.00
ID51 0.38 0.10 0.22 0.18 1.00 0.06
ID52 0.09 0.03 0.18 0.06 1.00 0.57
ID53 0.03 0.04 0.07 0.03 1.00 0.50
ID54 0.00 0.01 0.00 0.02 1.00 1.85
ID55 0.02 0.02 0.02 0.02 1.00 1.16
ID56 0.47 0.07 0.43 0.36 0.67 0.05
ID57 0.00 0.00 0.00 0.00 0.00 0.00
ID58 0.07 0.06 0.07 0.07 0.14 0.15
ID59 0.18 0.06 0.10 0.24 0.13 0.00
1D60 0.32 0.02 0.18 0.33 0.38 0.14
D61 0.24 0.05 0.17 0.36 0.67 0.13
D62 0.78 0.05 0.60 0.93 1.00 0.00
D63 0.64 0.05 0.67 0.73 1.00 0.02
D64 0.56 0.02 0.52 0.62 0.60 0.19
D65 0.39 0.06 0.35 0.43 0.62 0.07
D66 0.79 0.13 0.38 0.50 0.50 0.00
1D67 0.03 0.02 0.05 0.02 0.50 1.43
D68 0.52 0.11 0.14 0.25 0.33 0.02
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Table 34: Details of seizure detection results of MVPFormer-S with 50dB SNR. Kappa is the
inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the
seizure classification task. The similarity reports the breakdown of the cosine similarity in each of

the considered scenarios.
Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
ID19 0.01 0.00 0.02 0.33 0.50 1.15
1D20 0.76 0.10 0.82 0.33 1.00 0.01
D21 0.50 0.09 0.38 0.31 1.00 0.04
ID22 0.97 0.03 0.89 1.00 1.00 0.00
1D23 0.11 0.03 0.15 0.09 0.06 0.19
1D24 0.91 0.01 0.87 0.93 0.93 0.02
D25 0.13 0.06 0.05 0.15 0.25 0.07
ID26 0.03 0.04 0.02 0.05 1.00 0.47
D27 0.68 0.04 0.66 0.73 1.00 0.04
1D28 0.86 0.03 0.87 0.86 0.75 0.00
D29 0.52 0.03 0.49 0.31 0.29 0.13
D30 0.74 0.01 0.73 0.76 0.78 0.17
ID31 0.98 0.00 0.92 1.00 1.00 0.00
1D32 0.87 0.09 0.76 0.67 1.00 0.01
1D33 0.50 0.15 0.00 0.00 0.00 0.02
1D34 0.79 0.03 0.85 0.75 1.00 0.03
1D35 0.71 0.04 0.75 0.75 0.86 0.03
1D36 0.46 0.03 0.58 0.43 0.30 0.04
D37 0.46 0.09 0.42 0.29 1.00 0.05
1D38 0.90 0.03 0.95 0.91 1.00 0.01
D39 0.99 0.03 0.89 1.00 1.00 0.00
1D40 0.82 0.04 0.88 0.80 0.80 0.00
1D41 0.23 0.04 0.29 0.22 1.00 0.25
D42 0.99 0.02 0.92 1.00 1.00 0.00
D43 0.93 0.03 0.71 1.00 1.00 0.00
ID44 0.89 0.15 0.32 0.67 0.50 0.00
1D45 0.01 0.02 0.00 0.01 1.00 0.99
1D46 0.40 0.04 0.42 0.45 0.33 0.02
D47 0.04 0.04 0.07 0.05 1.00 0.38
ID48 0.86 0.01 0.70 1.00 1.00 0.00
1D49 0.44 0.05 0.49 0.55 1.00 0.07
ID50 0.98 0.05 0.81 1.00 1.00 0.00
ID51 0.73 0.12 0.55 0.40 1.00 0.02
D52 0.26 0.05 0.42 0.19 1.00 0.15
ID53 0.26 0.08 0.30 0.14 1.00 0.09
ID54 0.01 0.01 0.01 0.02 1.00 1.41
ID55 0.12 0.06 0.12 0.12 1.00 0.20
ID56 0.72 0.07 0.54 0.67 0.67 0.01
ID57 0.00 0.00 0.00 0.00 0.00 0.00
ID58 0.33 0.12 0.00 0.00 0.00 0.01
ID59 0.11 0.06 0.08 0.12 0.07 0.00
1D60 0.23 0.03 0.15 0.50 0.38 0.02
D61 0.41 0.08 0.08 0.29 0.17 0.00
1D62 0.82 0.04 0.64 1.00 1.00 0.00
D63 0.79 0.04 0.75 0.89 1.00 0.01
D64 0.62 0.02 0.66 0.65 0.50 0.03
D65 0.63 0.06 0.43 0.67 0.62 0.01
D66 0.84 0.16 0.38 0.50 0.50 0.00
1D67 0.12 0.04 0.23 0.07 0.25 0.22
D68 0.65 0.13 0.22 0.33 0.33 0.01
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Table 35: Details of seizure detection results of MVPFormer-S with 60dB SNR. Kappa is the
inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the
seizure classification task. The similarity reports the breakdown of the cosine similarity in each of

the considered scenarios.
Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
ID19 0.01 0.00 0.02 0.33 0.50 1.15
D20 0.87 0.06 0.91 0.57 1.00 0.01
D21 0.74 0.11 0.49 0.50 1.00 0.02
ID22 0.97 0.02 0.91 1.00 1.00 0.00
1D23 0.10 0.03 0.17 0.10 0.06 0.09
1D24 0.94 0.01 0.90 0.96 0.93 0.00
D25 0.18 0.09 0.00 0.00 0.00 0.06
ID26 0.03 0.03 0.02 0.04 1.00 0.62
1D27 0.85 0.03 0.78 0.89 1.00 0.01
1D28 0.81 0.04 0.85 0.86 0.75 0.00
D29 0.44 0.03 0.44 0.28 0.29 0.17
ID30 0.68 0.01 0.68 0.70 0.70 0.20
ID31 0.98 0.00 0.93 1.00 1.00 0.00
1D32 1.00 0.02 0.93 1.00 1.00 0.00
1D33 0.51 0.15 0.00 0.00 0.00 0.02
1D34 0.76 0.03 0.87 0.82 1.00 0.02
ID35 0.74 0.04 0.79 0.80 0.86 0.02
1D36 0.43 0.03 0.52 0.40 0.28 0.06
D37 0.61 0.08 0.54 0.40 1.00 0.03
1D38 0.92 0.02 0.95 0.91 1.00 0.01
D39 0.98 0.03 0.89 1.00 1.00 0.00
1D40 0.88 0.04 0.91 0.89 0.80 0.00
1D41 0.29 0.04 0.37 0.29 1.00 0.18
D42 0.98 0.02 0.87 1.00 1.00 0.00
D43 0.89 0.04 0.56 1.00 1.00 0.00
ID44 0.88 0.11 0.32 0.67 0.50 0.00
1D45 0.01 0.02 0.00 0.01 1.00 0.94
1D46 0.40 0.04 0.43 0.47 0.33 0.01
D47 0.04 0.05 0.08 0.06 1.00 0.31
ID48 0.87 0.01 0.70 1.00 1.00 0.00
1D49 0.54 0.05 0.52 0.63 1.00 0.05
ID50 0.96 0.05 0.81 1.00 1.00 0.00
ID51 0.83 0.13 0.67 0.50 1.00 0.01
ID52 0.35 0.05 0.52 0.25 1.00 0.11
ID53 0.46 0.09 0.40 0.22 1.00 0.05
ID54 0.01 0.01 0.01 0.01 0.67 1.49
ID55 0.46 0.09 0.35 0.36 1.00 0.05
ID56 0.72 0.07 0.52 0.67 0.67 0.01
ID57 0.00 0.00 0.00 0.00 0.00 0.00
ID58 0.30 0.12 0.00 0.00 0.00 0.01
ID59 0.20 0.06 0.13 0.24 0.13 0.00
1D60 0.26 0.03 0.15 0.50 0.38 0.02
D61 0.35 0.09 0.08 0.29 0.17 0.00
1D62 0.84 0.04 0.67 1.00 1.00 0.00
D63 0.70 0.05 0.67 0.80 1.00 0.01
D64 0.65 0.02 0.67 0.67 0.50 0.00
D65 0.70 0.06 0.51 0.77 0.62 0.00
D66 0.88 0.09 0.53 0.80 1.00 0.00
1D67 0.15 0.05 0.24 0.10 0.25 0.14
D68 0.76 0.13 0.26 0.40 0.33 0.01
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G.15 EVALUATION OF MAXIMUM PERFORMANCE

To better characterize MVPFormer’s ability to generalize to unseen subjects, we perform the seizure
detection task on 40 subjects in two different scenarios. First, we use a model that is pre-trained on
those 40 subjects (see Figure 2T and Table [36) to determine MVPFormer’s maximum performance
on the manual selection of channels. Second, we use a model for which those 40 subjects are unseen
(see Figure 22) and Table 37). As expected, with a Kappa score of 0.73 the model trained on the
testing subjects achieves superior agreement even to human experts, and can therefore be seen as
having learned the training set. On the other hand, as seen with previous results as well, in the
unseen subject scenario MVPFormer reaches a Kappa score of 0.56, indicating a high degree of
generalization.
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Figure 21: Seizure detection with 58 subject pre-training and evaluation on 40 pre-trained
subjects on the manual selection of channels. (a) Seizure detection results of MVPFormer-S on
40 previously seen subjects using the manual selection of channels: the Fl-score, sensitivity, and
fp/h are reported. The performance metrics are notably improved due to testing on previously seen
subjects. (b) Cohen’s kappa is used to measure the agreement between the artificial assistant and the
human expert. The average kappa is 0.73, notably improved from the baseline.
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Figure 22: Seizure detection with 18 subjects pre-training on a selection of 40 unseen subjects
and the manual selection of channels. (a) Seizure detection results of MVPFormer-S on 40 unseen
subjects which are part of the training set for the 58-subjects model using the manual selection of
channels: the F1-score, sensitivity, and fp/h are reported. The raw and episodic F1-scores are notably
lower here with respect to the 58-subjects model. This is expected given the 58-subject model is pre-
trained on these subjects. These results are a subset of those presented in the Results section. (b)
Cohen’s kappa is used to measure the agreement between the artificial assistant and the human
expert. The average kappa is 0.56, competitive with expert agreement but, as expected, reduced
from the 58-subjects pre-trained model.
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Table 36: Details of seizure detection results of MVPFormer-S with 58 subject pre-training
and evaluation on 40 pre-trained subjects using the manual selection of channels. Kappa is the
inter-rater agreement. The classification metrics report the raw and episodic metrics relevant for the

seizure classification task.
Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
ID19 0.36 0.02 0.29 0.29 0.19 0.09
1D20 0.92 0.05 0.92 0.67 1.00 0.01
ID21 0.75 0.12 0.62 0.50 1.00 0.02
1D22 0.77 0.06 0.78 0.73 1.00 0.02
1D23 0.36 0.02 0.39 0.39 0.27 0.09
1D24 0.69 0.02 0.64 0.76 0.79 0.10
1D25 0.43 0.15 0.00 0.00 0.00 0.01
ID26 0.98 0.04 0.80 1.00 1.00 0.00
ID27 0.80 0.04 0.74 0.80 0.75 0.01
1D28 0.62 0.05 0.54 0.67 0.75 0.03
1D29 0.24 0.05 0.30 0.22 0.13 0.01
ID30 0.85 0.01 0.79 0.87 0.89 0.10
ID31 0.97 0.00 0.94 1.00 1.00 0.00
ID32 0.99 0.03 0.92 1.00 1.00 0.00
ID33 0.00 0.00 0.00 0.00 0.00 0.00
1D34 0.88 0.03 0.88 0.90 1.00 0.01
ID35 0.92 0.02 0.89 0.93 1.00 0.01
ID36 0.26 0.04 0.42 0.27 0.17 0.02
1D37 0.93 0.07 0.85 0.80 1.00 0.01
ID38 0.98 0.01 0.95 1.00 1.00 0.00
ID39 0.87 0.06 0.84 0.80 1.00 0.01
1D40 0.77 0.05 0.82 0.62 0.80 0.02
1D41 0.99 0.02 0.94 1.00 1.00 0.00
1D42 0.99 0.01 0.95 1.00 1.00 0.00
D43 0.83 0.05 0.79 0.80 1.00 0.02
1D44 0.98 0.02 0.87 1.00 1.00 0.00
D45 0.91 0.13 0.67 0.67 1.00 0.01
1D46 0.80 0.02 0.76 0.86 0.76 0.00
1D47 0.93 0.07 0.84 0.86 1.00 0.00
1D48 0.97 0.01 0.93 1.00 1.00 0.00
1D49 0.67 0.05 0.74 0.67 1.00 0.04
ID50 0.81 0.08 0.75 0.67 1.00 0.01
ID51 0.71 0.12 0.53 0.40 1.00 0.02
1D52 0.36 0.05 0.63 0.24 1.00 0.12
ID53 0.99 0.04 0.91 1.00 1.00 0.00
ID54 0.55 0.09 0.35 0.36 0.67 0.03
ID55 0.98 0.03 0.85 1.00 1.00 0.00
ID56 0.85 0.05 0.87 0.75 1.00 0.02
ID57 0.20 0.01 0.38 0.11 0.83 1.74
ID58 0.40 0.04 0.41 0.46 0.86 0.09
ID59 0.00 0.00 0.00 0.00 0.00 0.00
1D60 0.16 0.03 0.08 0.36 0.25 0.02
ID61 0.00 0.00 0.00 0.00 0.00 0.00
1ID62 0.42 0.06 0.44 0.41 0.86 0.07
ID63 0.54 0.09 0.25 0.57 0.50 0.01
1D64 0.62 0.02 0.59 0.65 0.50 0.03
ID65 0.31 0.04 0.24 0.39 1.00 0.18
ID66 0.69 0.11 0.52 0.50 1.00 0.02
1D67 0.00 0.06 0.00 0.00 0.00 0.13
ID68 0.78 0.15 0.33 0.50 0.33 0.00
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Table 37: Details of seizure detection results of MVPFormer-S with 18 subjects pre-training on
a selection of 40 unseen subjects using the manual selection of channels. Kappa is the inter-rater
agreement. The classification metrics report the raw and episodic metrics relevant for the seizure

classification task.
Classification metrics

Raw Episodic
Subject Kappa 95% CI fl-score fl-score sensitivity fp/h
ID19 -0.05 0.02 0.00 0.00 0.00 0.97
ID20 0.98 0.03 0.87 0.80 1.00 0.00
ID21 0.92 0.07 0.86 0.80 1.00 0.00
1D22 0.98 0.02 0.89 1.00 1.00 0.00
D23 0.26 0.03 0.17 0.14 0.09 0.16
ID24 0.91 0.01 0.90 0.93 0.93 0.02
D25 0.35 0.12 0.00 0.00 0.00 0.03
ID26 0.08 0.06 0.03 0.11 1.00 0.18
1D27 0.99 0.01 0.93 1.00 1.00 0.00
1D28 0.71 0.04 0.68 0.75 0.75 0.01
ID29 0.25 0.05 0.29 0.20 0.13 0.03
ID30 0.92 0.01 0.88 0.93 0.93 0.05
ID31 0.98 0.00 0.95 1.00 1.00 0.00
ID32 1.00 0.02 0.92 1.00 1.00 0.00
ID33 0.00 0.05 0.00 0.00 0.00 0.26
ID34 0.89 0.03 0.91 0.90 1.00 0.01
ID35 0.85 0.03 0.87 0.82 1.00 0.03
ID36 0.50 0.03 0.62 0.51 0.37 0.03
ID37 0.74 0.09 0.69 0.50 1.00 0.02
ID38 0.94 0.02 0.95 0.91 1.00 0.01
ID39 0.92 0.05 0.89 0.80 1.00 0.01
1D40 0.95 0.03 0.95 0.91 1.00 0.00
ID41 0.61 0.05 0.65 0.67 1.00 0.04
1D42 0.86 0.05 0.84 0.80 1.00 0.01
D43 0.90 0.03 0.64 1.00 1.00 0.00
1D44 0.00 0.00 0.00 0.00 0.00 0.00
1D45 0.01 0.02 0.00 0.01 1.00 1.06
D46 0.60 0.04 0.56 0.69 0.52 0.00
D47 0.26 0.08 0.29 0.16 1.00 0.09
1D48 0.68 0.02 0.62 0.80 0.67 0.00
1D49 0.85 0.03 0.79 0.86 1.00 0.01
ID50 0.69 0.09 0.60 0.44 1.00 0.03
ID51 0.35 0.09 0.23 0.15 1.00 0.07
ID52 0.23 0.05 0.35 0.18 1.00 0.16
ID53 0.12 0.06 0.21 0.09 1.00 0.16
ID54 0.01 0.02 0.01 0.01 0.67 1.72
ID55 0.37 0.08 0.35 0.29 1.00 0.07
ID56 0.72 0.08 0.60 0.67 0.67 0.01
ID57 0.00 0.00 0.00 0.00 0.00 0.00
ID58 0.22 0.07 0.25 0.18 0.29 0.09
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G.16 EFFECTS OF THE NUMBER OF CHANNELS ON THE BRAIN TREEBANK DATASET

To better evaluate the robustness of MVPFormer to an increasing number of channels, we evaluate
the four tasks of the BrainTreeBank with a range of 10 to 50 channels. The performance of MVP-
Former moderately increases with no reduction with the channel number, as reported in PopT (Chau
et al.,[2025)) as well, indicating that our model is robust to the number of channels.

Table 38: Effects of the number of channels on the four tasks of the Brain TreeBank dataset.
Evaluation of the performance of MVPFormer with respect to number of channels for fine-tuning
and testing.

Channels Pitch Volume Onset Speech

10 0.81(0.01) 0.85(0.01) 0.86(0.02) 0.87(0.02)
20 0.82(0.01) 0.87(0.01) 0.87(0.02) 0.88(0.02)
30 0.82(0.02) 0.87(0.01) 0.87(0.02) 0.89(0.02)
40 0.83(0.01) 0.87(0.01) 0.87(0.02) 0.89(0.02)
50 0.83(0.01) 0.88(0.01) 0.87(0.02) 0.90 (0.02)
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G.17 EVALUATION ON TRADITIONAL LONG-TERM FORECASTING TASK

To provide a comprehensive evaluation of MVPA, we compare MVPFormer with existing SOTA
architectures on a classical long-term forecasting task. Table [39|reports the results of MVPFormer,
the vanilla Transformer (Vaswani et al., [2017), PatchTST (Nie et al.| 2023)), TimesFM (Das et al.,
2024])), TimeMixer (Wang et al., |2024b), and WPMixer (Chau et al., 2025) on the ETTh1, ETTh2,
and Weather datasets (Zhou et al.| [2021; [Wu et al [2021). These datasets represent a well-known
benchmark that allows us to decouple MVPFormer from the specific clinical setting. The lookback
window is fixed to 96, while the forecast is performed at lengths of 96, 192, 336, and 720. These
settings are well established in the literature (Wang et al.,[2024b)). MVPFormer notably surpasses the
vanilla Transformer and is competitive with established architectures designed specifically for this
task, achieving the best or second best result in most cases. Moreover, MVPFormer is on average
2x faster to train than the vanilla Transfomer and 1.4x faster than PatchTST — still slower than
TimeMixer, which a fully MLP-based model —, making it an excellent choice in many scenarios.
Therefore, we have shown that MVPFormer and MVPA have a wide applicability and transfer their
performance from the clinical task — for which they were designed — to more general time-series
tasks as well.

Table 39: Classical time-series forecasting benchmark. MVPFormer is compared with multiple
SOTA architectures on the time-series forecasting task using the ETTh1, ETTh2, and Weather
datasets. The lookback window is fixed at 96 and the forecasting length varies between 96 to 720.
The vanilla Transformer is also included as a point of comparison. In bold are the best MSE results,
in italics are the second best. MVPFormer notably outperforms the vanilla Transformer and is
competitive with all baselines, having either the best or second best result in most cases.

Model MVPFormer (ours) Transformer PatchTST TimesFM TimeMixer WPMixer
Metric Length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0.38 0.40 083 072 038 040 039 041 037 040 039 040
ETThI 192 045 044 096 078 043 043 046 044 044 043 043 042
336 049 0.46 1.04 083 047 046 049 045 050 046 049 045
720 049 048 1.16 086 0.52 0.51 0.50 048 049 048 049 047
96 0.30 035 264 130 031 035 030 045 029 035 030 035
ETTh2 192 0.37 0.40 348 147 038 040 037 040 037 039 037 040
336 042 043 407 162 043 044 043 044 043 044 042 043
720 043 045 328 152 043 045 044 045 047 047 045 046
96 0.17 022 033 038 017 022 017 021 0.16 0.21 0.17 021
Weather 192 0.21  0.26 051 050 022 026 022 026 021 025 022 025
336 0.28 0.30 062 056 028 030 028 030 026 029 026 030
720 0.35 035 091 070 036 035 035 035 035 035 035 035
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G.18 ABLATION OF THE THREE COMPONENTS ON TRADITIONAL LONG-TERM FORECASTING
TASK

MVPA is composed of three components (content, time, and channel attention) which process dif-
ferent aspects of the time-series in parallel. We evaluate the impact of the components on the long-
term forecasting tasks as above. Table 0] reports the results of full MVPA (all three components),
content-only attention, time-only attention, channel-only attention, and no attention on the ETTh1,
ETTh2, and Weather datasets (Zhou et al.,[2021; |Wu et al.| 2021).

Full MVPA is consistently the better performer, except on the 96 and 720 lengths of the ETTh2
dataset. Notably, MVPA outperforms all variants by a greater margin on the Weather dataset, which
has the most number of channels (21 vs 7 of ETTh1 and ETTh2). This suggests that strongly multi-
variate time-series provide a considerable advantage to MVPA, which is consistent with its design.

Table 40: Ablation of the three components on the classical time-series forecasting benchmark.
MYVPA is compared with ablated variants of its three components on the time-series forecasting
task using the ETTh1l, ETTh2, and Weather datasets. The lookback window is fixed at 96 and
the forecasting length varies between 96 to 720. The vanilla Transformer is also included as a point
of comparison. In bold are the best MSE results.

Model MVPA Content-only Time-only Channel-only None

Metric Lengthh MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 038 040 039 040 039 040 039 040 041 040

ETThi 192 045 044 045 044 045 044 045 045 046 045

336 049 046 049 046 049 046 049 046 050 049
720 049 048 049 048 049 048 049 048 049 048
96 030 035 031 035 029 035 030 035 030 035
192 037 040 037 039 038 040 037 040 038 0.39

ETTh2 336 042 043 043 043 042 043 042 043 043 043
720 043 045 042 044 043 044 042 044 047 047
9% 017 022 019 023 019 023 018 022 019 023
Weather 192 021 026 023 026 023 026 022 026 023 026

336 028 030 029 030 029 030 028 030 029 030
720 035 035 036 035 036 035 035 035 036 035
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