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ABSTRACT

Hypergraph, with its powerful ability to capture higher-order complex relation-
ships, has attracted substantial attention recently. Consequently, an increasing
number of hypergraph neural networks (HyGNNs) have emerged to model the
high-order relationships among nodes and hyperedges. In general, most HyGNNs
leverage typical expansion methods, such as clique expansion (CE), to convert hy-
pergraphs into graphs for representation learning. However, they still face the fol-
lowing limitations in hypergraph expansion: (i) Some expansion methods expand
hypergraphs in a straightforward manner, resulting in information loss and redun-
dancy; (ii) Most expansion methods often employ fixed edge weights while ignor-
ing the fact that nodes having similar attribute features within the same hyperedge
are more likely to be connected compared with nodes with dissimilar features.
In light of these challenges, we design a novel CE-based Adaptive Expansion
method called AdE to expand hypergraphs into weighted graphs that preserve
the higher-order hypergraph structure information. Specifically, we first introduce
a Global Simulation Network to pick two representative nodes for symbolizing
each hyperedge in an adaptive manner. We then connect the rest of the nodes
within the same hyperedge to the corresponding selected nodes. Instead of lever-
aging the fixed edge weights, we further design a distance-aware kernel function
to dynamically adjust the edge weights to make sure that node pairs having sim-
ilar attribute features within the corresponding hyperedge are more likely to be
connected with large weights. After obtaining the adaptive weighted graphs, we
employ graph neural networks to model the rich relationships among nodes for
downstream tasks. Extensive theoretical justifications and empirical experiments
over five benchmark hypergraph datasets demonstrate that AdE has excellent ra-
tionality, generalization, and effectiveness compared to classic expansion models.

1 INTRODUCTION

Hypergraphs, unlike pairwise relationships in traditional graphs, introduce hyperedges to connect
multiple nodes, allowing for the representation of complex relationships. This concept has gained
significant interest in various domains, such as social networks, community detection, and rec-
ommendation systems (Li et al., 2013; Zhang et al., 2022; Ma et al., 2022; Xia et al., 2022; An
et al., 2021). To leverage the benefits of hypergraphs, a bunch of hypergraph neural networks
(HyGNNs) (Jiang et al., 2019; Yi & Park, 2020; Zhang et al., 2020; Wei et al., 2022; Liao et al.,
2021) have been proposed to model the rich connectivity patterns within hypergraphs effectively.
Generally speaking, most HyGNNs methods primarily leverage typical expansion methods, e.g.,
clique expansion (CE) (Sun et al., 2008), star expansion (SE) (Agarwal et al., 2006), and line ex-
pansion (LE) (Yang et al., 2022), to convert hypergraphs into graphs, e.g., bipartite graphs (Chien
et al., 2022; Xue et al., 2021) or weighted graphs (Feng et al., 2019), and further employ neural net-
works to model the complex structure within hypergraphs. Specifically, the CE technique substitutes
hyperedges with cliques that edges connect every pair of nodes. For instance, HyperGCN (Yadati
et al., 2019) utilizes a CE-based method to transfer the hypergraph structure into a weighted graph
structure. The LE method, proposed by LEGNN (Yang et al., 2022), aims to construct a graph where
vertices in the converted graph are made up of node-hyperedge pairs, as illustrated in Figure 1. If
two vertices share the same node or hyperedge in the hypergraph, the two vertices are connected.

Although existing HyGNNs with classic expansion methods achieve excellent performance in mod-
eling the complex relationships among nodes and hyperedges, these works (Yadati et al., 2019; Feng
et al., 2019; Zhang et al., 2020; Yang et al., 2022) still face the following limitations in hypergraph
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Figure 1: Illustration of classic hypergraph expan-
sion methods.

expansion: (i) Some existing methods, such as
CE-based methods, convert hypergraphs into
graphs based on the hypergraph structure in a
relatively straightforward manner, often result-
ing in information loss or redundancy. For
instance, the classic CE method connects all
node pairs within the same hyperedge and
makes it a fully connected subgraph, which
will bring the redundant information in the con-
verted graph (Sun et al., 2008). HyperGCN,
another classic CE-based method, proposes to
pick two nodes to symbolize the correspond-
ing hyperedge and further connect the rest of
the nodes with the selected nodes (Yadati et al.,
2019). However, the selected nodes are not
representative enough of the corresponding hy-
peredge, which causes certain information loss.
(ii) Most methods employ the fixed weights on
each edge when expanding hypergraphs into graphs while ignoring that nodes with similar attribute
features are more likely to be connected with higher weights during the expansion. For instance,
HyperSAGE converts hypergraphs into bipartite graphs where the edge weights are uniformly as-
signed and further utilizes the hyperedge-level and node-level message-passing strategy to propagate
the information among nodes in the converted bipartite graphs (Arya et al., 2020). Yet, this work
ignores that nodes with similar attributes within the same hyperedge may have stronger connections
during hypergraph expansion.

To handle the above challenges, we propose a novel CE-based hypergraph expansion method called
Adaptive Expansion (AdE) that expands hypergraphs into weighted graphs, which depicts the
higher-order complex relationships among nodes. Specifically, to handle the first challenge, in-
stead of connecting all nodes within the same hyperedge indiscriminately, we design a novel Global
Simulation Network (GSi-Net) to select two nodes for symbolizing each hyperedge adaptively. In
particular, we first employ a pooling layer to obtain the global representations of the attribute fea-
tures, followed by a simulation network to learn the importance of each feature dimension, and fur-
ther obtain the adaptive weight matrix for the attribute features. After obtaining the scaled attribute
feature with the adaptive weight matrix, we select two representative nodes for each hyperedge dy-
namically. To address the second challenge, with the selected nodes for each hyperedge, we design
a novel distance-aware kernel function to learn the edge weights to make sure that the edge between
two nodes with similar attribute features will have a higher weight during hypergraph conversion.
Last, the weighted graph can be fed to any graph neural networks (GNNs) for representation learn-
ing. To conclude, this work makes the following contribution:

• Novelty: We design a novel expansion method called AdE, including a GSi-Net and a
distance-aware kernel function to expand hypergraphs into weighted graphs adaptively over
different downstream tasks, which is the first work that learns to find the optimal graph
structures adaptively during hypergraph expansion.

• Generalization: Our model is designed as a general expansion method that expands hyper-
graphs into weighted graphs, enabling powerful GNNs to effortlessly and seamlessly study
hypergraphs. Theoretic justification also demonstrates the generalization of AdE.

• Effectiveness: Theoretic justification and empirical experiments over five benchmark hy-
pergraph datasets demonstrate the effectiveness of our model.

2 RELATED WORKS

Hypergraph Expansions in Hypergraph Neural Networks. Unlike graphs where the edge con-
nects two nodes, hypergraphs allow hyperedge to connect an arbitrary number of nodes which can
depict high-order complex relationships. Most hypergraph neural networks (HyGNNs) first convert
hypergraphs to (weighted) graphs via classic expansion methods, i.e., clique expansion (CE) (Sun
et al., 2008), star expansion (SE) (Agarwal et al., 2006), line expansion (LE) (Yang et al., 2022)
and its variants (Yadati et al., 2019; Feng et al., 2019; Zhou et al., 2006) and further feed the con-
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verted graph to neural networks for representation learning. Clique expansion, one of the classic
expansions, replaces hyperedges with cliques in which every node of pairs within the correspond-
ing hyperedge is connected. For instance, recent studies, i.e., HyperGCN (Yadati et al., 2019) and
HGNN Feng et al. (2019) propose updated CE-based methods to convert hypergraphs into weighted
graphs and further learn the hypergraph representations for node classification tasks through graph
neural networks, e.g, GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018). Star expan-
sion, another classic expansion, creates a set of nodes that represent hyperedges and further connects
each new node with nodes that are in the corresponding hyperedge. The graph constructed by SE
forms a bipartite graph. Several methods (Chien et al., 2022; Arya et al., 2020) are inspired by
SE that treats the hypergraph as a bipartite graph and builds message-passing functions on hyper-
graphs (Yang et al., 2022). For example, UniGNN (Huang & Yang, 2021) generalizes GNNs (Kipf
& Welling, 2017; Veličković et al., 2018; Xu et al., 2019) to hypergraph, and AllSet further uni-
fies a whole class of two-stage models with multiset functions (Chien et al., 2022). Line expansion
(LE) (Yang et al., 2022) constructs a graph with a new set of nodes where each node represents a
node-hyperedge pair in the original hypergraph, and any two new nodes are connected if they share
the same node or hyperedge on the hypergraph. LEGNN leverages LE to build new graphs and fur-
ther learn the node embeddings through GNNs. However, these methods fail to preserve high-order
information within hypergraphs concisely and may lead to undesired losses in hypergraph conver-
sion. Inspired by existing HyGNNs, this work proposes an adaptive hypergraph expansion to expand
hypergraphs into weighted graphs to depict the higher-order relationships among nodes.

Graph Neural Networks. Graph neural networks (GNNs) (Hamilton et al., 2017), considering
both the node features and the graph structure, have become the state-of-the-art approach to learn-
ing graph representations. We would like to introduce several popular GNNs: Graph Convolution
Network (GCN) Kipf & Welling (2017) implements a layer-wise propagation rule to learn the node
embedding; Graph Attention Network (GAT) (Veličković et al., 2018) employs attention mecha-
nisms to measure the importance of neighboring nodes when aggregating features; Graph Isomor-
phism Network (GIN) (Xu et al., 2019) is designed to utilize the Weisfeiler-Lehman Isomorphism
Test Weisfeiler & Leman (1968) for neighbor aggregation to enhance the capacity of GNNs in distin-
guishing different graph structures. To leverage the powerful GNNs to learn the complex interaction
in hypergraphs, inspired by existing works (e.g., HyperGCN and HGNN), we feed the weighted
graph via our designed adaptive hypergraph expansion method to GNNs for downstream tasks.

3 PRELIMINARY

Definition 3.1. Hypergraph. Given a hypergraph H = (V, E ,X ), V is the set of nodes with size
N = |V|, E is the set of hyperedges with size M = |E|, and X is the attribute feature set. Unlike
the pair-wise edge in a graph that only connects two vertices, each hyperedge represents a higher-
order interaction among a set of nodes. A hypergraph can be represented by an incidence matrix
H ∈ RN×M , where Hv,e = 1 if v ∈ e; otherwise, Hv,e = 0. Here node v ∈ V and hyperedge
e ∈ E . Besides, we use d(v) =

∑
e∈E Hv,e and d(e) =

∑
v∈V Hv,e to denote the degrees of node

and hyperedge, respectively.

Definition 3.2. Graph Neural Networks (GNNs). Most GNNs (Wu et al., 2019; Wang et al., 2019;
Schlichtkrull et al., 2018; Yun et al., 2019; Liu et al., 2021) follow the neighbor aggregation op-
eration in the messaging passing framework. Specifically, each node receives and aggregates the
messages from the neighbor nodes recursively in multiple layers. For instance, the propagation rule
of GNNs is formulated as follows:

Z
(l+1)
i,: =M(Zl

i,:, {Zl
j,: : vj ∈ Ni};W (l+1)), (1)

where Z(l+1) is the (l + 1)-th layer embeddings, Ni is the neighbors of node vi, andM(·;W (l+1))
is the (l+1)-th message passing function with parameters W . Note that our framework is applicable
to any GNNs, e.g., GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018).

Problem 1. Given a hypergraph H = (V, E ,X ) with ground-truth labels Y , the objective is to
design a hypergraph expansion method to convert hypergraph to a weighted graph Ga and further
employ GNNs with a mapping function fϕ : V → Rd (with parameter ϕ) to project each node vi ∈ V
to a d-dimensional embedding for downstream tasks with Y .
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Figure 2: The overall framework of AdE: given a hypergraph H = (V, E ,X ) with attribute feature
X, (i) AdE first feeds the attribute feature X into a global pooling layer, and leverages simulation
network (Si-Net) to learn the importance of each feature dimension, further obtaining the weight
matrix Wg . Afterward, AdE scales the attribute feature Xa with the learnable weight matrix Wg and
identifies a representative node pair (ve− , ve+) for each hyperedge e. (ii) with representative node
pairs, AdE designs a distance-aware kernel function with prior distance information to adaptively
learn the edge weights and further constructs an adaptive weighted graph Ga.

4 METHODOLOGY

In this section, we present the details of our new Adaptive Expansion method called AdE, which
includes the following two key stages: (i) the Global Simulation Network (GSi-Net) for adaptive
representative node selection and (ii) the distance-aware kernel function to learn the weights among
node pairs dynamically.

4.1 GSI-NET FOR ADAPTIVE REPRESENTATIVE NODE SELECTION

Previous works (Yadati et al., 2019; Feng et al., 2019; Bai et al., 2021; Chien et al., 2022) primarily
convert hypergraphs into graphs via some expansion methods (e.g., CE) and further leverage neural
networks to learn the complex structure within hypergraphs. The classic CE method is not concise
enough and may lead to information redundancy as every pair of nodes within the corresponding hy-
peredges is connected. To handle this, HyperGCN proposes an updated CE-based expansion method
that employs hypergraph Laplacian with mediators (Chan & Liang, 2020) to expand hypergraphsH
to graphs G by learning a non-linear function over the real-valued signal S (Yadati et al., 2019).
Specifically, HyperGCN first computes a real-valued signal S ∈ RN where S = X · Wr, with
random feature weight Wr. With the signal S, for each hyperedge e, HyperGCN selects two nodes
(ve+ , ve−) based on the following rule: (ve+ , ve−) = argmaxvi,vj∈e |Si−Sj |. The aforementioned
node selection approach is based on the existing works (Zhang et al., 2017; Zhou et al., 2006), which
show that two nodes within the largest distance within the hyperedge can represent the information
within the hyperedge to a large extent. Then HyperGCN connects these two nodes, and all other
nodes in the hyperedge with two representative nodes ve+ , and ve− , respectively. Afterward, Hy-
perGCN obtains the weighted graph, where each edge is assigned a fixed weight 1

2|e|−3 , for further
representation learning.

However, these existing methods still face the following limitations: (i) Due to the uncertainty of
the random matrix for the real-value signal S, the selected representative nodes for each hyperedge
are biased and are not representative enough for the corresponding hyperedge. (ii) The edge weights
among node pairs in G are fixed, which ignores the fact that nodes with similar attribute features are
more likely to be connected. To this end, we first design a Global Simulation Network (GSi-Net)
to select the most representative node pair for each hyperedge adaptively. Furthermore, we design a
distance-aware kernel function to dynamically adjust the weights on edges in a weighted graph Ga.

Global Simulation Network. Due to the limitation of the existing methods for representative node
selection based on the attribute features, we propose to learn a flexible and informative attribute ma-
trix that can be utilized to identify the most characteristic node pair for the hyperedge dynamically.
Specifically, we first employ a pooling layer, i.e., global mean pooling, to obtain the global level
representation of the attribute features Xg ∈ R1×b, where Xg = 1

N

∑N
i=0 Xi,: and b is the feature
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dimension. Afterward, we design a simulation network (Si-Net) to adaptively learn the importance
of each feature dimension, which is formulated as follows:

Wg = σ(W2 · ReLU(W1 ·Xg)), (2)

where Wg ∈ R1×b is the weight matrix and σ is the sigmoid activation function. Moreover, we
further scale the attribute feature Xa with the weight matrix Wg of the attribute feature, where
Xa = X ⊙Wg. By dynamically learning the importance of each feature dimension, we hope that
our scaled attribute feature Xa is informative for selecting the excellent node pair for representing
the corresponding hyperedge.

Representative Node Selection. Instead of using the original attribute feature with random noise
as the real-value signal S in HyperGCN, we employ the sum of scaled attribute feature Xa among
feature dimensions as the signal S =

∑b
k=1 Xa,(:,k), where Xa,(:,k) is the column k of the scaled

attribute feature Xa and S ∈ RN , to adaptively select the excellent node pair to symbolize the
corresponding hyperedge, as introduced in HyperGCN (Yadati et al., 2019). In specific, for each
hyperedge e ∈ E , we pick two nodes (ve− , ve+) to symbolize the hyperedge e based on the following
rule: (ve− , ve+) = argmaxvi,vj∈e |Si−Sj |. Mention that, similar to existing works (Chan & Liang,
2020; Chan et al., 2018; Louis, 2015), if multiple node pairs satisfy the rule above, we randomly
select one node pair as the representation of hyperedge e. Subsequently, the remaining nodes within
hyperedge e, denoted as Ve

m = {vm|vm ̸= ve− , vm ̸= ve+ , vm ∈ e}, are mediators. Furthermore,
each mediator in Ve

m will connect with the representative nodes ve− and ve+ , respectively, and we
then obtain the weighted graph Ga from hypergraph H. The edge set in the weighted graph Ga for
each hyperedge e is denoted as Ee, where Ee = {{ve− , ve+}, {vm, ve−}, {vm, ve+}|vm ∈ Ve

m}.
Unlike existing hypergraph expansion methods, i.e., CE, SE, and LE, that expand identical graph
structures for all downstream tasks, our model AdE learns to generate optimal graph structures
via GSi-Net by selecting different representative node pairs adaptively for different downstream
tasks. To intuitively demonstrate the differences between our model AdE and hypergraph expansion
method in HyperGCN, we provide detailed comparison and illustration in Appendix B.

4.2 DISTANCE-AWARE KERNEL FOR EDGE WEIGHT

As we mentioned, most existing methods assign the fixed edge weight to node pairs in the weighted
graph Ga (Yadati et al., 2019; Dong et al., 2020; Arya et al., 2020). However, it ignores the fact that
node pairs with similar attribute features should have higher edge weights as they are more likely
to be connected compared with nodes with dissimilar attribute features. For instance, HyperGCN
fixes the edge weight as 1

2|e|−3 , but does not consider that nodes within the same hyperedge may
exhibit different behaviors. Let’s take an intuitive example of social media. Given a social media
hypergraph, where nodes are users and hyperedges describe a group of users who share the same
interests. Assume a group of users is interested in photography, and two individuals focus on au-
tomotive photography while the rest are interested in landscape photography. In this case, when
expanding the hypergraph to a social media graph, the fixed edge weight among these node pairs
introduced by HyperGCN is inappropriate enough as these two individuals should get closer com-
pared with the rest of the users within the group. In light of this, we design a distance-aware kernel
function to learn the edge weight in an adaptive manner. Specifically, we first pre-compute the dis-
tance matrix U (i.e., Euclidean distance) among nodes based on the original attribute feature X,
where Ui,j = ||Xi,: −Xj,:||2. We hope that the prior information U can guide the learning process
of edge weights by considering the influence of attribute features. Afterward, we design a learnable
kernel function to adjust the edge weight in Ga, which is formulated as follows:

Wi,j = exp(−1

b

b∑
d=1

Ui,j(Xa,(i,d) −Xa,(j,d))
2

θ2d
), (3)

where θ is a learnable matrix, b is the dimension of Xa, and Xa,(i,d) is the d-th element of the node
vi in the scaled attribute feature Xa. Unlike existing hypergraph expansion methods that assign
fixed weight to edges regardless of the downstream tasks, our novel distance-aware kernel function
learns the edge weights dynamically. The edge weight between node pairs will be different if we
handle different downstream tasks, which is common in real-world scenarios. Next, we would like
to provide theoretical justifications for our designed distance-aware kernel function.

Proposition 1. Our designed kernel functionW is distance-aware.
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Proof Sketch. In Eq. 3, the kernel functionW is non-negative, as it is governed by the exponential
function, which is strictly positive. On the one hand, the function is aware of the feature distance
between the node pair (vi, vj), as it calculates the distance in the scaled attribute space via (Xa,(i,d)−
Xa,(j,d))

2. The summation across the squared differences effectively captures the Euclidean distance
between node vi and node vj . On the other hand, Ui,j , as the pre-computed distance matrix in the
original attribute feature space, also guides the learning process of the edge weights. To conclude,
our designed kernel functionW is a distance-aware function.
Proposition 2. The kernel function W learns to assign higher edge weights for node pairs with
similar attribute features while smaller ones for less similar node pairs.
Proof Sketch. The kernel functionW in Eq. 3 can be broken into four parts: the distance between
node pairs in the scaled feature space Xa, the prior distance matrix U , the learning parameters θ,
and the exponential function. Firstly, for a node pair (vi, vj), we calculate the distance among
each dimension via ∆2

d,(i,j) = (Xa,(i,d) − Xa,(j,d))
2 to quantify how close it is between the node

pair. Besides, we employ the pre-computed distance matrix in the original feature space as the prior
information to guide the learning process of the edge weights. Moreover, we introduce a learnable
parameter θ to control the sensitivity of the node feature similarity across b dimensions. Therefore,

these three parts can be denoted asWi,j = exp(− 1
bΓi,j), where Γi,j =

∑b
d=1

∆2
d,(i,j)

θ2
d
Ui,j . In Γi,j ,

a smaller θd would make the function more sensitive to feature differences in the d dimension, while
a larger θd would make it less sensitive. We aim to learn these sensitivities dynamically during
training to effectively capture the importance of the node features in each dimension.

Considering the two nodes occupy very similar behaviors, the distance in ∆2
d,(i,j) and the value of

Ui,j are supposed to be smaller. Besides, θd learns to facilitate the similarity measures. In this case,
the value of Γi,j will be smaller while the negative Γi,j will be larger, resulting in a larger value of
Wi,j . Therefore, these two similar nodes would be assigned larger edge weights. Otherwise, when
their attribute features are less similar, the value of Γi,j will be larger while the negative Γi,j will be
smaller, leading to a smaller value ofWi,j .

The above theoretical justifications show that our kernel function W is a distance-aware kernel
function that adaptively assigns larger edge weights to similar node pairs and lower ones to less
similar node pairs. Inspired by exiting work (Chan & Liang, 2020), we standardize the edge weights
such that the edge weights corresponding to hyperedge e are sum to 1. Formally, for each edge
{vi, vj} ∈ Ee, we compute the normalized weight W̄(e)

i,j with respect to hyperedge e as follows:

W̄(e)
i,j =

Wi,j∑
{vk,vg}∈Ee

Wk,g
. (4)

By the aforementioned steps, we further obtain the adaptive weighted graph Ga = (V, Ea,Xa) with
the adaptive adjacency matrix Aa, where Aa,(i,j) =

∑
e∈E I [{vi, vj} ∈ Ee]W̄

(e)
i,j . To intuitively

demonstrate our proposed method AdE, we provide an example about AdE implement in real-world
scenarios in Appendix J

4.3 REPRESENTATION LEARNING

After obtaining the adaptive weighted graph Ga = (V, Ea,Xa), inspired by UniGNN (Huang &
Yang, 2021) that leverages GNNs over the converted graphs, we also employ powerful GNNs as
graph encoders to learn the node embeddings over the adaptive weighted graph Ga. Here, we take a
two-layer GCN (Kipf & Welling, 2017) as an example, denoted as AdE-GCN. The propagation rule
of AdE-GCN to generate node embeddings is defined as follows:

Z = AaReLU(AaXaW
(1))W (2), (5)

where Aa and Xa are the weighted adjacency matrix and scaled attribute feature matrix in Ga, respec-
tively. Meanwhile, W (1) and W (2) are the learnable weight matrices for the first layer and second
layer, respectively. Note that our model is designed as a general expansion method, which means it
can be effortlessly and seamlessly employed in any GNNs.

In this work, we employ the node classification task to evaluate the effectiveness of our designed
method. Thus, we feed the node embeddings Z generated via GCN into the softmax function to gen-
erate the probability distribution P, and the semi-supervised node classification loss L is formulated
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as L = −
∑

vi∈V
∑

c∈Y yi,c log(Pi,c), where yi,c is the label of node vi. The pseudo-code of AdE
is listed in Appendix Algorithm 1.

Next, we would like to prove that our expansion method expands a more effective graph compared
with existing methods, such as HyperGCN.
Proposition 3. Given the same selected nodes (ve− , ve+) for hyperedge e, our model AdE enhances
HyperGCN by generating more adaptive weighted graphs.
Proposition 4. Our AdE is equivalent to weighted clique expansion in 3-uniform hypergraphs.

The theoretical justification for Proposition 3 and Proposition 4 are provided in Appendix F and
Appendix G, respectively.

5 EXPERIMENTS

In this section, we first introduce the experimental setup, including the benchmark datasets, baseline
methods, and experimental settings. We then compare AdE with various baseline methods to show
the effectiveness of AdE. Moreover, ablation studies and embedding visualizations are conducted to
show the rationality and effectiveness of AdE. More details about data statistics, baseline settings,
and complexity analysis are provided in Appendix C, Appendix D, and Appendix E, respectively.
To show the strong applicability of AdE, we conduct additional experiments on AdE for the hyper-
edge prediction task, and baseline methods about node-degree preserving hypergraph projection in
Appendix H and Appendix I, respectively.

5.1 EXPERIMENT SETUP

Benchmark Datasets. To evaluate the effectiveness of our model, we employ five benchmark hy-
pergraph datasets from (Chien et al., 2022), including two co-authorship networks, i.e., Cora-CA and
DBLP, and three co-citation networks, i.e., Cora, Citeseer, and Pubmed. More detailed discussion
and data statistics are introduced in Appendix C.

Baseline methods. We compare our model with four classic hypergraph expansion methods, in-
cluding clique expansion (CE) based methods (G1), star expansion (SE) based methods (G2), line
expansion (LE) based methods (G3), and Uni-based methods (G4). To fairly compare with these
hypergraph expansion methods, we leverage three GNN models, i.e., Graph Convolution Network
(GCN) (Kipf & Welling, 2017), Graph Attention Network (GAT) (Veličković et al., 2018), and
Graph Isomorphism Network (GIN) (Xu et al., 2019), as backbone models over the converted
graphs. Since vanilla GAT and GIN do not consider the edge weights, inspired by this work (Spiel-
man & Srivastava, 2008), we employ a threshold to consider the edge weights during information
propagation. Besides, to further comprehensively evaluate the effectiveness of our model, we also
conduct experiments on MLP and five HyGNNs benchmark models, including HGNN (Feng et al.,
2019), HCHA (Bai et al., 2021), HyperGCN (Yadati et al., 2019), HNHN (Dong et al., 2020), and
AllSet (Chien et al., 2022). Details about baseline methods are introduced in Appendix D.

Experimental Settings. Our model adopts accuracy as the evaluation metric to evaluate the per-
formance over our mode and baseline methods. We randomly select 50% of data as the training
data, and the rest of the data is split evenly between the validation (25%) and testing sets (25%).
Additionally, we conduct each method five times with 500 epochs and report the average score
with standard deviation (std). All experiments are conducted under the environment of the Ubuntu
22.04.3 OS plus an Intel i9-12900K CPU, two GeForce RTX 3090 Graphics Cards, and 64 GB of
RAM. We utilize Adam (Kingma & Ba, 2015) as the optimizer. We define specific ranges to find
the optimal hyper-parameters in our model. For instance, the range of hidden dimensions for lay-
ers is {64, 128, 256, 512}, the range of weight decays is {0, 0.001, 0.0001, 0.00001}, the range of
threshold is {0, 0.1, 0.15, 0.2, 0.25, 0.3}, and the range of learning rate is {0.1, 0.01, 0.001, 0.0001}.
Then, we report the best performance among the optimal hyper-parameters for each method across
all benchmark citation hypergraphs.
5.2 EXPERIMENT ANALYSIS

Performance Comparison. Table 1 shows the accuracy performance among hypergraph expan-
sions and our model over five benchmark hypergraph datasets. The best performance of our model
is highlighted in purple, and the best performance among all baseline methods is highlighted in
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Table 1: Performance comparison (Mean accuracy % ± std) of hypergraph expansion methods on
GNNs for node classification. Purple-shaded numbers indicate the best results of our models, and
gray-shaded numbers represent the best results of baseline methods.

Group Model Cora-CA DBLP Cora Citeseer Pubmed

G1
CE-GCN 77.99 ± 0.85 87.03 ± 0.25 77.24 ± 1.32 70.44 ± 0.70 81.42 ± 0.54
CE-GAT 78.05 ± 1.27 87.25 ± 0.28 76.04 ± 1.56 69.30 ± 1.79 81.34 ± 0.53
CE-GIN 79.26 ± 1.35 88.90 ± 0.13 76.81 ± 2.30 69.70 ± 1.03 84.31 ± 0.25

G2
SE-GCN 81.01 ± 1.37 89.57 ± 0.25 79.04 ± 1.32 71.03 ± 2.03 82.14 ± 0.48
SE-GAT 81.14 ± 1.78 89.45 ± 0.29 78.91 ± 2.65 71.14 ± 1.48 83.32 ± 0.38
SE-GIN 77.82 ± 1.46 88.62 ± 0.29 75.82 ± 2.36 71.79 ± 1.21 85.75 ± 0.55

G3
LE-GCN 81.71 ± 1.41 90.21 ± 0.29 77.23 ± 1.28 70.80 ± 2.06 81.62 ± 0.39
LE-GAT 81.68 ± 1.61 90.14 ± 0.37 76.99 ± 1.53 68.55 ± 1.70 82.93 ± 0.82
LE-GIN 81.74 ± 1.89 90.08 ± 0.34 76.75 ± 2.02 71.59 ± 0.76 84.30 ± 0.47

G4
Uni-GCN 79.74 ± 1.96 89.06 ± 0.95 78.86 ± 1.54 71.38 ± 0.81 85.72 ± 0.53
Uni-GAT 78.98 ± 2.47 86.66 ± 1.22 77.92 ± 2.03 71.30 ± 0.82 85.33 ± 0.27
Uni-GIN 77.59 ± 2.49 89.52 ± 1.15 76.84 ± 1.25 71.55 ± 1.15 85.72 ± 0.36

Ours
AdE-GCN 82.07 ± 0.88 90.53 ± 0.46 80.74 ± 1.94 72.49 ± 0.94 87.68 ± 0.54
AdE-GAT 80.79 ± 1.32 90.41 ± 0.16 80.71 ± 0.74 71.57 ± 1.42 84.26 ± 0.25
AdE-GIN 81.71 ± 1.25 90.86 ± 0.16 79.11 ± 2.70 70.34 ± 1.56 87.88 ± 0.43

Table 2: Performance comparison (Mean accuracy % ± std) of baseline methods for node classi-
fication. Purple-shaded numbers indicate the best results and gray-shaded numbers represent the
runner-up performance.

Model Cora-CA DBLP Cora Citeseer Pubmed

MLP 71.34 ± 1.33 84.79 ± 0.18 71.34 ± 1.33 69.32 ± 1.54 86.34 ± 0.34
HGNN 81.32 ± 2.23 90.52 ± 0.14 79.59 ± 2.59 71.62 ± 0.82 82.02 ± 0.39
HCHA 80.81 ± 1.92 90.52 ± 0.26 79.62 ± 2.41 71.24 ± 1.36 82.17 ± 0.42

HyperGCN 79.08 ± 1.53 89.54 ± 2.93 78.39 ± 2.03 70.39 ± 1.09 82.43 ± 1.88
HNHN 73.41 ± 1.82 87.77 ± 0.22 72.38 ± 2.04 69.82 ± 1.93 80.72 ± 0.53
AllSet 81.00 ± 4.10 91.34 ± 0.27 78.18 ± 1.53 71.55 ± 1.41 86.87 ± 1.13

Ours 82.07 ± 0.88 90.86 ± 0.16 80.74 ± 1.94 72.49 ± 0.94 87.88 ± 0.43

gray. According to Table 1, we make the following conclusions: (i) Merely leveraging the classic
CE method to expand hypergraphs is not sufficient to depict the complex high-order relationships
among hypergraphs, as all model performances in G1 have the worst performance compared with
other groups. (ii) Other hypergraph expansion methods achieve relatively satisfactory performance
over different hypergraphs, showing their advanced ability over some hypergraphs. For instance,
LE-GIN shows excellent performance over Cora-CA, DBLP, and SE-based methods show better
performance over Cora, Citeseer, and Pubmed hypergaph datasets. (iii) Compared with all methods,
our AdE-based methods outperform all baseline methods, which shows the strong effectiveness of
AdE. Table 2 shows the accuracy performance among MLP, five HyGNNs methods, and our AdE.
The best performance is highlighted in purple, and the runner-up performance is highlighted in
gray. Based on Table 2, we find that: (i) all HyGNNs models outperform the feature-based method
MLP, showing that hypergraph structure enhances the performance for node classification tasks to
a large extent. (ii) CE-based methods, i.e., HNHN, HGNN, HCHA, and HyperGCN show compa-
rable performance over Cora-CA, Cora, and Citeseer, while SE-based method AllSet, outperforms
these CE-based methods on DBLP and Pubmed. (iii) AdE method outperforms all HyperGNNs
on Cora-CA, Cora, Citeseer, and Pubmed, and shows competitive performance over DBLP, which
again shows the superiority of our model.
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Figure 3: Performances of different model variants over DBLP, Cora, Citeseer, and Pumbed.

Ablation Study. To show the effectiveness of each component in our framework, we conduct a
set of ablation experiments over four benchmark hypergraph datasets for node classification tasks
and further analyze the contribution of each component in our framework, i.e., our GSi-Net and
Kernel function (A1), GSi-Net (A2), kernel function (A3), by removing it separately, as illustrated
in Figure 3. First, we remove the GSi-Net and kernel function from our model (A1), which means
we employ classic clique expansion to obtain the graph and feed the converted graph to GNNs for
representation learning. We conclude that our adaptive expansion method is effective enough as the
performance of A1 drops significantly on all four hypergraph datasets. Afterward, we remove GSi-
Net from our model, which means we utilize the distance-aware kernel function to assign weights to
the graph obtained via classic CE. The performance of A2 decreases obviously in all four datasets,
showing the effectiveness of the GSi-Net module. Moreover, we remove the kernel function from
our model, which means we merely employ the GSi-Net to obtain the graph while assigning the
fixed edge weights. The decline of A3 shows that the kernel function has contributed to our model.

Embedding Visualization. To further examine the effectiveness of our model intuitively, we render
the embeddings of three citation datasets generated by AdE-GIN, HyperGCN, LE-GIN, and HCHA
in Figure 4. Each unique color represents the embeddings corresponding to a specific class. Accord-
ing to Figure 4, our model shows more distinct boundaries and smaller overlapping areas compared
with other baseline methods, which again demonstrates the effectiveness of our expansion on hyper-
graph representation learning for node classification tasks.

Figure 4: Embeddings visualization for AdE-GIN, HyperGCN, LE-GIN, and HCHA over citation
hypergraphs, including Cora-CA, Cora, and Citeseer.

6 CONCLUSION

In this paper, we introduce a novel CE-based adaptive expansion method called AdE to address the
limitations of existing hypergraph expansion methods. We first introduce a novel global simulation
network called GSi-Net to choose two representative nodes for each hyperedge in an adaptive man-
ner to symbolize each hyperedge. Then we devise a distance-aware kernel function that dynamically

9
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adjusts the edge weights to ensure that nodes with similar attribute features within the corresponding
hyperedge are more likely to be connected. Afterward, we leverage graph neural networks to model
the complex interaction among nodes for downstream classification tasks. We also provide extensive
theoretical justifications and experiments over five benchmark hypergraphs to demonstrate that AdE
is rational, general, and effective, compared to classic expansion methods.
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APPENDIX

A ALGORITHM

Algorithm 1: Training Procedure of AdE
Data: HypergraphH, GSi-Net, distance-aware kernel function, and GNN encoder f(·).
Result: The adaptive weighted graph Ga and trained GNN encoder.

1 Pre-compute the distance matrix U .
2 for each epoch t do
3 FeedH into GSi-Net to generate the scaled attribute feature Xa.
4 Select representative nodes (ve− , ve+) based on Xa to symbolize the hyperedge e.
5 Compute the distance-aware edge weightW via the learnable kernel function in Eq. 3.
6 Normalize the edge weight via Eq. 4.
7 Obtain the adaptive weighted graph Ga = (V, Ea,Xa).
8 Feed weighted graph Ga into GNN encoder f(·) to generate node embedding Z via Eq. 5.
9 Optimize the GNN encoder f(·), the parameters in GSi-Net, and the parameters in

distance-aware kernel function by minimizing the cross-entropy loss L.

B COMPARISON BETWEEN EXPANSION IN HYPERGCN AND ADE

Figure 5 shows the comparison between our method AdE with the hypergraph expansion
in HyperGCN. Given a hyperedge e, HyperGCN selects two nodes following the rule:
(ie, je) = argmaxi,j∈e |Si − Sj |, where S = X · Wr with random weight matrix Wr, and
S ∈ RN . It then connects (ie, je), and each other node in hyperedge e to ie and ij , respectively,
with a fixed weight of 1

2|e|−3 , forming a subgraph on the left. However, our proposed method
AdE leverages GSi-Net to learn the weight matrix Wg = σ(W2 · ReLU(W1,Xg)) to generate
the signal S =

∑b
d=1 X:,d ⊙Wg, where S ∈ RN . AdE then finds a pair of representative nodes

(ve+ , ve−) = argmaxvi,vj∈e |Si − Sj |. Subsequently, AdE connects (ve+ , ve−), and each node
vm ∈ e, vm /∈ {ve+ , ve−} with ve+ and ve+ , respectively, with weights learned via an adaptive
kernel functionWi,j .

Next, we would like to conclude the process of AdE as follows:

1. For each hyperedge e ∈ E , AdE selects two representative nodes (ve+ , ve−) = argmaxvi,vj |Si−
Sj |, where S =

∑b
k=1 X:,k · σ(W2 · ReLU(W1 · Xg)) . The rest of nodes in hyperedge e, i.e.,

Ve
m = {vm|vm ̸= ve+ , vm ̸= ve− , vm ∈ e} are mediators.

2. For each hyperedge e ∈ E , we connect each mediator with two representative nodes ve+ and ve− ,
respectively, and further obtain the edge set Ee = {{ve+ , ve−}, {ve+ , vm}, {ve− , vm}|vm ∈ Ve

m}.
3. We compute edge weight in each edge set Ee via our designed learnable kernel functionWi,j in

Eq. 3, and normalize these edge weights with respect to hyperedges, W̄(e)
i,j =

Wi,j∑
vk,vj∈Ee

Wk,g
.

By the aforementioned steps, we obtain the weighted graph with the adaptive adjacency matrix
Aa =

∑
e∈E I[{vi, vj} ∈ Ee]W̄

(e)
i,j .

C DATA DESCRIPTION

To evaluate the effectiveness of our model, we employ five benchmark hypergraph datasets adapted
from (Yadati et al., 2019): the coauthorship networks, i.e., Cora-CA and DBLP; the cocitation
networks, i.e., Cora, Citeseer, and Pubmed. In both coauthor hypergraph datasets, documents co-
authored by an author are connected via one hyperedge. In three cocitation hypergraph datasets, all
documents referenced by a document are connected by a hyperedge. Table 3 lists the statistics of
five benchmark hypergraph datasets.
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Figure 5: Comparison between hypergraph expansion in HyperGCN and AdE.

Table 3: The statistics of benchmark hypergraph datasets for node classification tasks.

Cora-CA DBLP Cora Citeseer Pubmed

# nodes, N 2,708 41,302 2,708 3,312 19,717
# hyperedges, M 1,072 22,363 1,579 1,079 7,963
# features 1,433 1,425 1,433 3,703 500
# class 7 6 7 6 3
avg. d(e) 4.28 4.45 3.03 3.20 4.35
avg. d(v) 1.69 2.41 1.77 1.04 1.76
node homophily 0.79 0.88 0.84 0.78 0.79
hyperedge homophily 0.88 0.93 0.86 0.83 0.88

D BASELINE SETTINGS

We compare our model with four baseline hypergraph expansion methods, including clique expan-
sion (CE) based methods (G1), star expansion (SE) based methods (G2), line expansion (LE) based
methods (G3), and uni-based methods (G4). To fairly compare with baseline hypergraph expansion
methods, we leverage three GNN models, i.e., Graph Convolution Network (GCN) (Kipf & Welling,
2017), Graph Attention Network (GAT) (Veličković et al., 2018), and Graph Isomorphism Network
(GIN) (Xu et al., 2019), as backbone models. Next, we would like to introduce these baseline
methods in each group in detail.

G1 CE-based methods: We implement the clique expansion method (Sun et al., 2008) that connects
every pair of nodes within each hyperedge. Like the previous work (Chien et al., 2022), we assign
edge weights based on the degree of hyperedges connecting the node pair to obtain the weighted
graph. Besides, we further apply (row-wise) normalization on the adjacency matrix to ensure stable
and efficient feature propagation. We feed the weighted graph to two-layer GNNs, i.e., GCN, GAT,
and GIN, to learn the node embeddings for node classification.

G2 SE-based methods: We reproduce the star expansion method (Agarwal et al., 2006). SE method
creates a star-like structure, i.e., introduces a set of new node, each representing a hyperedge, and
aggregate the new node attribute features from the nodes within its corresponding hyperedge. Like-
wise, the new nodes are connected to these nodes within the hypergraph. We employ two-layer
GNNs, i.e., GCN, GAT, and GIN, on the converted graph to generate the node embeddings.

G3 LE-based methods: We implement the line expansion method proposed by (Yang et al., 2022).
LE method constructs an entirely new graph by creating a set of nodes for each incident node-
hyperedge pair in the hypergraph, and two nodes are connected when they share the same node or
hyperedge in the original hypergraph. Similarly, we feed the new graph into two-layer GCN, GAT,
and GIN for node classification.
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Table 4: Accuracy performance comparison (Mean accuracy % ± std) of weighted clique expansion
(CE) with distance-aware kernel function W and adaptive expansion (AdE) without GSi-Net on
backbone GNNs for node classification.

Dataset Expansion GCN GAT GIN

Cora
CE+kernel 79.28 ± 1.95 78.26 ± 2.07 77.74 ± 0.94

AdE\GSi-NET 79.35 ± 1.04 78.35 ± 1.84 77.59 ± 1.01

Citeseer
CE+kernel 71.98 ± 0.98 70.31 ± 1.18 69.94 ± 1.67

AdE\GSi-NET 71.42 ± 0.97 70.42 ± 1.32 69.80 ± 1.80

G4 Uni-based methods: We reproduce uni-based expansion (Huang & Yang, 2021), which con-
structs a bipartite graph with two sets of new nodes, one for nodes in the hypergraph and another
for hyperedges. Then, it leverages the pooling function to pass node attribute features to hyperedges
and utilizes GNNs to propagate hyperedge attribute features back to new nodes as the final node
embeddings. We follow the settings from their source code to reproduce the uni-based expansion.

Besides, to further exhaustively evaluate the effectiveness of our model, we conduct experiments
on MLP and five HyGNNs, including HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), Hy-
perGCN (Yadati et al., 2019), HNHN (Dong et al., 2020), and AllSet (Chien et al., 2022). MLP
primarily focused on encoding the feature of node attributes while ignoring the graph structures.
We employ two-layer MLP on attribute features to generate node representations for classification.
HGNN (Feng et al., 2019) employs the convolution operation using truncated Chebyshev polynomi-
als to generate node representations. HCHA (Bai et al., 2021) introduces hypergraph attention and
utilizes neural networks to study the node embeddings. HyperGCN leverages hypergraph Laplacian
to convert hypergraphs into weighted graphs and further feeds the weighted graph into GCN to learn
node embeddings. HNHN (Dong et al., 2020) extends HyperGCN with nonlinear activation func-
tions combined with a normalization schema that adjusts the importance of hyperedges and nodes.
AllSet (Chien et al., 2022) unifies a whole class of two-stage message-passing models with multisite
functions. We adopt the implementation of HGNN, HCHA, and HNHN from the Pytorch Geometric
Library (PyG) (Fey & Lenssen, 2019) and exactly follow the settings of HyperGCN and Allset from
their source code to reproduce the experimental results.

E COMPLEXITY ANALYSIS

In this section, we discuss the efficiency of AdE in terms of time and space complexity. Time
complexity: The time complexity for feeding the node feature matrix into GSi-Net is linear toO(N),
where N is the size of nodes. Then, selecting hyperedge representative node pairs takes O(M)
where M is the size of hyperedges. The time complexity to compute the elements in distance matrix
U and generate edges with weights takes O(E), where E =

∑
e∈E d(e). Since both O(M) and

O(N) are dominated by O(E), the total time complexity of AdE for each round is O(E). Space
complexity: The space to store the scaled node attribute feature matrix Xa takes O(Nd), where d is
the size of feature dimensions. Since we adopt a sparse representation to store the adjacency matrix
Aa, the space should be O(E). For the pre-compute distance matrix U , instead of storing it in full,
we compute the specific elements in the edge construction process, which means it takes a constant
space. Moreover, the total space complexity of storing the parameter matrix of GSi-Net and the
weight matrix in distance-aware kernel function is O(2bh + b) = O(2bh), where h is the hidden
dimension. So, the total space complexity of AdE is O(Nd+ E + 2bh), which is linear to the size
of nodes N .

F PROOF OF PROPOSITION 3

Proposition 3. Given the same selected nodes (ve− , ve+) for hyperedge e, our model AdE enhances
HyperGCN by generating more adaptive weighted graphs.

Proof Sketch. Given the same selected nodes (ve− , ve+) for hyperedge e, we first analyze the edge
weights assigned by HyperGCN. HyperGCN fixes the edge weights for all node pairs within the
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Table 5: Performance comparison (Mean accuracy % ± std ) of CEGCN, HyperGCN, and AdE over
Cora, Cora-CA, and Citesser datasets for hyperedge prediction. Purple-shaded numbers indicate the
best results of our models, and gray-shaded numbers represent the best results of baseline methods.

Model Pooling Cora Cora-CA Citeseer

CEGCN
Mean 70.38 ± 2.87 53.54 ± 2.06 74.50 ± 1.48
Sum 79.27 ± 0.36 60.38 ± 2.87 74.50 ± 1.48

HyperGCN
Mean 81.16 ± 1.51 55.51 ± 3.14 77.24 ± 1.92
Sum 81.01 ± 0.99 61.32 ± 2.71 76.51 ± 2.82

AdE
Mean 84.33 ± 0.99 56.09 ± 1.57 78.73 ± 1.98
Sum 85.53 ± 0.81 61.47 ± 1.63 77.97 ± 2.09

same hyperedge. In specific, as the size of hyperedge e is 2|e| − 3 in the converted graph, the edge
weights on any node pairs assigned by HyperGCN is (2|e| − 3)−1.

As proven in Proposition 2, our kernel function W in Eq. 3 assigns higher edge weights for node
pairs with similar attribute features while smaller edge weights for less similar node pairs. In the
worst case, the edge weightWi,j on any node pair (vi, vj) within the hyperedge e remains the same
with any arbitrary values ϵ(e). After normalizing edge weights, the edge weights on any node pairs
are W̄(e)

i,j = (2|e| − 3)−1, which is exactly the same as HyperGCN. However, our kernel function
will assign a higher edge weight if nodes vi and vj are similar. This implies thatWi,j > ϵ(e), and
W̄(e)

i,j > (2|e| − 3)−1. Therefore, we can conclude that AdE enhances HyperGCN in generating
more adaptive weighted graphs when they have the same selected nodes (ve− , ve+).

G PROOF OF PROPOSITION 4

Proposition 4. Our AdE is equivalent to weighted clique expansion in 3-uniform hypergraphs.

Proof Sketch. Given a hypergraph H = (V, E ,X ), as mentioned by (Sun et al., 2008), the weighted
graph Gc via CE can be represented by the following adjacency matrix:

Ac,(i,j) =
∑
e∈E

Hi,eHj,ewi,j , (6)

where H denotes the incident matrix, and w is a weight function that computes the weight of edges
under some criteria, e.g., wi,j = |{e|e : {vi, vj} ∈ e, e ∈ E}| (Rodriguez, 2003). Here, we use W̄(e)

i,j

in Eq. 4. As we introduced, the adjacency matrix generated by AdE is Aa,(i,j) =
∑

e∈E I [{vi, vj} ∈
Ee]W̄(e)

i,j . Consider a 3-uniform hypergraph where each hyperedge contains three nodes. AdE lever-
ages GSi-Net to choose two nodes as ve+ and ve− , with the remaining one as the mediator. Edges
then are generated to connect any two nodes within the corresponding hyperedge. Since there is
only one mediator for each hyperedge in a 3-unfirm hypergraph, AdE will generate the same graph
structure. Therefore, the indicator function I [{vi, vj} ∈ Ee] = Hi,eHj,e. As the weight matrix w in
Eq. 6 can be any form, we can replace w with W̄ . Therefore, our designed method AdE is equivalent
to the weighted clique expansion in a 3-uniform hypergraph.

To further justify the Proposition 4, we conduct another set of experiments on CE and AdE among
datasets Cora and Citeseer as these two hypergraphs are approximately 3-uniform hypergraphs since
the average node degree d(v) is close to 3 (as listed in Table 3). The experimental performance of
CE+kernel and AdE without GSi-Net is listed in Table 4. To make it clear, we apply our distance-
aware kernel function to CE and remove the GSi-NET in AdE for a fair comparison. According to
this table, we can see that both methods have equivalent performance with the same settings over
two datasets, which further demonstrates our justification of Proposition 4.
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Table 6: Performance comparison (Mean F1 score ± std) between IRMM-P, IRMM-GCN, CE-
GCN, and AdE over Cora, Cora-CA, and Citesser. Purple-shaded numbers indicate the best results
of our models, and gray-shaded numbers represent the best results of baseline methods.

Model Cora Cora-CA Citeseer

IRMM-P 39.66 ± - N/A 44.10 ± -

IRMM-GCN 49.13 ± 0.54 48.36 ± 0.43 51.69 ± 0.71

CE-GCN 77.24 ± 1.32 77.99 ± 0.85 70.44 ± 0.70

AdE 80.74 ± 1.94 82.07± 0.88 72.49 ± 0.94

H ADE OVER HYPEREDGE PREDICTION TASK

To further demonstrate the strong applicability of AdE, we apply AdE for the hyperedge link pre-
diction task. We follow the work NHP (Yadati et al., 2020) to conduct hyperedge prediction tasks.
Specifically, after we generate a weighted graph via AdE and obtain learned embeddings from graph
neural networks, we employ a hyperlink scoring layer from NHP:

Ie = σ(W · g({hv}v∈e) + b), (7)

where W ∈ R1×d is a learnable weight matrix, g(·) is a pooling function, e.g., mean pooling and
sum pooling. As mentioned by NHP, the score Ie for hyperedge e needs to be higher than that for
any set of nodes that does not form a hyperedge in the hypergraph. Therefore, the objective function
is formulated as follows:

L =
1

|E|
∑
e∈E

Λ((
1

|F|
∑
f∈F

If )− Ie), (8)

where F is a set of sampled hyperedges, and If is the score of the sampled hyperedge f ∈ F . Here,
Λ(·) is the logistic function, i.e., Λ(x) = log(1 + ex). The loss L tries to maximize the number
of hyperedge scores (in E) that are higher than the average score of the sampled hyperedges in F .
A more detailed discussion is provided in NHP (Yadati et al., 2020). For experiments, we follow
the same settings in NHP, i.e., sample a set of |E| hyperedges, denoted as F , such that the average
degree of F approximately equals to the average degree of E , and each newly generated hyperedge
does not overlap with the original hyperedge set E . Afterward, we concatenate hyperedge sets F
and E to obtain a new hypergraph G′ = (V, E ′,X ). The hyperedges E ′ are randomly divided into
training, validation, and test sets, with ratios of 50%, 25%, and 25%, respectively. We feed the new
hypergraph with training hyperedges into AdE, graph neural networks, and hyperlink score layer
to compute scores for each hyperedge and optimize the model via Eq. 8. Additionally, we conduct
each method five times with 500 epochs and report average accuracy with standard deviation.

The result of CEGCN, HyperGCN, and AdE over Cora, Cora-CA, and Citesser datasets is
listed in Table 5. We conduct experiments on two pooling functions, i.e., mean and sum. According
to Table 5, our method AdE outperforms CEGCN and HyperGCN in all three datasets.

I COMPARISON WITH METHOD ABOUT NODE-DEGREE PRESERVING
HYPERGRAPH PROJECTION.

To validate whether the node-degree preserving projection methods effectively convert hypergraphs
into graphs, we then discuss one existing method, IRMM (Kumar et al., 2020), and conduct ex-
periments with IRMM over Cora, Cora-CA, and Citeseer datasets. Specifically, according to the
Algorithm 1 listed in IRMM (Kumar et al., 2020),

1. We first initialize a hyperedge weight matrix W .
2. We compute a reduced adjacency matrix via the equation: A = HW (De− I)−1HT , and zero out

the diagonal in A. Here, H is the hypergraph incidence matrix, De is the node degree matrix, and
I is the identity matrix.

17



Under review as a conference paper at ICLR 2024

3. The reduced adjacency matrix A is fed into the Louvain function (Blondel et al., 2008) to find
clusters.

4. To evaluate with ground truth, we follow the settings discussed in IRMM, i.e., leverage agglom-
erative clustering (Ding & He, 2002) on top of clusters obtained by the Louvain function.

5. For each hyperedge e, we count the number k(e)i of nodes belong to both hyperedge e and cluster
i, i.e., k(e)i = |e ∩ Ci|, where Ci denotes to cluster i.

6. For each hyperedge e, we update hyperedge weight matrix with respect to hyperedge e as follows:
We,: ← 0.5(We,: + w′

e), where w′
e = 1

m

∑c
i=1

1

k
(e)
i +1

(δ(e) + c). Here, m is the number of

hyperedges, δ(e) is the degree of hyperedge e, and c is the number of clusters.
7. We repeat steps 2-6 until the hyperedge weight matrix converges.

To evaluate the performance of the hypergraph reduction method IRMM, we feed the generated
adjacency matrix A into graph neural networks, e.g., GCN, and train graph neural networks with
ground truth labels (node labels). Here, we denote IRNN-GCN for the setting. Mention that IRMM
is an unsupervised method. In order to compare the IRMM with existing methods in our work,
we propose IRNN-GCN for fair comparisons. The results of IRMM-GCN, CE-GCN, and AdE are
listed in Table 6. Besides, we also report the result of IRMM from their original paper (Kumar
et al., 2020), denoted as IRMM-P. Mention that IRMM-P does not report the standard deviation of
performance and the performance for the Cora-CA dataset. According to Table 6, AdE outperforms
the other baselines, including IRMM-GCN and IRMM-P. IRMM variants do not show compatible
performance with CE-GCN, and AdE. The possible reason is that IRMM tries to maximize the mod-
ularity among the hypergraphs in unsupervised settings. But we do think the node-degree preserving
hypergraph projection can be the future work about how to learn effective node-degree preserving
hypergraph during hypergraph expansion.

J INTUITIVE EXAMPLE ABOUT ADE IMPLEMENTATION

In this section, to make it clearer, we provide an intuitive example about AdE implement in real-
world scenarios. Suppose we have a hyperedge e that four users (A, B, C, and D) have interests
in photographs. Node A is interested in landscape photography, Node B enjoys automotive and
landscape photography, Node C is interested in automotive photography, and Node D likes food
photography. Based on the above scenario, classic methods, i.e., clique expansion, will generate an
edge set Ee ={(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)}. However, Nodes A and C do not share
any interests, and they are supposed to be disconnected or connected with very small edge weights.
By contrast, our AdE can professionally handle real-world scenarios as follows:

1. AdE first selects two representative nodes with the largest distance within the hyperedge. Let us
say that nodes B and D are selected as the representative nodes as their styles are very dissimilar,
meaning they have the longest distance in the attribute space.

2. We connect the rest of the nodes (i.e., A and C) with the two representative nodes, respectively,
and we further obtain the edge set Ee = {(B, D), (B, A), (B, C), (D, A), (D, C)}. Nodes A and
C are not connected in Ee, as A (landscape photography) and C (automotive photography) do not
have the same interests.

3. With the edge set, we learn to assign the adaptive distance-aware weights to all edges in Ee. We
believe that the edge weight between A and D is less than the edge weight between A and B. With
the shared interest (landscape photography) between A and B, the distance between A and B is
smaller than the distance between A and D. So, the edge weight between A and D is smaller as
our distance-aware kernel function tends to assign smaller weights for dissimilar node pairs.

Therefore, AdE first generates a subgraph for the hyperedge e, with the edge set Ee = {(B, D), (B,
A), (B, C), (D, A), (D, C)}. Mention that, as AdE learns to select representative nodes during model
training for certain downstream tasks, the built subgraph is also adaptive with updated distance-
aware weights.
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