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Abstract

To make accurate predictions, understand mech-
anisms, and design interventions in systems of
many variables, we wish to learn causal graphs
from large scale data. Unfortunately the space of
all possible causal graphs is enormous so scalably
and accurately searching for the best fit to the data
is a challenge. In principle we could substantially
decrease the search space, or learn the graph en-
tirely, by testing the conditional independence of
variables. However, deciding if two variables are
adjacent in a causal graph may require an expo-
nential number of tests. Here we build a scalable
and flexible method to evaluate if two variables
are adjacent in a causal graph, the Differentiable
Adjacency Test (DAT). DAT replaces an exponen-
tial number of tests with a provably equivalent
relaxed problem. It then solves this problem by
training two neural networks. We build a graph
learning method based on DAT, DAT-Graph, that
can also learn from data with interventions. DAT-
Graph can learn graphs of 1000 variables with
state of the art accuracy. Using the graph learned
by DAT-Graph, we also build models that make
much more accurate predictions of the effects of
interventions on large scale RNA sequencing data.

1. Introduction

Large scale studies have recently collected hundreds of thou-
sands of measurements of thousands of variables and in-
terventions across genetics, microbiology, and healthcare
(Van Hout et al., 2020; Regev et al., 2017; Franzosa et al.,
2019; Geiger-Schuller et al., 2023; Replogle et al., 2022;
Dixit et al., 2016). An algorithm that leverages this data to
learn cause and effect must scale to many measurements
and variables, flexibly accommodate complex interactions
between variables, and make reliable predictions in realistic
and large scale settings.
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Modern state-of-the-art algorithms frame learning causal
relationships as a model selection problem (Chickering,
2002; van de Geer & Biihlmann, 2013). Each model corre-
sponds to a directed acyclic graph representing which vari-
ables cause which others. Complex relationships between
variables are then modelled using flexible neural networks
(Lachapelle et al., 2019; Zheng et al., 2020). The central
practical challenge of this approach is the model search,
where one needs to explicitly search through the enormous
space of all directed acyclic graphs. Recently, a number
of gradient-based search methods have scaled this proce-
dure to data of large complex systems (Zheng et al., 2018;
Lachapelle et al., 2019; Zheng et al., 2020; Nazaret et al.,
2023). However, these heuristic search procedures can be
unstable in practice and can be unreliable even in simple
settings (Wei et al., 2020; Nazaret et al., 2023; Deng et al.,
2023). The model search also becomes exponentially harder
as the number of variables increases.

To make more accurate predictions at scale we can shrink
the search space, or avoid searching by learning the graph
entirely, by taking the alternative approach of many classi-
cal graph learning algorithms. These approaches test the
data for conditional independence relationships, and then
exclude the corresponding edges from the graph (Spirtes
et al., 1993). Indeed recently, by reducing the model search
space with some limited testing, a gradient-based model
search strategy demonstrated large gains in accuracy on data
of large complex systems (Nazaret et al., 2023). And his-
torically, by reducing the search space by testing as much
as possible before performing model search, classical non-
flexible “hybrid” causal models achieved state-of-the-art
accuracy learning from data of simple systems (Tsamardi-
nos et al., 2006; Biihlmann et al., 2014).

Unfortunately, classical testing-based procedures struggle
to scalably and reliably learn from data of large complex
systems. A particularly informative test, and the central step
in virtually all classical testing-based procedures, is eval-
uating if two variables are immediate causes or effects of
each other — that is, if they are adjacent in the causal graph
(Spirtes et al., 1993; Tsamardinos et al., 2006). Evaluating
this relationship for a pair of variables involves searching for
a set of other variables that renders them conditionally in-
dependent (Fig. 1(a)). For each pair this search can involve
an exponential number of tests. Because of the enormous
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Figure 1. Our Differentiable Adjacency Test (DAT) relaxes a
discrete search requiring exponentially many tests (a) into a
differentiable search to solve an optimization problem (b).

number of tests, and the particularly large computational
cost of flexible conditional independence tests (Zhang et al.,
2011; Sen et al., 2017; Berrett et al., 2019; Bellot & van der
Schaar, 2019), this procedure does not scale to data of large
complex systems. Furthermore, because realistic data can
include many spurious borderline conditional independence
relations — so-called “violations of faithfulness” — test-
ing for adjacency can be unreliable even in simple settings
(Uhler et al., 2012; Andersen, 2013).

Here we develop a testing-based graph learning proce-
dure, DAT-Graph, that can scalably, flexibly, and reliably
learn cause and effect from data of large and complex sys-
tems. DAT-Graph is centred around a method for evaluating
whether two variables are adjacent in the causal graph, DAT.
To do this flexibly and scalably, DAT replaces performing
an exponential number of tests (Fig. 1(a)) with optimizing
a single differentiable objective (Fig. 1(b)). We build DAT
carefully so that the testing and optimization problems are
provably equivalent. DAT-Graph learns the graph in a way
that is reliable even when there are some violations of faith-
fulness; in particular, since DAT is scalable, DAT-Graph
can evaluate the adjacency of every pair of variables with
two complementary tests in a way that is too computation-
ally expensive for previous methods. Empirically, we show
that DAT-Graph is able to easily scale to learn on real and
synthetic data with 103 variables and 10* observations. We
show DAT-Graph learns large sparse causal graphs more
accurately than state of the art gradient-based model selec-
tion procedures with and without interventions. We also use
DAT-Graph to reduce the search space of model selection
procedures to build even more accurate hybrid models. We
show that these hybrid models accurately predict the effects
of interventions on large scale RNA sequencing data.

Our code is available at https://github.com/
AlanNawzadAmin/DAT-graph/.

2. Related work

There is an enormous history of methods to learn graphs in
general. We give a full review of these methods in Section A.

Efforts to build testing-based graph learning procedures for
data of large and complex systems have focused on building
more flexible conditional independence tests using kernels
(Fukumizu et al., 2007; Zhang et al., 2011; Pogodin et al.,
2022), simulation of conditional distributions (Doran et al.,
2014; Sen et al., 2017; Berrett et al., 2019; Bellot & van der
Schaar, 2019), or a different strategy (Shah & Peters, 2020;
Polo et al., 2023; Laumann et al., 2023); or building more
scalable tests (Strobl et al., 2019; Runge, 2018) or reducing
the number of tests by performing them in a clever order
(Margaritis & Thrun, 1999; Mokhtarian et al., 2020). While
these methods are accurate at small scale (Pogodin et al.,
2022), they unfortunately cannot scale to more than 100
variables. DAT instead replaces an exponential number of
tests with an equivalent relaxed problem.

The relaxed problem DAT considers is equivalent to the
problem considered in Invariant Risk Minimization (IRM)
(Arjovsky et al., 2019) when one of the variables is a dis-
crete environment variable. DAT however can accommodate
continuous variables. DAT also diverges strongly from IRM
methodologically so that the answer to the relaxed problem
is provably identical to the initial problem.

3. Background

We wish to learn causal relationships between N real ran-
dom variables X', ..., X~. We model cause and effect
relationships as functional relationships; that is, if we call
Pa(X™) the direct causes of the variable X" then we as-
sume there is some function h,, such that

X" = h'rL (67“ (Xm)mepa(Xn)) (1)

where (e,,)"_; are iid random variables independent from
each other and X'V, We represent causal relations in a
graph G with nodes X'V where there is a directed edge
from X to X™ if X" € Pa(X™), that is, each variable
X™ is caused by its parents in G, Pag(X™). We assume
that there are no cycles in this graph.

Now we wish to recover the graph G from some observa-
tions X1V, ..., X5V, We assume the observations come
iid from some distribution p, and defer observations with
intervened variables until Section 6; we call this the “purely
observational” setting. First note that in this setting the
graph G is only identifiable up to an equivalence class (Pearl,
2010). However, the skeleton of the graph — a graph in
which two nodes are connected by an undirected edge if
they are adjacent in G — is identifiable (Pearl, 2010), and in
many cases we can distinguish cause and effect for almost
all adjacent variables in G (Katz et al., 2019). Our goal is
to learn a member of the equivalence class of G.

The causal relationships in Eqn 1 necessarily imply observ-
able conditional independence relationships. If the variables
XN follow Eqn 1 then it must be the case that X", when
conditioned on its parents {X™},,cpa(xn), is indepen-
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dent of all nodes other than its decendents in G, Deg(X™):
X" L {Xm}m€DeG(X") {Xm}mEPaG(X")- )

These relationships in turn necessarily imply that any two
sets of nodes A, B C XV that are d-separated in G by a
third set of nodes C C XV are conditionally independent
A 1l B|C (Geigeretal., 1990) (see Spirtes et al. (1993) for
areview of d-separation). In the generic case, these are all
of the conditional independence relationships of the nodes
X 5N meaning that p is faithful to the graph G (Geiger
et al., 1990; Uhler et al., 2012).

Definition 3.1. A distribution p over XV is faithful to
a graph G if for any three disjoint sets A, B,C C X1V,
A 1l B | Cif and only if C d-separates A and B in G.

Our goal is to look for these conditional independence rela-
tionships and thereby learn about the topology of the causal
graph. Note however that even when p is faithful to a graph
G, there are in practice many subsets A, B, C that nearly
violate faithfulness — that is, C' may not d-separate A and B
but A is “almost” independent of B when conditioned on C
(Uhler et al., 2012; Andersen, 2013). Therefore, to build a
reliable method we would like to be robust to the presence
of a few near violations of faithfulness.

A crucial observation is that two non-adjacent nodes in
a directed acyclic graph can always be d-separated by
some other set of nodes, while adjacent nodes can never
be d-separated. Thus if p is faithful to G then two nodes
X™ X™ are adjacent if and only if there is no other set S C
{1,...,N} \ {n,m} such that X" 1l X™ | {X*}res.
Thus we can learn the skeleton of G if we had a method to
solve what we call the separating set selection problem.

Problem 3.2. (Separating set selection Fig. 1(a)) Given
a set of real random variables X,Y, Z1, ..., Zy, is there a
subset S C {1,..., M} suchthat X I Y|{Z,,}mes?

If {Z,,}mes is any subset such that X 1 Y|{Z,,}mes
then we call it a separating set of X, Y": SepSet(X,Y) =
{Zm }mes- If pis faithful to G, then if we have the skeleton
of G and SepSet(X™, X™) for any pair of nonadjacent
nodes X™, X™ then we can determine the equivalence class
of G according to a set of rules (Spirtes et al., 1993). Thus,
to learn GG from data of large complex systems all we need
is a scalable method to solve the separating set selection
problem that can flexibly represent complex relationships
between X, Y, Z1,..., Zp,.

4. The differentiable adjacency test (DAT)

In this section we build a scalable, flexible, and reliable
method to solve the separating set selection problem. In Sec-
tion 4.1 we first relax the separating set selection problem
to a differentiable problem — the separating representation
search problem. We prove conditions under which the re-
laxed problem answers the separating set selection problem.
In Section 4.2 we prove that the separating set selection

problem is NP-Hard so we unfortunately cannot guarantee
that there are not cases where it is challenging to answer the
relaxed problem. Nevertheless, in Section 4.3 we build the
Differentiable Adjacency Test (DAT), a practical method to
efficiently approximately answer the separating represen-
tation search problem using neural networks to represent
complex relations between variables. Finally in Section 4.4
we show the DAT solves the separating set problem as ac-
curately as a classical testing approach while being orders
of magnitude faster. Throughout we use the term “testing”
in the informal sense of a decision rule, without implying
validity or coverage.

4.1. Relaxing the discrete search

The computational challenge of the separating set selec-
tion problem is the discrete search over all 2 subsets of
{1,..., M}. We can relax the problem by replacing a search
over subsets of Z;.); with a search for a representation
Ty~ (Z1.0) where {ry }yew is a differentiably parameter-
ized family of functions that have domain RM.

Problem 4.1. (Separating representation search
Fig. 1(b)) Given a set of real random variables
XY, Z1,...,Zy and a class of possibly random functions
{ry}ypew,isthereatp* € Usuchthat X 1L Y|ry«(Zi.ar)?

Indeed, the separating representation search problem is a
natural relaxation of the separating set selection problem
that has come up in other causal inference settings in the
case that Y is a discrete “environment” variable (Arjovsky
et al., 2019; Shi et al., 2020).

In our setting we need to pick our representations {7y }yew
so that 1) there is a separating representation if and only
if there is a separating set and 2) we can get a separating
set SepSet(X,Y) from the separating representation pa-
rameter 1*. Unfortunately, there are seemingly reasonable
choices in simple situations in which these desiderata are
not fulfilled.

Example 4.2. (Existence of a separating representation
but no separating set) There are jointly Gaussian vari-
ables X, Y, Z1, Z5 that are faithful to some graph such that
XU YNZy} mes for any S C {1,2} but if {ry}tyew
is the space of linear functions, there is a ¥* such that
X 1 Y|7’¢* (ZLQ).

Proof. In Appendix E.3. O

Unfortunately, by relaxing the problem, we have in effect
increased the number of opportunities for there to be a viola-
tion of faithfulness from an exponential number — checking
X U Y|{Z}mes for all subsets S — to an infinite number
— checking X 1L Y|ry(Z,,)M_, for all 9.

To build a method with our desiderata, our strategy will
be to restrict what {ry },, can represent. We choose 7, to
only represent “soft” subsets of Z.;; where each variable
Zpy, 1s softly included in the separating set by mixing it
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with independent noise. Let Ny, ..
pendently from distributions with densities f1, ...

V= (Y1,

variable

., N be drawn inde-

, far. For
,¥ar) with ¢, € [0,1], we define the noised

Zw,m = ¢mZm + (1 - ¢m)Nm

and the representation r(Z1.p1) = Zw,l: M- By mixing
Z., with an independent random variable [V,,, we lose infor-
mation about Z,,. 1,,, controls how much information we
observe about Z,,; when v,,, = 0 we do not observe Z,,
and when ,,, = 1 we observe Z,, fully.

With this choice, one can still design f1,..., fas to get
disagreeing answers between the separating set selection
and separating representation search problems (see Exam-
ple E.4). However we prove that if we pick f1,..., fas to
have thick tails then the answer to the two problems will
be identical and we can recover a separating set from a
separating representation as desired.

Theorem 4.3. (Proof in Appendix E.4) Assume Assump-
tion E.6 (pick f,, to have thicker tails than p). The separat-
ing set selection problem and the separating representation
search problem have the same answer. If Zd,»« ,1:M LS a sepa-
rating representation then {Zm}d,:n:l is a separating set.

4.2. Hardness of adjacency testing

In Thm. 4.3 we showed that if we find a separating repre-
sentation with parameter ¢)* then we obtain a separating
set. Can we build an efficient method in practice that is
guaranteed to find 1)*? We answer this question negatively.

Proposition 4.4. (Proof in Appendix E.1) Even when re-
stricted to the case where X,Y, Zy,...,Zy are jointly
Gaussian with known non-singular covariance matrix, the
separating set selection problem is NP-Hard.

There may therefore be cases where, by failing to find ¥*,
we may incorrectly determine that two variables are adjacent
in G. Nevertheless, we aim to provide a method that gives
accurate approximate solutions with reasonable compute.

4.3. Differentiable Adjacency Test

We now build a method to search for a separating representa-
tion in practice. Our method, DAT, will perform this search
by minimizing a differentiable objective.

To replace the separating representation search problem with
a differentiable optimization problem, we need to replace
X 1L Y|Z~¢,, where we write Z,/, = Zw,le, with a differen-
tiable objective L(v)) that reaches its minimum if and only
if X 1L Y|Zy. While a number of flexible measures of
conditional independence exist (Zhang et al., 2011; Pogodin
et al., 2022; Bellot & van der Schaar, 2019), we pick L(1))
to be the “variance of X explained by Y when conditioned
on Z/’ as it is a well studied measure of conditional inde-
pendence (Zhang & Janson, 2020; Polo et al., 2023) that
is easy to optimize in practice and allows us to model the

relationships between variables with scalable and flexible
neural networks:

EV(X;Y|Z,) =
E[X — E[X|Z,)* - E[X - BIX|Y, Zy]*.
This quantity is always non-negative and if X 1l Y'|Z then
it is 0. On the other hand, if EV(T'(X);Y|Z,) = 0 for
all bounded functions 7', then X 1l Y|Z. We increase the
ability of this metric to detect that X )X Y'|Z, by evaluat-

ing the variance explained of more than one statistic of X,
T (X),...,Tc(X),

C
> EV(To(X); Y| Zy). 3)
c=1

In experiments we choose C' = 2 and 11, T as the first and
second moments of X. For clarity we write the rest of the
sectionasif C =1land 77 (X) = X.

The variance explained cannot be exactly calculated, so we
must approximate it. We first approximate E[X |Z¢] with
a neural network gg, : RM — R by training it to minimize
the objective 9
Li(0) = B | X = g0,(Zy)] -

Then, calling the residue R = X — E[X|Zy] ~ X —
9o, (Zy), we approximate E[R|Y, Z] with a neural network
go, : RM*! _, R by training it to minimize the objective

Lo(02) = B [X — g0, (Zy) ~ 90, (V. Z,)]

Finally we optimize ) to minimize the approximate variance
explained,

EV(X;Y|Z,) =
=E[X — E[X|Zy]]* - E[R — E[R|Y, Z])?
%E[X — 96, (Zd))]Q - E[X — 96, (Zlﬁ) - 992(Y7 Zib)]Q

=Lpat(¥).

We call this optimization problem the Differentiable Ad-
jacency Test (DAT). We optimize by gradient descent,
alternately updating 6,65,v by taking gradient steps
Vg,L1,Vg,La, VyLpar and approximating the expecta-
tions with mini-batches of the data. For every data point
in a mini-batch we draw independent noise Ny, ..., Ny
to calculate Zw. Training can be framed as a two player
game between {61, 62} and 1, which is not guaranteed to
converge to an optimum. In practice however, this is not a
challenging optimization problem as the number of variables
of one of the players ;.5 is small — we do not observe
the challenges with optimizing multiplayer games such as
cycles or instability.

Once we have finished training 07, 65, ¢*, in theory we need
to evaluate if LpaT(1*) = 0 and choose SepSet(X,Y) =
{Z .}y, =1 if so. In practice, we first choose two thresh-
olds 71,72 > 0, and we use a mini-batch of data to get an
approximation of the variance explained Lp AT (®*). Then
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we decide X 1L Y|Z,~ if and only if Lpar(¢*) < 1 and
we set SepSet(X,Y) = {Zn }p,u>m0

4.4. DAT is accurate and efficient in practice

Before using the DAT to learn an entire graph, we evaluate
its ability to solve the separating set selection problem. We
compare the DAT with the classical method to solve the sep-
arating set selection problem: test whether X is independent
of Y given S for each subset S of Z;.); and conclude that
there is a separating set if the maximum of a test statistic
across all tests is above a threshold; then infer that the S for
which the test statistic is maximized is a separating set.

We generated small Erdos-Renyi random graphs such that
each node had an average of one parent and selected X
and Y to be two random nodes and Z1.,s to be all other
nodes. We then generated 10000 data points from the graph
with two layer neural networks as functional relationships
as described in Section 7. We consider five conditional in-
dependence tests: RCoT (Strobl et al., 2019): a scalable
and flexible kernel test for conditional independence. GCIT
(Bellot & van der Schaar, 2019): A flexible simulation-
based conditional independence testing method; it learns
a conditional distribution by training a GAN. CCIT (Sen
et al., 2017): A scalable and flexible simulation based inde-
pendence testing method; it simulates a conditional distribu-
tion by a nearest-neighbors search. CMIT (Runge, 2018):
A flexible method based on estimating conditional mutual
information by looking for nearest neighbors. AT _discrete:
A method to test the conditional independence of two vari-
ables by estimating the conditional variance explained; it is
exactly DAT without a differentiable search. Due to com-
pute limitations, we were only able to run GCIT, CMIT, and
AT _discrete to M = 3, while CCIT could scale to M = 7
and RCoT to M = 11.

We benchmark the accuracy of each method in classifying
adjacent variables by the Area Under the receiver operator
Curve (AUC) of the test statistic. In Fig. 2(a) (left), we show
that DAT is nearly as accurate as state of the art conditional
independence tests in determining if two variables are adja-
cent. In Fig. 2(a) (right) we see that DAT also identifies a
separating set nearly as accurately as classical methods.

In Fig. 2(b) (left) we show that all testing methods scale
exponentially in compute with M while DAT does not'.
Finally we show that the scalability of DAT enables us to
accurately learn large graphs. We extrapolate the exponen-
tial scaling of Fig. 2(b) (right) of the most scalable test,
RCoT, and project how much time it would take to learn
large graphs swapping DAT with RCoT in our experiments

'In theory DAT scales linearly with M with a large constant
overhead for data transfers to the GPU; for small M however, DAT
can parallelized testing many edges at once on a GPU and reduce
the computation per edge.
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Figure 2. DAT enables learning large graphs by solving the
separating set selection problem accurately and efficiently. (a)
We plot how accurately each method determines if two variables
are adjacent (AUC) and how often it corretly identifies a separating
set for two non-adjacent variables (P(Separating)) against number
of variables (M). (b) We plot the time of running each method
against number of variables (M) and the time it would take to use
each method to learn a large graph against the size of a graph (V).
We plot the mean and standard error across 3 replicates.

in Section 7 (here M could reach 30). We see in Fig. 2(b)
(right) that it would take weeks or years to learn graphs
with many variables /N with classical tests while DAT took
minutes to hours in our experiments.

S. Learning a graph with DAT (DAT-Graph)

In this section we use DAT to build a scalable, flexible, and
reliable method to learn a causal graph G from data of large,
complex systems. We call this method DAT-Graph.

In principle we could learn the graph by testing the adja-
cency of every pair of nodes using DAT. This would involve
N2 tests, each of which involves a search over N — 2 vari-
ables. This strategy is clearly not scalable, and is also unre-
liable under possible near violations of faithfulness. Instead
we use a strategy employed by a large number of hybrid and
testing-based graph-learning methods to first efficiently and
reliably exclude a large number of edges from G (Margaritis
& Thrun, 1999; Mokhtarian et al., 2020; Biihlmann et al.,
2014; Nazaret et al., 2023). The idea is to try and predict the
distribution of each variable X™ using all other variables —
if we then determine that a variable X" is not useful in pre-
dicting X™ we can conclude that it cannot be connected to
X™in G. Then we only need to solve the separating set se-
lection problem to test and orient the substantially reduced
number of remaining edges. This first step also reduces
the search space of each separating set selection problem
(Margaritis & Thrun, 1999; Mokhtarian et al., 2020).
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However following previous methods by performing just
these tests still leaves DAT-Graph unreliable when there
are near violations of faithfulness. To greatly increase its
reliability in theory and in practice, unlike previous methods,
DAT-Graph evaluates the adjacency of each pair of nodes by
solving two separating set selection problems with different
search spaces; it is able to perform both tests efficiently due
to the scalability of DAT.

In Section 5.1 we describe how we learn the moral graph
— the graph that represents which variables are useful for
predicting which others. In Section 5.2 we describe how
learning the moral graph reduces the search space for each
adjacency test; we also describe how we perform DAT twice
to test the adjacency of each pair of variables. In Section 5.3
we discuss the computational complexity of DAT-Graph.

Once we have learned the skeleton of (G, we need to orient its
edges. We review how to do so using the separating sets we
have calculated from DAT and standard rules from classical
testing methods (Spirtes et al., 1993) in Appendix B.1.

5.1. Learning the moral graph

The first step in DAT-Graph is to exclude edges between
variables that are not useful in predicting each other. To do
so, we must identify, for each variable X, the sparsest set
in {X™ },,, that can predict the distribution of X™. This
sparsest set is known as the Markov blanket of X ™.

Definition 5.1. A Markov blanket of a variable X" is a
smallest subset MB(X™) C {X™},,+, that makes X"
conditionally independent of all other variables

X AL A{X™ pnagn \ MB(X™) [ MB(X™).

The moral graph is the graph with an undirected edge be-
tween variables X™ and X" if X™ € MB(X™). When p is
faithful, the Markov blanket of a variable X ™ is a unique set
consisting of all the variables that are adjacent to X in G
as well as “spouses” of X™ — variables that are not adjacent
to X™ in G but share a direct child with X" (Spirtes et al.,
1993). Thus edges that are not in the moral graph also are
also not in the skeleton of GG. If we can learn the moral
graph we can therefore exclude many edges from G.

Schmidt et al. (2007), Biihlmann et al. (2014), and Nazaret
et al. (2023) have shown that the Markov blanket of X"
is the solution to any sparse variable selection procedure.
To solve sparse variable selection there are an enormous
number of scalable, flexible, and reliable algorithms. We
adapt a variable selection method from Nazaret et al. (2023)
that allows us to flexibly model causal relationships using
neural networks. For each n we predict X” using all other
variables { X" },,-,, using a neural network gy, : RV
R. We encourage g, to predict the expectation of X" using
a sparse set of variables in {X""},,,4, by L1-regularizing
the weights of its first layer. In particular, calling W™ the

first layer weights of the network, gy, is trained to minimize
the objective

La(0) = BIX" — g6, (X" )mtn)” + A (W)
iy J

2,
After training gy, we can get a measure of the importance
of X" in predicting X™ as axn xm =y, (W, )% To
get a moral graph in practice, we pick a threshold 73 and
connect X™ and X™ if axn xm + axm xn» > 13, thatis,
if X™ is predicted to be in MB(X™) or X™ is predicted to
be in MB(X™").

It is possible that gg, may erroneously ignore a variable
X™ which affects X™ without changing its expectation. To
avoid this, as in Section 4.3, we can train gg, to predict
the expectation of multiple statistics 77 (X"), ..., Tc(X™).
Again, in experiments we choose C' = 2 and 71, 7% as the
first and second moments of X.

5.2. Testing adjacency with two DATSs

With knowledge of the moral graph, we can reduce the
number of adjacency tests we must perform to learn the
skeleton of G. We can also reduce the search space for
each test we perform: the following proposition adapted
from from Margaritis & Thrun (1999) states that to test if
two variables are adjacent in G, instead of searching for a
separating set in the set of all other variables, we can restrict
our search to the Markov blanket of one of the variables.

Proposition 5.2. (Margaritis & Thrun, 1999) (Proof in Ap-
pendix E.2) Assume p is faithful. X" and X™ are adjacent
in Gifand only X" I X™ | U for any U C MB(X™).

Now, to test if X is adjacent to X™ we can choose to
search for a separating set U € MB(X™) \ {X™} or for
a separating set U C MB(X™) \ {X"}. Classical testing
methods solve the separating set selection problem by test-
ing every subset of the search space; thus these methods
saved a large amount of compute by learning the moral
graph and then only solving the separating set selection
problem corresponding to the smaller Markov boundary
(Margaritis & Thrun, 1999; Mokhtarian et al., 2020).

DAT does not scale poorly with the size of the search space,
so DAT-Graph instead performs both tests and concludes
that X™ adjacent to X™ if either of the tests states they are
adjacent. Performing two tests increases the reliability of the
adjacency test: there may be some subset U C MB(X™) \
{X™} that violates faithfulness with X™ )X’ X™|U but such
that U is not a subset of MB(X™) \ {X"}.

Example 5.3. (Performing two tests increases reliability)
(Proof in Appendix E.3) There are four jointly Gaussian
random variables that are not faithful such that DAT-Graph
recovers the correct graph.

Performing two tests also follows the idea of other methods
that perform multiple tests that are redundant in the faithful
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case to be reliable when there are violations of faithfulness
(Spirtes & Zhang, 2014; Marx et al., 2021).

In practice, we take the statistics of the two tests from
Section 4.3, L} (¢*) and L1 (*), and decide that
X™ is adjacent to X™ if either test statistic is large:

Lipar(¥*)* + Lar (*)? > .
5.3. Computational cost of DAT-Graph

DAT-Graph has two steps. In its first step it learns the
moral graph. This in principle scales quadratically with
N, but in practice can scale to N = 10* in hours (Nazaret
et al., 2023). In the second step, DAT-Graph performs two
adjacency tests for every edge in the moral graph. If s is the
average number of parents in the graph G then the Markov
blanket of a variable X™ often has approximately O(s?)
edges. Thus DAT-Graph needs to perform O(Ns?) tests
which each involve a search over O(s?) variables. Thus in
principle, this step of DAT-Graph scales linearly with NV and
is much faster on sparser graphs.

6. Learning from data with interventions

In the purely observational setting, the graph G can only be
determined up to an equivalence class — for some variables,
we cannot distinguish which is the cause and which is the
effect. To learn cause and effect for these variables, we
can collect data in an experiment where we intervene on
a variable (Hauser & Biihlmann, 2012). For example, we
may knock down a gene in a cell. We can then distinguish
between cause and effect as intervening on a cause should
affect the distribution of an effect, but not vise-versa.

In this section we extend DAT-Graph to learn from obser-
vational as well as intervention data of large and complex
systems. To do so, we model an intervention on a variable
X™ as a change in the dependence on its parents h,, as de-
fined in Eqn. 1. We can represent this by adding an extra
argument to h,,

X" = h”n (I7 €n, (X"L)mepa(X"‘)) ) (4)

where I is a binary variable representing the presence of
an intervention on X . In intervention data we may have
a number of intervention targets X, ..., XX with in-
tervention indicators I',...,I. We assume we know
which variables are intervened upon in each experiment,
soI',..., I are observed.

Just as Eqn. 1 produces a causal graph G over the variables
X', ..., XN, Eqn. 4 produces a causal graph over the ex-
tended set of variables X',..., XV I ... IK that has
G as an induced sub-graph. We can therefore learn from
intervention data by applying our method to learn the graph
over the extended set of variables. This approach is known
as joint causal inference (Mooij et al., 2020).

Including the interventions in inference can help in orient-
ing edges of the graph (Mooij et al., 2020). We however
note that if the targets of the intervention are known, then
intervention data can also help learn the skeleton, reduce the
number of tests we must perform, and can reduce the search
space of our tests. In Section B.2 we describe our method to
learn from intervention data with known targets and show it
help learn graphs more accurately in theory and in practice.

7. Experiments

Here we demonstrate that DAT-Graph can accurately and
scalably learn graphs from data of large complex systems,
with or without interventions, and on real and synthetic data.
We show that DAT-Graph performs particularly well on
sparser graphs. We also show that we can also combine the
strengths of DAT-Graph and gradient-based model search
methods in a hybrid method.

We measure the accuracy of inferred graphs with the Struc-
tural Hamming Distance (SHD) between the inferred skele-
ton and the true skeleton, and the SHD of the inferred di-
rected graph and the true directed graph. The SHD of the
skeletons is the number of incorrectly inferred edges. The
SHD of the directed graphs is the SHD of the skeletons plus
the number of incorrectly directed edges.

To implement DAT, we need to pick the distribution f,,, of
the noise variables (N, ),, from Section 4.1. To sample
N,, we first take Njy; ~ Laplace; if |]\~/M| < 1 then we
set V,,, = %Nm, otherwise, we scale Nm to get thicker

tails: N, = %sgn(Nm) |Nn|*1. In Appendix E.4.1 we
show that this choice satisfies the assumptions of Thm. 4.3.
We perform all experiments on a single CPU and a single
RTX 8000 GPU. Other details of DAT are described in Ap-
pendix B. Experimental details are described in Appendix C.

7.1. Learning from observational data

Setup First we demonstrate that DAT-Graph can accu-
rately learn a causal graph from data of large complex sys-
tems in the purely observational setting. To compare meth-
ods as fairly as possible, we simulate data of large complex
systems as reported in the state of the art gradient-based
model search method, SDCD, from Nazaret et al. (2023). To
do so, we generate an Erdés-Renyi random directed graph
G over N variables with s average parents. We simulate
complex relations between variables by using randomly ini-
tialized two layer neural networks with additive Gaussian
noise as the causal relations between variables in Eqn. 1.
We then generate 10000 datapoints from this model.

Nazaret et al. (2023) performed a thorough investigation of
the scalability of different graph learning algorithms. They
showed that, on this data, existing algorithms — other than
their algorithm, SDCD — do not scale to more than 100
variables or only achieve trivial accuracy. We therefore use
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Figure 3. DAT-Graph learns large graphs accurately. We plot

the mean error (SHD) and standard error against the size of the
graph (V) across 3 replicates.

SDCD as our baseline. SDCD is a gradient-based model
search method with a similar first step to DAT-Graph — they
both first learn the moral graph using a variable selection
procedure. Then, when SDCD is learning the causal graph,
it masks edges that are not in the learned moral graph.

Large graphs In Fig. 3 we plot the SHD in the inferred
skeleton and inferred directed graph on data with s = 4 and
various values of IV as in Nazaret et al. (2023). We note
DAT-Graph infers the graph just as accurately as the state of
the art method SDCD at all N. We also note that DAT-Graph
becomes relatively more accurate as /N increases, in this
case beating the state of the art model SDCD by a substantial
margin for large V. In Fig. 7 and 8 in the Appendix we also
show a similar result when the graph is generated from a
scale-free distribution or with linear relations. In App.D.2
we show that DAT-Graph achieves state of the art accuracy
among small-scale methods as well.

Hybrid model Next we demonstrate that DAT-Graph and
model search methods have complimentary strengths that
can be combined in a hybrid model. The SHD of SDCD’s
inferred skeleton is similar to the SHD of its directed graph,
meaning it often picks the correct direction for arrows in
the graph. This is not the case for DAT-Graph, which in-
fers a very accurate skeleton but makes more errors when
orienting edges. To combine the advantages of these meth-
ods, we create a hybrid method by first learning a skeleton
using DAT-Graph and then learning the directions of the
edges using SDCD. Fig. 3(b) shows that this hybrid method
performs substantially better than both methods at scale.

Scaling Our results also demonstrate that DAT-Graph can
theoretically scale to learn from very large datasets. SDCD
is incredibly scalable — it infers a graph of 1000 nodes
in roughly 25 minutes. DAT-Graph is not as scalable as
SDCD however it scales to large systems in reasonable time
— it infers a graph of 1000 nodes in roughly 4 and a half
hours. As well, in Fig. 9(a) we show that compute time for
DAT-Graph scales roughly linearly with /V; this is expected
as, keeping s fixed, the number of adjacency tests in DAT-
Graph scales linearly with N as discussed in Section 5.2. If
this linear trend continuous, DAT-Graph could learn from

600 N 600
% 400 ,\I\I : % 400
k2 o
i 200 \J\\\I ’ >
0 0
(o”b (o/’(o (9//»‘ e;) e/’q/ e”b 9/’(0 9/)‘ 9/’0) (9//'1,
sparsity sparsity

(a) Skeleton (b) Directed graph

Figure 4. DAT-Graph learns sparser graphs more accurately.

We plot the mean and standard error against the sparsity of the
graph across 3 replicates. The legend is the same as that of Fig. 3.

the largest transcriptomics datasets, which could include a
variable for all 20000 genes in a human, in a few days.

Sparsity Graphs of real data are likely to be sparse — each
variable is caused by few others — and we would like to take
advantage of this sparsity to learn a more accurate graph.
In principle, both SDCD and DAT-Graph take advantage
of sparsity to exclude more edges when learning the moral
graph. In Fig. 4 we test how well each method takes ad-
vantage of sparsity in practice by plotting the error in the
inferred graphs for datasets with N = 200 and various av-
erage numbers of parents s. All methods perform more
accurate inference on sparser graphs, but DAT-Graph ben-
efits from sparsity much more than SDCD — when s = 2
the mean SHD of the graph inferred by SDCD is 112, while
that of DAT-Graph and the hybrid method are 45 and 29
respectively. In Fig. 9(b) in the Appendix we also show
that DAT-Graph also requires less compute to learn sparser
graphs. On the other hand, SDCD makes more accurate
predictions on denser graphs, a possible advantage gradient-
based learning methods. In Fig. 10 in the Appendix we
confirm that the conclusion of Fig. 3(b) do not change when
the graph is dense — DAT-Graph and the hybrid method
make more accurate predictions as the graph gets larger.

7.2. Learning from intervention data

Given more intervention data, we expect to be able to learn
a more accurate graph. To see if DAT-Graph efficiently
uses intervention data to learn more accurate graphs, we
simulate data similar to the setup above but intervene on
certain variables. Intervened variables are drawn from a
Gaussian distribution with standard deviation 0.1. We vary
the fraction of variables that are intervened upon. We sim-
ulate 10000 datapoints from the observational distribution
and for every intervened variable we sample another 500
datapoints where that variable is intervened upon. Nazaret
et al. (2023) demonstrated that SDCD learns from interven-
tion data substantially better than other methods. Thus we
use SDCD as our baseline.

In Fig. 5 we plot the SHD of the skeleton and directed graph
when N = 100, s = 4 for datasets with various fractions
of variables intervened. We see that all methods efficiently
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Figure 5. DAT-Graph learns more accurate graphs when given
intervention data. We plot the mean and standard error against
the number of variables with interventions across 5 replicates.

use intervention data — an increasing amount of intervention
data makes predictions more accurate.

7.3. Sensitivity to model choices

In Section 4.1 and 5.2 we justified our choices of representa-
tion 7, and testing each edge twice in theory. In Section C.2
we perform ablations that show that these choices also sub-
stantially increase the accuracy of DAT-Graph in practice.

In Fig. 11 and 12 in the appendix we show that DAT-Graph
is robust to neural network and threshold hyperparameter
choices. In Fig. 13 we investigate the effect of adding more
statistics to our estimate of variance explained in Section 4.3;
we see including the first two moments does better than
including only the first moment or the first three, likely
because two moments best balances the ability for us to
detect dependencies with the variance of the estimator.

7.4. Predicting interventions on RNA sequencing data

Learning which variables are causes of which others in prin-
ciple allows us to better predict the effects of interventions.
In this section we investigate whether the graph learned by
DAT-Graph can be useful for predicting interventions on
large complex systems. Here we learn from a single-cell
RNA sequencing experiment of cancer that is resistant to
immunotherapy (Frangieh et al., 2021) to predict the effects
of gene knockdowns. Good prediction can tell us about the
mechanisms of resistance and suggest targets for treatment.

Each variable X™ is the normalized transcript count of gene
n and each data point is the transcript counts for every gene
in a cell. Interventions are CRISPR gene knockdowns; there
can be multiple interventions per cell. We preprocessed this
data as in Lopez et al. (2022). We first split the data into
the three cell populations studied in Frangieh et al. (2021) —
control, co-culture, and IFN-v-treated cells. We then filtered
to predict on the N = 1000 most variable genes. We split
each dataset into a training set and a test set containing
interventions that are not in the training set.

We infer a graph from each training set using DAT-Graph
and evaluate whether restricting the graph search of SDCD
with these graphs can improve prediction. In Fig. 6 we show

N W
o o
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=
o
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SDCD Hybrid DCDFG

Figure 6. DAT-Graph helps predict the effects of unseen inter-
ventions on RNA sequencing data. We plot the learned mutual
information — the difference between the mean log likelihood of
a model and the mean log likelihood of a trivial model with an
empty graph on the test set — of models for the datasets “control”,
“IFN-~", and “co-culture”. We compare two graph search algo-
rithms — SDCD and DCDFG — to our method which is a hybrid
of DAT-Graph and SDCD.

that SDCD’s prediction improves substantially when graph
search is restricted to edges learned in the skeleton of DAT-
Graph. In Appendix D.3 we show that this improvement
is not an artefact of training SDCD. The hybrid model also
outperforms another gradient-based model search method,
DCDFG, which was built to learn on large-scale RNA se-
quencing data (Lopez et al., 2022).

8. Conclusion

We have developed DAT-Graph to scalably and reliably learn
cause and effect from data of large and complex systems.

There are many exciting directions for future work. While
DAT-Graph accurately learns sparse graphs, it can be less
accurate than model selection based methods when learning
dense graphs; future work could build hybrid models that
have the strengths of both approaches. DAT-Graph also
follows a trend of modern multi-step graph learning methods
that come with more hyperparameters (Nazaret et al., 2023;
Lopez et al., 2022); future work could reduce the number of
hyperparameters by combining steps in these methods, for
example by reusing neural networks between steps.

In this work we have made the assumption that all variables
are observed and there are no cycles in G. However, there
are large and complex systems where these assumptions are
not to likely to hold (Sethuraman et al., 2023; Lorch et al.,
2023). Methods have been developed to test for confounding
and cycles by solving the separating set selection problem,
but only at small scale (Spirtes, 2001; Richardson, 1996).
Future work could scale these methods using DAT.

In this work we have considered learning the entire graph
G. However, often one is only interested in learning cause
and effect for a particular node. Unfortunately model search
methods must learn the whole graph. Future work may
apply DAT to only learn the skeleton around this node. In
addition to saving compute, learning the skeleton without
necessarily orienting edges is a procedure that is robust to
confounding or cycles (M. Mooij & Claassen, 2020).
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Impact Statement

DAT-Graph allows accurate inference of cause and effect
in systems of many variables that interact in complex ways.
Such systems appear in genetics, microbiology, and health.
Understanding cause and effects in these settings can help us
understand the mechanisms of disease, and help us build bet-
ter interventions and treatments. On the other hand, causal
conclusions about genetics and phenotype can be used to
justify harmful policies.
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A. Review of graph learning methods

We attempt to learn graphs with no unobserved latent variables or cycles. There is an extensive history of algorithms to
learn such graphs from data (Vowels et al., 2022). Methods can learn a graph by testing for conditional independence
(Spirtes et al., 1993; Spirtes, 2001; Margaritis & Thrun, 1999), optimizing an objective (Chickering, 2002; van de Geer &
Biihlmann, 2013; Raskutti & Uhler, 2018), performing independent component analysis (Shimizu & Hoyer, 2006; Shimizu
et al., 2011; Reizinger et al., 2022), looking for nonlinearities (Rolland et al., 2022; Montagna et al., 2023b;c), and more
(Immer et al., 2023; Gao et al., 2020; Reisach et al., 2021). Unfortunately, Nazaret et al. (2023) showed that almost all
methods made strong assumptions on the form of the cause-effect relationships between variables or can not scale to more
than 100 variables. Our work aims to perform flexible inference at large scale.

Recently a class of optimization-based graph learning methods were able to scale to learn from data of large complex
systems by searching through the space of graphs at the same time as training flexible neural networks to model causal
relationships (Zheng et al., 2018; Lachapelle et al., 2019; Zheng et al., 2020; Bello et al., 2022; Nazaret et al., 2023). These
methods can also learn from data with interventions (Brouillard et al., 2020; Nazaret et al., 2023). Unfortunately, the
model search can involve an unstable optimization problem over the enormous space of all graphs and has been shown
to be unreliable in some settings (Wei et al., 2020; Nazaret et al., 2023; Deng et al., 2023). Nazaret et al. (2023) recently
substantially improved the accuracy of these methods by first learning the moral graph to shrink the model search space.
”Hybridizing” model search with some conditional independence testing is also the strategy of the most accurate classical
graph learning methods (Tsamardinos et al., 2006; Biihlmann et al., 2014). Our work aims to further shrink the model search
space, or learn the graph entirely, by testing for conditional independence at scale.

B. Details of the method
B.1. Orienting the edges of the skeleton

Once we have learned the skeleton, we finally need to decide the direction of its arrows. The equivalence class of a
graph is determined by its skeleton and v-structures — variables X”, X* X™ such that X™ and X™ are not adjacent and
X" — X* « X™ in G (Verma & Pearl, 2022). For all v-structures X", X* X™ we have that X™ and X™ are spouses,
so they are adjacent in the moral graph but not the skeleton. As well, if X™ and X™ are spouses and X — X* — X" in
the skeleton, then if p is faithful to G, X* ¢ SepSet(X™, X™) if and only if X" — X* <~ X™ in G.

To infer v-structures, we first pick a threshold 72 > 0 and look for any triplet in the inferred skeleton X™ — X*— X™ such that
X™ and X™ are adjacent in the inferred moral graph but not the inferred skeleton. We then decide if X* € SepSet(X™, X™)
using the two learned parameters 1™ and ¥ from the two tests between X" and X™. We label the triplet a v-structure if
(Y% + (¢I")? < m9o, that is if k is not in the separating set for either of the tests we did for the pair X™, X™, otherwise we
label it not a v-structure. After we have labelled all of the v-structures, we can apply Meek’s rules to orient many of the
remaining edges as in the PC algorithm (Spirtes et al., 1993). We then use some heuristics described in Appendix B.3 to
extract a single graph from the equivalence class.

B.2. Learning the graph with interventions with known targets

For clarity, assume p is faithful in this section. We first learn the moral graph over all variables X', ..., X~ 1!, .. . IX

with a minor modification. Predicting MB(I¥) is unreliable in practice so we do not use it to build the moral graph. Instead
we just connect X™ and I* in the moral graph if I* is predicted to be in MB(X™) — we pick a threshold 7, > 0 and connect
the two variables if axn x> 74.

Next we learn the skeleton over the variables X', ..., X~ I' ... I, We reduce the number of tests we perform with
three techniques:

1) We do not test adjacencies of intervention variables I*.

2) We learn the parents of intervened variables during the moral graph learning step. If X™ is adjacent to an intervention
I* with target X™ # X" in the moral graph then, since X” cannot be the parent or child of I* it must be its spouse —
X" € Pag(X™). Thus if X™ is adjacent to I* in the moral graph then we label X™ a parent of X™. We do not need to test
the adjacency of X™ and X™. 2

2n principle we could orient every edge connected to the target of an intervention. Say we determine that X™ is adjacent to X™ in
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3) We use the direction of edges learned in the moral graph step to shrink the search space of the adjacency test. The
second statement in Prop. E.2 states we can always include parents of X™ and we can always exclude sinks — variables
with no children — in the separating set. Thus, for X ke MB(X™),if X kisa parent of X™ we fix 1)}, = 1; and if we have
determined that every node that X* is adjacent to in the moral graph is its parent then we fix Yp = 0.

Once we have learned the skeleton of the variables X!, ..., X and oriented some edges, we orient the remaining edges in
X1, ..., X" justas in Section B.1.

In Table 1 we see that using our method above allows DAT-Graph to learn skeletons more accurately in practice than by
simply including the intervention variables as nodes in the graph (Naive JCI).

Table 1. DAT-Graph accurately learns skeletons using intervention data. Accuracy of predicting adjacencies in the experiment in
Fig. 5 with N = 200 and 50% of variables intervened on.

MODEL ERRORS (SKELETON SHD)
DAT-GRAPH 51+9
NAIVE JCI 6949

B.3. Getting a graph from an equivalence class

After we are done applying Meek’s rules, there may be a small number of non-oriented edges — we may have only identified
the graph up to an equivalence class. To get a single graph, we iteratively randomly orient a randomly chosen unoriented
edge and re-apply Meek’s rules until all edges are oriented.

There may also be cycles in the graph we learn, G, due to disagreeing tests. There are sophisticated methods to learn a graph
in the case that tests disagree (Triantafillou & Tsamardinos, 2015). However, in our experiments there are usually only a
small number of cycles in G, so we take a simple approach to remove cycles. First we calculate the matrix (G + DN —1.
The n-th entry on the diagonal of this matrix is O if and only if the n-th node is not in a cycle (Zheng et al., 2018). While
there are non-zero entries on the diagonal, we pick the node n that maximizes the value ((G +I)N —I),,, and remove an
edge connected to this node that maximally reduces trace((G' — I)N — I).

B.4. Hyperparameters

We have four threshold hyperparameters: one for deciding the edges of the moral graph 73, one for deciding edges in the
skeleton 7)1, one for deciding v-structures 75, and one for deciding edges in the moral graph connected to intervention
variables 77,. We choose 173 = 8 x 1073, 1 = 1074, 3 = 0.2, n4 = 1073, Theorem 4.3 suggests that 1, should be a larger
number. We noticed however that a smaller value of 75 resulted in more accurate graph recovery. We discuss why this might
be in Appendix. E.4.2.

Each variable selection problem in inferring the moral graph has a sparsity parameter \,,. We noticed when that 02 =
E[X™ — gg, (X™)mxn|? could vary drastically from node to node. This caused the influence of the sparsity penalty to vary
from node to node, making it challenging to get accurate graph recovery with a single threshold 3. To address this issue,
we found the scaling the sparsity parameter An by 02 improved recovery of the moral graph. Thus for the n-th variable we
use a sparsity penalty of 0.01 x o2 where o2 is estimated from the current minibatch.

We used batch sizes of size 256 in all cases. To train the neural networks to predict the moral graph, we used the Adam
optimizer with parameters S1, S = 0.9,0.999 and learning rate 10~* and trained for 30000 minibatches. We train the
models for all nodes in parallel on a GPU.

To train the networks to predict the skeleton we trained for 10000 minibatches and took alternating steps to update {61,602}
and ¢. For {61, 6-} we used the Adam optimizer with parameters 31, 32 = 0.9,0.999 and learning rate 3 x 10~* while for
1 we used 31, B2 = 0.9, 0.9 and a learning rate of 3 x 10~*. We train models for all tests in parallel on a GPU.

To predict the moral graph, we used 3 layer neural networks with 200 hidden units. We used a ReLU activation and included

G where X™ is the target of an intervention I*. If I* is not adjacent to X™ in the moral graph then X™ must be the child of X™. In
practice however, we have seen that this strategy is unreliable in the absence of a large amount of intervention data.
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dropout and batchnorm between layers. We used a dropout probability of 0.1 between the first and second layer and a
probability of 0.5 between the second and third. To predict the skeleton, we used 3 layer neural networks with 100 hidden
units. We again used a ReLU activation and included dropout and batchnorm between layers.

B.S. Other details
Before learning the graph we normalize all variables in the data to have mean 0 and standard deviation 1.
We parameterize 1, € [0, 1] as v, = sigmoid(~,,) for 7, € (0, 00). 7, is the parameter we optimize by gradient descent.

When testing the adjacency between variables X", X™, we have the choice of wusing either
EVarExplained(X™; X™|MB(X™)) or EVarExplained(X™; X™|MB(X™)) as our measure for conditional inde-
pendence. We use the later in experiments as we found it to make more accurate decisions.

We use combined samples from 5000 mini-batches to calculate ﬁD AT ().

C. Experimental details
C.1. Data simulation details

We simulate observational data just as in Nazaret et al. (2023). We use code from https://github.com/azizilab/

sdcd under an MIT licence. Briefly, we generate a random undirected graph G and a random permutation of {1,..., N},

7. Then we have an edge n — m in the graph G if 7(n) > 7(m) and n and m are connected in G. Next we model the

functions

X" ~ hy, <X_E[X]) + N(0,1)
Std(Xm) mePag(n)

where ﬁn is a randomly initialized two layer neural network with ReLU activations and 100 hidden units. If Pag(X™) = 0),
we set h, = 0. When simulating data with linear relations, we replace h,, with a linear model with weights drawn from
N(0,1).

In our experiments with interventions, we assume that only a single variable is intervened on in each data point. If a variable
X™ is intervened on then X™ ~ 0.1 % N(0,1).

The SHD between two undirected graphs GG1, G2 is the sum of the number of edges in G; but not G5 and the number of
edges in G5 but not G;. The SHD between two directed graphs is the sum of the SHD of their skeletons plus the number of
edges pointed in the wrong direction.

We simulated Erdds-Renyi and scale free random graphs using code from Montagna et al. (2023a).

C.2. Ablation experiments

We performed ablations that demonstrate the benefits of our modelling decisions. We generated observational data as in
Section 7 with N = 200 and s = 4; results are shown in Table 2 with mean skeleton SHD (defined in Section 7) and
standard deviation across 3 replicates.

To demonstrate that our choice of representation provides a more accurate answer to the separating set selection problem we
performed ablations where we replaced r,, with a 3 layer neural network 7 : RM — R with 200 hidden units (Neural
net ;). We used a ReLLU activation and included dropout and batchnorm between layers. We used a dropout probability
of 0.1 between the first and second layer and a probability of 0.5 between the second and third. We then optimize v, the
parameters of the neural network. We also performed ablations where we used noise distributions ( f,, )., With thin tails —
fm were Gaussian densities — rather than the thick tailed distribution described in section 7 (Gaussian ( f,,) ).

To demonstrate that testing twice as discussed in Section 5.2 makes our method more reliable, we perform an ablation where
we decide if X is adjacent to Y by randomly testing one of X Il Y | U for some U C MB(X)\ {Y}or X 1L Y | U for
some U C MB(Y) \ {X} (Only one test). We halve 7, for this ablation.

In addition to the results shown in Table 2 we also demonstrate that solving the separating set selection problem is informative
for learning the graph: we perform ablations where we do not learn the parameters : we either test if two nodes are adjacent
in the skeleton by testing their marginal independence (i) = 0) or their conditional independence (i) = 1). We show the
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results in Table 2.

Table 2. Ablations justify the choices in DAT-Graph in practice. Accuracy of predicting adjacencies in a graph with N = 200 and 800
edges with standard deviations across three replicates. Details in Appendix C.2.

MODEL ERRORS (SKELETON SHD)
DAT-GRAPH 8119
NEURAL NET 7y 173+11
GAUSSIAN (fim)m 98+12
ONLY ONE TEST 17716
TEST MARGINAL ¢ = 0 125+19
TEST CONDITIONAL ¥ = 1 308+14

C.3. Baseline methods

We implemented SDCD using the code from https://github.com/azizilab/sdcd. We used the hyperparameters
described in Nazaret et al. (2023). In Nazaret et al. (2023) SDCD was trained on 2000 epochs on 10000 datapoints. When
we added intervention data or trained on real RNA sequencing data, we scaled the number of epochs with the dataset size
proportionally. We also scaled the parameter gamma_increment which controls the increment of the acyclicity penalty
per epoch.

We also compare to a number of less scalable and flexible methods at small scale in Section D.2. PC (Spirtes et al., 1993):
a classical method to learn the graph by looking for conditional independence relations; we implement this algorithm using
a kernel test for conditional independence. We used code from https://pywhy.org/dodiscover/ under an MIT
licence with kernel threshold 0.05. GES (Chickering, 2002): a classical model selection procedure that performs the model
search with greedy perturbations to the graph; it assumes all variables are jointly Gaussian. We implemented this using
the code from Hauser & Biihlmann (2012). CAM (Biihlmann et al., 2014): a classical hybrid graph learning method that
assumes that causal interactions are additive. We used code from https://pywhy.org/dodiscover/ under an MIT
licence. NoGAM (Montagna et al., 2023c¢): a recent method that learns conditional independence relations and infers a
graph by assuming additive noise; it recently performed best in an array of small scale settings against other small scale
graph learning methods (Montagna et al., 2023a). We used code from https://pywhy.org/dodiscover/ under an
MIT licence.

C.4. RNA sequencing data

We learned on single cell RNA sequencing data from a study of immunotherapy resistant cancer Frangieh et al. (2021).
These cells had various genes perturbed by CRISPR knockdowns. We preprocessed this data as in Lopez et al. (2022)
using code from https://github.com/Genentech/dcdfg under an Apache-2.0 licence. The preprocessed dataset
included between 57523 and 87436 cells and measurements of N = 1000 genes. Data include observational and intervention
samples. We created a test set by selecting 20% of intervention targets and holding out samples of those interventions. The
test set had between 6984 and 11993 samples.

With default settings, SDCD predicts the conditional variance of variables with a neural network. We noticed that on this
dataset, SDCD makes worse-than-trivial predictions with this setting (unless hybridized with the skeleton learned using
DAT-Graph). Thus we used the setting model_variance_flavor='parameter’. We also used finetune=True
when training to get a valid likelihood on the test set.

We implemented the MLPGaussialModel from DCDFG using code from https://github.com/Genentech/
dcdfg with hyperparameters that were optimized according to Lopez et al. (2022) on the data, that is, m = 20, A = 1073,
trace exponential penalty.

Both SDCD and DCDFG model the data as coming from a Gaussian additive model. A trivial prediction for such a model is
that all variables are generated from iid Gaussians. The mean negative log likelihood of this trivial model on a test set can be
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calculated as
N

1
Z 3 log(2mVar ain(X™))

n=1

1 Etest [Xn - Etraian]Z

2 Vargain (X™)

To build the hybrid method, we reasoned that the same hyperparameters that are optimal for graph recovery as measured by
SHD may not be optimal for intervention prediction. It may be the case for example that leaving out a causal arrow in the
graph may harm prediction much more than including spuriously inferred edges. Thus we used the same hyperparameters as
above but picked n3 € {0.001,0.003,0.005, 0.008} based on what minimized the fit on the training data on the “control”
dataset set. We found 73 = 0.001 lead to the best fit on the training data and used this value for experiments in the main text.

D. Further experimental results

D.1. Appendix to main text figures

500 1000 0 500 1000
N N
(a) Skeleton (b) Directed graph

Figure 7. DAT-Graph can accurately learn from data of a scale-free random graph. We perform the experiment in Fig. 3 with
scale-free random graphs. We plot the mean SHD and standard deviation across 3 replicates. The legend is the same as that of Fig. 3.
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Figure 8. DAT-Graph can accurately learn from data with linear relations. We perform the experiment in Fig. 3 with linear relations
between variable. We plot the mean SHD and standard deviation across 3 replicates. The legend is the same as that of Fig. 3.
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(a) Scaling with N (b) Scaling with s

Figure 9. DAT-Graph scales linearly with N and is more efficient on sparser graphs. A) For s = 4, we plot the wall time of

DAT-Graph for various values of N. B) For N = 100 we plot the wall time of DAT-Graph for various values of s. Error bars are standard
deviations over 3 replicates. The legend is the same as that of Fig. 3.
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Figure 10. DAT-Graph and the hybrid method learn large graphs accurately even when they are dense. We perform the experiment
in Fig. 3 with s = 6. We plot the mean SHD and standard deviation across 3 replicates. The legend is the same as that of Fig. 3.
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Figure 11. DAT-Graph is robust to the choice of neural network hyperparameters. We perform the experiment in Fig. 5 with
N = 200, intervening on 50% of variables, varying the learning rate of the moral graph learning step, the DAT step, the hidden widths of
the nerual networks, and the neural network training times over an order of magnitude. We plot the mean SHD and standard deviation
across 3 replicates. The legend is the same as that of Fig. 3.
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Figure 12. DAT-Graph is robust to the choice of threshold hyperparameters. We perform the experiment in Fig. 5 with N = 200,
intervening on 50% of variables, varying the parameters 11, 112, 113, 74 over an order of magnitude. We plot the mean SHD and standard

(g) Skeleton

(h) Directed graph

deviation across 3 replicates. The legend is the same as that of Fig. 3.
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Figure 13. DAT-Graph best learns graphs when using two moments in its variance explained statistic. We perform the experiment in
Fig. 5 with N = 200 intervening on 50% of variables. We use DAT with the statistic Zle EV(T.(X);Y|Zy) where Tc(x) = z°. We
plot the mean SHD and standard deviation across 3 replicates. The legend is the same as that of Fig. 3.
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D.2. Experiments with small N

Here we show that DAT-Graph can accurately learn graphs at small N. We compare to a classical testing approach with a
flexible conditional independence test (PC), a classical explicit graph search procedure (GES), a classical hybrid method
(CAM), and a modern method that make learns conditional independence relations by looking for non-linear interactions
(NoGAM).

We trained all of these models on data with NV = 30 and s = 3. We could not scale NoGAM to learn from 10000 datapoints
in under 15 hours of wall time so we trained all models on 6000 datapoints. The exception is the PC algorithm, which due to
the cost of the flexible conditional independence test, could not learn from 600 datapoints in under 15 hours of wall time so
we trained this model on 300 datapoints.

In Table 3 we see that GES, CAM, and NoGAM perform worse than trivial. This could be because the complex interactions
in our data violate the Gaussianity assumption of GES, and the additivity assumption of CAM. As well, since neural
networks with ReLLU activations are locally linear, the nonlinearity assumptions in NoGAM are also violated. The PC
algorithm performs slightly better than trivial — its performance could be limited by its inability to scale to a larger training
set size. On the other hand, DAT-Graph and the Hybrid method are able to learn the graph most accurately.

Table 3. DAT-Graph can accurately learn a graph at low /N. Mean SHDs and standard deviation for inferred graphs across 3 replicates.

MODEL SKELETON SHD DIRECTED GRAPH SHD
NUMBER EDGES 60 60

PC (300 DATAPOINTS) 44+2 56+5

GES 99485 104+23

CAM 79433 87+18
NOGAM 79+24 85+14
SDCD 25+ 4 26+4
DAT-GRAPH 8+1 164
HYBRID - 11+ 3

D.3. Alternative hybrid model for RNA sequencing data

To demonstrate that the benefit of hybridizing DAT-Graph and SDCD did not simply come from restricting the edges learned
by SDCD during training, we also compare to another hybrid model — in SDCD(With Graph) we use the graph inferred by
another SDCD model in place of the one learned by DAT-Graph. In table 4 we show that the performance of this hybrid
model is almost identical to that of SDCD.

Table 4. Improved prediction from using DAT-Graph does not come exclusively from training SDCD. We log the learned mutual
information for three datasets as in Fig. 6.

MODEL CoNTROL IFN CO-CULTURE

SDCD 5.2 12.7 4.3
SDCD(WG) 5.4 12.6 4.7
HYBRID 26.7 28.3 20.6
E. Theory
E.1. Proof of Prop. 4.4
Proposition E.1. (Proof of Prop. 4.4) Even when restricted to the case where X, Y, Z1, ..., Zy are jointly Gaussian with

known non-singular covariance matrix, the separating set selection problem is NP-Hard.

Proof. We will show that the subset sum problem, which is known to be NP-hard, reduces to the above problem. The
subset sum problem is as follows: given a set of numbers aq,...,ap;,T € R, is there a subset S C {am}%:1 such that
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ZaES a=17

Let ex,ey, Z1,...,Zp be jointly independent Gaussian variables with variance one, let X = ex + 2%21 Zm and
Y =€y —Tex + Z%Zl amZm. Now if S C {Z,,}M_, then Cov(X,Y|S) = T + 27, ¢s @m- So if there is a
S C{Zn}M_, suchthat X 1L Y|S then 0 = Cov(X,Y|S) = T+, gsamand ), gam ="T. Similarly if there
is no such subset then the answer to the subset sum problem is negative. O

E.2. Proof of Prop. 5.2

Proposition E.2. (Proof of Prop. 5.2) Assume p is faithful. X™ and X™ are adjacent in G if and only X™ . X™ | U
foranyU C MB(X™)\{X™}. If X™ 1L X™ | U for some U C MB(X™) \ {X™} then X™ 1L X™ | U U Pag(X™) \
{X™ | Deg(X™) = 0}.

Proof. (Adapted from Margaritis & Thrun (1999)) This result is obvious if X™ and X™ are adjacent or X" ¢ MB(X™"),
so assume X" is a spouse of X ™. If X is not a descendant of X", then if U = Pag(X™) then X™ 1L X™ | U. If X™ is
a descendant of X™ then include in U Pag(X™) and all variables in Ch (X ™) that are ancestors of X and the parents of
these variables. Say we have a d-connecting path from X to X™. Since we have conditioned on all parents of X" the path
must have an arrow out of X™. Say the first edge is X™ — X*. By the definition of U, X* cannot be an ancestor of X,
so the path must eventually encounter its first collider at an X! € U. By the definition of U, X! must be a child of X™ that
is an ancestor of X™ or a parent of such a child. In either case, X ! is an ancestor of X™. Thus, X* is an ancestor of X™, a
contradiction. O

(a) Example E.3 (b) Example E4 (c) Example E.5

E.3. Counter-examples

Figure 14. Graphs considered in counterexamples.

Example E.3. (Proof of Example 4.2) There are jointly Gaussian variables X, Y, Z;, Z5 that are faithful to some graph
such that X Y Y|{Z,,}mes for any S C {1, 2} butif {ry}ycw is the space of linear functions, there is a ¢)* such that
X WY |ry-(Zm)M

m=1-

Proof. Letex,ey,€z,,€z, ~ N(071) iid. Define X = ex,Y =X +ey, 21 =X+Y + \/gﬁzl and Zo = X +Y +
\/3 + 3€z,. The covariance matrix of {X,Y, Zy, Zo} is

11 2 2
12 3 3
2 3 5+ 5
2 3 5 8+3

Then one can calculate that

24

6 6
COV(X,Y) = ].,COV(X,Y|Z1) =1- F,COV(X,Y|Z2) =1- 8.‘.71’ COV(X,Y‘Zl,ZQ) =1- ﬂ (5)

2 2
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so X X Y|S forany S C {Z1, Z>}. Further calculation shows that this is faithful to the graph in Fig. 14(a). Now define
Z3 = 3(Zy + Z). The covariance matrix of {X,Y, Z3} is

1 1 2
1 2 3
2 3 6
Thus Cov(X,Y|Z5) =0so X 1 Y|Zs. O

Example E.4. There are jointly Gaussian variables X, Y, Z; that are faithful to some graph such that X J{ Y and
X ML Y | Z; butif fy is a Gaussian density then there is a ¢* € [0, 1] such that X Il Y'|Z; .

Proof. Letex,ey, ez, ~ N(0,1)iid. Define X = ex,Y =X +ey, 21 =X +Y + \/%621- The covariance matrix of
{X,Y,Z1} is

11 2

1 2 3

2 3 5+1
Then one can calculate that this distribution is faithful to the graph in Fig. 14(b). Now pick ¢ = 2 — /2 and define

Z, = Y3 Z1 + (1 — ¢7) N7 where N; is an independent standard normal. ez, + (1 — ])N; is a mean zero normal
distribution of variance

(2_\/5)2%+(\/§_1)2 = (2—\&)2%+(2—\/§)2% =(2-V2)? =y}2

Thus Z; = (X 4+ Y + U) for some independent standard normal U. The covariance matrix of {X,Y, Z;} is

11 24
12 3y
207 3y 6y
Thus Cov(X,Y|Z;) =0so X 1L Y|Z,. O

(a) Moral Graph (b) Skeleton (c) Directed graph

Figure 15. Stages of DAT-Graph in Example. 5.3

Example E.5. (Proof of Example 5.3) There are a set of four jointly Gaussian random variables that are not faithful such
that DAT-Graph recovers the correct graph.

Proof. Letex,ey,ey,ec ~ N(0,1)iid. Define X = ex,Y =X + 6y, U=X+¢y,C=2Y +U +ec. {X,Y,U,C}
have covariance matrix

111 3
1 21 5
11 2 4
3 5 4 15

{X,Y,U, C} are generated according to the graph in Fig. 14(c). However, since Cov (X, Y|C') = 0 this distribution is not
faithful to the graph. Note it is also not adjacency faithful (Uhler et al., 2012). When a distribution is not faithful it can
correspond to multiple graph equivalence classes, so the notion of a “correct” graph is more delicate. We show that the
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graph in Fig. 14(c) is correct in the sense that it is a sparsest Markov graph (Raskutti & Uhler, 2018). Then we show that
DAT-Graph recovers this “correct” graph.

Say G is a graph that is Markov for this distribution, that is, it satisfies Eqn. 2 and therefore, for any disjoint A, B, C' C
{X,Y,U,C}if Ais d-separated from B in G by C, then A Ll B | C. We have
59

1
Cov(X,U) =1,Cov(X,UJY) = §7COV(X7U\C) = %,COV(X,UD/, C)= EE

so X must be connected to U in G. Next we have
Cov(Y,C) =5,Cov(Y,C|X) =2,Cov(Y,C|U) = 3,Cov(Y,C|X,U) = 2

so Y must be connected to C in G. Finally we have
3
Cov(U,C) =4,Cov(U,C|X) =1,Cov(U,C|Y) = g,Cov(U,C|X7 Y)=1

so U must be connected to C' in G. These three cannot be the only edges in G however as Cov(X,Y"), Cov(X,Y|U) # 0.
Thus the graph in Fig. 14(c) is a sparsest Markov graph.

We now show that DAT-Graph recovers the graph in Fig. 14(c). Some calculations show
MB(X) ={U,Y},MB(Y) ={X,C, U}, MB(U) = {X,C,Y},MB(C) = {U,Y}.

DAT-Graph joins nodes Z;, Z5 in the moral graph if Z; € MB(Z5) or Zy € MB(Z;), so we get the moral graph in
Fig. 15(a).

Next we learn the skeleton. Since Cov(U, Y |X) = 0, the edge between Y and U is removed with SepSet(Y,U) = {X };
Note Cov(U,Y | X, C), Cov(U,Y|C) # 0 so C can not be in SepSet(Y,U). There is a subset of MB(Y) that makes X
and Y conditionally independent, namely Cov (X, Y|C) = 0. However, Cov(X,Y), Cov(X,Y|U) # 0 so there is no such
subset of MB(X'). DAT-Graph only removes an edge if both adjacency tests decide there is no edge. Therefore we learn the
skeleton in Fig. 15(b).

Finally, DAT-Graph uses the removed edge between Y and U to find v-structures. Since C' € SepSet (Y, U), we must have
a v-structure Y — C < U. All other triplets are labelled non-v-structures. Thus we learn the graph equivalence class in
Fig. 15(c). This is the equivalence class of the “correct” graph Fig. 15(b). [

E.4. Proof of Theorem 4.3

In this section we will consider a set of random variables X, Y, Z1, ..., Zys in R. Calling Z = (Z,,,)M_,, we are interested
in the separating set selection problem — evaluating if there is a “separating set” of variables S C Z such that X 1l Y|S.
This is a challenging problem because it is discrete so, we relax it into the separating representation search. We define
independent noise variables Ny, ..., Nj; and define noised versions of Z by Z,m/,m = VYmZm + (1 — ¥, )N, where

m € [0, 1] are variables that control how much information about Z,, we obtain by observing Z,, ,, . We now are
interested in finding ¥ = (¢, ), such that X 1 Y'|Z,.

If S is a separating set then picking v¥,,, = 1(Z,, € S) gives X 1L Y|Z¢ so there is also a separating representation.
However, the contrary might not be true as shown Example E.4 Here in Thm. E.7 we show that if ( f,,, )., have thick enough
tails then if there is a separating representation there is also a separating set. Furthermore, if X 1l Y|Z¢, then we can
recover a separating set {Z,, }y,, =1

The idea of the proof is that if f,, have thick tails then the values of the noise V,,, can be large. Then if we observe a large
Zm ., all we can conclude is that N, took a large value — we learn little about Z,,,. Thus, conditioning on (Z,, +,, )m is
similar to observing Z,, if 1, = 1 and not observing Z,, if Z,, ,, is large and ¢,,, < 1. Thus, if X 1L Y|{Z,, 4,. }m

then X Ul Y|{Z,.}y, =1

Statement and verification of assumption tails of f1,..., fp; We make the following assumption.

Assumption E.6. (f,,, has thicker tails than p(z)) We assume ( f, )., are positive bounded symmetric functions on R that
are decreasing and piece-wise differentiable on (0, 00).
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* We assume the derivative of log f,,, approaches 0 and for any value z,, > 0, (log fi) (zim) < (log fin) (zm + 1).

* For any subset S C {1,...,M} and almost any set of values (2,)mgs define the tail probabilities p(L) =
P(||(Zm)meslloc = L|(2m)megs). We assume that for any set of positive numbers, (A )mes,

oo

p(L+ R)
LZ:o 12, fn(hen(L + 2R + 1))

— 0as R — oo. 6)

The condition on the derivative of log f,,, assumes that f,, is thicker than f,,(zy,) x exp(—|zm|). Equation 6 assumes that
the tail of p(z) decreases faster than the tail of f,,,. It essentially assumes that “f,,, has thicker tails than p(z)”.

Although its statement is technical, the assumption is easy to satisfy because A) we often have some idea of the tails of p, or
can measure them, and B) we can pick f to have tails as thick as we would like.

We are often willing to assume that p is sub-Gaussian or sub-exponential; for example, RNA counts, based on knowledge of
the biological generating process, are regularly assumed to come from a Poisson or negative binomial distribution, which are
sub-exponential (Lopez et al., 2018). Below in Appendix E.4.1 we verify the assumption in the setting of our experiments in
Section 7 using only the fact that p is sub-Gaussian; a similar argument can be used to verify the assumption in the case
that p is sub-exponential. When one is not willing to make such an assumption, there are a number of methods to estimate
the tails of a distribution. Once we have an idea of the thickness of p’s tails, we can pick f to be as thick as necessary. We
hypothesize that there is a tradeoff such that an f with thin tails may lead to separating representations when there are no
separating sets, while an f with very thick tails may make training unstable, or reduce statistical efficiency; thus in our
experiments in Section 7 we pick an f that is just thick enough to satisfy the assumption.

Statement and proof of theorem To construct our noised variables Z, we first pick our noise densities f1, ..., fa
and our noise parameters ¢y, ...,%y € [0,1]. Then we observe noised variables Z,,, = ¥z, + (1 — ¥, )y, Where

Ny, ~ (M )dnyy,. Thus, if ¥, < 1, p(Z|2m) < fm (#2m — %zm) Thus we get a posterior

. L Ym
P((zm)m|(Zm)m, (Ym)m, (fm)m) < H fm Zm = zZm | dp((2m )y, <1](2m ) =1)-
m | Ym#Al (17/}771, 1*1/1m )

Now we can prove the theorem.

Theorem E.7. Assume Assumption E.6. If there is a (V) m such that X 1LY |Zy then X 1LY [{Zy}, =1

Proof. Assume X L Y\Zw. We will show that as (Z,,)y,, <1 get large, the posterior converges to the marginal in total
variation

P((zm)m|(Zm)ms (Ym)ms (Fm)m) = P((2m) g <11 (2m) g =1)-

Then for any measurable sets A, B we have

0=p(X € A,Y € B|(Zm)ms (¥m)m: (fm)m) — (X € Al(Zn)m, (Wm)ms (frm)m)P(X € Al(Zn)ms (Ym)ms (frm)m)
—=p(X € AY € Bl(2m)y,=1) — P(X € Al(2m)p,,=1)P(X € Al(2m)y,,=1)-

This proves that X 1L Y | {Z,,}y,. =1

We fix the values (2,)y,,=1 drop the dependence on these conditioned variables. We also drop the dependence on 1),,, by

redefining [, (zm) = fin( 11_%‘ Zm) and a,, = ﬁim We set all a,,, equal to a single large integer a. Thus we write the

posterior

M
p(z]a) x H Jm(zm — a)dp(z).
m—1
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Now we show that this posterior converges in total variation to the marginal p(z) as @ — co. For any R > 0,

m 1fm Zm a’) -1 d — Hrj\r/lefm(zm_am) -1 d
/ ‘ I o —aiplz) | /|z|oc<zz [T Y A P v B
+/ H% 1fm(2m_a)
12loo <R | 2y <r Lt fn(zom — a)dp(2)
_ Hm:l fm(zm B a) d
T s e — o) 7 .
s fon(zm — @)
+ & d
Jopoo T s e — )|
_ | ) np
e [T e R
f” loo>R Hm 1 fm(zm - a)dp(z)
STz fn(em — a)dp(z)
We now show both of these terms vanish as R, a — oo.
For the first term, note for all ||z]|o < R.
T Jmla+R) _ oy i (zon = @) ! ﬁ Jmla— R)
m=1 fm(CL - R) B fHZ”ooSR H%:l fm(zm - a)dp(z) N p(lleOO < R) me—1 fm(a + R)

By our assumption on the derivatives of log f,,,
m(a— R
e —exp (o8 f(a  B) ~ log fu(a + )
a+R
=exp | — / (log fm)'(s)ds | .
a—R

This quantity — 1 if R — oo slowly enough and a — oco. Thus, if R — oo slowly enough and @ — oo, the first term in
Eqn. 7 is approaches
/|Z|<X><R

For the second term, first note that if L, > L, then

fm(Ll)
fm(L2)

1
pllzllee < R)

_ 1‘ dp(z) = p(|z]loe > R) = 0.

=exp (log fr(L1) — log fm(L2))

Lo

=exp (— /L (log fm) (8)d8>
La—I1

<exp <_/0 (log fm)'(s)ds>

_ fal0)
fm(LZ - Ll) -

Assume we have picked R large enough that p(||z]|oc < R) > 1/2. Define the annulus probabilities (L) = p(L + 1 >
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[[(zmm)mes|loo = L) The second term can be broken up into annuluses

Jj: Hoo>RHm 1 fm(2m — a)dp(2) Z Jo<islm < To_y fm(zm — a)dp(z)
STy fnem = @)dp(2) ™ (= fiaym<r L fn(2m — @)dp(2)
= P < zlloo < L+ DIy fmla — (L +1))
Pzl < B) [Tpey fnla+ R)
PIL < ||elloe < L+ D) [T, fon(L — a)
p(I2lloe < R)TI0—y fn(a+ R)

<ol < B S p(p) T Lo (B2 L)

;

+2p(||z]loc < R)7! Z (L) H M

p([|2]lee > 2a+ R) 1% finla—R)
p(Ille < R) 11

M
<2p(|lzfle <R BL) ] ffm(o)

M
<R)™! T

+ Oa—>oo(1)

< T (L 2R+ 1)

<<z|<Hfm )Z B o).

=0 Moy fn (L 4+ 2R+ 1)

By our assumption, this vanishes as a — oo and R — oo slowly enough. O

a—R— 1~
(Hfm ) Z HLAR) +pRa-R-1-1)

E.4.1. ASSUMPTION E.6 IN THE EXPERIMENTS

In this section we verify that Assumption E.6 is satisfied in our experiments. The noise we choose is f;, ~ % g(Laplace)
where g(2z) = 2m if 2z, < 1 and g(2,,) = sgn(zm)|zm|t! if 2, > 1. This has continuous density with f,,(2,,)

(22) " T exp (—|22m|T11> if |zm| > 5 and fn,(2m) o< exp (—|22,) if |2, | < 4. and one can check that the derivative

of the logarithm is increasing almost everywhere on (0, co) and approaches 0. The derivative has a jump discontinuity at %
but one can easily check that for any % > 2m > 0,

0.1 21/1.1

(10g ) (z) = =2 < =17 = 1 = (08 )'(1) < (log /) (2 + 1)

In our simulation, variables X" are made up of neural networks R, applied to Gaussian variables. Neural networks are
Lipschitz, so each X™ is sub-Gaussian. This is also the case when conditioning since if E[exp(tX"?)] < oo for some
t > 0 then if we pick some set S, E[E[exp(tX"?)[(X™)mes]] = Elexp(tX™?)] < oo so E[exp(tX™?)[(X™)mes] < 00
for almost every value of (X™)pcs. Therefore p(L + R) < 3°, o p(|X"| > L + R[(X™)nes) decays with negative
square exponential tails, much faster than f,,(L + 2R — 1). For some C' > 0, any set of positive numbers, (h,, )., and
large enough R,

>0 p(L+ R) i exp C(L+R . 9
S L Y BRTT) S  Sr(E AT SR zep( L+R>+<L+QR>;M).
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This sum is clearly finite and for large enough R, each term is decreasing in . Therefore, the sum converges to 0 as
R — oo. Thus Assumption E.6 is satisfied in our experiments.

E.4.2. DISCUSSION OF THEOREM 4.3

Theorem 4.3 states that if we choose our noise densities ( f,,, )., to have thick tails then we can answer the separating set
selection problem by answering the separating representation search problem and setting SepSet(X,Y) = {Z,,}y,,=1. It
however does not suggest that this is the only strategy for choosing ( f,,, )., and it does not say anything about when ),,, can
be between (0,1).

For the answers of the separating set selection problem and the separating representation problem to disagree we must have
a () m such that for all measurable sets A, B and all values (Z,, )

0=p(X € AY € B|(Zn)m, (Ym)m, (fm)m) — p(X € Al(Zn)m, (m)ms (fm)m)P(X € Al(Zn)m, (Ym)m, (fm)m()g)

This is an infinite set of constraints that must be satisfied by a value of an M -dimensional parameter (¢, ).

In Example E.4 we showed that if the variables are jointly Gaussian and ( f,, ), are also specially chosen to be Gaussian
then there can be a separating representation but no separating set. In this case, two variables are conditionally independent
if their conditional covariance, which does not depend on (2, ), is 0. Thus the infinitely many constraints in Eq. 8 collapse
to one:

Cov[XY|Zy] = 0.

We conjecture that for generic choices of ( f,;, ), the infinitely many constraints in Eq. 8 remain distinct; they are therefore
impossible to satisfy for any value of 1) that is not close to the indicator of a separating set. In this case we conjecture
{Zm}¢x >c is a separating set for any value of 1 — e > ¢ > e.
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