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Reproducibility Summary1

The following paper is a reproducibility report for It Is Not the Journey but the Destination: Endpoint Conditioned2

Trajectory Prediction [5]. The basic code was made available by the author at this https url. To reproduce the rest of3

the ablation studies mentioned in the paper, we had to modify the model structure accordingly. The well-commented4

version of the code containing all ablation studies performed derived from the original code is available at this https5

url with proper instructions to execute experiments in ReadMe.6

Scope of Reproducibility7

We have verified all claims made by the paper and results from different experiments mentioned in the paper to support8

the claims. The central claim of PECNet was to improve state-of-the-art performance on the Stanford Drone trajectory9

prediction benchmark by 20.9% and on the ETH/UCY benchmark by 40.8%.10

Methodology11

The PECNet model was trained on the drone dataset with social pooling at different conditioned points and on the12

ETH/UCY datasets without social pooling. Furthermore, the trained model was evaluated on the drone dataset at13

different values of evaluated samples. For the latter, GitHub was used as a reference with author-given code.14

Results15

Overall, we were able to reproduce all the results mentioned in the paper within 5% error compared to what was16

mentioned in the paper. 5% error is quite acceptable for this application, and this variation could be caused by setting17

the initial random seed before training18

What was easy19

Verification of the claims against the ETH/UCY benchmarks and Stanford drone benchmark trajectory prediction with20

the PECNet models was an easy task.21

What was difficult22

For the datasets of ZARA1 and ZARA2, there were gaps in the sequence of frames, and thus interpolation was23

done to ensure the continuity of way-points. This caused the ADE and FDE errors to increase. Also, to maintain24

common frequency for all the datasets, they were down-sampled accordingly. For the conditioned way-point positioning25

experiment (with and without ORACLE), ADE had to be calculated from 11 predicted positions to not alter the structure26

of the model, and FDE was also calculated from the 11th point. However, due to it, some ADE fluctuations after the27

sixth way-point (and later) were larger than the claimed results. Similar fluctuations were observed for FDE as well, but28

the relative trends support the paper’s claim.29

Communication with original authors30

We have not contacted any of the original authors as all the results were reproduced satisfactorily.31

Submitted to ML Reproducibility Challenge 2020. Do not distribute.
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1 Introduction32

The paper reproduced in this report aims to tackle multiple pedestrian trajectory predictions using rich multi-modal33

predictions for the use of autonomous vehicles, social robots, etc. Earlier approaches to this problem have been34

auto-regressive in nature, i.e., using n points (or analogically, data from the last t seconds) from the dataset to produce35

the immediately next point, and then this process recurs.36

In this paper, the endpoint distribution conditioned on the past trajectory and the past trajectory features are modeled37

separately for each pedestrian. The future trajectory points are predicted based on the past and features from other38

pedestrians via social pooling. An assumption in this model is the absence of passive pedestrians or the fact that each39

pedestrian has an actual preconceived endpoint or destination and is motivated to reach there.40

To formulate this report, we have experimented on the author’s code by adding/removing social pooling layers, using41

truncation tricks, visualization tools, and changing between CVAE and VAE architectures to verify all the claims made42

by the author described in detail below. We also performed some experiments such as shifting origin to the current43

point, using different architecture for encoder and decoder networks with the hope of improving the results, which are44

also described in detail at the end.45

2 Scope of reproducibility46

The paper revolves around the claim that an important component of predicting the trajectory is the destination in multi47

trajectory forecasting. If the destination for the pedestrian is clear, then the trajectory can be easily resolved using48

a separate network that takes the past trajectory and the destination as input taking into account social interactions49

among fellow pedestrians. Hence the central idea and claim of the paper is to use Conditional Variational Auto Encoder50

(CVAE) to get the latent variable encoding conditioned on the destination from the ground truth, thus using the latent51

variable to infer the predicted destination, and also using it for predicting the rest of the future trajectory. We take k52

samples of the latent variable for testing purposes to predict k different admissible trajectories as output for different53

destinations derived from the latent encoding. The overall reduction in the value of best ADE (Average Displacement54

Errors) and FDE (Final Displacement Error) values for the Stanford Drone, ETH/UCY datasets by using the CVAE55

network is the central claim of the paper.56

To support the argument that indeed given the destination, the rest of the predicted trajectory contributes much less57

error than the previous state of the art methods such as SGAN [3], which directly predict the future trajectory, the paper58

performs an ablation study where they give the ground truth of a way-point which they call as oracle instead of the59

best one from taking k samples of the latent variable to get the decoupled error of predicting the trajectory. The results60

strongly support the argument.61

Further, they also experimented with different values of k to show that FDE tends to 0 as k increases and ADE tends to62

a certain value, which also shows the decoupled error in predicting the rest of the trajectory.63

This paper also introduces a non-local social pooling layer and a "truncation-trick," which improves diversity and64

multi-modal trajectory prediction performance.65

Hence the claims can be summarized as follows:-66

1. Conditioning the destination on the past trajectory using CVAE helps in explicit decoupling of the destination67

prediction and path prediction errors. It hence helps reduce the destination prediction error and the subsequent68

path prediction error.69

2. Using the social pooling layer helps reduce the error in predicting the path given the history and the destination.70

3. Using truncation trick, i.e., truncating the distribution for fewer values of k from which samples are taken71

helps reduce the destination prediction error. Also, taking a higher sigma value for larger values of k reduces72

the error.73

3 Methodology74

We used the GitHub repository provided by the author as the base. However, it only contained the base model for results75

on the drone dataset. In order to reproduce the rest of the experiments, we had to make changes accordingly.76

3.1 Model descriptions77

The base model used in the paper consists of 2 parts:78
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Starting with the past trajectory, the CVAE or Conditional Variational Auto Encoder part is used to get the representation79

of the latent variable conditioned on destination. The past trajectory after flattening is passed through an Epast layer to80

get the past encoding. During training, the ground truth final destination is passed through the Eend layer to get the81

destination encoding. The past and the destination encoding are concatenated and passed through the Elatent layer82

to get the latent encoding distribution with dimension Rn×2zdim (Where n is the no of vehicles in the batch and zdim83

is the hyperparameter denoting the size of the latent encoding) which characterize mean and variance of the latent84

encoding. At this stage, a latent encoding is sampled from this distribution and passed through the Dlatent layer to get85

the destination.86

Second, the predictor network consists of social pooling layers and an MLP network to get the future trajectory. The87

predicted destination is concatenated with the past encoding and the absolute current position of the pedestrian with88

respect to a common global reference frame for all pedestrians. This concatenated encoding is passed through a series89

of social pooling layers which contain g, ψ and θ networks masked by the social mask at each step to get the final future90

encoding. This future encoding is passed through the Pfuture network to get the future trajectory with tf time steps.91

The social mask is represented as a binary matrix M ∈ Rn×n where n is the no. of vehicles in the batch. The value (i,j)92

is 1 in the matrix M if the ith and the jth vehicle come close to each other with a threshold distance d in at least one of93

the time frames from their past trajectories for the frames they are observed. Refer to (3) where F (.) denotes the frame94

number for that position.95

The loss function used to train the model is given in (4). It consists of 3 terms. This first term is the KL divergence96

term to bring the distribution of the latent variable close to the required one, which is N(0, 1). The second term is the97

reconstruction loss from CVAE, called the Average Endpoint Loss (AEL), and the last term is the Average Trajectory98

Loss (ATL), calculated as the sum of L2 losses between each of the predicted and ground truth future trajectory point.99

The metric used for validation and testing is ADE and FDE. ADE is the Average Displacement Error and is calculated100

as the average of euclidean distances at all future time steps between predicted and ground-truth positions. While FDE101

is the Final Displacement Error (FDE), and it is the euclidean distance between the final predicted and ground truth102

positions of the future trajectory. Refer to eqn 1 and 2 for mathematical formulation of ADE and FDE. Here ût refers to103

predicted trajectory position at time t, and ut is the ground truth trajectory position at time t.104

A representative diagram of the network is given in Figure 1 and the architecture parameters for all the networks are105

shown in Table 1.106

Figure 1: Model architecture [5]

ADE =

∑tp+tf+1
j=ti+1 ‖ûj − uj‖2

tf
(1)

FDE =
∥∥ûtp+tf+1 − utp+tf+1

∥∥
2

(2)
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Network Architecture
Eway 2 -> 8 -> 16 -> 16
Epast 16 -> 512 -> 256 -> 16

Elatent 32 -> 8 -> 50 -> 32
Dlatent 32 -> 1024 -> 512 -> 1024 -> 2
θ,Φ 32 -> 512 -> 64 -> 128

g 32 -> 512 -> 64 -> 32
Ppredict 32 -> 1024 -> 512 -> 256 -> 22

Table 1: Model Architecture [5]
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L = λ1DKL(N (µ,σ)‖X (0, I))︸ ︷︷ ︸
KL Div in latent space

+λ2

∥∥∥Ĝc − Gc∥∥∥2
2︸ ︷︷ ︸

AEL

+
∥∥∥T̂f − Tf∥∥∥2︸ ︷︷ ︸

ATL

(4)

3.2 Datasets107

We used Stanford Drone [7] and ETH [6] / UCY [4] datasets. The Stanford drone dataset was given in the author’s108

code, but ETH/UCY was not available. We took the processed ETH/UCY dataset from this https url which is available109

for open source use.110

3.3 Hyperparameters111

We used Hyperparameters given in the paper. We occasionally changed them accordingly, as mentioned in the paper, to112

perform the ablation studies described below. Mainly, the hyperparameters are σ: The variance used for sampling latent113

variable with mean 0, K: The no of guesses of final destination to make, zdim: The size of latent encoding, and the114

model hyperparameters as explained above in model descriptions are summarized in Table 1.115

3.4 Experimental setup116

We used PyTorch to fluently conduct the aforementioned experiments. We extensively used Weights & Biases[1] for117

logging the experiments. For proper reproducibility, even after changing the machines, we set 42 as a system-wide seed118

before running every experiment. This helps in reproducing the exact results that are mentioned in the report.119

3.5 Computational requirements120

The proposed model can be trained on a single NVIDIA-K80 with 12 GB memory in less than an hour for both121

the Stanford Drone and ETH/UCY datasets. We were able to execute the experiments smoothly on Google Colab.122

Specifications of the machine are as follows:123

NVIDIA-K80 GPU, Memory : 12 GB, Memory Clock : 0.82 GHz, Driver Version: 418.67, CUDA Version: 10.1124

4 Results125

The following experiments/ablation studies support the claims made earlier. The results are within 5% error from the126

ones claimed in the paper. We believe this much tolerance is acceptable in the context of this problem as results change127

by this variance on changing the random initial seed. A detailed description of the experiments and their results to128

support the claim are listed below:-129
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4.1 Experiment on the Stanford Drone Dataset (with and without social pooling, truncation trick)130

The original model with hyperparameters, as mentioned in the paper, was trained and tested on the Standard Drone131

Dataset (SDD) [7]. The train-val-test set split is the standard split as described in [2], which is to preserve some scenes132

for test and validation and use others for training. We did it with social pooling and got results within 95% accuracy133

from claim results. The preprocessed data set for train and test were given on GitHub (by author). We used them to134

verify the results. Also, the truncation trick here refers to that σ hyperparameter (Refer to hyperparameters section) is135

used as c
√
K − 1 for K > 2 where c is a constant. The resultant distribution is truncated with |z| < 1 for sampling,136

meaning the sampling is done from a conditional Normal distribution conditioned on |z| < 1. Hence, the resulting137

sampled z from this distribution will always have |z| < 1. We did two experiments with hyperparameters, changing138

n-samples to 5 and another with n-samples to 20 as required for reproducing the results in the first table of the paper.139

O-S-TT O-TT Ours PECNet-Ours
K 20 20 5 20

ADE 10.56 / 10.47 10.23 / 10.19 12.79 /14.16 9.96/10.04
FDE 16.72 / 16.43 16.29 / 15.9 25.88 / 26.73 15.96/16.20

Table 2: Comparisons of our results against those of the authors’ and previous state-of-the-art methods. -S’ ‘-TT’
represents ablations of our method without social pooling truncation trick. We report results for in pixels for both K =
5 20 and for several other values of K. The format for each cell is <claimed result> / <reproduced result>

4.2 Experiment on ETH/UCY Datasets140

ETH/UCY dataset consists of 5 scenes ETH, Hotel, Univ, Zara1, Zara2 extracted coordinates. We followed the141

conventional leave-one-out approach, i.e., trained on 4 sets and tested on the last set to get the results as was mentioned142

in the original paper. We verified results within 98% accuracy from claimed results. The occasional differences are143

understandable as the author did not mention the initial random seed, due to which there are small variations from144

claimed results which are understandable as they are within a 2% bound from the claimed results. The dataset was145

further down-sampled by 6 to get a 0.4 second gap between consecutive frames as demanded by the paper. The result is146

shown below in Table 3. With these two experiments, the reduction in error with respect to the previous results by using147

CVAE and subsequent reduction by using social pooling layer and truncation trick can be demonstrated.148

O-S-TT PECNet
Datasets ADE FDE ADE FDE
ETH 0.58/.57 0.96/.98 0.54/.53 0.87/.87
HOTEL 0.19/.20 0.34/.35 0.18/0.18 0.24/0.23
UNIV 0.39/0.32 0.67/0.53 0.35/0.32 0.60/0.49
ZARA1 0.23/0.23 0.39/0.37 0.22/0.23 0.39/0.35
ZARA2 0.24/0.20 0.35/0.33 0.17/0.20 0.30/0.32

Table 3: Quantitative results obtained versus those of the authors’ (in the form of ours/authors’). ‘O-S-TT’ represents
ablation of PECNet method without social pooling truncation trick. The format for each cell is <claimed result> /
<reproduced result>

4.3 Change in the structure of CVAE149

In this experiment during training, the ground truth destination (Gk) was used to predict the future Tf instead of the150

one obtained from the latent variable during training. Hence the changes inside the code were to pass the ground truth151

Gk and pass it to the social pooling layer during training. Hence, in this experiment, the training of the CVAE and the152

predictor networks are done separately decoupled from each other. Results of this experiment, as shown in Table 4,153

demonstrate that training on the latent encoding helps in coupling both parts of the network and improves the results.154

This newly trained network was tested on the Stanford drone dataset with social pooling, and we got results within 95%155

accuracy from the claimed results; again, the variation though very small, is due to the initial random seed difference.156
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Claimed Result Reproduced Result
ADE 10.87 10.945
FDE 17.03 16.277

Table 4: Change in the structure of CVAE

4.4 Effect of Number of samples (K)157

We did this experiment on the Stanford drone dataset with social pooling. We trained the PECNet model with default σ158

values of the CVAE and test on different k-sample values with and without truncation. Specifically, experiments were159

performed with changes in the hyperparameter σ without truncation for k-sample <= 3, we used σ with variance 1 and160

for k-sample > 3 we used σ with variance 1.3. When using truncation trick for k-sample > 3, we used σ with variance 1161

and for k-sample <= 3 we used σ with variance c *
√
k − 1 as mentioned in the paper. In this experiment, we got results162

as shown in Table 5, within 95% accuracy from the claimed results with differences albeit small due to the differed163

random seed as it was not mentioned in the paper and with the same trend.164

1 2 3 5 10 20 25 50 100 1000 10000
ADE 24.29 18.457 16.25 14.16 12.04 10.49 10.06 8.99 8.208 6.81 6.27
FDE 51.84 37.65 32.15 26.73 21.10 16.72 15.49 12.27 9.73 4.66 2.46
Truncated-ADE 17.62 16.67 15.71 14.788 12.10 10.21 9.74 8.54 7.70 6.39 6.02
Truncated-FDE 35.02 32.67 30.34 28.57 21.49 16.27 14.88 11.27 8.54 3.54 1.66

Table 5: Effect of no of samples (K) on ADE, FDE, Truncated-ADE, Truncated-FDE

Figure 2: Graph of errors

4.5 Conditioned Way-point positions & Oracles165

In this experiment, we conditioned on future trajectory points other than the last observed point, which we refer to as166

way-points. This was not clear in the paper about how to calculate FDE error because we can not predict the destination167

point according to the model architecture. We calculated FDE from the L2 difference between the last point of the168

predicted trajectory, as the final destination prediction is not available for this experiment. The observed result trends169

match exactly with the proposed results in the paper. It was done in two parts exactly as mentioned in the paper:170

1. With oracle: During prediction of the future trajectory (at time of testing and validation), we gave ground-truth171

value of conditioned point instead of the best guessed one from sampling to predict trajectory from the model.172

The Stanford drone data set with social pooling and truncation trick was used to match with the results on173

paper. With this experiment, it can be demonstrated that the errors in destination prediction and path prediction174
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given the destination can be decoupled from each other. Hence using CVAE for inference on the destination as175

the first part helps in improving the results.176

2. Without oracle: The same thing was done here, except during prediction of the future trajectory, the best guess177

for the conditioned point (predicted by the model) was taken (at time of testing and validation). Way-point178

Prediction Error was calculated as the difference between the ground truth of the conditioned point and the one179

predicted by the model. With this experiment, it can be empirically established that we get less inference error180

by conditioning on the destination point rather than on any of the intermediate points on its future trajectory.181

Figure 3: Graph of errors

1 4 5 6 7 8 9 10 11 12
ADE 18.16 19.76 19.83 19.08 13.82 12.98 9.73 10.29 9.83 10.218
FDE 35.64 38.125 38.77 36.79 26.61 24.18 16.73 16.08 14.69 16.27

Way-point error 4.93 10.38 12.75 16.01 12.86 14.98 11.207 13.12 14.336 16.23
Oracle ADE 18.17 19.30 20.46 21.94 7.17 5.52 5.87 5.074 6.0552 6.51
Oracle FDE 35.68 37.93 40.54 41.38 14.30 9.48 8.13 4.892 2.745 0.0

Table 6: Conditioned Way-point positions and Oracles

4.6 Reference shift (Extra experiment)182

This is an extra experiment that we performed. The motivation behind this experiment is that the past trajectories passed183

as input are reference shifted with respect to the starting point of the past trajectory. We believe this would make it184

difficult for the social pooling layer to consider the social interaction impact on the future trajectory as their current185

position will be based on different reference frames for all the neighboring pedestrians on which the interaction would186

mostly depend. Instead, we experimented with setting the reference frame for past trajectory as the current position187

instead. Hence, passing the global current position and the relative past trajectory with respect to that frame for all188

pedestrians will be easier to learn from for the social pooling layer as social forces as it will be easy to infer global189

positions of all pedestrians at past frames from this setup.190

We took the reference of the trajectory for each pedestrian as the current point instead of the first point of the past191

trajectory. This helped the CVAE network to get a better representation of the destination point as all past input192

trajectories have a common last point, which makes it easier for the encoder-decoder network to function; also, the193

predictor and social pooling network gets more easily trained. This experiment showed about 10% further decrease in194

ADE and FDE metrics for drone dataset as shown in the Table 7.195

4.7 Using encoder and decoder LSTM network (Extra experiment)196

The motivation behind this experiment is that using MLP for encoding the past trajectory and predicting the future197

trajectory won’t implicitly leverage the advantage of the sequential nature of the past trajectory and future trajectory.198

Training using MLP is suitable for inputs with less and fixed history time frames, but would be difficult to tune for199
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Before Reference Shift After Reference Shift
ADE 9.96 8.64
FDE 15.96 14.63

Table 7: Results comparing before and after reference shift experiment for PECNet Model

larger history sizes. Hence, we experimented by using an LSTM network instead. This would also help to consider200

variable lengths of the past and future trajectory based on the requirement.201

We used encoder LSTM instead of MLP to form the encoding of the past trajectory to accommodate the variable length202

of past trajectory and form a better representation as to the input temporal data. Also, we used the decoder LSTM203

network to predict the rest of the trajectory given the destination. However, the FDE error reduced by about 5%, but the204

ADE is surprisingly more, demonstrating that decoder LSTM does not perform well given the destination point.205

Using MLP Using LSTM
ADE 9.96 26.9
FDE 15.96 14.3

Table 8: Results comparing using MLP v/s using LSTM for PECNet Model

5 Discussion206

From each of the experiments, the claims made by the paper as described above can be strongly supported and207

empirically proved. The strong correspondence between destination and rest of the path is observed, as evident from the208

results in comparison to previous experiments. Also, the use of the social pooling layer and truncation trick reduces the209

error to a great extent, as demonstrated from the ablation studies described above. In order to further study the choice of210

structure of the network, two other experiments were performed described above, and they strongly support the choice211

of MLP architecture used for past encoding future prediction instead of LSTM/GRU RNN structures.212
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