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Figure 1: Top: We introduce the HOUSELAYOUT3D dataset, a benchmark for 3D house layout estimation which
is more diverse than existing datasets and includes large-scale multi-floor buildings and annotations for doors,
windows and staircases. Bottom: We propose MultiFloor3D, a training-free method for 3D layout estimation
that improves over existing methods on our and existing datasets.

Abstract

Current 3D layout estimation models are predominantly trained on synthetic
datasets biased toward simplistic, single-floor scenes. This prevents them from
generalizing to complex, multi-floor buildings, often forcing a per-floor processing
approach that sacrifices global context. Few works have attempted to holistically
address multi-floor layouts. In this work, we introduce HOUSELAYOUT3D, a
real-world benchmark dataset, which highlights the limitations of existing research
when handling expansive, architecturally complex spaces. Additionally, we propose
MultiFloor3D, a baseline method leveraging recent advances in 3D reconstruction
and 2D segmentation. Our approach significantly outperforms state-of-the-art
methods on both our new and existing datasets. Remarkably, it does not require
any layout-specific training. The HOUSELAYOUT3D dataset and evaluation scripts
are available on the project page: https://houselayout3d.github.io

1 Introduction
Estimating the layout of 3D scenes is essential for several computer vision and robotics applications
[1, 2, 3, 4]. The objective of 3D layout estimation is to convert a 3D space into a compact, vectorized
representation. Specifically, we seek to abstract a reconstructed 3D mesh into a set of closed polygons
that define structural elements such as walls, floors, and ceilings, along with doors, windows, and
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staircases, while disregarding occluding objects like furniture, which commonly appear in real-world
environments.

Recent state-of-the-art models for layout prediction [1, 2, 5] are feed-forward deep-learning models
trained on large-scale synthetic datasets [6, 2] and demonstrate impressive results even on real-world
scenes. A key aspect of these models is that they are trained on synthetic data, which primarily
consists of single rooms or small apartments. This is largely because such smaller scenes are easier
to synthesize—they can be automatically generated at scale [3] or designed by professionals [6]. As
a result, models trained on this data face significant limitations, struggling to generalize to large-scale
buildings with substantially more rooms than a typical apartment and being entirely incapable of
handling multi-level or multi-floor buildings. While it is possible to first divide large-scale buildings
into individual floors and rooms and then process them separately, this approach discards valuable
global context that can aid in local reasoning. For instance, detecting structural elements like staircases
requires cross-floor reasoning, which is lost when floors are processed in isolation. Additionally, this
method necessitates recombining individual room predictions to support building-level tasks such as
path planning between rooms on different floors.

To advance research in 3D layout prediction for large-scale, multi-floor buildings, we introduce
HOUSELAYOUT3D, a challenging benchmark dataset. Built upon real-world building scans from the
Matterport3D [7] dataset, it captures expansive, architecturally complex spaces with up to five floors
and forty rooms per floor, encompassing diverse room types, including partially open spaces that
pose challenges for existing room-based approaches. We manually annotate all structural elements,
including walls, floors, ceilings, staircases, as well as windows and doors, specifying the direction in
which each door opens.

Inspired by the success of recent reconstruction and segmentation models, we propose a training-free
approach called MultiFloor3D. Our goal is to demonstrate that by leveraging recent advances in 3D
scene reconstruction, Gaussian Splatting models, and an innovative layout fitting technique, we can
develop a simple yet effective method that outperforms existing approaches on the more challenging
task of 3D layout estimation in multi-floor buildings. Our experiments on HOUSELAYOUT3D clearly
highlight the limitations of current state-of-the-art methods in handling complex multi-floor buildings.
In contrast, our approach generates more accurate and reasonable layouts, particularly for challenging
multi-floor structures. We hope that these findings together with the benchmark dataset will inspire
new research directions in multi-floor, large-scale 3D layout estimation.
In summary, our contributions are:

• We introduce HOUSELAYOUT3D, the first benchmark dataset for 3D layout estimation in large-
scale, multi-floor buildings.

• We propose MultiFloor3D, a training-free baseline method that leverages recent reconstruction and
segmentation techniques, achieving improved performance over current deep-learning models.

• Our extensive experiments clearly reveal the limitations of existing layout estimation methods,
which we hope will drive further research in this direction.

2 Related Work
Manhattan Scene Layout Initial works on layout estimation impose Manhattan world assumptions
on the output to then solve a constrained optimization problem based on detected walls (Scan2Bim [8])
or corners (DuLaNet [9], LayoutNet [10], FloorNet [11]). Notably, Ochmann et al. [12] allow angled
walls by subdividing the 3D space into cells, ultimately determining the indoor space with an integer
linear program.
2D Scene Layout Another line of work solves the problem from Birds-eye View (BEV): [13]
uses shortest-path algorithms around the free space. Floor-SP [14] extends the concept with a room
segmentation network. HovSG [15] combines 2D BEV point density maps with 2D object detection
to build a scene graph of floors, rooms, and objects without predicting their geometry. This line of
work is limited by its 2D predictions.
3D Scene Layout. Recent advances were made by end-to-end deep learning methods:
SceneCAD [3] uses a graph neural network to infer a 3D layout and object bounding boxes. Room-
Former [1] trains a transformer to estimate a 2D floorplan enriched with semantics. SceneScript [2]
proposes a structured scene language to predict 3D layout walls, windows, doors, and object bounding
boxes from sparse point clouds. Importantly, available training data for end-to-end trainable methods
is dominated by individual room scenes [3] or simple individual floors [6][2][16]. Moreover, the
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Dataset Real-world Multi-room Multi-floor Full Scenes Windows, Doors Objects Depth 3D Layouts

SceneCAD [3] ✓ (✓) ✗ ✓ ✓ ✓ ✓ ✓
ASE [2] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Stru3D [6] ✗ ✓ (✓) ✓ ✓ ✓ ✓ ✓
Zillow Indoor [16] ✓ ✓ (✓) ✓ ✗ ✗ ✗ ✗
MP3D-Layout [18] ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓
Zou et al [17] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓
CADEstate [4] ✓ ✓ ✗ ✗ (✓) ✗ ✗ ✓
FloorNet [11] ✓ ✓ ✓ ✓ (✓) ✗ ✗ ✗
HOUSELAYOUT3D (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Dataset Comparisons of existing dataset benchmarks for evaluating 3D layouts estimation.

buildings are often unfurnished [16], synthetic [6][2], or limited to Manhattan layouts [17]. Another
line of datasets annotates extracts of larger scenes in single 2D images or videos [4][18]. We find
that the limited availability of training data prevents end-to-end methods from generalizing beyond
simple layouts.

3 The HOUSELAYOUT3D Dataset

Figure 2: Examples of our HOUSELAYOUT3D. Our
dataset includes multi-floor houses with annotations for
walls, floors, ceilings and stairs, as well as windows
(blue) and doors (red). We also show the corresponding
3D meshes from MP3D [7].

We introduce a new dataset of hand-annotated
CAD layouts derived from the Matterport3D [7]
(MP3D) dataset (see Fig.2). Unlike previ-
ous works[3, 2], this is the first real-world
benchmark dataset to provide CAD annotations
for large-scale, multi-floor houses, encompass-
ing numerous rooms, staircases, windows, and
doors. Each structural element is annotated as a
polygon in 3D space. Since our dataset is anno-
tated on 3D meshes from MP3D [7], it inherits
their per-vertex room ids and object instances.
Dataset Statistics. The dataset includes 16
buildings, 33 distinct levels, and 317 rooms, cap-
tured across more than 26,000 RGB-D frames.
Its scale is comparable to the validation split of
ScanNet [19]. In total, we annotated 292 doors,
379 windows, and 34 staircases. The lower num-
ber of doors compared to rooms is due to many
spaces, such as hallways and dining areas, being
connected by open passages or staircases rather than actual doors. Each building comprises between
1 and 5 levels and contains between 4 and 40 rooms. The annotation time varies depending on the
building’s size and the number of rooms, typically ranging from 4 to 10 hours per building. All
annotations undergo visual verification by separate expert annotators. Table 1 compares properties
across different datasets.
Annotation Tool and Labeling Details. To annotate the 3D scans, we use a free academic license
of Scasa’s PinPoint [20], a specialized software for building modeling from point clouds. It enables
precise 3D geometry extraction even in occluded or incomplete areas through intuitive tools that
automatically snap to edges and corners, streamlining the annotation process. In the 3D scans, doors
are typically open, so we annotate both the current open position and the expected closed position,
along with the opening direction. For doors that appear closed in the scans, we infer the opening
direction by from the door hinge locations in the RGB images. For window annotations, we utilize
the existing window object annotations from MP3D [7], projecting them onto the nearest annotated
wall plane and fitting axis-aligned rectangles.

4 Method
Given N input RGB images of a scene, our goal is to produce a simple 3D layout consisting of
polygons. Each polygon is assigned a label from a finite set of classes: walls, floors, ceilings, stairs,
doors, and windows. The layout is organized into a scene graph with rooms as nodes and doors/stairs
as edges, and each layout polygon is assigned to a room or an edge of the scene graph.

Figure 3 provides an overview of our approach, which consists of four stages. First, we compute a
3D mesh of the scene. In the second step, we extract the scene’s main structural elements (floors,
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Figure 3: Illustration o the MultiFloor3D model for 3D layout estimation.

walls, ceilings) to form a skeleton of the layout. In the third step, we use geometric and semantic
information to fit a layout prototype to the skeleton. Lastly, we parse the prototype into a scene graph,
from which we extract the final layout.

4.1 Generating a Mesh from RGB Images

Given a set of unposed 2D images, we follow DN-Splatter [21] to obtain a triangle mesh and 3D
depth maps for every frame. DN-Splatter uses COLMAP [22] camera poses and a 2D depth model
to train 3D Gaussian Splatting [23] (3DGS) reconstruction. DN-splatter then produces a Poisson
Reconstruction [24] by sampling from the 3DGS rendered depth. In this work, we use the depth
model Metric3d [25].

4.2 Extracting a Layout Skeleton from the Mesh

Once a mesh is generated, our next step is to use a pre-trained 2D segmentation model to extract a
minimal, reliable geometry that serves as a basis (’skeleton’) for the layout. This skeleton should
consist exclusively of geometry that we want to include in the final layout. To distinguish such
geometry, we define four semantic classes that we treat differently:

• Structural Components (i.e.walls, ceilings, and floors, but also large furniture such as closets):
These are the main components of the layout skeleton. The structural components have accurate
geometry that we wish to see represented in the final layout.

• Geometrically inaccurate surfaces (windows, mirrors): The 3D representation of windows and
mirrors is often inaccurate due to noisy depth estimates. We do not wish to keep them in the layout
skeleton.

• Objects Smaller furniture and objects such as tables or lamps are removed from the layout skeleton.
Objects are later on used to complete unobserved areas of the layout.

• Stairs Are processed separately from the layout skeleton due to their complexity.

To construct the skeleton, we segment the 3D mesh into these classes. We run the segmentation model
OneFormer [26] on the input images and map each output class [27] to one of the four semantic
classes. To transfer OneFormer’s segmentation to the mesh, we back-project M = 5000 randomly
sampled pixels per image and their respective class to 3D. We collect class votes for each mesh vertex
by assigning each back-projected point to the nearest mesh vertex. We further postprocess the obtained
segmentation by clustering the mesh vertices into superpoints, following [28]’s preprocessing step.
Each mesh vertex is then assigned to the most common class within its cluster. The result is a mesh
segmented into our semantic classes. We create the layout skeleton by selecting only structural
components, and extract object and stair meshes.

4.3 Fitting a Layout Prototype to the Skeleton

We observe significant artifacts in the layout skeletons, including holes and unobserved regions. For
example, areas hidden behind furniture, or areas corresponding to windows are missing. In this
stage, we use geometric and semantic information to correct the artifacts and infer a more complete
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layout prototype. To this end, we run an optimization that aims to improve the completeness of the
obtained skeleton: We first initialize a collection of planar 3D polygons P from the layout skeleton. In
particular, each segmented superpoint (see Sec. 4.2) of the skeleton is fitted to one or more planes. We
then optimize the vertex positions and plane equations of the polygons using three main objectives:

• Reconstruct an accurate scene geometry with Lgeom

• Produce a continuous and connected geometry with Lconnect

• Produce a mesh with low vertex count with Lsimple

During the optimization, we constrain the vertices of each polygon to be coplanar. We also allow and
encourage polygons to share vertices. The initialization and the implementation of vertex constraints
and shared vertices is detailed in the supplementary material.
Definitions. Given a polygon P consisting of edges E and a point p ∈ R we define the point-to-
polygon distance Dpp(P, p) as the minimal distance between p and any point on the surface of P .
For e ∈ E we define the point-to-edge distance Dpe(p, e) as the minimal distance between p and any
point on the line segment representing e.

Losses. We fit the polygon set P using gradient descent and three losses. The first loss Lgeom
encourages the polygons to reconstruct the original geometry and respect the observed empty space:

Lgeom = Lprox + Lempty (1)
Lprox penalizes the distance of each vertex v ∈ Vskeleton of the Layout Skeleton to the closest polygon
surface:

Lprox =
∑

v∈Vskeleton

min
P∈P

Dpp

(
v, P

)
(2)

To prevent occluding the observed empty space (i.e.the space we believe to be empty based on the
depth maps), we sample a set L of line segments using the input camera poses and computed depth
maps. Each line segment extends from the camera pose to the back-projected depth. We then penalize
line segment-polygon intersections as follows: If a line segment l intersects a polygon, the nearest
polygon edge e∗ should be moved closer to the intersection point pinter.

Lempty =
∑
l∈L

∑
P∈P

l∩P ̸=∅
Dpe(pinter, e

∗
)
≤Tinter

Dpe

(
pinter, e

∗) (3)

where pinter = l ∩ P and e∗ = argmin
e′∈edges(P )

Dpe

(
v, e′

)
.

Note that we ignore intersections with Dpe(pinter, e
∗) greater than the threshold Tinter to avoid noise

from intersections far from the polygon boundary.

The second loss Lconnect prevents small gaps and encourages shared boundaries by making polygons
attract vertices. Concretely, Lconnect penalizes the distance from each polygon vertex to the closest
surface of another polygon:

Lconnect =
∑
P∈P

∑
v∈vertices(P )

min
P ′∈P, P ′ ̸=P

Dpp

(
v, P ′) (4)

As for Lempty, we ignore points with Dpp

(
v, P ′) greater than a threshold.

The third loss encourages simplicity and smooth polygon boundaries. Lsimple penalizes the length of
all edges that are not shared by at least two polygons. (i.e.not all edge vertices are shared). Intuitively,
Lsimple promotes shared edges (for instance, an edge between two walls) to represent the scene while
edges that are not shared are shrunk until they are eliminated.

Lsimple =
∑
P∈P

∑
e∈edges(P )

1[∄P ′∈P\{P}: e⊂P ′]∥e∥2 (5)

Our final loss is given by L = Lgeom + Lconnect + Lsimple.
Vertex Merging Lsimple itself does not reduce the number of vertices or polygons in the polygon
set. Instead, we periodically manually simplify P by (1) merging vertex pairs with distance below
Tmerge, (2) applying the RDP [29] algorithm with tolerance Tmerge to the polygons individually, and
(3) merging close polygons with similar normal. (Close in terms of minimal Dpp distance among the
vertices.) For (3) we additionally verify that the merged polygon does not increase Lprox too strongly.
Note that step (1) is the source of shared vertices between polygons.
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Figure 4: Our proposed floor extrusion algorithm. 1) Floor triangulation. 2) Triangles assigned to ceilings
using midpoints. 3) Triangles extruded to ceiling planes.

Closing Holes in the Floor We observe that there is a floor under most objects in a room. We
exploit this information by projecting objects to the floor, i.e.we project each triangle of the object
mesh extracted in Sec 4.2 to the plane equation of the nearest floor-classified polygon whose centroid
lies below the triangle. We recompute the floor polygon from the union of the original floor polygon
and the projected triangle surfaces.
Closing Holes in Walls We extend walls to span from ceiling to floor. In particular, we identify
polygon edges of wall-classified polygons whose normals face down. Then we count how many line
segments in L (representing the observed empty space) intersect the area between each edge and the
floor. If the number of intersections per cm2 is below Textend, we extend the edge to the floor. To
ceilings and upwards-facing wall edges, we apply the same procedure. We call the output of this
stage the Layout Prototype

4.4 Scene Graphs from a Layout Prototype

In this stage, we convert the prototype (a set of semantically labeled polygons) into the final layout.
The final layout is organized as a scene graph, where the nodes (rooms) are connected by edges (doors,
stairs). Every node is composed of a single floor, and a set of walls, ceiling, and window polygons.
To achieve this, we first create 2D floorplans, which we later extrude into 3D space. The indirection
via 2D is motivated by the fact that our 3D layout prototype neither gives us an understanding of
indoor/outdoor space nor guarantees a closed or even connected layout.
Creation of a Scene Graph of 2D Floorplans In this step we use the layout prototype and its
semantics to (1) identify the different levels (floors) of the building, (2) create a 2D layout (floorplan)
of each level, and (3) segment each level into rooms, extracting a per-level 2D scene graph from each
floor and (4) detect stairs to connect the individual levels. In the following, we provide an outline of
the applied algorithms, which are detailed in the appendix.

• To identify building floors, we use the floor-classified polygons of the layout prototype, merging
close levels with similar heights.

• To create a 2D floorplan of each level, we merge each level’s floor polygon(s) with suitable ceiling
polygons — since ceilings are rarely occluded by objects and thus are more robustly represented in
the layout prototype.

• To segment each level into rooms, we apply Hov-SG [15]’s room segmentation algorithm on each
2D floorplan (and the walls of the layout prototype). The segmentation outputs a scene graph with
rooms as nodes, and openings as edges. We consider an opening edge a door if its width is below
1.5m. Otherwise, we retain its edge but label it as opening. Furthermore, each room is associated
with a room type (kitchen, office, . . . ).

• To identify stairs, we cluster connected components of the stair mesh extracted in Sec. 4.2. For
each component, we add an edge to the scene graph between the rooms/floors it connects.

Back to 3D: Room Extrusion Sec. D describes how we use the layout prototype to generate a
scene graph of rooms. In this section, we propose a simple algorithm inspired by layout annotation
tools [20], that extrudes each node’s 2D floorplan to the ceiling. For a single room, the extrusion
algorithm creates a closed room shell using a 2D floorplan and a set of potential 3D ceiling polygons
that at least partially cover the floorplan. Fig. 4 visualizes the extrusion process. Its core idea is to
(1) triangulate the 2D floorplan, (2) assign each triangle to a ceiling polygon and (3) extrude each
triangle to its ceiling. Specifically, we triangulate the room’s 2D floorplan using a 2D Constrained
Delaunay Triangulation [30] built from the boundary of the floorplan, the ceiling candidates’ edges,
and the projections of the pairwise intersection lines of the ceiling candidates’ planes. For each
triangle center, we cast a ray upward. If the ray hits a ceiling candidate, we assign the triangle to that
ceiling’s plane. Intuitively, this assignment partitions the floorplan by ’rendering’ ceiling polygons
on the floor. Triangles that do not hit a ceiling are assigned to the lowest ceiling plane reachable in
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Structures Doors Windows Stairs Depth
Method F1@0.5 Avg F1 F1@0.5 Avg F1 F1@0.5 Avg F1 F1@0.5 Avg F1 ∆5 ∆10 #Vertices

RoomFormer [1] (per floor) 0.24±0.06 0.22±0.06 0.23±0.10 0.20±0.09 0.07±0.06 0.07±0.04 – – 24.9±11.5 32.9±14.9 764.9
RoomFormer [1] (per room) 0.18±0.14 0.16±0.12 0.18±0.14 0.16±0.12 0.08±0.08 0.09±0.07 – – 37.3±10.4 44.8±10.7 1134.5
SceneScript [2] (per floor) 0.28±0.11 0.26±0.08 0.23±0.26 0.20±0.23 0.16±0.18 0.15±0.17 – – 22.5±8.6 33.8±11.7 677.1
SceneScript [2] (per room) 0.23±0.12 0.21±0.11 0.31±0.26 0.28±0.23 0.11±0.11 0.10±0.09 – – 23.5±7.2 32.9±6.7 1333.6
MultiFloor3D (Ours) 0.40±0.10 0.38±0.10 0.55±0.16 0.44±0.15 0.43±0.29 0.38±0.22 0.42±0.48 0.41±0.44 61.1±9.2 76.3±7.9 1957.0

Table 2: Scores on HOUSELAYOUT3D. Performance comparison with state-of-the-art layout estimation
methods in terms of average and standard deviation across scenes. Structures include wall, floor and ceilings.
MultiFloor3D is the only method predicting stairs.

RoomFormer [1] SceneScript [2] MultiFloor3D (Ours) Ground-truth

Figure 5: Qualitative Results on HOUSELAYOUT3D. We present layout estimation samples from our model
alongside state-of-the-art methods. To enhance visualization, we apply back-face culling to the layout meshes,
allowing a clear view inside the buildings. Since SceneScript represents walls as boxes, back-face culling is
ineffective; instead, we remove the added floors and ceilings for better visibility.
the graph of unassigned triangles. (Lowest in terms of the triangle midpoint’s projected z-coordinate
on the target plane.) Lastly, we extrude each floor triangle to its assigned ceiling plane. That is, we
produce ceiling and floor triangles on the ceiling and floor planes respectively, and add axis-aligned
wall rectangles for triangle edges coinciding with a wall in the 2D floorplan. To ensure a closed room
shell, we further add vertical rectangles along potential discontinuous edges in the extruded ceiling
surface. To limit complexity, we only consider the 30 largest ceilings per room. Details on how we
add doors and stairs after extruding are provided in the appendix.
Window Detection To detect windows, we back-project the 2D window segmentation of the input
images obtained in Sec. 4.2 onto layout walls and cluster the result. Concretely, we create rays
for window-classified pixels and intersect them with the walls of our 3D layout. We then filter
outliers [31], split the points by wall instance, and run DBSCAN [32] for each wall to identify
window clusters. To every cluster with at least k = 10 vertices, we fit an axis-aligned bounding
rectangle. Finally, we predict a window for every rectangle with height and width greater than 30cm.

5 Experiments
In this section, we first introduce metrics to measure the performance of 3D room layout estimation,
and then compare our approach to recent state-of-the-art methods on the proposed MultiFloor3D
dataset (Sec. 5.1) as well as ScanNet++ [33] (Sec. 5.2). We then provide analysis experiments to
understand the importance of the individual pipeline components (Sec. 5.3), and conclude with
qualitative results and potential applications (Sec. 5.4).
Methods in Comparison. We compare our approach with two recent methods for scene layout
estimation, namely RoomFormer [1] and the recent SceneScript [2]. Training these baselines on
our multi-floor dataset is non-trivial – RoomFormer is designed for 2D floorplan prediction, while
SceneScript is limited to 4-corner primitives. Instead, we evaluate them using their publicly available
model weights on the full HOUSELAYOUT3D dataset. Both baselines are trained on large-scale
synthetic datasets (∼100k samples), whereas our approach is training-free. Similar to [2], we extrude
RoomFormer’s 2D predictions to 3D. Finally, as neither baseline explicitly predicts ceilings or floors,
we append ceiling and floor polygons to each predicted room to ensure a fair depth evaluation.
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Method #Vertices ∆5 ∆10

DN-Splatter Mesh [21] 354k 84.1 92.6

RoomFormer [1] 32.5 36.8 48.9
SceneScript [2] 41.2 55.1 68.5
MultiFloor3D (Ours) 83.1 67.8 84.7

Table 3: Scores on ScanNet++ [33]. Metrics evaluate
depth accuracy as an approximation of layout estima-
tion error. Scores are averaged over validation scenes.

Method Avg F1 #Vertices Sem.
Input Mesh + QSlim [35] 0.109 2000.0 ✗
Layout Skeleton + QSlim [35] 0.223 2000.0 ✗
Layout Prototype 0.373 2553.0 ✗
MultiFloor3D (Ours) 0.381 1957.1 ✓

(w/o prototype fitting) 0.214 2269.8 ✓
(w/o room segmentation) 0.359 2442.2 (✓)

Table 4: Ablation Study on HOUSELAYOUT3D.

Layout Metrics. To assess the accuracy of the estimated layouts, we adopt the F1 score based
on the entity distance dE , following SceneScript [2]. This metric measures the alignment between
ground truth entities E and predicted entities E′. For rectangular entities (e.g. doors and windows),
dE is computed as the maximum distance between corresponding corners of two rectangles of the
same class: dE(E,E′) = max

{
∥ci − c′π(i)∥ : i = 1, . . . , 4

}
where π(i) denotes the optimal corner

permutation obtained via Hungarian matching. The F1 score @τ is then computed by applying a
threshold τ to dE as in [2].

For non-rectangular entities, we introduce a generalized entity distance dH which allows comparison
between entities with different numbers of corners. We define dH as the Hausdorff distance between
two polygon surfaces (i.e.entities) P , P ′ and their vertices V , V ′:

dH(P, P ′) = max
{
max
v∈V

Dpp(v, P
′), max

v′∈V ′
Dpp(v

′, P )
}

(6)

for the point-to-polygon distance Dpp defined in Sec 4.3. We then use dH analogously to dE to
compute the F1 score for walls, floors, and ceilings.

Depth Metrics. Following [17], we use input camera poses to render depth maps for the ground
truth geometry DGT and predict layouts Dpred. When explicit layout annotations are unavailable (e.g.,
ScanNet++ [33]), depth consistency serves as a proxy for evaluating layout accuracy. Specifically, we
compute the percentage of predicted pixel depths that fall within a threshold T cm of the GT depth:

∆T =
1

N

N∑
i=1

1[|Dpred(i)−DGT (i)|≤T ] (7)

This ∆T metric was introduced [34] and is commonly used in monocular depth estimation [25].

5.1 Results on the HOUSELAYOUT3D Dataset

Table 2 shows the main results for the F1-based metrics across semantic classes, and depth metrics
on our HOUSELAYOUT3D dataset. For this experiment, we use the camera poses, RGB-D images
and mesh of MP3D [7]. As neither baseline is designed for multi-floor layout prediction, we apply
them separately per floor (or per room) and then merge the per-floor (or per-room) predictions. We
use the ground-truth MP3D level and room segmentation and report scores per-floor and per-room.
Our MultiFloor3D does not have access to this privileged information.

MultiFloor3D significantly outperforms state-of-the-art layout estimation methods, despite not using
ground-truth floor or room segmentation. While both baselines perform better on individual rooms
than full floors, this gap is smaller for SceneScript, which favors compactness (i.e., fewer vertices) at
the cost of geometric fidelity.

5.2 Results on the Scannet++ Dataset

Table 3 shows additional results on the Scannet++ [33] DSLR validation split, consisting of 50
scenes captured with a monocular hand-held camera and COLMAP-generated image poses. As
ScanNet++ does not provide ground truth layout annotation, we only report depth metrics as an
approximation of the layout error. Since ScanNet++ scenes are populated with objects, we use ground
truth semantic annotations to ignore those points during the evaluation, as well as points on windows
which are typically not well reconstructed in the ground truth laser scan. As input for all methods,
use the mesh provided by the Gaussian Splatting approach DN-Splatter [21] in the first stage of our
method (Sec. 4.1). The results indicate that MultiFloor3D outperforms the baselines at the cost of
compactness (larger number of vertices).
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5.3 Analysis Experiments

Figure 6: Effect of Loss Terms. Left: input and output of our
approach. Right: result when ablating losses and components.
Omitting object projection (top center) or wall extension (top right)
produces holes in the layout. Without Lsimple, the polygon bound-
aries show dents. Without Lconnect, we observe gaps between poly-
gons that otherwise share edges.

Figure 7: Navigation application based on 3D layouts and LLMs.

Table 4 shows the contributions in
terms of F1 score of each stage in
our approach. Note that the outputs
of the first and second stages (mesh
from Sec. 4.1 and layout skeleton
from Sec. 4.2) are triangle meshes,
which we convert to polygon sets
by first applying mesh simplification
(QSlim [35]), and then greedily merg-
ing adjacent triangles whose normals
differ by less than 20°. Performance
drops significantly when either lay-
out fitting or room segmentation is
removed.

5.4 Qualitative
Results and Applications

We show qualitative results of our
approach in Fig. 5 and compare to
RoomFormer [1] and SceneScript [2].
Both baselines methods struggle with
large areas consisting of multiple
rooms, RoomFormer even more than
SceneScript. The baselines ere also in-
herently limitted to predicting rectan-
gular primitives and cannot represent
more complex shapes such as sloped
ceilings (top example). In Fig. 6 we
visualizes qualitative results when re-
moving loss objectives from the mesh
fitting stage introduced in Sec. 4.3.

Down-stream Application. Next, we demonstrate a potential application of full-building 3D
layouts. First, we obtain the 3D scene graph where nodes represent rooms, and edges are connections
between rooms (doors, stairs, etc.) Then, we feed the scene graph in JSON format to an LLM,
together with a user-prompt asking for directions. The LLM responds with turn-by-turn directions on
how to reach the desired location. This concept is illustrated in Fig. 7.

6 Limitations
MultiFloor3D has a significantly longer runtime than the feed-forward baselines, taking one to two
hours per HOUSELAYOUT3D scene on an NVIDIA GeForce RTX 4090, compared to one to two
minutes for SceneScript [2] and RoomFormer [1]. Furthermore, MultiFloor3D occasionally struggles
to remove outdoor elements perceived through large windows, which can introduce artifacts.

7 Conclusion and Discussion
We introduced HOUSELAYOUT3D, the first benchmark dataset for evaluating 3D layout estimation in
large-scale, multi-floor buildings. Existing scene layout estimation methods are limited to single-floor
buildings, and our experiments reveal their challenges in accurately parsing large-scale floors with
multiple rooms—contrasted by our learning-free method, which already outperforms these baselines.
Ideally, future research should develop learning-based approaches capable of handling multi-floor,
multi-room buildings, rather than relying on heuristics, which, while effective, are significantly slower
than feed-forward networks. In summary, we hope that our dataset and evaluation, which highlight
the shortcomings of current methods, will drive further advancements in 3D layout estimation beyond
single-room and single-level reconstruction.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims are that (1) existing end-to-end-trained methods do not
generalize well to large / multi-floor scenes, (2) that we introduce a benchmark dataset
consisting of such scenes to show it, and that (3) we present a method that outperforms
them even without layout-specific training. Our main results on HOUSELAYOUT3D (Tab. 2)
support (1) and (3), whereas Sec. 5.1 introduces the dataset.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the limitations section (Sec. 6)

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In addition to open-sourcing the HOUSELAYOUT3D dataset and the code for
MultiFloor3D, we provide a detailed description of all algorithms and their hyperparameters
in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the dataset (https://huggingface.co/datasets/bieriv/HouseLayout3D)
and the evaluation code (https://github.com/valebi/house-layout-3d-eval/). The code for
MultiFloor3D is provided in the supplementary material and will be open-sourced at a later
time.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our method is training free and hence a train-test split is omitted. Hyper-
paramter choices are provided in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main results on HOUSELAYOUT3D (Tab. 2) include the standard deviation
across scenes.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We briefly discuss the hardware setup and the average runtime in the limitations
section (Sec. 6).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our dataset consists of additional annotations on top of the existing Matter-
port3D dataset, which we believe to be conform with the Code of Ethics. The annotation
process - performed by ourselves - also was in accordance with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: We believe that our work has limited immediate societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe that our dataset poses no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We release hand-crafted annotations only, and do not publish the existing
Matterport3D dataset in any form.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the dataset, its documentation, and usage / evaluation code on
https://huggingface.co/datasets/bieriv/HouseLayout3D
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Sec. 5.4 introduces an LLM-based downstream application of our method for
indoor navigation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Visualizations for the HOUSELAYOUT3D Dataset
Fig. 9 visualizes the scenes in the annotated dataset, while Fig. 8 shows a screenshot of PinPoint [20],
the tool used to create the annotations.

Figure 8: Screenshot of PinPoint [20], the layout annotation tool used to annotate the scenes.

B Re-Classification of COCO [27] Classes
In Sec. 4.2, we segment the input images using OneFormer [26]. It segments the images into
COCO [27] classes, which we re-classify into four semantic classes of interest. Table 5 summarizes
this re-classification. For window detection in Sec. 4.4, we make two changes to this classification.
Firstly, we do not consider mirrors windows. Secondly, we add the surface classes window blind and
curtain to the window classes. Furthermore, the surface class is maintained in the layout skeleton and
the prototype layout (but not in the output).

Semantic Class Category COCO [27] Classes
Structure Wall wall-brick, wall-stone, wall-tile,

wall-wood, wall-other-merged
Ceiling ceiling-merged
Floor floor-wood, floor-other-merged,

rug-merged
Surfaces cabinet-merged, door-stuff, curtain,

window-blind
Geometrically Windows window-other
inaccurate Mirrors mirror-stuff
surfaces Outdoor/Noise gravel, tree-merged, sky-other-merged,

pavement-merged, grass-merged,
dirt-merged

Stairs Stairs stairs
Objects Object Rest

Table 5: Mapping of COCO [27] classes into four semantic classes. The structure class is used to construct
the layout skeleton; the geometrically inaccurate surfaces are removed; the objects are used to fill holes, and
the stairs are added back once the scene graph is created (Sec. 4.4). During prototype fitting (Sec. 4.3), we
further distinguish between walls, ceilings, floors, and generic surfaces among the structures. Unlike mirrors,
the outdoor classes are also used for window detection in Sec. 4.4 because they are typically visible through
windows in indoor environments.
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JeFG25nYj2p JmbYfDe2QKZ p5wJjkQkbXX

r47D5H71a5s S9hNv5qa7GM 17DRP5sb8fy
Figure 9: Visualizations and scene names of the scenes in the HOUSELAYOUT3D dataset. (The scene in Fig 1
was omitted).

C Implementation details for Layout Prototype Fitting
C.1 Initialization of a Polygon Set from the Layout Skeleton

In Sec. 4.3 we fit a set of polygons to the layout skeleton to produce the layout prototype. Specifically,
we sequentially fit one or more planes to each superpoint in the clustering using model fitting by
random sample consensus (RANSAC [? ]). Then we extract polygons from the connected components
of plane inliers (i.e.the points close to the planes): that is, we use the connectivity of the skeleton
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Require: A mesh M segmented into clusters S = {S1, S2, . . . , Sn}
Ensure: A set of planar 3D polygons P

1: Mark every vertex in M as unassigned
2: Initialize P ← ∅
3: while there is an cluster with more than K unassigned vertices do
4: Choose the cluster S∗ with the most unassigned vertices
5: Fit a plane to S∗ using RANSAC
6: Find all unassigned vertices in M that lie close to the plane (the inliers)
7: Assign the vertices of the connected component of inliers that overlaps the most with S∗ to a

new plane (connected w.r.t the mesh edges).
8: Extract polygon P from the boundary of the triangles of the connected component, and add it

to P
9: end while

10:
11: return P

Algorithm 1: Initialization of 3D Polygon Set. We extract a set of planar 3D polygons from the
clustered layout skeleton mesh by sequentially fitting planes to the superpoint clusters obtained in
Sec. 4.2.

mesh to extract connected components of plane inliers. Then we take the boundary of each connected
component as a polygon. Algorithm 1 describes the procedure.

C.2 Implementation of a 3D Planar Polygon Set

In Sec. 4.3 we fit a set of 3D polygons to the vertices of the layout skeleton mesh using gradient
descent.

For a set of N polygons and V vertices, we optimize the following parameters: 1) plane equations of
shape (N, 4) and 2) the vertex positions of shape (V, 3). The parameters’ gradients are computed
using backpropagation.

Implementation of 3D Planar Polygons as Triangle Meshes We build our implementation of
a 3D polygon set on pytorch3d triangle meshes [36]. That is, we triangulate each polygon into
triangular faces using Constrained Delaunay Triangulations [30] (CDT). To ensure that the polygons
are planar, we for each polygon maintain a trainable plane equation. Upon accessing the (trainable)
3D position of a vertex, we first project the vertex to the plane constraint of the polygon it belongs to.
Periodically, we update the original vertex position with the projected (constrained) position to avoid
strong drift in the original vertex positions.

Vertex Sharing We allow and encourage polygons to share vertices. If two vertices of different
polygons are merged, this implies that we require the vertex to satisfy two plane equations. In that
case, we project the vertex to the intersection line between the two polygons upon accessing its
position.

Generally speaking, we store for each vertex up to three plane constraints based on the polygons it is
part of, and project it to the closest point satisfying the constraints upon accessing its position.

To avoid training instabilities, we avoid merging vertices of near-parallel polygons.

Re-Triangulation Upon adding triangle faces to polygons (projecting objects to the floor) or
merging polygons, we re-triangulate the surface of each affected polygon using a CDT.

D Creation of a Scene Graph of 2D Floorplans: Detailed Description
In this step we use the prototype layout and its semantics to (1) identify the different levels (floors) of
the building, (2) create a 2D layout (floorplan) of each level, and (3) segment each level into rooms,
extracting a per-level 2D scene graph from each floor and (4) detect stairs to connect the individual
levels. At a high level, the process can be summarized as follows:

To identify building floors, we use the floor-classified polygons of the layout prototype, merging
close levels with similar heights.
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To create a 2D floorplan of each level, we merge each level’s floor polygon(s) with suitable ceiling
polygons - since ceilings are rarely occluded by objects and thus are more robustly represented in the
prototype layout.

To segment each level into rooms we apply Hov-SG [15]’s room segmentation algorithm on each
2D floorplan (and the walls of the prototype layout). The segmentation outputs a scene graph with
rooms as nodes, and openings as edges. We consider an opening edge a door if its width is below
1.5m. Otherwise, we retain its edge but label it as opening. Furthermore, each room is associated
with a room type (kitchen, office, ..).

To identify stairs we cluster connected components of the stair mesh extracted in Sec 4.2. For each
component we add an edge to the scene graph between the rooms/floors it connects.

D.1 Identifying Building Floors

We use the floor-classified polygons of the layout prototype and merge close levels with similar
heights. Specifically, we create a graph where the nodes represent floor-classified polygons and add
edges between polygons whose height differs by at most 50cm. Each connected component of the
graph defines a floor level. For each level, we determine its average elevation from its assigned floor
polygons.

D.2 Creating a 2D Floorplan for each Level

We construct each level’s 2D floorplan by computing the union of each level’s floor polygon(s) with
suitable ceiling polygons. Suitable ceiling polygons are identified by assigning each ceiling polygon
to the closest next-lower floor polygon that is at least 1m below the ceiling’s center. The level’s 2D
floorplan is then constructed from the union of the ceilings and the floors of the level.

We further identify a level’s walls by selecting wall-classified polygons that (1) intersect the floor’s
2D floorplan in BEV and (2) vertically intersect the height interval of [0, 2.5]m above the floor’s
elevation.

D.3 Segmenting each Level into Rooms

We partition each level’s 2D floorplan into rooms using the level’s walls. We do so by applying
HovSG [15]’s morphology-based room segmentation algorithm twice: first with a bottleneck width
of 2.5m and then with a bottleneck width of 1.5m. The two-stage application has the benefit that
cells (rooms) with a diameter between 1.5m and 2.5m can exist individually, yet larger cells with
bottlenecks below 2.5m are separated.

Note that Hov-SG is a system designed for robotic navigation, and it does not reconstruct an explicit
layout, neither in 2D nor in 3D. Originally, it obtains the 2D floorplan by simply thresholding the
point density of the target floor.

We then follow HovSG in constructing a 2D scene graph with the rooms as nodes and the bottlenecks
that split them as edges. We consider an edge a door if its bottleneck width is below 1.5m, and an
opening otherwise. Each node has a 2D floorplan consisting of a cell of the entire level’s floorplan.

D.4 Scene Graph Classification and Pruning

We follow HovSG in computing a single, CLIP-aligned feature per room. For this, we use
OpenSeg [37] to compute pixel-aligned vision-language model features. Then we follow the same
steps as in the mesh segmentation (Sec. 4.2) to project the features to our mesh vertices. The per-
room feature is computed from the average mesh vertex features per room. We then use the CLIP
embeddings to classify the rooms into ’bathroom’, ’bedroom’, ’living room’, ’garage’, ’entrance’,

’kitchen’, ’office’, ’stairs’, ’gym’, ’classroom’, ’spa/sauna’, ’mirror’, ’grass/bushes/trees’, ’driveway’,
and ’veranda/terrace/balcony’.

We then use this classification to remove leaf nodes of the scene graph belonging to one of the last five
classes: This serves as an additional safeguard against the inclusion of outdoor spaces. (Additional to
the segmentation performed in Sec. 4.2). Notably, this pruning step contributes to the performance
improvement in Tab. 4 of the full method compared to the version without room segmentation.
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D.5 Stair Detection

We combine the stair mesh obtained in Sec. 4.2 with the floor segmentation from Sec. 4.4 to identify
stairs and approximate them as simple 3D rectangles.

That is, we cluster the stair mesh (i.e.the sub-mesh of stair-classified vertices in Sec. 4.2) into
connected components. Each component’s vertices are now projected onto the horizontal plane and
approximated by an oriented bounding rectangle R. We now assign the shorter edges of R to rooms
of the scene graph by (1) determining the heights of the shorter edge midpoints by interpolation
on the 3D cluster vertices, (2) lifting the rectangle to 3D using the edge midpoint heights and (3)
assigning it to the room with the shortest point-to-polygon distance (Dpp, defined in Sec. 4.3) to the
edge midpoint. If this distance is greater than 50cm or both edges are assigned to the same room,
we reject this cluster. Otherwise, we add a stair edge connecting the two rooms and store R as its
geometry.

D.6 Handling Doors and Stairs during Floor Extrusion

The described room extrusion algorithm produces a closed shell for each room by extruding its 2D
floorplan. To connect the rooms with doors and stairs, we introduce openings into these shells as
follows:

To extrude doors, we approximate the room-splitting boundaries obtained by HovSG with oriented
2D bounding rectangles. From these bounding rectangles, we build a 3D doorframe of fixed height
2.10m consisting of four rectangular faces. During room extrusion, we ensure the doorframe remains
empty by only adding wall triangles above the door for edge fragments inside the door’s 2D bounding
rectangle.

To extrude stairs, we first - in 2D - subtract the stair geometry from all rooms it intersects to avoid
extruding overlapping regions. Then we extrude the stair geometry analogously to a room, with the
difference that we as a last step adjust the height of the four floor corners in the resulting mesh to
match the different levels it connects. We do not add walls for shared boundaries between stairs and
rooms. For visualization, we add stair steps at a fixed stair step height on top of the otherwise pitched
but flat floor of the stairs.

E Baseline Implementations
We compare our method to two recent, end-to-end trained baseline methods. Neither of the baselines
is designed to predict multi-floor layouts. Adapting them to multiple floors is non-trivial. Hence,
we use the ground-truth Matterport3D (MP3D) [7] segmentation of houses into levels and regions
(loosely corresponding to rooms). We evaluate the baselines both on individual rooms and levels,
concatenating the output.

E.1 RoomFormer

RoomFormer [1] predicts a 2D layout based on point clouds. We hence create its input by sampling
points from the surface of the mesh. The prediction is then lifted to 3D by assuming a planar
floor/ceiling, whose height we determine based on the 5%-quantile of the distribution of the heights of
the input points. Doors are assumed to extend from floor level to 2.10m above floor level. Windows
are assumed to span 80% of the height of a wall (centered).

E.2 SceneScript

SceneScript [2] predicts a set of 3D walls, doors, and windows based on semidense point clouds. We
sample semi-dense from the input mesh by sampling points from the surface of the mesh where the
norm of the surface gradient falls into the top 5%-quantile of all surface gradient norms. We further
observe that the output improves when additionally sampling a small fraction of random points from
all surfaces. We therefore incorporate random points into the input.

SceneScript neither predicts ceilings nor floors. We therefore infer one single floor and ceiling
polygon respectively from the 2D Birds-Eye View convex hull of the output. To determine floor and
ceiling height, we use the highest and lowest wall rectangles respectively.
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