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Abstract

The quality of training data are crucial for en-001
hancing the long-text capabilities of founda-002
tion models. Despite existing efforts to re-003
fine data quality through heuristic rules and004
evaluations based on data diversity and diffi-005
culty, there’s a lack of systematic approaches006
specifically tailored for assessing long texts.007
Addressing this gap, our work systematically008
measures the quality of long texts by evaluat-009
ing three fundamental linguistic dimensions:010
coherence, cohesion, and complexity. Draw-011
ing inspiration from the aforementioned three012
dimensions, we introduce a suite of metrics013
designed to evaluate the quality of long texts,014
encompassing both statistical and pre-trained015
language model-based ones. Leveraging these016
metrics, we present LongWanjuan, a bilingual017
dataset specifically tailored to enhance the train-018
ing of language models for long-text tasks with019
over 160B tokens. In LongWanjuan, we cate-020
gorize long texts into holistic, aggregated, and021
chaotic types, enabling a detailed analysis of022
long-text quality. Furthermore, we devise a023
data mixture recipe that strategically balances024
different types of long texts within LongWan-025
juan, leading to significant improvements in026
model performance on long-text tasks.027

1 Introduction028

Effectively processing long texts is a crucial capa-029

bility of language models and has recently become030

a focal point of research (Chen et al., 2023; Peng031

et al., 2023; Liu et al., 2023b). Tasks such as long032

document summarization (Zhong et al., 2021), long033

document question answering (Dasigi et al., 2021),034

repository-level code tasks (Liu et al., 2023a), and035

retrieval-augmentation generation (Xu et al., 2023)036

often involve handling thousands or even tens of037

thousands of tokens.038

The quality of data is vital for the long-text ca-039

pabilities of foundation models (Zha et al., 2023;040

Xiong et al., 2023; Rozière et al., 2023). There041
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Figure 1: The three dimensions for measuring the qual-
ity of long texts: coherence, cohesion and complexity.

have been efforts made to improve data quality. 042

Some approaches employ heuristic rules, such as 043

deduplication and the removal of overly short data 044

entries (Soboleva et al., 2023; Penedo et al., 2023). 045

Additionally, some other approaches consider data 046

diversity and perplexity based on pre-trained lan- 047

guage models (Tirumala et al., 2023; Marion et al., 048

2023). However, these filtering rules are designed 049

for general training data and do not take into ac- 050

count the unique characteristics of long texts. 051

To systematically assess the quality of long texts, 052

we adhere to linguistic fundamentals and evaluate 053

them through three dimensions: coherence (Wang 054

and Guo, 2014), cohesion (Halliday and Hasan, 055

2014; Carrell, 1982), and complexity (Pallotti, 056

2015), as illustrated in Figure 1. These three di- 057

mensions have often been used to evaluate and ana- 058

lyze text quality(Mathias and Bhattacharyya, 2018). 059

Coherence measures the overall consistency and 060

clarity of the text as a whole(Zhong et al.; Wu et al., 061

2023; Shrivastava et al., 2018; Cho et al.). Cohe- 062

sion gauges the strength of connections between 063

sentences or sections of the text(Zhong et al.; Wu 064

et al., 2023; Cho et al.; Tan et al., 2022). Complex- 065

ity assesses the linguistic sophistication within the 066

text(Imperial and Madabushi, 2023; Li et al., 2022; 067
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Salman et al., 2023). Given that long texts typi-068

cally contain more extensive content, they necessi-069

tate elevated levels of these characteristics to effec-070

tively convey information and engage in discussion.071

Drawing from these three fundamental dimensions,072

we propose a set of metrics to quantitatively ana-073

lyze the quality of long texts. These metrics encom-074

pass both statistical and pre-trained model-based075

approaches, offering strong interpretability. Further076

details on these metrics can be found in Section 3.077

Based on the characteristics across these three078

dimensions, we categorize the long texts in pre-079

training dataset into three types: holistic long texts,080

encompassing complete works such as books, aca-081

demic papers, reports, novels, and interviews; ag-082

gregated long texts, consisting of short texts re-083

lated by topic or fragmented texts like extensive084

lists or tables; and chaotic long texts, characterized085

by nonsensical content such as garbled data. Draw-086

ing upon these classifications, we manually anno-087

tated a validation set of 200 samples from SlimPa-088

jama (Soboleva et al., 2023) and Wanjuan (He et al.,089

2023) to validate the correlation between our pro-090

posed metrics and human judgments. Our quanti-091

tative metrics effectively differentiate between the092

three categories of long texts.093

Building on these analysis and metrics, we cre-094

ate a bilingual long-text dataset with category la-095

bels, named LongWanjuan, containing over 160B096

tokens. With LongWanjuan, we propose a data097

mixture recipe to mitigate the imbalance between098

holistic long texts and aggregated long texts within099

the dataset. Specifically, by removing chaotic long100

texts and upsampling aggregated long texts, we101

continue to train InternLM2-7B (Team, 2023) with102

an additional 5B tokens, thereby achieving state-of-103

the-art performance for long texts on models of the104

7B parameter scale. The effectiveness and general-105

izability of this recipe are analyzed in Section 5.4.106

In summary, our contributions are as follows:107

1. To the best of our knowledge, this is the first108

work to systematically analyze and introduce109

quantitative metrics for assessing the quality110

of long texts. Grounded in linguistic princi-111

ples, we measure the quality of long texts in112

terms of coherence, cohesion, and complexity.113

2. Leveraging SlimPajama and Wanjuan, we con-114

structed a bilingual long-text dataset with over115

160B tokens, LongWanjuan, which is avail-116

able to the community as an open-source re-117

source.118

3. Based on LongWanjuan, we devise a data mix- 119

ture recipe to mitigate the imbalance in the 120

dataset, and advance to a new state-of-the-art 121

long-text model at the 7B parameter scale, 122

demonstrating a 13.07% improvement over 123

the untrained baseline on Longbench (Bai 124

et al., 2023b). 125

2 Related Work 126

2.1 Pre-training Data Pruning 127

The quality of pre-training data plays a crucial role 128

in the performance of foundation models (Rae et al., 129

2021; Du et al., 2022; Xiong et al., 2023; Rozière 130

et al., 2023; Gunasekar et al., 2023). Several studies 131

have enhanced data quality by pruning the original 132

training data into a subset. 133

Some works primarily focus on heuristic rules 134

and deduplication to improve data quality. Raffel 135

et al. (2020) and Soboleva et al. (2023) employ sim- 136

ilar heuristic rules to enhance data quality, includ- 137

ing the removal of overly short entries and dedupli- 138

cation. Abbas et al. (2023) leverages embeddings 139

from pre-trained models to further eliminate se- 140

mantic duplicates. Another notable contribution 141

is RefinedWeb (Penedo et al., 2023), which metic- 142

ulously designs a comprehensive data processing 143

pipeline. 144

Moreover, several studies take into consider- 145

ation the data diversity and difficulty to prune 146

data. Tirumala et al. (2023) employs clustering- 147

based methods to augment data diversity. Marion 148

et al. (2023) evaluates the effectiveness of perplex- 149

ity, EL2N (Paul et al., 2021), and memorization 150

score (Biderman et al., 2023) in assessing data diffi- 151

culty. Maharana et al. (2023) regards data diversity 152

and difficulty as complementary aspects, selecting 153

data through forward and reverse message passing 154

on a dataset graph. 155

Distinct from these studies that concentrate on 156

general pre-training data, our research specifically 157

targets long texts. It is essential to highlight that our 158

work extends beyond mere data curation and is ap- 159

plicable in a wider range of contexts for evaluating 160

the quality of long texts. 161

2.2 Text Quality Assessment 162

Several works score texts through supervised learn- 163

ing. Alikaniotis et al. (2016) trains score-specific 164

word embeddings and a Long Short-Term Mem- 165

ory (LSTM) network (Hochreiter and Schmidhu- 166

ber, 1997) for text scoring purposes. Similarly, Wu 167
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Low Level Example High Level Example

Coherence The project aims to reduce carbon emissions by
25% within the next five years. Strawberries are
rich in vitamins and antioxidants. It’s raining
today.

The project aims to reduce carbon emissions by 25%
within the next five years. This goal will be achieved
through the implementation of renewable energy sources
and improved energy efficiency. The initiative reflects our
commitment to environmental sustainability.

Cohesion I prepared the soil in my garden. I planted some
tomato seeds. I watered seeds in my garden.

Firstly, I prepared the soil in my garden. Then, I planted
some tomato seeds in the prepared ground. After that, I
watered them.

Complexity Eating fish is good. It helps your brain. After researching various nutrition sources, I concluded
that incorporating omega-3 fatty acids and antioxidants
into our diet can significantly ameliorate cognitive decline
in elderly individuals.

Table 1: Examples illustrating dimensions of coherence, cohesion, and complexity. Blue and orange illustrate
distinct aspects of each dimension. In the context of coherence, the blue and orange texts signify different elements
that maintain thematic consistency throughout the text. For cohesion, the blue text indicates connectors that link
sentences together, while the orange text refers to references to previously mentioned entities. Within complexity,
the blue text represents lexical sophistication, whereas the orange text denotes the complexity of sentence structure.

et al. (2023) conducts fine-grained annotations on168

501 Chinese essays and achieves comparable scor-169

ing performance to ChatGPT-3.5 through training170

based on RoBERTa (Liu et al., 2019). However,171

these approaches suffer from limited generalizabil-172

ity, being applicable only within the confines of173

labeled domains.174

Other works leverage unsupervised methods to175

automatically construct data for training purposes.176

UNION (Guan and Huang, 2020) is trained to dif-177

ferentiate between human-written stories and neg-178

ative samples. Ru et al. (2023) explores implicit179

discourse relations with a latent discourse sense,180

showcasing strong performance.181

Furthermore, some studies utilize pre-trained182

language models to assess text quality without ad-183

ditional training. Shrivastava et al. (2018) eval-184

uates textual coherence by modeling the uncer-185

tainty of topics within paragraphs and their interre-186

lations, thus scoring texts. BARTScore (Yuan et al.,187

2021) and GPTScore (Fu et al., 2023) employ the188

weighted average of the model’s output conditional189

probabilities as a metric, facilitating multifaceted190

evaluation across a broad range of generative tasks.191

Our work measures the quality of long texts192

from multiple dimensions, introducing metrics that193

are task-agnostic and do not necessitate additional194

training.195

3 Method196

Long texts, characterized by their extended con-197

texts and abundant information, pose distinct chal-198

lenges in maintaining textual integrity and quality.199

We systematically measure the quality of long texts200

through three dimensions: coherence, cohesion, 201

and complexity. Each dimension is accompanied 202

by corresponding quantitative metrics, allowing for 203

an effective measurement of long text quality. 204

3.1 Coherence, Cohesion and Complexity 205

In accordance with linguistic fundamentals, we sys- 206

tematically assess the quality of long texts through 207

the following three dimensions. 208

Coherence refers to the consistency and clarity 209

of the text as a whole. A coherent text maintains 210

thematic unity throughout its parts, with logical 211

connections between the different sections. 212

Cohesion measures the degree of tight connec- 213

tion between two sentences or sections of the text, 214

reflected in the use of connectives, pronouns, syn- 215

onyms, and hypernyms/hyponyms. 216

Complexity assesses the level of linguistic so- 217

phistication in the use of language in the text. This 218

can be gauged through the richness and diversity of 219

vocabulary, as well as the complexity of sentence 220

structures. 221

To better elucidate these dimensions, we provide 222

examples in Table 1 that illustrate both high and 223

low levels of these dimensions. Key terms that 224

exemplify specific features of each dimension are 225

highlighted for emphasis. 226

3.2 Metric 227

Inspired by the three dimensions mentioned above, 228

we propose the following metrics to assess the qual- 229

ity of long text t = {t1, t2, . . . , tn}, including both 230

statistical and model-based ones, where higher val- 231

ues correlate with more pronounced characteristics 232

of the corresponding dimension. 233
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Figure 2: Pipeline for constructing the LongWanjuan dataset.

To measure the coherence of a long text, we eval-234

uate the extent to which prior segments of the text235

contribute to understanding subsequent segments.236

A coherent text should make it easier to predict237

its following content based on its preceding con-238

text. For example, when predicting the blue text239

below, it is easier to make a correct prediction if240

the preceding text is provided.241

The sky darkened, and the wind howled. 
It was clear 

It was clear 

242

We evaluate the coherence of long texts by com-243

paring the prediction accuracy with a longer con-244

text and the accuracy with a shorter context, as well245

as the difference. Specifically, with a pre-trained246

causal language model parameterized by θ, we em-247

ploy the following three metrics for assessing the248

coherence of long texts:249

Coherenceaccl =

⌊ n
w⌋∑

i=1

acc
(
yi|xi

l, θ
)
/
⌊ n
w

⌋
, (1)250

Coherenceaccs =

⌊ n
w⌋∑

i=1

acc
(
yi|xi

s, θ
)
/
⌊ n
w

⌋
, (2)251

Coherencediff =

∑⌊ n
w⌋

i=1

ℓ(yi|xi
l ,θ)−ℓ(yi|xi

s,θ)
ℓ(yi|xi

l ,θ)⌊
n
w

⌋ ,

(3)

252

where xi
l = {t(i−1)w, . . . , t(i− 1

4
)w},253

xi
s = {t(i− 1

2
)w, . . . , t(i− 1

4
)w},254

yi = {t(i− 1
4
)w, . . . , tiw}. (4)255

acc(y|x, θ) and ℓ(y|x, θ) denote the model’s 256

average top-1 prediction accuracy and negative 257

log-likelihood loss for generating y given the 258

prompt x, parameterized by θ. Coherenceaccl and 259

Coherenceaccs respectively denote the model’s top- 260

1 prediction accuracy with longer and shorter pre- 261

ceding texts, and Coherencediff represents the pro- 262

portional improvement in model performance when 263

using a longer versus a shorter context. We pro- 264

cess long texts with a sliding window of size w to 265

avoid exceeding the processing capabilities of the 266

language model, setting w to 4096 in practice. 267

We quantitatively measure cohesion by analyz- 268

ing the density of connectives and pronouns in the 269

text and the relationships between adjacent sen- 270

tences. Connectives play pivotal roles in linking 271

words, sentences, or ideas within sentences and 272

paragraphs. Pronouns, serving as substitutes for 273

nouns or noun phrases, maintain references to spe- 274

cific entities mentioned earlier while avoiding un- 275

necessary repetition. 276

Cohesionconn =
Nconn

n
, (5) 277

Cohesionpron =
Npron

n
, (6) 278

CohesionDMR = 1−
N∑
i=1

p(no_conn|si, si+1)

N
,

(7)

279

where Nconn and Npron represent the number of 280

connectives and pronouns in the text, respectively. 281

The comprehensive list of considered connectives 282

and pronouns can be found in the Appendix A. 283

The text t consists of N + 1 sentences, with si 284

denoting the ith sentence in the text. The term 285
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p(no_conn|si, si+1) indicates the probability, as286

determined using Distributed Marker Representa-287

tion (DMR) (Ru et al., 2023), that sentences si and288

si+1 are unrelated.1289

The complexity of the text is assessed from vo-290

cabulary and paragraph.291

ComplexityTTR =
Nunique

n
, (8)292

Complexitypara =
n

Npara
, (9)293

where Nunique refers to the number of unique tokens294

in the text, used to calculate the Type-Token Ratio295

(TTR) (Richards, 1987). Npara denotes the number296

of paragraphs in the text, used to determine the297

average paragraph length.298

4 LongWanjuan299

4.1 Dataset Construction300

Based on the analysis and metrics discussed pre-301

viously, we introduce LongWanjuan, a bilingual302

long-text dataset. The pipeline for constructing our303

dataset is illustrated in Figure 2.304

Given that the majority of the SlimPa-305

jama (Soboleva et al., 2023) corpus is in English,306

we enrich it with Chinese texts from the Wan-307

juan (He et al., 2023) dataset. Initially, we extract308

data entries exceeding 32K bytes from both the309

SlimPajama and Wanjuan datasets, serving as the310

starting point for our dataset construction.311

Subsequently, we evaluate each data entry312

using the metrics we proposed. Specifically,313

we first tokenize the data with InternLM2 to-314

kenizer (Team, 2023), thereafter calculating315

ComplexityTTR. The tokenized results are further316

processed with InternLM2-7B to obtain coherence317

scores, including Coherenceaccl , Coherenceaccs ,318

and Coherencediff. We employ NLTK (Bird and319

Loper, 2004) and LTP (Che et al., 2021) respec-320

tively for English and Chinese sentence segmenta-321

tion. These sentences are then fed into DMR model322

to derive the CohesionDMR score. The metrics323

Cohesionconn, Cohesionpron and Complexitypara,324

are calculated by straightforward word counting.325

After scoring each data entry with these met-326

rics, we establish thresholds to categorize the data327

into holistic long texts, aggregated long texts, and328

1The DMR approach is originally considered for English
texts only. To process Chinese data, we follow its training
methodology and train a Chinese DMR model based on the
Wanjuan dataset.

Figure 3: Distribution of texts with different character-
istics on the Cohesionconn metric in the C4 domain.

chaotic long texts. During this process, it is nec- 329

essary only to check whether texts on either side 330

of the threshold belong to different categories. Fig- 331

ure 3 shows the distribution of texts within the C4 332

domain based on the Cohesionconn metric. As illus- 333

trated, the texts within different ranges of our pro- 334

posed metric exhibit distinct characteristics, simpli- 335

fying the process of threshold determination. For 336

each domain in the dataset, we can extract approx- 337

imately 30 data samples based on the distribution 338

of this metric and identify the thresholds between 339

different categories of texts. More information on 340

the distribution of text quality across various met- 341

rics are shown in Appendix C. In this phase, we 342

initially determine thresholds to segregate holis- 343

tic long texts. Subsequently, within the remain- 344

ing texts, we establish thresholds to differentiate 345

chaotic long texts, with the residual texts classified 346

as aggregated long texts. 347

Overall, holistic long texts are characterized by 348

high coherence and cohesion, with moderate com- 349

plexity. Aggregated long texts exhibit lower coher- 350

ence and cohesion compared to the former. The 351

main feature of chaotic long texts is their complex- 352

ity, which is anomalously high or low. 353

4.2 Statistics 354

The LongWanjuan dataset comprises a total of 355

160.6B tokens, as tokenized by the InternLM2 to- 356

kenizer. Of these, holistic texts constitute 137.6B 357

tokens, accounting for 85.7% of the dataset; aggre- 358

gated texts make up 21.8 billion tokens, or 13.6%; 359

and chaotic texts comprise 1.2B tokens, represent- 360

ing 0.7%. In this section, we will present statistical 361

information about LongWanjuan, focusing on the 362

distribution of domains and lengths. The specific 363

values of token count and document count for each 364

domain are provided in Appendix C. 365

Length Figure 4 illustrates the distribution of the 366

number of data entries and the number of tokens 367

across different lengths within the LongWanjuan 368

dataset. During pre-training, the training data is 369
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Figure 4: Distribution of token and document counts
across different lengths. In LongWanjuan, over 99.9%
of the data exceed the truncation length in pre-training.

Holistic Aggregated Chaotic Total

EN 0.97 0.87 0.81 0.91
ZH 0.97 0.58 0.79 0.80

Table 2: The correlation between manual validation and
the classification method we proposed

Human Annotators Annotators v.s. Metrics

EN 0.9095 0.9048
ZH 0.8933 0.6755

Table 3: The kappa score among annotators and that
between human validation and classification method.

generally truncated to a maximum length of 4K370

tokens, and entries of this length account for less371

than 0.1% of the dataset in LongWanjuan. In terms372

of the number of tokens, more than 50% of the373

data spans lengths between 8K and 32K tokens.374

Furthermore, over 10% of the data exceeds a length375

of 128K tokens. With regard to the number of data376

entries, more than 50% of the documents fall within377

the 8K to 16K token range. The trend in data entries378

by length initially increases before decreasing, and379

due to longer documents containing more tokens,380

the smallest quantity of tokens is observed in the381

48K to 64K range.382

5 Experiments383

5.1 Manual Validation384

Complementary to the following training and eval-385

uating results, we conduct human validation by386

manually annotating the type of 200 long texts387

from SlimPajama (Soboleva et al., 2023) and Wan- 388

juan (He et al., 2023) and then calculating the clas- 389

sification accuracy. The verification set includes 390

120 items in English and 80 items in Chinese, cov- 391

ering various domains as well as all three types of 392

long texts in SlimPajama and Wanjuan. The verifi- 393

cation results are shown in Table 2 and Table 3. 394

The quantitative metrics we proposed can effec- 395

tively distinguish the three types of long texts in 396

SlimPajama and Wanjuan. Specifically, for Chi- 397

nese, the accuracy of the aggregated long text is 398

relatively low. This is because the ‘TextBook’ do- 399

main in Wanjuan contains a large amount of classi- 400

cal Chinese texts, which have inherent differences 401

compared to modern Chinese texts. On one hand, 402

it is challenging for models and rule-based scoring 403

methods to accurately distinguish between them. 404

On the other hand, there exist difficulties and bi- 405

ases in human annotation. As a result, the rela- 406

tively lower accuracy is reasonable. Overall, our 407

proposed method can still effectively differentiate 408

the three types of long texts in general Chinese and 409

English language data. In other words, long texts 410

can be classified into these three types from the per- 411

spectives of coherence, cohesion, and complexity. 412

5.2 Setup 413

We conduct experiments on LLaMA2-7B-4K (Tou- 414

vron et al., 2023b), LLaMA3-8B-8K (Meta, 2024) 415

and InternLM2-7B (Team, 2023) corresponding to 416

LLMs with and without long context capability re- 417

spectively. Detailed training hyper-parameters can 418

be found in Appendix D. 419

For all models, we use a 9:1 ratio of English 420

to Chinese language data. For SlimPajama, we 421

follow the data mixtures used for LLaMA pre- 422

training (Touvron et al., 2023a). Due to the limited 423

amount of Chinese data, we sample data uniformly 424

from Wanjuan. We excluded chaotic texts and up- 425

sample aggregated texts to balance the holistic and 426

aggregated texts as our proposed recipe. 427

We compare our proposed data-mixing recipe 428

with the following three strategies: 1. Training on 429

long texts from all categories. 2. Training LLM 430

with only the holistic long texts. 3. Excluding 431

chaotic texts and employing holistic and aggregated 432

texts for training. 433

5.3 Main Results 434

We first compare the training results of LLaMA2- 435

7B, LLaMA3-8B and InternLM2-7B with our data 436

mixing recipe mentioned above on LongWanjuan 437

6



EN ZH Text Code Total

LongChat-v1.5-7B-32K 37.13 14.88 27.63 54.15 33.22
Yi-6B-200K 37.65 15.12 28.04 64.55 35.72
Qwen1.5-7B-128K 42.61 26.33 31.62 68.45 39.37
InternLM2-7B 51.61 34.07 40.91 62.86 45.43
ChatGLM3-6B-32K 55.36 42.43 45.64 57.10 48.05

LLaMA2-7B with LongWanjuan 33.92 18.94 25.15 62.90 33.10
LLaMA3-8B with LongWanjuan 34.82 20.23 27.55 67.23 35.91
InternLM2-7B with LongWanjuan 56.64 39.31 46.26 65.26 50.26

Table 4: Comparison between our proposed training strategy with other open-sourced LLMs on LongBench. The
terms HOL, AGG, and CHA respectively denote holistic texts, aggregated texts, and chaotic texts.

EN ∆ ZH ∆ Text ∆

LLaMA2-7B-4K 28.55 13.62 21.41
HOL. + AGG. + CHA. 32.86 +15.11% 17.18 +26.20% 24.30 +13.46%
HOL. 33.17 +16.20% 18.44 +35.44% 24.63 +15.02%
HOL. + AGG. 33.66 +17.91% 17.14 +25.88% 24.99 +16.70%
HOL. + Upsampling AGG. 33.92 +18.80% 18.94 +39.09% 25.15 +17.45%

LLaMA3-8B-8K 33.16 18.86 25.47
HOL. + AGG. + CHA. 33.54 +1.15% 21.12 +12.02% 26.51 +4.09%
HOL. 33.50 +1.03% 21.71 +15.16% 26.61 +4.46%
HOL. + AGG. 34.00 +2.51% 23.02 +22.08% 27.55 +8.17%
HOL. + Upsampling AGG. 34.82 +5.00% 20.23 +7.30% 27.55 +8.17%

InternLM2-7B 51.61 34.07 40.91
HOL. + AGG. + CHA. 55.03 +6.63% 36.63 +7.52% 44.49 +8.74%
HOL. 55.12 +6.81% 36.97 +8.51% 44.61 +9.04%
HOL. + AGG. 55.54 +7.62% 37.36 +9.67% 44.79 +9.46%
HOL. + Upsampling AGG. 56.64 +9.76% 39.31 +15.38% 46.26 +13.07%

Table 5: Comparison of different training strategies data on LongBench. We also report relative improvements over
the pre-trained LLMs in the same way as LLaMA2Long (Xiong et al., 2023). The terms HOL, AGG, and CHA
respectively denote holistic texts, aggregated texts, and chaotic texts.

with other long-context LLMs, such as LongChat-438

v1.5-7B-32K (Li et al., 2023), Yi-6B-200K (01-439

ai, 2023), Qwen1.5-7B-128K (Bai et al., 2023a)440

and ChatGLM3-6B-32K (Zeng et al., 2023), on441

LongBench (Bai et al., 2023b), a widely accepted442

benchmark dataset for long-context LLM. Long-443

Bench includes different languages (Chinese and444

English) and application areas (such as single-doc445

QA, multi-doc QA, summarization, few-shot learn-446

ing tasks, synthetic tasks, and code completion)447

to provide a comprehensive evaluation of the lan-448

guage model’s capabilities in handling long con-449

texts. During the evaluation, we limit the maximum450

input length to 4K tokens for pre-trained LLaMA2-451

7B-4K, 8K tokens for pre-trained LLaMA3-8B-8K,452

and 32K tokens for other models. We apply the453

truncation from the middle used in LongBench.454

The results are shown in Table 4, and detailed455

scores for each subtask can be found in the Ap-456

pendix F. Despite the strong long-text capabilities457

of InternLM2-7B, continuing training on Long-458

Wanjuan using our recipe leads to performance459

improvements across all domains. Moreover, we 460

surpassed ChatGLM3-6B-32K overall, achieving a 461

new state-of-the-art performance on LongBench. 462

5.4 Analysis 463

Then we compare the training results of LLaMA2- 464

7B, LLaMA3-8B and InternLM2-7B with the three 465

strategies mentioned above. The results are shown 466

in Table 5, and detailed scores for each subtask can 467

be found in Appendix F. Since our work mainly 468

focuses on the quality of long text, we do not em- 469

phasize the improvement in code-related abilities. 470

We observed that training solely on holistic texts 471

yielded only marginal improvements compared to 472

using data from all categories without any filter- 473

ing. Incorporating aggregated texts can lead to a 474

significant enhancement and achieve optimal per- 475

formance among these strategies, especially when 476

the ratio of aggregated texts is upsampled. 477

We analyze the performance of these data mix- 478

ing strategies across different tasks in Table 6. For 479

LLaMA2-7B, the removal of chaotic texts results 480

7



Single-doc Multi-doc Sum Few-shot Synthetic

LLaMA2-7B-4K 18.43 11.50 15.24 52.36 5.34
HOL. + AGG. + CHA. 23.71 12.54 17.32 59.23 3.45
HOL. 23.57 12.87 19.43 57.79 4.38
HOL. + AGG. 22.35 12.38 20.42 59.68 4.96
HOL. + Upsampling AGG. 22.56 12.74 19.97 61.14 3.86

LLaMA3-8B-8K 23.56 13.74 20.97 62.14 4.86
HOL. + AGG. + CHA. 24.56 14.74 21.97 63.14 5.86
HOL. 25.56 15.74 22.97 64.14 6.86
HOL. + AGG. 26.56 16.74 23.97 65.14 7.86
HOL. + Upsampling AGG. 27.56 17.74 24.97 66.14 8.86

InternLM2-7B 43.50 37.10 23.70 59.95 40.33
HOL. + AGG. + CHA. 42.05 39.96 23.73 61.43 58.67
HOL. 40.46 40.83 24.03 62.07 59.00
HOL. + AGG. 42.63 40.35 24.66 61.83 57.50
HOL. + Upsampling AGG. 44.20 40.15 25.28 62.70 63.05

Table 6: Comparison of different training strategies data on the major task categories in LongBench. The terms
HOL, AGG, and CHA respectively denote holistic texts, aggregated texts, and chaotic texts.

in improvements across multi-doc QA, summa-481

rization, few-shot learning tasks, and synthetic482

tasks. Additionally, incorporating aggregated texts483

alongside training solely on holistic texts enhances484

performance on these tasks. Although our pro-485

posed recipe excels primarily in few-shot learn-486

ing tasks, it demonstrates overall superior perfor-487

mance. Regarding InternLM2-7B, our proposed488

recipe achieves optimal performance across all489

tasks except for multi-doc QA. We attribute the dif-490

fering performances between the two models to the491

relatively lower proportion of Chinese in LLaMA2-492

7B’s pretraining corpus compared to our continued493

training with a 10% Chinese ratio. Despite this494

distinction, our recipe yields the best overall per-495

formance on both these models. When it comes to496

LLaMA3-8B, our proposed method acquires the497

optimal performance across all task types.498

To validate the generality of our LongWanjuan,499

we compare the performance of models trained500

with different data mixing strategies on another501

commonly used long-context evaluation dataset,502

L-Eval(An et al., 2023). The results are shown in503

Table 11 in Appendix E. It can be found that the504

models trained on the filtered text significantly out-505

performed those trained on the unfiltered text. Due506

to the lack of multi-doc-related tasks in L-Eval, the507

addition of aggregated texts had a limited impact508

on model performance. Nevertheless, fine-tuning509

with the holistic and aggregated text still performs510

best on average. Our proposed data mixing also511

achieves the best results for InternLM2-7B.512

We also evaluate the performance of models fine-513

tuned on long texts across multiple short tasks with514

a length of less than 2K tokens. Our findings in- 515

dicate that the average performance fluctuation re- 516

mains within 1.5 percentage points. Furthermore, 517

incorporating aggregated texts proves to be effec- 518

tive in enhancing performance on short tasks. For 519

detailed performance metrics and benchmark test 520

results, please refer to the Appendix G. 521

6 Conclusion 522

We try to systematically analyze the quality of long 523

texts from three linguistic dimensions: coherence, 524

cohesion, and complexity. Inspired by these dimen- 525

sions, we develop a series of metrics based on statis- 526

tics and pre-trained models to quantitatively assess 527

the quality of long texts. Utilizing SlimPajama and 528

Wanjuan, we construct the LongWanjuan dataset 529

and categorize texts into three types: holistic, aggre- 530

gated, and chaotic texts, according to our proposed 531

metrics. We introduce a data mixture recipe based 532

on the LongWanjuan dataset to address the issue 533

of the imbalance between holistic long texts and 534

aggregated long texts, achieving state-of-the-art 535

performance on the LongBench benchmark. Our 536

experimental analysis further validates the effec- 537

tiveness of the proposed recipe. 538

Limitations 539

We utilize SlimPajama and Wanjuan to construct 540

LongWanjuan, with the Chinese data still remain- 541

ing relatively limited. Based on the scalability and 542

generalizability of our approach, additional Chi- 543

nese datasets and datasets from other languages 544

can be incorporated on top of deduplication. We 545

alleviate the imbalance between the quantities of 546

8



holistic and aggregated texts by upsampling aggre-547

gated texts. However, we did not attempt to provide548

an optimal ratio, leaving this for future work.549

Ethics Statement550

LongWanjuan is constructed based on Wanjuan551

(under the CC BY 4.0 license) and SlimPajama552

(under the Apache 2.0 license), both of which per-553

mit open and free usage. We plan to open-source554

LongWanjuan under the CC BY 4.0 license.555

Throughout the dataset construction process,556

there are 3 annotators involved, all of whom are au-557

thors. The annotators are all native Chinese speaker558

and proficient in reading and understanding En-559

glish. They consent to contribute their efforts to560

building LongWanjuan.561
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In this section, we report the distribution features 941

with more characteristics, including Cohesionconn, 942

Cohesionpron, CohesionDMR, Complexitypara, in 943

Figure 5 to Figure 11. We take the C4 domain and 944

the ChinaNews domain as an example of English 945

and Chinese texts respectively. 946

Figure 5: Distribution of texts with different character-
istics on the Cohesionpron metric in the C4 domain.

Figure 6: Distribution of texts with different character-
istics on the CohesionDMR metric in the C4 domain.

Figure 7: Distribution of texts with different character-
istics on the Complexitypara metric in the C4 domain.

C Detailed Statistics 947

Figures 12a and 12b depict the distribution of data 948
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Conn. in English ’but ’, ’whereas’, ’however’, ’though’, ’yet’, ’nevertheless’, ’still’, ’despite’,
’nonetheless’, ’notwithstanding’, ’regardless of’, ’in spite of’, ’apart from’,
’in any case’, ’in any event’, ’supposedly’, ’provided’, ’otherwise’, ’unless’, ’once’,
’as long as’, ’because’, ’so ’, ’since’, ’thus’, ’therefore’, ’as a result’,
’accordingly’, ’thereafter’, ’thereby’, ’hence’, ’given’, ’due to’, ’owing to’,
’on account of’, ’in light of’, ’as a matter of fact’, ’in other words’, ’alternatively,’,
’alternately,’, ’optionally,’, ’namely,’, ’that is to say’, ’in contrast’, ’on the contrary’,
’in turn’, ’by contrast’, ’conversely,’, ’by comparison’, ’for example’, ’for instance’,
’typically,’, ’specifically,’, ’especially,’, ’particularly,’, ’in particular’,
’until’, ’while’, ’when’, ’recently,’, ’presently,’, ’currently,’, ’in the meantime’,
’previously,’, ’initially,’, ’originally,’, ’subsequently,’, ’later’, ’consequently,’,
’finally,’, ’ultimately,’, ’eventually,’, ’in the end’, ’lately,’, ’lastly,’,
’firstly,’, ’secondly,’, ’thirdly,’, ’next’, ’on one hand’, ’on the other hand’,
’moreover’, ’in addition’, ’additionally,’, ’besides’, ’furthermore’,
’in sum’, ’in summary’, ’overall’, ’in short’, ’in conclusion’, ’in brief’, ’in detail’,
’personally,’, ’luckily,’, ’thankfully,’, ’fortunately,’, ’hopefully,’, ’preferably,’,
’surprisingly,’, ’ironically,’, ’amazingly,’, ’oddly,’, ’sadly,’, ’historically,’,
’traditionally,’, ’theoretically,’, ’practically,’, ’realistically,’, ’actually,’,
’generally,’, ’ideally,’, ’technically,’, ’honestly,’, ’frankly,’, ’basically,’,
’admittedly,’, ’undoubtedly,’, ’importantly,’, ’essentially,’, ’naturally,’, ’arguably,’,
’remarkably,’, ’in fact’, ’in essence’, ’in practice’, ’in general’, ’by doing this’.

Conn. in Chinese ’至今为止，’, ’目前’, ’这样一来’, ’详细地’, ’与此同时，’, ’起初’, ’换言之’, ’此刻’,
’鉴于’, ’其中，’, ’例如，’, ’突然’, ’那么，’, ’不久，’, ’并且’, ’确实，’, ’尽管’,
’而不是’, ’总体上，’, ’第一，’, ’无论’, ’最近’, ’无论如何’, ’简而言之’, ’这里，’,
’有时候，’, ’除非’, ’结果，’, ’然后，’, ’除开’, ’当然，’, ’很快，’, ’但是，’,
’另一方面，’, ’换句话说，’, ’理论上’, ’历史上’, ’虽然’, ’不管’, ’所以，’,
’首先’, ’而且’, ’而’, ’由于’, ’第三，’, ’可是，’, ’但’, ’由此可见，’, ’而是’,
’最初，’, ’最终，’, ’后来，’, ’即使’, ’只有这样，’, ’但事实上，’, ’相反’,
’总的来说，’, ’只是’, ’取决于’, ’这时，’, ’用来’, ’以便’, ’基本上，’, ’不料’,
’就像’, ’接下来’, ’老实说’, ’相比之下，’, ’本质上’, ’否则，’, ’从某种意义上’,
’之前’, ’当时’, ’以前’, ’以至于’, ’特别是’, ’尤其是’, ’实际上，’, ’只要’,
’理想情况’, ’或者，’, ’不仅如此，’, ’幸运’, ’事实上，’, ’然而，’, ’一方面，’,
’比如，’, ’通常’, ’原因是’, ’从长远来看’, ’此后’, ’其次’, ’渐渐地，’, ’直到’,
’不论’, ’大多数情况下’, ’之后，’, ’显然’, ’也就是说，’, ’以及’, ’随后，’, ’没想到’,
’不过，’, ’除此之外’, ’无疑’, ’第二，’, ’反过来，’, ’若是’, ’以上就是’, ’也许’,
’假如’, ’可’, ’如果’, ’一如既往’, ’结果就是’, ’通过这样’, ’类似地，’, ’一般来说，’,
’除了’, ’据说’, ’另外，’, ’同样地’, ’反之，’, ’总之，’, ’进一步’, ’可以说’, ’于是，’,
’最后，’, ’既然’, ’尽管如此，’, ’这意味着’, ’同时，’, ’因此，’, ’某种程度上’,
’综上，’, ’随着’, ’此外，’, ’即便如此’, ’有时，’, ’同样，’.

Table 7: The connectives we use to calculate Cohesionconn. These words and phrases are collected from the list of
connective words in Ru et al. (2023).

Pron. in English ’one’, ’ones’, ’i’, ’me’, ’my’, ’mine’, ’myself’, ’you’, ’your’, ’yours’, ’yourself’,
’he’, ’him’, ’his’, ’himself’, ’she’, ’her’, ’hers’, ’herself’, ’it’, ’its’, ’itself’,
’we’, ’us’, ’our’, ’ours’, ’ourselves’, ’they’, ’them’, ’their’, ’theirs’, ’themselves’,
’this’, ’that’, ’these’, ’those’, ’who’, ’whom’, ’whose’.

Pron. in Chinese ’我’, ’自己’, ’你’, ’他’, ’她’, ’它’, ’这’, ’那’, ’这个’, ’那个’, ’那里’, ’彼此’, ’您’,
’我们’, ’你们’, ’他们’, ’她们’, ’它们’, ’这些’, ’那些’.

Table 8: The pronouns we use to calculate Cohesionpron.

these bar graphs, each row is divided into three951

segments from left to right, representing holistic952

texts, aggregated texts, and chaotic texts, in that953

order. In the English data, the CommonCrawl do-954

main predominates, accounting for over 50% of the955

data. Apart from a significant amount of aggregated956

texts in the CommonCrawl domain, the majority957

of data in other domains consists of holistic texts.958

In the Chinese data, the distribution across differ-959

ent domains is more balanced, with each domain 960

featuring both holistic and aggregated texts. The 961

WebText and Law domains contain a notable num- 962

ber of chaotic texts. Detailed statistical information 963

is available in Table 9 and Table 10, respectively. 964

D Hyper-parameters 965

We use 64 A100 GPUs and adopt ZeRO3 strate- 966

gies (Rajbhandari et al., 2020) to tune a 7B model. 967
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Domain #Docs #Tokens
Holistic Aggregated Chaotic Total Holistic Aggregated Chaotic Total

CommonCrawl 4740880 638363 36664 5415907 76.5B 9.9B 719.8M 87.2B
C4 632819 88119 2732 723670 7.0B 1.1B 36.6M 8.2B
ArXiv 1045806 3274 287 1049367 25.4B 153.9M 68.3M 25.6B
Book 187396 7369 252 195017 24.2B 893.9M 80.7M 25.1B
Github 377312 56557 0 433869 7.4B 1.3B 0.0M 8.7B
Wikipedia 146469 29745 1883 178097 2.9B 654.4M 97.8M 3.7B
StackExchange 5295 1750 659 7704 60.6M 21.9M 11.3M 93.8M
Total 6856817 786654 48564 7692035 137.6B 13.0B 1.2B 151.8B

Table 9: An overview of the dataset statistics in the English part of LongWanjuan. The number of tokens is
calculated with the tokenizer in InternLM2-7B (Team, 2023).

Domain #Docs #Tokens
Holistic Aggregated Chaotic Total Holistic Aggregated Chaotic Total

ChinaNews 5211 1331 240 6782 51.3M 15.5M 4.3M 71.1M
Law 24575 5212 1310 31097 276.3M 58.1M 69.4M 403.8M
Patent 44922 2956 682 48560 438.0M 31.6M 9.9M 479.5M
TextBook 4746 693 0 5439 496.0M 119.3M 0.0M 615.3M
WebText 18698 7842 3855 30395 180.6M 93.0M 91.4M 365.1M
Total 98152 18034 6087 122273 1.4B 317.4M 175.1M 1.9B

Table 10: An overview of the dataset statistics in the Chinese part of LongWanjuan. The number of tokens is
calculated with the tokenizer in InternLM2-7B (Team, 2023).

Figure 8: Distribution of texts with different charac-
teristics on the Cohesionconn metric in the ChinaNews
domain.

Figure 9: Distribution of texts with different charac-
teristics on the Cohesionpron metric in the ChinaNews
domain.

We use AdamW (Loshchilov and Hutter, 2017)968

with β1 = 0.9 and β2 = 0.95. We set the learn-969

ing rate to 3 × 10−5 with a cosine learning rate970

schedule with a 20-step warmup. We set the max971

gradient norm to 1 and the weight decay to zero.972

We fine-tune both LLaMA2-7B-4K and973

InternLM2-7B with 5B tokens using the next token974

prediction objective. We set the global batch size975

Figure 10: Distribution of texts with different charac-
teristics on the CohesionDMR metric in the ChinaNews
domain.

Figure 11: Distribution of texts with different charac-
teristics on the Complexitypara metric in the ChinaNews
domain.

to 2M tokens, with a max length of 32K tokens. 976

Specifically, for the fine-tuning of LLaMA2-7B 977

to achieve context over 32K tokens, we adjust the 978

base of the rotation angle in RoPE (Su et al., 2024) 979

to 500000 based on LLaMA2Long (Xiong et al., 980

2023) and ScalingRoPE (Liu et al., 2023b). 981
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Figure 12: Distribution of token and document counts across different domains. Each bar is divided from left to
right into three parts: holistic, aggregated, and chaotic texts.

TOEFL QuALITY Coursera SF MD NQ FQA CUAD NQA Avg.

LLaMA2-7B-4K 37.55 27.72 15.12 4.80 1.12 6.17 8.23 6.11 3.41 12.25
HOL. + AGG. + CHA. 45.72 20.30 23.84 4.35 2.33 5.27 9.90 0.61 5.40 13.08
HOL. 38.66 26.73 21.51 4.25 3.45 6.51 9.30 0.71 6.10 13.02
HOL. + AGG. 48.33 25.25 22.67 4.83 1.01 7.63 9.04 1.42 5.79 14.00
HOL. + U. AGG. 40.15 23.27 19.19 4.13 1.80 6.35 9.66 1.51 5.18 12.36

LLaMA3-8B-8K 79.93 54.46 22.67 2.10 8.29 0.00 1.13 2.18 0.44 19.02
HOL. + AGG. + CHA. 72.86 51.49 22.67 6.47 18.41 1.59 3.76 3.65 1.72 20.29
HOL. 71.38 44.55 35.47 7.33 13.26 1.07 6.20 5.46 1.87 20.73
HOL. + AGG. 76.95 51.98 23.26 8.34 17.65 0.41 7.30 5.29 2.12 21.48
HOL. + U. AGG. 73.61 49.50 17.44 7.41 16.66 0.35 9.07 4.45 1.41 19.99

InternLM2-7B-200K 83.64 74.26 41.86 2.94 17.75 0.00 0.00 2.31 0.08 24.76
HOL. + AGG. + CHA. 84.76 71.29 52.91 13.45 17.95 1.83 7.35 5.29 1.04 28.43
HOL. 83.64 69.31 54.65 12.33 17.97 2.78 7.28 4.57 1.20 28.19
HOL. + AGG. 82.90 71.78 54.07 13.06 16.62 3.04 6.57 4.85 0.91 28.20
HOL. + U. AGG. 82.53 72.28 55.81 13.00 18.66 3.61 8.74 4.91 1.09 28.96

Table 11: Comparison of different training strategies data on subtasks in L-Eval, including TOEFL, QuALITY,
Coursera, SFictionQA(SF), MultiDoc2Dial(MD), NQ, LongFQA(FQA), CUAD, NarrativeQA(NQA)

E Performance on L-Eval982

The results on LongBench of all the models we983

tested are shown in Table 11. Since we focus on984

the performance of the pre-trained model and the985

quality of the pre-trained data, we omitted certain986

instruction-following oriented tasks in L-Eval in987

our experiments.988

F Detailed Results on LongBench989

Detailed results on LongBench of all the models we990

tested are shown in Table 12, Table 13 and Table 14.991

992

G Performance on Short Tasks993

To verify that the LLM trained on long text in our994

proposed strategies can still achieve good perfor-995

mance on short-text tasks, we also evaluate our996

fine-tuned LLaMA2-7B and InternLM2-7B with a997

maximum input context of 2K tokens on short tasks,998

including ARC-easy/challenge (Clark et al., 2018),999

Hellaswag (Zellers et al., 2019), Winogrande (Sak- 1000

aguchi et al., 2021), TruthfulQA (Lin et al., 2022), 1001

SuperGLUE (Wang et al., 2019), GSM8K (Cobbe 1002

et al., 2021) and MMLU (Hendrycks et al., 2020). 1003

The results are shown in Table 15. 1004
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Narrative
QA Qasper MF_en MF_zh Hotpot

QA
2Wikim

QA Musique Dureader

LLaMA2-7B-4K 16.86 15.35 23.78 19.08 7.85 10.54 4.27 23.34
HOL. + AGG. + CHA. 22.61 20.39 30.60 22.96 9.34 10.78 6.01 24.01
HOL. 15.36 19.12 35.04 27.64 9.74 10.83 6.00 24.89
HOL. + AGG. 19.15 19.68 29.60 22.78 10.36 10.49 5.47 23.19
HOL. + Upsampling AGG. 16.93 20.16 26.43 27.68 9.63 10.82 6.75 23.77

LLaMA3-8B-8K 18.02 18.78 20.90 20.48 9.11 10.41 6.98 24.45
HOL. + AGG. + CHA. 2.52 19.56 23.57 20.71 10.00 11.50 6.92 19.81
HOL. 6.59 20.17 22.17 20.61 10.56 11.58 6.78 19.91
HOL. + AGG. 6.74 18.40 24.84 22.26 9.80 12.88 6.47 20.28
HOL. + Upsampling AGG. 3.14 18.82 26.05 20.65 8.89 11.07 6.32 19.00

InternLM2-7B 24.02 41.97 47.95 61.16 52.98 37.89 28.02 29.52
HOL. + AGG. + CHA. 26.86 39.95 41.28 59.90 54.76 43.03 31.04 31.00
HOL. 22.52 40.46 39.99 58.76 54.77 45.07 32.28 31.18
HOL. + AGG. 27.25 40.29 42.92 60.14 53.75 44.53 30.87 32.25
HOL. + Upsampling AGG. 29.93 39.62 50.17 58.57 53.68 42.31 32.14 32.46

LongChat-v1.5-7B-32K 16.90 27.70 41.40 29.10 31.50 20.60 9.70 19.50
Yi-6B-200K 12.36 26.41 36.78 22.36 46.57 40.38 25.78 14.73
Qwen1.5-7B-128K 22.59 23.93 46.99 59.39 20.81 16.36 15.99 36.90
ChatGLM3-6B-32K 9.21 43.07 50.86 60.33 55.33 43.73 38.94 41.89

Table 12: Results on single-doc and multi-doc QA subtasks in Longbench including NarrativeQA, Qasper, Multi-
Field_en (MF_en), MultiField_zh (MF_zh), HotpotQA, 2WikimQA, Musique, and Dureader.

Gov
Report QMSum MultiNews VCSum TREC Trivia

QA
SAM
Sum LSHT

LLaMA2-7B-4K 27.09 20.63 3.21 10.02 68.00 89.09 32.09 20.25
HOL. + AGG. + CHA. 29.54 21.75 6.61 11.37 70.00 86.75 39.15 41.00
HOL. 28.66 21.35 16.34 11.36 69.00 88.44 32.71 41.00
HOL. + AGG. 30.72 21.58 18.26 11.11 71.00 88.36 39.36 40.00
HOL. + Upsampling AGG. 28.87 22.14 16.46 12.42 71.50 88.78 39.78 44.50

LLaMA3-8B-8K 31.31 23.00 12.50 7.09 72.00 89.74 44.89 39.50
HOL. + AGG. + CHA. 30.61 22.57 24.78 9.31 74.50 89.03 46.28 41.00
HOL. 30.35 22.84 25.48 8.52 75.00 89.46 44.28 43.00
HOL. + AGG. 30.22 23.24 25.36 5.84 73.00 89.15 44.26 40.50
HOL. + Upsampling AGG. 30.47 22.94 24.73 3.89 70.00 89.45 44.45 40.00

InternLM2-7B 30.02 23.09 26.46 15.23 75.50 92.36 30.94 41.00
HOL. + AGG. + CHA. 33.69 25.03 27.14 9.05 76.00 89.41 37.99 42.33
HOL. 33.68 25.29 27.04 10.12 77.00 89.17 38.85 43.25
HOL. + AGG. 33.49 25.64 27.54 11.95 77.00 89.07 37.43 43.83
HOL. + Upsampling AGG. 32.96 25.49 27.84 14.81 77.00 91.29 41.00 41.50

LongChat-v1.5-7B-32K 30.80 22.70 26.40 9.90 63.50 82.30 34.20 23.20
Yi-6B-200K 29.34 20.65 27.14 8.14 73.50 86.94 9.85 37.50
Qwen1.5-7B-128K 31.17 25.39 26.00 16.17 73.00 89.39 42.51 38.50
ChatGLM3-6B-32K 35.99 24.68 27.44 15.83 79.00 87.39 17.72 42.00

Table 13: Results on summarization and few-shot learning subtasks in Longbench including GovReport, QMSum,
MultiNews, VCSum, TREC, TriviaQA, SAMSum, and LSHT.

16



PC PR_en PR_zh LCC Repobench-p

LLaMA2-7B-4K 1.50 5.52 9.00 68.22 62.25
HOL. + AGG. + CHA. 2.05 4.55 3.75 65.17 60.91
HOL. 2.00 5.38 5.75 65.97 61.33
HOL. + AGG. 1.50 7.62 5.75 65.10 60.52
HOL. + Upsampling AGG. 2.50 3.82 5.25 65.93 59.86

LLaMA3-8B-8K 4.21 7.85 21.61 72.36 67.14
HOL. + AGG. + CHA. 1.82 12.64 35.90 67.57 67.25
HOL. 0.72 8.20 38.24 69.98 67.07
HOL. + AGG. 1.09 19.32 49.23 68.54 66.62
HOL. + Upsampling AGG. 1.05 44.37 37.85 67.78 66.68

InternLM2-7B 7.00 56.50 57.50 63.90 61.81
HOL. + AGG. + CHA. 2.00 96.50 77.50 69.96 64.58
HOL. 0.00 98.50 78.50 69.42 65.39
HOL. + AGG. 0.50 96.00 76.00 69.13 65.06
HOL. + Upsampling AGG. 3.14 97.50 88.50 66.80 63.71

LongChat-v1.5-7B-32K 1.00 30.50 7.60 53.00 55.30
Yi-6B-200K 2.50 6.00 7.97 66.10 63.00
Qwen1.5-7B-128K 3.00 9.50 7.00 71.80 65.10
ChatGLM3-6B-32K 2.00 98.50 94.50 60.07 54.12

Table 14: Results on synthetic and code subtasks in Longbench including PassageCount (PC), PassageRetrieval_en
(PR_en), PassageRetrieval_zh (PR_zh), LCC and Repobench-p.

GSM8K ARC-e ARC-c HS WG TQA SG MMLU Average

LLaMA2-7B-4K 16.30 52.73 36.95 69.24 61.25 35.09 50.43 46.78 46.10
HOL. + AGG. + CHA. 16.45 53.09 34.24 65.11 61.01 36.11 51.25 44.13 45.17
HOL. 15.54 53.09 33.90 65.46 61.40 34.80 51.40 42.71 44.79
HOL. + AGG. 16.76 54.67 35.93 65.90 61.01 36.40 50.60 44.74 45.75
HOL. + Upsampling AGG. 17.13 53.97 33.22 65.86 60.30 36.26 49.50 44.49 45.09

LLaMA3-8B-8K 49.05 66.49 41.69 72.81 71.51 35.38 51.97 66.09 56.87
HOL. + AGG. + CHA. 41.47 64.73 38.98 72.16 67.32 34.36 48.93 61.97 53.74
HOL. 45.41 66.31 40.34 72.03 68.19 34.65 50.72 61.68 54.92
HOL. + AGG. 43.52 67.37 39.32 71.47 68.03 34.06 48.35 61.63 54.22
HOL. + Upsampling AGG. 46.10 67.20 39.66 72.07 70.09 35.23 49.49 61.87 55.21

InternLM2-7B 69.83 51.50 42.37 54.87 77.35 39.62 78.83 65.60 60.00
HOL. + AGG. + CHA. 69.67 58.38 41.69 64.46 78.93 37.43 78.43 64.45 61.68
HOL. 70.20 50.26 42.37 56.87 77.90 38.30 79.01 64.75 59.96
HOL. + AGG. 70.43 55.56 40.34 61.64 77.43 37.57 78.85 64.11 60.74
HOL. + Upsampling AGG. 68.99 57.14 41.69 65.46 78.61 38.30 79.20 64.11 61.69

Table 15: Results on 0-shot ARC-easy/challenge, Hellaswag (HS), Winogrande (WG), TruthfulQA (TQA), Super-
GLUE (SG), 4-shot GSM8K and 5-shot MMLU.
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