

000 BEYOND LINEAR PROCESSING: DENDRITIC BILINEAR 001 002 INTEGRATION IN SPIKING NEURAL NETWORKS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 ABSTRACT 008

011 As widely used neuron model in Spiking Neural Networks (SNNs), the Leaky
012 Integrate-and-Fire (LIF) model assumes the linear summation of injected currents.
013 However, recent studies have revealed that a biological neuron can integrate inputs
014 nonlinearly and perform computations such as XOR while an LIF neuron cannot.
015 To bridge this gap, we propose the Dendritic LIF (DLIF) model, which incorporates
016 a bilinear dendritic integration rule derived from neurophysiological experiments.
017 At the single-neuron level, we theoretically demonstrate that a DLIF neuron can cap-
018 ture input correlations, enabling it to perform nonlinear classification tasks. At the
019 network level, we prove that DLIF neurons can preserve and propagate correlation
020 structures from the input layer to the readout layer. These theoretical findings are
021 further confirmed by our numerical experiments. Extensive experiments across di-
022 verse architectures—including ResNet, VGG, and Transformer—demonstrate that
023 DLIF achieves state-of-the-art performance on static (CIFAR-10/100, ImageNet)
024 and neuromorphic (DVS-Gesture, DVS-CIFAR10) benchmarks, surpassing LIF
025 and other advanced alternatives while maintaining comparable computational cost.
026 This work provides a biologically plausible and computationally powerful spiking
027 neuron model, paving the way for next-generation brain-inspired computing.

028 1 INTRODUCTION 029

030 Spiking neural networks (SNNs) are increasingly recognized as the next generation of neural network
031 paradigm that closely emulates biological neural systems through discrete spike-based communication
032 between neurons (Maass, 1997). Unlike traditional artificial neural networks (ANNs), which operate
033 on continuous-valued activations (Deng et al., 2020), SNNs employ event-driven computation via
034 discrete spikes. This fundamental difference enables SNNs to achieve significantly more efficient and
035 sparse data processing, offering substantial energy efficiency advantages over conventional ANNs
036 (Roy et al., 2019; Davies et al., 2018; Pei et al., 2019; Ma et al., 2022).

037 Most SNNs employ the Leaky Integrate-and-Fire (LIF) neuron model, a simplified abstraction of
038 biological neurons that omits dendritic processing. In biological neurons, dendrites receive and
039 integrate multiple input currents before transmitting them to the soma. The LIF model assumes the
040 linear summation of the input currents. However, numerous studies have revealed that the integration
041 process on the dendrites is nonlinear (Polsky et al., 2004; Poirazi et al., 2003; Ujfaluassy et al.,
042 2018; Beniaguev et al., 2021), which plays a critical role in complex computations of biological
043 neurons, such as direction selectivity (Branco et al., 2010), coincidence detection (Agmon-Snir
044 et al., 1998), and logical operations (Gidon et al., 2020). Consequently, incorporating nonlinear
045 dendritic integration features into spiking neuron models is an increasingly important direction in
046 brain-inspired computing (Pagkalos et al., 2024; Acharya et al., 2022).

047 In this paper, we propose a novel spiking neuron model, termed the Dendritic Leaky Integrate-
048 and-Fire (DLIF) model, which is based on a bilinear dendritic integration rule observed in recent
049 experiments (Hao et al., 2009; Li et al., 2014; 2019). Theoretically, we show that at the single-neuron
050 level a DLIF neuron can capture input correlations, while at the network level DLIF neurons preserve
051 and propagate correlation structures across layers, with these results further validated by numerical
052 experiments. We also show that, across various tasks and deep neural network architectures, using
053 DLIF models can significantly improve the performance of SNNs compared to those with LIF models
and other spiking neuron models, with no significant increase in computational cost.

054 The main contributions of this paper are summarized as follows:
 055

- 056 1. We propose the Dendritic Leaky Integrate-and-Fire (DLIF) model, a biologically plausible
 057 spiking neuron model that incorporates a bilinear dendritic integration rule observed in
 058 neurophysiological experiments.
- 059 2. We theoretically establish, and numerically confirm, that DLIF neurons can capture input
 060 correlations to perform nonlinear classification at the single-cell level, and preserve and
 061 propagate these correlations through the network.
- 062 3. We demonstrate that, across multiple architectures, DLIF neurons achieve an average accu-
 063 racy of 85.18%, with a 1.23% improvement over conventional LIF-based SNNs (83.95%),
 064 and set state-of-the-art performance on both static and dynamic vision benchmarks. This
 065 improvement is obtained with only a 0.17 mJ energy overhead (a 3.05% relative increase).
- 066 4. We show that the DLIF models possess computational advantages comparable to those of
 067 other advanced spiking neuron models, including PLIF, GLIF, EIF, QIF and DH-LIF.

069 2 RELATED WORK

070 **Bilinear Neural Networks.** Several studies have explored bilinear neural networks in conventional
 071 ANNs. A line of work has focused on feature fusion and pooling for visual recognition (Lin et al.,
 072 2015; Gao et al., 2016; Kong & Fowlkes, 2017). Another direction has investigated bilinear neurons
 073 as architectural primitives: one-rank bilinear neurons (Yun et al., 2019), pixel-wise bilinear filters
 074 (Zoumpourlis et al., 2017), and bilinear networks with stabilized training strategies (Fan et al.,
 075 2025a). In addition, bilinear formulations have also been applied in other domains, including MRI
 076 reconstruction (Ahmed et al., 2022) and low-rank structures (Pearce et al., 2025). (Qi & Wang, 2022)
 077 further highlighted that bilinear networks can achieve substantially higher efficacy and efficiency
 078 than conventional neural networks. Our work differs by introducing bilinear dendritic integration into
 079 the spiking neural network framework and providing a theoretical analysis of its role in preserving
 080 input correlations, a perspective absent in prior bilinear ANN models.

081 **Models and Algorithms Inspired by Dendritic Computation.** Recent studies have increasingly
 082 incorporated dendritic computation principles into machine learning frameworks. Some works
 083 have drawn inspiration from dendritic cable theory, local learning rules, and dendritic event-based
 084 processing (Bicknell & Häusser, 2021; Payeur et al., 2021; Sacramento et al., 2018; Yang et al.,
 085 2021). Others have focused on network structures inspired by dendritic compartmentalization
 086 and connectivity (Guerguiev et al., 2017; Chavlis & Poirazi, 2025; Gao et al., 2018). Meanwhile,
 087 practical applications of dendritic integration have been demonstrated in diverse architectures, such
 088 as convolutional networks with dendritic modules (Liu et al., 2024) and dendritic artificial neural
 089 networks (Egrioglu & Bas, 2024). Together, these works highlight the growing importance of
 090 dendritic principles as a powerful source of inspiration for advancing machine learning.

091 **Neuron Models in SNNs.** Various extensions of the standard LIF model have been proposed
 092 to enhance the representational capacity of SNNs. Some works introduce additional flexibility in
 093 neuronal dynamics, such as learnable time constants or adaptive thresholds (Fang et al., 2021; Bellec
 094 et al., 2020; Feng et al., 2022; Chen et al., 2022). Others enrich the computational structure of
 095 spiking neurons through gating mechanisms, soft reset strategies, or membrane potential rectifiers
 096 (Yao et al., 2022; Guo et al., 2022b). Multi-compartment and multi-branch models further capture
 097 dendritic or temporal heterogeneity (Zheng et al., 2024; Wang et al., 2025a; Liu et al., 2025b), while
 098 multi-synaptic formulations enable simultaneous integration at different scales (Fan et al., 2025b).
 099 These diverse extensions underline the central role of neuron model design in advancing the power of
 100 SNNs. However, to the best of our knowledge, no prior work has sought to optimize spiking neuron
 101 models through the bilinear form of dendritic integration.

102 3 DENDRITIC LEAKY INTEGRATE-AND-FIRE (DLIF) MODEL

103 Biological neurons have complex dendritic structures that are responsible for receiving multiple
 104 external inputs, integrating them, and transmitting the processed signals to the soma (Stuart et al.,

108 2016). The spiking neuron model faithfully replicates key functional properties of biological neurons
 109 through temporal integration of input signals and subsequent generation of output spikes (Gerstner
 110 et al., 2014). The sub-threshold somatic membrane potential $V(t)$ of a spiking neuron is always
 111 governed by:

$$112 \quad 113 \quad \mu \frac{dV(t)}{dt} = -(V(t) - V_{rest}) + RI(t), \quad (1)$$

114 where μ represents the time constant, V_{rest} is the resting potential, R denotes the resistance, and
 115 $I(t)$ is the input current. When $V(t)$ reaches a certain firing threshold V_{th} , the neuron emits a spike
 116 and resets the potential back to V_{rest} . The resulting output spike train $Y(t)$ is formally expressed
 117 as $Y(t) = \sum_i \delta(t - t^i)$, where δ is the Dirac delta function, and t^i marks the i -th firing time of the
 118 neuron. As the commonly used model in SNNs, the LIF model assumes linear summation of external
 119 inputs (Burkitt, 2006), i.e.

$$121 \quad 122 \quad I(t) = \sum_i \mathbf{w}_i \mathbf{s}_i(t) = \mathbf{w}^T \mathbf{s}(t). \quad (2)$$

123 where $\mathbf{w} = (\mathbf{w}_i)_{i=1}^n$ denotes the synaptic weight from the pre-synaptic neurons to the target post-
 124 synaptic neuron, and $\mathbf{s}(t) = (\mathbf{s}_i(t))_{i=1}^n$ represents the $\{0, 1\}$ spike trains from pre-synaptic neuron.
 125 However, biological experiments indicate that dendrites integrate inputs in a nonlinear manner (Polsky
 126 et al., 2004; Spruston, 2008). This dendritic nonlinearity is essential for various computational
 127 functions, such as direction selectivity (Branco et al., 2010), coincidence detection (Agmon-Snir
 128 et al., 1998), and logical operations (Gidon et al., 2020). Consequently, the linear dendritic integration
 129 mechanism of LIF models fails to fully capture the complex characteristics of biological neurons
 130 and cannot perform the rich nonlinear computations. To address this limitation, we propose a novel
 131 spiking neuron model, termed the Dendritic Leaky Integrate-and-Fire (DLIF) model.

132 3.1 FORMULATION OF THE DLIF MODEL

133 Recent neurophysiological experiments and theoretical analysis have demonstrated that the dendritic
 134 integration of synaptic inputs by a single neuron is not linear, but conforms to a bilinear form
 135 (Hao et al., 2009; Li et al., 2014; 2019). This bilinear integration property can be characterized by
 136 considering two synaptic inputs a and b , where the dendritic integration yields not just the linear
 137 sum $a + b$ but includes an additional bilinear interaction term cab . Thus, the total integrated input
 138 becomes $a + b + kab$. Here, k is referred to as the bilinear dendritic integration coefficient, which
 139 is independent of the input intensities and only dependent on the relative spatial positions of the
 140 two synaptic inputs. Consequently, when a neuron receives multiple synaptic input spike trains
 141 $\mathbf{s}(t) = (\mathbf{s}_i(t))_{i=1}^n$ with connection weights \mathbf{w} , there will be additional bilinear integration terms
 142 $\mathbf{s}_i(t) \mathbf{s}_j(t)$ ($1 \leq i < j \leq n$), associated with a symmetric bilinear coefficient matrix $\mathbf{K} = (\mathbf{K}_{ij})_{i,j=1}^n$
 143 whose diagonal entries are zero. The integrated input can then be expressed as:

$$146 \quad 147 \quad I(t) = \sum_{i=1}^n \mathbf{w}_i \mathbf{s}_i(t) + \sum_{i=1}^n \sum_{j>i}^n 2\mathbf{K}_{ij} \mathbf{s}_i(t) \mathbf{s}_j(t) = \mathbf{w}^T \mathbf{s}(t) + \mathbf{s}^T(t) \mathbf{K} \mathbf{s}(t). \quad (3)$$

148 Note that $\mathbf{s}_i(t) \mathbf{s}_j(t)$ can be directly realized through an AND operation, Eq. (3) won't introduce
 149 any additional multiplication operations. This preserves SNNs' computational efficiency, as their
 150 spike-based communication naturally favors additive operations over multiplicative (Roy et al., 2019).
 151 Then the dynamics of the somatic membrane potential in the DLIF model can be described as:

$$153 \quad 154 \quad \tau \frac{dV(t)}{dt} = -(V(t) - V_{rest}) + R[\mathbf{w}^T \mathbf{s}(t) + \mathbf{s}^T(t) \mathbf{K} \mathbf{s}(t)]. \quad (4)$$

156 3.2 THEORETICAL ANALYSIS OF DLIF'S COMPUTATIONAL ADVANTAGES

157 We first demonstrate the advantage of the DLIF neuron model from a theoretical perspective. We
 158 consider a binary classification problem where each input sample is represented as a binary matrix,
 159 where each column corresponds to the spike trains of N input neurons at a given time step: $\mathbf{S} =$
 160 $[\mathbf{s}(1), \mathbf{s}(2), \dots, \mathbf{s}(\tau)] \in \{0, 1\}^{N \times \tau}$, where $N \in \mathbb{N}$ and $N \geq 2$, and τ is the total time steps. Two
 161 input classes with distributions \mathcal{D}_1 and \mathcal{D}_2 have identical mean firing rates but distinct pairwise

162 correlations:

$$\begin{aligned} 163 \quad & \frac{1}{\tau} \mathbb{E}_{S \sim \mathcal{D}_1} [S \mathbf{1}_\tau] = \frac{1}{\tau} \mathbb{E}_{S \sim \mathcal{D}_2} [S \mathbf{1}_\tau] = \mathbf{c} \\ 164 \quad & \frac{1}{\tau} \mathbb{E}_{S \sim \mathcal{D}_1} [SS^T] = \mathbf{C}_1 \neq \frac{1}{\tau} \mathbb{E}_{S \sim \mathcal{D}_2} [SS^T] = \mathbf{C}_2 \end{aligned} \quad (5)$$

167 where $\mathbf{1}_\tau$ is the all-ones column vector with length τ . We claim that a single DLIF neuron can
168 discriminate between two input classes by exhibiting distinct firing rates in response to them. (Gerstner
169 & Kistler, 2002) have demonstrated that for spiking neuron models with dynamics of the form given
170 in Eq. (1), in the input regime where the current is sufficient to elicit spiking, the output firing rate is
171 proportional to the average input current. Therefore, in this regime, a significant difference in firing
172 rates is equivalent to a difference in input currents. Suppose the time-averaged input current to DLIF
173 neuron is denoted as I , we can obtain the following theorem (See proof in Section A.1).

174 **Theorem 1.** *Let two input spike train distributions \mathcal{D}_1 and \mathcal{D}_2 be defined as in Eq. (5). Then there
175 always exists a bilinear coefficient matrix \mathbf{K} which can distinguish two corresponding input currents
176 to the DLIF neuron, i.e.,*

$$177 \quad \delta I = |\mathbb{E}[I|\mathcal{D}_1] - \mathbb{E}[I|\mathcal{D}_2]| > 0.$$

178 Moreover, under the constraint $\|\mathbf{K}\|_F \leq 1$, the optimal choice of \mathbf{K} that maximizes δI is given by

$$179 \quad \mathbf{K}^* = \pm \frac{\mathbf{C}_1 - \mathbf{C}_2}{\|\mathbf{C}_1 - \mathbf{C}_2\|_F}.$$

182 This theorem shows that DLIF neurons can exploit input correlation structures for classification via
183 the bilinear matrix \mathbf{K} . However, for multi-layer SNNs, it is generally reasonable to assume that
184 correlated inputs appear at the input layer. In what follows, we further show that a two-layer SNN
185 with DLIF neurons can preserve input correlations in the hidden layer.

186 Building upon the same input spike train distributions as in Eq. (5), without loss of generality, we
187 assume that $\|\mathbf{C}_1 - \mathbf{C}_2\|_F = 1$. These spike trains are encoded by M hidden neurons, and we denote
188 the output spike trains of the hidden neurons as $\mathbf{Y} = [\mathbf{y}(1), \mathbf{y}(2), \dots, \mathbf{y}(\tau)] \in \{0, 1\}^{M \times \tau}$. For each
189 class, we define the correlation matrix \mathbf{P}_c of \mathbf{Y} as $\mathbf{P}_c = \frac{1}{\tau} \mathbb{E}_{S \sim \mathcal{D}_c} [\mathbf{Y} \mathbf{Y}^T]$ for $c \in \{1, 2\}$, and denote
190 the resulting matrices for LIF and DLIF neurons by $\mathbf{P}_1^{\text{LIF}}, \mathbf{P}_2^{\text{LIF}}, \mathbf{P}_1^{\text{DLIF}}, \mathbf{P}_2^{\text{DLIF}}$, respectively. Let
191 $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_M] \in \mathbb{R}^{M \times N}$ be the weight matrix and $\mathbf{K} = [\mathbf{K}_1, \dots, \mathbf{K}_M]$ with $\mathbf{K}_m \in \mathbb{R}^{N \times N}$
192 be the bilinear coefficient matrices. We suppose that $\|\mathbf{w}_i\|_F \leq 1$ and $\|\mathbf{K}_i\|_F \leq 1$ for $i = 1, \dots, M$.
193 Then we obtain the following theorem (See proof in Section A.1).

194 **Theorem 2.** *Let the input spike trains be drawn from distributions \mathcal{D}_1 and \mathcal{D}_2 defined in Eq. (5). Then for any choice of synaptic weight matrices \mathbf{W}^{LIF} and \mathbf{W}^{DLIF} , there exists bilinear coefficient
195 matrices \mathbf{K} for the DLIF neurons such that*

$$196 \quad \|\mathbf{P}_1^{\text{DLIF}} - \mathbf{P}_2^{\text{DLIF}}\|_F \geq C > 0,$$

197 and furthermore,

$$198 \quad \|\mathbf{P}_1^{\text{DLIF}} - \mathbf{P}_2^{\text{DLIF}}\|_F > \|\mathbf{P}_1^{\text{LIF}} - \mathbf{P}_2^{\text{LIF}}\|_F.$$

202 This theorem demonstrates that DLIF networks are more capable than LIF networks at preserving
203 the correlation structures inherent in the input data. Combined with Theorem 1, which proves that
204 the DLIF neuron model can classify inputs with correlated structures, these theoretical derivations
205 collectively guarantee the superior computational and representational power of DLIF neurons over
206 LIF neurons. Next, we further validate the above theorems through several numerical experiments.

207 3.3 NUMERICAL VERIFICATION

209 **Verification of Theorem 1** We first verify Theorem 1 by showing that a single DLIF neuron can
210 implement the XOR operation, consistent with recent biological findings that individual neurons can
211 perform such computations (Gidon et al., 2020), whereas a standard LIF neuron cannot (Mostafa,
212 2017). In our simulation, the neuron receives inputs from two pathways (five synapses each) with
213 identical Poisson firing rates (Fig. 1A). The target is to fire when exactly one pathway is active but
214 remain silent otherwise (Fig. 1B). We group the three non-trivial input patterns into two classes: Class
215 1 (both pathways active) and Class 2 (only one pathway active). Under this setup, the spike trains of
the two input classes follow a similar distribution as in Eq. (5). We train \mathbf{w} for LIF and both \mathbf{w} and

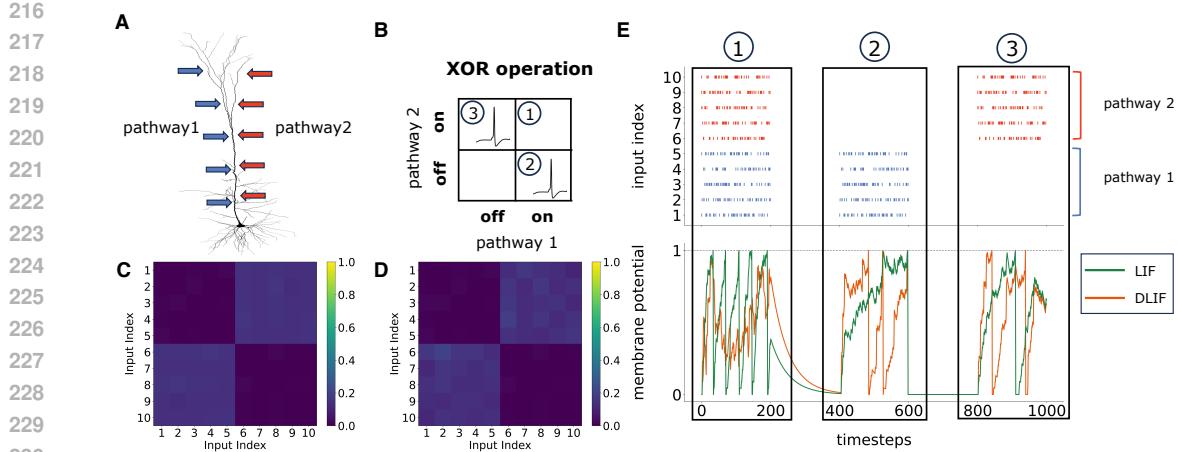


Figure 1: A single DLIF model can effectively solve the XOR problem.

(A): A neuron receives inputs from two distinct pathways (represented in blue and red), each containing five synaptic inputs.

(B): The XOR operation schematic: the neuron remains inactive when both pathways are on or off, but it fires when only one pathway is on, thereby implementing the XOR operation. It is trivial that the neuron is inactive when both pathways are off. Therefore, we only consider the other three input patterns, which are labeled as ①, ②, and ③, respectively.

(C): Expectation of the normalized difference in correlation matrices between two classes $\frac{C_1 - C_2}{\|C_1 - C_2\|_F}$.

(D): Expectation of the bilinear coefficient K for the DLIF neuron.

(E): Three different patterns in the XOR problem. Pathway 1 includes synapse indices 1-5, while pathway 2 includes synapse indices 6-10. The DLIF model keeps silent when both pathways are activated (labeled as ①) and fires when receiving input patterns with only one pathway is activated (labeled as ② and ③), thus achieving the XOR operation (orange). In contrast, the LIF model still fires when both pathways are active (labeled as ①), thus it is unable to perform the XOR operation.

K for DLIF to minimize the mean squared error between actual and target firing rates. As shown in Fig. 1E, the DLIF model successfully performs XOR while the LIF model fails, and the learned bilinear matrices K closely match $\frac{C_1 - C_2}{\|C_1 - C_2\|_F}$ (Fig. 1C, D), consistent with theoretical predictions.

Verification of Theorem 2 To validate Theorem 2, we design controlled numerical experiments at both low and moderate input dimensionalities. First, a two-dimensional case provides a simple and interpretable setting, where two Poisson input spike trains are received by two hidden neurons which employs either LIF or DLIF neurons. The network is trained to maximize output correlation (details in the Appendix), and we compute the normalized correlation between output spike trains. As shown in Fig. 2A, DLIF neurons preserve input correlations substantially more effectively than LIF neurons. To further examine whether this advantage persists in more complex scenarios, we consider a ten-dimensional case where two distinct input classes with distributions \mathcal{D}_1 and \mathcal{D}_2 as in Eq. (5). These inputs are fed into a ten-dimensional hidden layer, and the training procedure is similar to the 2D case. As illustrated in Fig. 2B, DLIF neurons again yield significantly larger separation between the output correlation matrices of the two classes compared to LIF neurons. Together, these results confirm the theoretical prediction in Theorem 2 that DLIF neurons more effectively amplify and propagate correlation differences across layers.

4 PERFORMANCE OF DLIF MODELS IN SNNs

We further investigate whether the advantage of DLIF models can be scaled to large-scale SNN architectures. The detailed SNN architectures and experimental setup used in this work are presented in the Appendix.

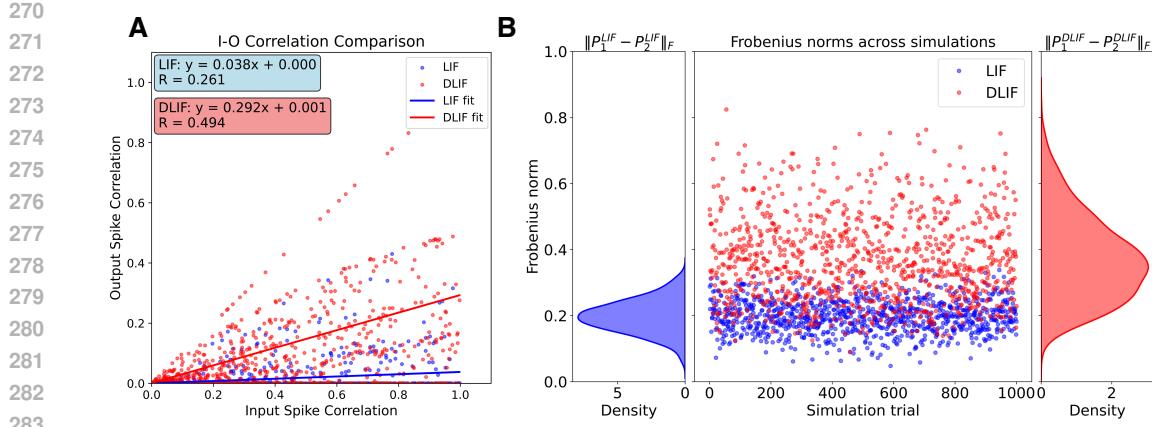


Figure 2: **DLIF neurons can preserve and propagate input correlations.**

(A): For the two-dimensional case, we compare the input-output correlation across 1000 simulation trials for both LIF and DLIF neurons. Each dot represents an individual trial. The regression slopes indicate that DLIF neurons preserve input correlations more effectively (slope = 0.292, $R=0.494$) than LIF neurons (slope = 0.038, $R=0.261$).
 (B): For the ten-dimensional case, we compare the Frobenius norm of the difference between the output correlation matrices of two input classes across 1,000 simulation trials for both LIF and DLIF neurons. Each dot corresponds to an individual trial. The scatter plot, together with the marginal distributions, demonstrates that DLIF neurons consistently produce a larger separation between input classes than LIF neurons.

As shown in Eq. (3), the DLIF model introduces additional bilinear parameters \mathbf{K} . Through both biological recordings and computational modeling, Li et al. (2019) reported that dendritic bilinear interactions are inherently sparse ($\approx 90\%$). Motivated by this, we adopt a sparsification scheme in which only a small fraction of coefficients are trainable. Specifically, we set sparsity level to 90%, a choice that is both biologically inspired and empirically validated by an ablation study as shown in Section 4.4. In the following experiments, we compare not only model accuracy but also parameter count, FLOPs, and energy consumption (detailed calculation methods are provided in the Appendix).

4.1 EXPERIMENTS IN LARGE-SCALE SNNs FOR STATIC DATASETS

We first evaluate the performance of the DLIF models in the SNNs on static image classification benchmarks, including CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) datasets. Additionally, we test the DLIF models' applicability across diverse network architectures and training methods. Specifically, we explore the integration of DLIF models in large-scale SNNs, including VGG (Simonyan & Zisserman, 2014), ResNet (He et al., 2016) and Transformer (Ashish et al., 2017). We also experiment using different learning paradigms including SLTT (Meng et al., 2023), ESG (Guo et al., 2022a), OTTT (Xiao et al., 2022), STBP-tdBN (Zheng et al., 2021), TET (Deng et al., 2022), ESL (Liu et al., 2025a), TSER (Yu et al., 2025a), FSTA (Yu et al., 2025b), SSSA (Wang et al., 2025b), Spike-driven Transformer (Yao et al., 2023a) and Meta-SpikeFormer (Yao et al., 2024), as proposed in previous works.

As summarized in Table 1, our results reveal consistent and substantial accuracy improvements attributable to DLIF models across all configurations. Specifically, DLIF-based SNNs achieve absolute accuracy gains of 0.33%–1.19% on CIFAR-10, with even more pronounced improvements of 0.48%–3.66% on CIFAR-100 and 0.52%–3.07% on ImageNet. Notably, these performance enhancements come with only minimal energy overhead, quantified as just 0.23 mJ average increase (2.61% relative to LIF implementations).

324

325

Table 1: Results on Static Datasets

326

327

Dataset	Method	Network	Neuron	Params (M)	FLOPs (G)	Energy Cost (mJ)	Mean \pm Std (%)	
CIFAR10	SLTT	ResNet-18	LIF	12.08	1.82	1.77	94.44 \pm 0.21	
			DLIF	12.20	1.83	1.78	95.51 \pm 0.47	
		ResNet-19	LIF	12.61	1.94	1.88	93.16	
			DLIF	12.78	1.95	1.89	94.35 \pm 0.27	
			LIF	12.08	1.83	1.77	96.39	
	ESL	ResNet-18	DLIF	12.20	1.83	1.78	96.72 \pm 0.11	
			LIF	138.08	15.48	15.05	95.01 \pm 0.10	
	TSER	VGG-16	DLIF	136.02	15.94	15.57	95.97 \pm 0.12	
			LIF	12.61	1.94	1.88	96.52 \pm 0.09	
		ResNet-19	DLIF	12.78	1.95	1.89	96.91 \pm 0.08	
CIFAR100	FSTA	Transformer	LIF	5.57	1.21	1.04	96.10	
			DLIF	5.68	1.28	1.10	96.81 \pm 0.17	
		Transformer	LIF	9.32	1.08	1.05	95.60	
			DLIF	10.05	1.10	1.07	96.22 \pm 0.17	
			LIF	12.17	1.82	1.77	74.38 \pm 0.30	
	SSSA	ResNet-18	DLIF	13.21	1.83	1.78	76.89 \pm 0.29	
			LIF	138.44	15.50	15.07	70.18 \pm 0.09	
	Spike-driven Transformer	VGG-16	DLIF	146.86	16.04	15.60	73.52 \pm 0.16	
			LIF	123.60	7.63	7.42	71.05 \pm 0.04	
		VGG-11	DLIF	136.71	8.13	7.91	74.71 \pm 0.19	
ImageNet	TSER	VGG-16	LIF	138.44	15.50	15.07	77.06 \pm 0.04	
			DLIF	146.86	16.04	15.60	78.37 \pm 0.14	
		ResNet-19	LIF	12.74	1.94	1.88	80.42 \pm 0.09	
			DLIF	12.91	1.95	1.89	80.97 \pm 0.12	
			LIF	5.57	1.21	1.04	80.10	
	SSSA	Transformer	DLIF	5.63	1.30	1.12	80.58 \pm 0.09	
			LIF	9.35	1.08	1.05	78.40	
		Transformer	DLIF	10.12	1.10	1.07	79.46 \pm 0.32	
	Meta-SpikeFormer	TET	ResNet-34	LIF	21.80	3.66	3.56	64.79
			DLIF	23.42	3.85	3.74	67.32 \pm 0.39	
		STBP-tdBN	ResNet-34	LIF	21.80	3.66	3.56	63.72
			DLIF	23.42	3.85	3.74	66.79 \pm 0.53	
		ESL	VGG-16	LIF	138.44	15.50	15.00	74.32
			DLIF	146.86	16.04	15.60	75.11 \pm 0.28	
			LIF	21.80	3.66	3.56	73.16 \pm 0.15	
		FSTA	ResNet-34	DLIF	23.42	3.85	3.74	73.82 \pm 0.29
			LIF	21.80	3.66	3.56	70.23 \pm 0.12	
		SSSA	Transformer	DLIF	23.42	3.85	3.74	71.06 \pm 0.15
			LIF	53.7	36.75	35.75	80.23	
			DLIF	57.37	37.04	36.11	80.75 \pm 0.24	

368

Bold values represent the best results for each method

369

370

371

4.2 EXPERIMENTS IN LARGE-SCALE SNNs FOR NEUROMORPHIC DATASETS

372

373

In contrast to static image datasets, neuromorphic datasets like DVS-Gesture (Amir et al., 2017) and DVS-CIFAR10 (Li et al., 2017) naturally encode temporal information, thereby better showcasing SNNs’ inherent advantages in processing spatiotemporal patterns. We further evaluate the performance of SNNs using DLIF models versus LIF models across different network architectures including including VGG , ResNet and Transformer, and different learning paradigms such as SLTT, OTTT, STBP-tdBN, SSNN, Spike-driven Transformer and FSTA.

378

379

Table 2: Results on Neuromorphic Datasets

380	381	Dataset	Method	Network	Neuron	Params (M)	FLOPs (G)	Energy Cost (mJ)	Mean± Std (%)
382	383	DVS-Gesture	SLTT	VGG-11	LIF	123.24	7.61	7.40	98.50±0.21
384	385		OTTT	VGG-11	DLIF	125.96	7.85	7.63	98.92±0.24
386	387		STBP-tdBN	ResNet-17	LIF	123.24	7.61	7.40	96.88
388	389		SSNN	VGG-9	DLIF	125.96	7.85	7.63	97.43±0.46
390	391		Spike-driven Transformer	Transformer	LIF	11.74	1.71	1.67	96.87
392	393		SLTT	VGG-11	DLIF	11.87	1.72	1.68	98.05±0.41
394	395		STBP-tdBN	ResNet-19	LIF	27.48	2.13	2.08	94.91
396	397		SSNN	VGG-9	DLIF	28.55	2.23	2.18	96.27±0.32
398	399		FSTA	ResNet-20	LIF	2.59	0.36	0.35	99.30
400	401		SSSA	Transformer	DLIF	3.02	0.37	0.36	99.43±0.27
402	403		Spike-driven Transformer	Transformer	LIF	123.24	7.61	7.40	82.20±0.95
404	405		SLTT	VGG-11	DLIF	125.96	7.85	7.63	83.74±0.62
406	407		STBP-tdBN	ResNet-19	LIF	12.61	1.94	1.88	67.8
408	409		SSNN	VGG-9	DLIF	12.78	1.95	1.89	70.88±0.45
410	411		FSTA	ResNet-20	LIF	27.48	2.13	2.08	78.57
412	413		SSSA	Transformer	DLIF	28.55	2.23	2.18	80.85±0.42
414	415		Spike-driven Transformer	Transformer	LIF	13.57	2.21	2.17	82.70±0.10
416	417		SLTT	VGG-11	DLIF	13.85	2.38	2.31	82.98±0.13
418	419		STBP-tdBN	ResNet-19	LIF	1.52	0.54	0.52	82.30
420	421		SSNN	VGG-9	DLIF	1.84	0.56	0.53	82.91±0.15
422	423		FSTA	ResNet-20	LIF	2.59	0.36	0.35	80.00
424	425		SSSA	Transformer	DLIF	3.02	0.37	0.36	81.76±0.27

Bold values represent the best results for each method

404

405

406

407

Table 3: Comparisons with Other Point Spiking Neuron Models.

409	410	Neuron Model	Accuracy CIFAR-10(%)	Accuracy CIFAR-100(%)	Accuracy ImageNet(%)	Accuracy DVS-CIFAR10(%)	Accuracy DVS-Gesture(%)
411	412	PLIF	93.50	-	69.26	74.80	97.92
413	414	GLIF	95.03±0.08	77.35±0.07	69.09	78.10	-
415	416	QIF	92.98±0.14	75.91±0.08	67.49±0.25	73.27±0.19	96.18±0.11
417	418	EIF	93.08±0.17	76.18±0.15	67.14±0.30	76.27±0.39	97.01±0.18
419	420	DLIF	95.78±0.21	78.27±0.39	71.27±0.24	80.46±0.17	98.61±0.31

Bold values represent the best results for each dataset;— indicates result is not reported

421

422

423

424

425

The experimental results in Table 2 demonstrate consistent performance gains when using DLIF models. Specifically, on DVS-Gesture, DLIF-based SNNs achieve 0.13%-1.36% higher accuracy, while on the more complex DVS-CIFAR10, the improvements reach 0.28%-3.08%. Importantly, these significant accuracy gains come with only 0.10 mJ average energy increase (3.24% relative to LIF models), further validating DLIF’s practical utility in neuromorphic computing applications.

426

427

428

In addition, we further compare the training time and memory cost of DLIF and LIF models in Section A.3. The results show that DLIF increases per-epoch training time and GPU memory usage by roughly 10%, but this overhead remains acceptable for large-scale SNN training.

429

430

431

Beyond static and neuromorphic benchmarks, we further evaluate DLIF models in reinforcement learning (RL) by integrating them into a deep spiking Q-network (DSQN) (Chen et al., 2024). On Atari games, the DLIF-based DSQN outperforms its LIF counterpart, demonstrating the flexibility of DLIF models to adapt effectively across diverse task paradigms (see Section A.4 for details).

432

433

434

435

436

437

438

439

440

441

4.3 COMPARISONS WITH OTHER SPIKING NEURON MODELS

Several studies have proposed modifications to the existing LIF models in SNNs. For instance, Fang et al. (2021) introduced the Parametric Leaky Integrate-and-Fire (PLIF) model, which included learnable time constants to enhance heterogeneity. Yao et al. (2022) proposed the Gated Leaky Integrate-and-Fire (GLIF) model, incorporating gating units into LIF models to improve their representation capacity. In addition to the PLIF and GLIF models, other variants introduce nonlinear operations to the LIF model, such as the Quadratic Integrate-and-Fire (QIF) model and the Exponential Integrate-and-Fire (EIF) model (Gerstner et al., 2014). The detailed of the dynamics of the QIF and EIF model are shown in the Appendix. To ensure fair comparison, we adopt the same network architectures and hyperparameter configurations as in prior works. Across CIFAR-10, CIFAR-100, ImageNet, DVS-CIFAR10, and DVS-Gesture, our results (Table 3) show that DLIF consistently outperforms these advanced point-neuron models.

In addition to point-neuron models, we also compare DLIF with a multi-compartment spiking neuron model—the DH-LIF proposed by (Zheng et al., 2024), which incorporates temporal dendritic heterogeneity. We follow the experimental setup in (Zheng et al., 2024) and conduct comparisons on two spiking speech recognition datasets SHD and SSC (Cramer et al., 2020). Under comparable parameter settings, DLIF consistently surpasses DH-LIF on both tasks, demonstrating its effectiveness relative to dendritic neuron models as well (Table 4).

4.4 ABLATION STUDY

Sparsity Level We conducted a systematic ablation study by varying sparsity levels from 0% to 100% on the CIFAR-100 dataset with the ResNet-18 architecture trained using SLTT. As summarized in Table 5, the ACC/FLOPs ratio consistently reaches its maximum at 90%. This indicates that 90% sparsity provides the most favorable trade-off between computational efficiency and predictive performance. Combined with biological evidence that dendritic bilinear interactions are naturally sparse at about 90% (Li et al., 2019), these results justify our adoption of 90% sparsity.

468
469 Table 5: Ablation Study of Sparsity Level

Sparsity level(%)	0	15	30	45	60
FLOPs(G)	1.92	1.905	1.89	1.875	1.86
ACC(%)	78.67	78.45	78.14	77.42	77.26
ACC/FLOPs((%/G)	40.97	41.18	41.34	41.29	41.54
Sparsity level(%)	75	85	90	95	100
FLOPs(G)	1.845	1.835	1.83	1.825	1.82
ACC(%)	76.33	76.38	76.89	74.61	74.38
ACC/FLOPs((%/G)	41.67	41.62	42.02	40.88	40.87

478
479 Bold values represent the best results

Bilinear Coefficients To further illustrate the role of the bilinear coefficients \mathbf{K} in the DLIF model, we conduct ablation studies to assess their impact. As shown in Section A.5, removing the bilinear coefficients—either before or after training—consistently reduces test accuracy, confirming their critical importance in the DLIF model. In addition, our structured- and low-rank-parameterization experiments show that low-rank formulations, while offering stronger compression, lead to clearly weaker performance, whereas the diagonal-block and random sparse formulations perform comparably under matched sparsity levels. Together with sparsity-level ablations showing that performance

486 peaks around 90% sparsity, these findings reinforce the central role of the bilinear coefficients \mathbf{K}
 487 in the DLIF model and highlight that a 90% random sparse matrix provides a simple yet effective
 488 parameterization.
 489

490 5 DISCUSSION AND CONCLUSION

491
 492 This paper proposed the DLIF model, which incorporates a biologically inspired dendritic bilinear
 493 integration rule into spiking neurons. While (Li et al., 2019) investigated bilinear dendritic integration
 494 using a conductance-based model with voltage-dependent synaptic dynamics, this formulation is
 495 difficult to scale to large SNNs. In contrast, our DLIF model adopts a current-based abstraction
 496 that removes these biophysical dependencies and enables efficient, scalable implementation while
 497 preserving the bilinear rule. We further provided theoretical guarantees and numerical verification
 498 that DLIF neurons can exploit input correlations for nonlinear computation and preserve correlation
 499 structures across layers. Experiments on static, neuromorphic and RL benchmarks consistently
 500 showed that DLIF can achieve superior performance over LIF and other advanced spiking models,
 501 with minimal additional energy cost.

502 There remain some important avenues for further research. One direction is to extend DLIF beyond
 503 vision and RL tasks to natural language processing, especially in light of the rapid progress of large
 504 language models. Another direction concerns hardware adaptation. While DLIF models demonstrate
 505 strong algorithmic efficiency, adopting them onto neuromorphic hardware will be crucial to fully
 506 exploit the low-power and low-latency advantages of SNNs. Addressing these open challenges would
 507 further enhance the applicability and impact of DLIF models.

508 In summary, we propose a novel spiking neuron model for SNNs that enhances computational
 509 capabilities at both the single-neuron and network levels. We believe this work provides a solid
 510 foundation for the design and application of future brain-inspired computing.

512 6 REPRODUCIBILITY STATEMENT

513
 514 We ensure reproducibility at several levels. First, the DLIF model is clearly described in the main
 515 text, including its mathematical formulation and theoretical analysis. Second, the assumptions and
 516 complete proofs of all theorems are provided in Appendix. Third, experimental settings—including
 517 datasets, architectures, hyperparameters, and training paradigms—are specified in Appendix. Finally,
 518 we are committed to releasing the source code publicly upon publication of this work.

521 7 THE USE OF LARGE LANGUAGE MODELS (LLMs)

522
 523 We used LLMs to polish the manuscript, for example by improving phrasing and checking spelling and
 524 grammar. LLMs were also employed to assist in literature search and discovery, such as by providing
 525 keywords to retrieve related works. However, the core ideas, methodology, and contributions of this
 526 paper were conceived independently and did not rely on LLMs.

527 528 REFERENCES

529 Jyotibha Acharya, Arindam Basu, Robert Legenstein, Thomas Limbacher, Panayiota Poirazi, and
 530 Xundong Wu. Dendritic computing: branching deeper into machine learning. *Neuroscience*, 489:
 531 275–289, 2022.

532 Hagai Agmon-Snir, Catherine E Carr, and John Rinzel. The role of dendrites in auditory coincidence
 533 detection. *Nature*, 393(6682):268–272, 1998.

535 Abdul Haseeb Ahmed, Qing Zou, Prashant Nagpal, and Mathews Jacob. Dynamic imaging using
 536 deep bi-linear unsupervised representation (deblur). *IEEE transactions on medical imaging*, 41
 537 (10):2693–2703, 2022.

538 Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
 539 Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully

540 event-based gesture recognition system. In *Proceedings of the IEEE conference on computer vision*
 541 and pattern recognition, pp. 7243–7252, 2017.

542

543 Vaswani Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
 544 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 545 systems, 30, 2017.

546

547 Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
 548 and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.
 549 *Nature communications*, 11(1):3625, 2020.

550

551 David Beniaguev, Idan Segev, and Michael London. Single cortical neurons as deep artificial neural
 552 networks. *Neuron*, 109(17):2727–2739, 2021.

553

554 Brendan A. Bicknell and Michael Häusser. A synaptic learning rule for exploiting nonlinear dendritic
 555 computation. *Neuron*, 109:0896–6273, 2021.

556

557 Tiago Branco, Beverley A Clark, and Michael Häusser. Dendritic discrimination of temporal input
 558 sequences in cortical neurons. *Science*, 329(5999):1671–1675, 2010.

559

560 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
 561 Wojciech Zaremba. Openai gym, 2016.

562

563 Anthony N Burkitt. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input.
 564 *Biological cybernetics*, 95:1–19, 2006.

565

566 Spyridon Chavlis and Panayiota Poirazi. Dendrites endow artificial neural networks with accurate,
 567 robust and parameter-efficient learning. *Nature Communications*, 16(1):943, 2025.

568

569 Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong Tian. Deep reinforcement learning with spiking
 570 q-learning. *arXiv*, 2024. URL <https://arxiv.org/abs/2201.09754>.

571

572 Yunhua Chen, Yingchao Mai, Ren Feng, and Jinsheng Xiao. An adaptive threshold mechanism for
 573 accurate and efficient deep spiking convolutional neural networks. *Neurocomputing*, 469:189–197,
 2022.

574

575 Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The heidelberg
 576 spiking data sets for the systematic evaluation of spiking neural networks. *IEEE Transactions on*
 577 *Neural Networks and Learning Systems*, 33(7):2744–2757, 2020.

578

579 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
 580 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
 581 manycore processor with on-chip learning. *Ieee Micro*, 38(1):82–99, 2018.

582

583 Jaime De La Rocha, Brent Doiron, Eric Shea-Brown, Krešimir Josić, and Alex Reyes. Correlation
 584 between neural spike trains increases with firing rate. *Nature*, 448(7155):802–806, 2007.

585

586 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 587 hierarchical image database. *2009 IEEE conference on computer vision and pattern recognition*,
 588 pp. 248–255, 2009.

589

590 Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao, Peng Li, and
 591 Yuan Xie. Rethinking the performance comparison between snns and anns. *Neural networks*, 121:
 294–307, 2020.

592

593 Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
 594 neural network via gradient re-weighting. *arXiv preprint arXiv:2202.11946*, 2022.

595

596 Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
 597 dependent plasticity. *Frontiers in computational neuroscience*, 9:99, 2015.

598

599 Yongqi Ding, Lin Zuo, Mengmeng Jing, Pei He, and Yongjun Xiao. Shrinking your timestep:
 600 Towards low-latency neuromorphic object recognition with spiking neural network. *arXiv preprint*
 601 *arXiv:2401.01912*, 2024.

594 Erol Egrioglu and Eren Bas. A new deep neural network for forecasting: Deep dendritic artificial
 595 neural network. *Artificial Intelligence Review*, 57(7):171, 2024.
 596

597 Feng-Lei Fan, Mengzhou Li, Fei Wang, Rongjie Lai, and Ge Wang. On expressivity and trainability
 598 of quadratic networks. *IEEE Transactions on Neural Networks and Learning Systems*, 36(1):
 599 1228–1242, 2025a. doi: 10.1109/TNNLS.2023.3331380.

600 Liangwei Fan, Hui Shen, Xiangkai Lian, Yulin Li, Man Yao, Guoqi Li, and Dewen Hu. A multisynap-
 601 tic spiking neuron for simultaneously encoding spatiotemporal dynamics. *Nature Communications*,
 602 16(1):7155, 2025b.

603 Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
 604 Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
 605 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2661–2671,
 606 2021.

607 Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
 608 Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
 609 infrastructure platform for spike-based intelligence. *Science Advances*, 9(40):eadi1480, 2023.

610 Lang Feng, Qianhui Liu, Huajin Tang, De Ma, and Gang Pan. Multi-level firing with spiking
 611 ds-resnet: Enabling better and deeper directly-trained spiking neural networks. *arXiv preprint*
 612 *arXiv:2210.06386*, 2022.

613 Shangce Gao, Mengchu Zhou, Yirui Wang, Jiujuun Cheng, Hanaki Yachi, and Jiahai Wang. Dendritic
 614 neuron model with effective learning algorithms for classification, approximation, and prediction.
 615 *IEEE transactions on neural networks and learning systems*, 30(2):601–614, 2018.

616 Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In *Proceedings*
 617 *of the IEEE conference on computer vision and pattern recognition*, pp. 317–326, 2016.

618 Wulfram Gerstner and Werner M Kistler. *Spiking neuron models: Single neurons, populations,*
 619 *plasticity*. Cambridge university press, 2002.

620 Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. *Neuronal dynamics: From*
 621 *single neurons to networks and models of cognition*. Cambridge University Press, 2014.

622 Albert Gidon, Timothy Adam Zolnik, Paweł Fidzinski, Felix Bolduan, Athanasia Papoutsi, Panayiota
 623 Poirazi, Martin Holtkamp, Imre Vida, and Matthew Evan Larkum. Dendritic action potentials and
 624 computation in human layer 2/3 cortical neurons. *Science*, 367(6473):83–87, 2020.

625 Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with segregated
 626 dendrites. *eLife*, 6:e22901, 2017.

627 Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, and Zhe Ma. Im-
 628 loss: information maximization loss for spiking neural networks. *Advances in Neural Information*
 629 *Processing Systems*, 35:156–166, 2022a.

630 Yufei Guo, Yuanpei Chen, Liwen Zhang, YingLei Wang, Xiaode Liu, Xinyi Tong, Yuanyuan Ou,
 631 Xuhui Huang, and Zhe Ma. Reducing information loss for spiking neural networks. In *European*
 632 *Conference on Computer Vision*, pp. 36–52. Springer, 2022b.

633 Jiang Hao, Xu-dong Wang, Yang Dan, Mu-ming Poo, and Xiao-hui Zhang. An arithmetic rule for
 634 spatial summation of excitatory and inhibitory inputs in pyramidal neurons. *Proceedings of the*
 635 *National Academy of Sciences*, 106(51):21906–21911, 2009.

636 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 637 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 638 pp. 770–778, 2016.

639 Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE*
 640 *International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*, pp. 10–14, 2014.
 641 doi: 10.1109/ISSCC.2014.6757323.

648 Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural networks
 649 toward deep residual learning. *IEEE transactions on neural networks and learning systems*, 36(2):
 650 2353–2367, 2024.

651

652 Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
 653 Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
 654 forcement learning algorithms. *Journal of Machine Learning Research*, 23(274):1–18, 2022. URL
 655 <http://jmlr.org/papers/v23/21-1342.html>.

656 Dongsung Huh and Terrence J Sejnowski. Gradient descent for spiking neural networks. *Advances in
 657 neural information processing systems*, 31, 2018.

658

659 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
 660 *Journal of artificial intelligence research*, 4:237–285, 1996.

661

662 Shu Kong and Charless Fowlkes. Low-rank bilinear pooling for fine-grained classification. In
 663 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 365–374,
 664 2017.

665 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 666 *University of Toronto*, 2009.

667

668 Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness of
 669 energy-efficient deep spiking neural networks by training with crafted input noise. In *Proceedings
 670 of the IEEE/CVF international conference on computer vision*, pp. 5209–5218, 2021.

671 Edgar Lemaire, Loïc Cordone, Andrea Castagnetti, Pierre-Emmanuel Novac, Jonathan Courtois,
 672 and Benoît Miramond. An analytical estimation of spiking neural networks energy efficiency. In
 673 *International conference on neural information processing*, pp. 574–587. Springer, 2022.

674

675 Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
 676 dataset for object classification. *Frontiers in neuroscience*, 11:244131, 2017.

677

678 Songting Li, Nan Liu, Xiao-hui Zhang, Douglas Zhou, and David Cai. Bilinearity in spatiotemporal
 679 integration of synaptic inputs. *PLoS computational biology*, 10(12):e1004014, 2014.

680

681 Songting Li, Nan Liu, Xiaohui Zhang, David W McLaughlin, Douglas Zhou, and David Cai. Dendritic
 682 computations captured by an effective point neuron model. *Proceedings of the National Academy
 683 of Sciences*, 116(30):15244–15252, 2019.

684

685 Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained
 686 visual recognition. In *Proceedings of the IEEE international conference on computer vision*, pp.
 687 1449–1457, 2015.

688

689 Chang Liu, Jiangrong Shen, Xuming Ran, Mingkun Xu, Qi Xu, Yi Xu, and Gang Pan. Efficient ANN-
 690 SNN conversion with error compensation learning. In *Forty-second International Conference on
 691 Machine Learning*, 2025a. URL <https://openreview.net/forum?id=9lw5HYPT4Y>.

692

693 Chongming Liu, Jingyang Ma, Songting Li, and Douglas Dongzhuo Zhou. Dendritic integration
 694 inspired artificial neural networks capture data correlation. *Advances in Neural Information
 695 Processing Systems*, 37:79325–79349, 2024.

696

697 Yuqian Liu, Yuechao Wang, Chi Zhang, Liao Yu, Ying Fang, and Feng Chen. Learning-efficient
 698 spiking neural networks with multi-compartment spatio-temporal backpropagation. *iScience*,
 699 2025b.

700

701 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv
 preprint arXiv:1608.03983*, 2016.

702

703 Songchen Ma, Jing Pei, Weihao Zhang, Guanrui Wang, Dahu Feng, Fangwen Yu, Chenhang Song,
 704 Huanyu Qu, Cheng Ma, Mingsheng Lu, et al. Neuromorphic computing chip with spatiotemporal
 705 elasticity for multi-intelligent-tasking robots. *Science Robotics*, 7(67):eabk2948, 2022.

702 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 703 *Neural networks*, 10(9):1659–1671, 1997.
 704

705 Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
 706 memory-and time-efficient backpropagation for training spiking neural networks. In *Proceedings*
 707 *of the IEEE/CVF International Conference on Computer Vision*, pp. 6166–6176, 2023.

708 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 709 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 710 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

711 Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. *IEEE*
 712 *transactions on neural networks and learning systems*, 29(7):3227–3235, 2017.

713

714 Michalis Paghakos, Roman Makarov, and Panayiota Poirazi. Leveraging dendritic properties to
 715 advance machine learning and neuro-inspired computing. *Current opinion in neurobiology*, 85:
 716 102853, 2024.

717 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 718 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 719 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 720 2019.

721 Devdhar Patel, Hananel Hazan, Daniel J Saunders, Hava T Siegelmann, and Robert Kozma. Im-
 722 proved robustness of reinforcement learning policies upon conversion to spiking neuronal network
 723 platforms applied to atari breakout game. *Neural Networks*, 120:108–115, 2019.

724

725 Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake A Richards, and Richard Naud. Burst-
 726 dependent synaptic plasticity can coordinate learning in hierarchical circuits. *Nature neuroscience*,
 727 24(7):1010–1019, 2021.

728

729 Michael T Pearce, Thomas Dooms, Alice Rigg, Jose Oramas, and Lee Sharkey. Bilinear MLPs enable
 730 weight-based mechanistic interpretability. In *The Thirteenth International Conference on Learning*
 731 *Representations*, 2025. URL <https://openreview.net/forum?id=gI0kPk1UKS>.

732 Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
 733 Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
 734 architecture. *Nature*, 572(7767):106–111, 2019.

735

736 Panayiota Poirazi, Terrence Brannon, and Bartlett W Mel. Pyramidal neuron as two-layer neural
 737 network. *Neuron*, 37(6):989–999, 2003.

738

739 Alon Polsky, Bartlett W Mel, and Jackie Schiller. Computational subunits in thin dendrites of
 740 pyramidal cells. *Nature neuroscience*, 7(6):621–627, 2004.

741

742 Tianrui Qi and Ge Wang. Superiority of quadratic over conventional neural networks for classification
 743 of gaussian mixture data. *Visual Computing for Industry, Biomedicine, and Art*, 5(1):23, 2022.

744

745 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
 746 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

747

748 Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-
 749 sion of continuous-valued deep networks to efficient event-driven networks for image classification.
 750 *Frontiers in neuroscience*, 11:294078, 2017.

751

752 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
 753 back-propagating errors. *nature*, 323(6088):533–536, 1986.

754

755 João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical microcircuits
 756 approximate the backpropagation algorithm. *Advances in neural information processing systems*,
 757 31, 2018.

758

759 Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. *Advances in*
 760 *neural information processing systems*, 31, 2018.

756 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 757 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

758

759 Nelson Spruston. Pyramidal neurons: dendritic structure and synaptic integration. *Nature Reviews
 760 Neuroscience*, 9(3):206–221, 2008.

761

762 Greg Stuart, Nelson Spruston, Häusser Michael, et al. *Dendrites*. Oxford University Press, 2016.

763

764 Weihao Tan, Devdhar Patel, and Robert Kozma. Strategy and benchmark for converting deep q-
 765 networks to event-driven spiking neural networks. In *Proceedings of the AAAI conference on
 766 artificial intelligence*, volume 35, pp. 9816–9824, 2021.

767

768 Balázs B Ujfalussy, Judit K Makara, Máté Lengyel, and Tiago Branco. Global and multiplexed
 769 dendritic computations under in vivo-like conditions. *Neuron*, 100(3):579–592, 2018.

770

771 Kexin Wang, Yuhong Chou, Di Shang, Shijie Mei, Jiahong Zhang, Yanbin Huang, Man Yao, Bo Xu,
 772 and Guoqi Li. Mmdend: Dendrite-inspired multi-branch multi-compartment parallel spiking
 773 neuron for sequence modeling. In *Proceedings of the 63rd Annual Meeting of the Association for
 774 Computational Linguistics (Volume 1: Long Papers)*, pp. 27459–27470, 2025a.

775

776 Shuai Wang, Malu Zhang, Dehao Zhang, Ammar Belatreche, Yichen Xiao, Yu Liang, Yimeng Shan,
 777 Qian Sun, Enqi Zhang, and Yang Yang. Spiking vision transformer with saccadic attention. In
 778 *The Thirteenth International Conference on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=qzzsz6MuEq>.

779

780 Christopher JCH Watkins and Peter Dayan. Q-learning. *Machine learning*, 8:279–292, 1992.

781

782 Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. *Adaptation, learning, and
 783 optimization*, 12(3):729, 2012.

784

785 Yujie Wu, Lei Deng, Guoqi Li, and Luping Shi. Spatio-temporal backpropagation for training
 786 high-performance spiking neural networks. *Frontiers in neuroscience*, 12:323875, 2018.

787

788 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
 789 networks: Faster, larger, better. *Proceedings of the AAAI conference on artificial intelligence*, 33,
 790 2019.

791

792 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
 793 through time for spiking neural networks. *Advances in neural information processing systems*, 35:
 20717–20730, 2022.

794

795 Shuangming Yang, Tian Gao, Jiang Wang, Bin Deng, Benjamin Lansdell, and Bernabe Linares-
 796 Barranco. Efficient spike-driven learning with dendritic event-based processing. *Frontiers in
 797 Neuroscience*, 15:601109, 2021.

798

799 Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
 800 transformer. *Advances in neural information processing systems*, 36:64043–64058, 2023a.

801

802 Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi Li.
 803 Attention spiking neural networks. *IEEE transactions on pattern analysis and machine intelligence*,
 804 45(8):9393–9410, 2023b.

805

806 Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo XU, and Guoqi
 807 Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
 808 of next-generation neuromorphic chips. In *The Twelfth International Conference on Learning
 809 Representations*, 2024. URL <https://openreview.net/forum?id=1SIBN5Xyw7>.

810

811 Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
 812 neuron for spiking neural networks. *Advances in Neural Information Processing Systems*, 35:
 813 32160–32171, 2022.

814

815 Xingting Yao, Qinghao Hu, Fei Zhou, Tielong Liu, Zitao Mo, Zeyu Zhu, Zhengyang Zhuge, and Jian
 816 Cheng. Spinerf: Direct-trained spiking neural networks for efficient neural radiance field rendering.
 817 *Frontiers in Neuroscience*, 19:1593580, 2025.

810 Kairong Yu, Chengting Yu, Tianqing Zhang, Xiaochen Zhao, Shu Yang, Hongwei Wang, Qiang
 811 Zhang, and Qi Xu. Temporal separation with entropy regularization for knowledge distillation
 812 in spiking neural networks. In *Proceedings of the Computer Vision and Pattern Recognition*
 813 *Conference*, pp. 8806–8816, 2025a.

814 Kairong Yu, Tianqing Zhang, Hongwei Wang, and Qi Xu. Fsta-snn: Frequency-based spatial-temporal
 815 attention module for spiking neural networks. In *Proceedings of the AAAI Conference on Artificial*
 816 *Intelligence*, volume 39, pp. 22227–22235, 2025b.

817 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 818 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proceedings*
 819 *of the IEEE/CVF international conference on computer vision*, pp. 6023–6032, 2019.

820 Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained larger
 821 spiking neural networks. *Proceedings of the AAAI conference on artificial intelligence*, 35, 2021.

822 Hanle Zheng, Zhong Zheng, Rui Hu, Bo Xiao, Yujie Wu, Fangwen Yu, Xue Liu, Guoqi Li, and Lei
 823 Deng. Temporal dendritic heterogeneity incorporated with spiking neural networks for learning
 824 multi-timescale dynamics. *Nature Communications*, 15(1):277, 2024.

825 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and Li Yuan.
 826 Spikformer: When spiking neural network meets transformer. In *The Eleventh International*
 827 *Conference on Learning Representations*, 2023.

828 Georgios Zoumpourlis, Alexandros Doumanoglou, Nicholas Vretos, and Petros Daras. Non-linear
 829 convolution filters for cnn-based learning. In *Proceedings of the IEEE international conference on*
 830 *computer vision*, pp. 4761–4769, 2017.

831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **A APPENDIX**865 **A.1 PROOFS OF THEOREMS**

866 We consider a binary classification problem where each input sample is a binary matrix: $\mathbf{S} =$
 867 $[\mathbf{s}(1), \mathbf{s}(2), \dots, \mathbf{s}(\tau)] \in \{0, 1\}^{N \times \tau}$, where $N \in \mathbb{N}$ and $N \geq 2$, and τ is the total number of discrete
 870 time steps. Two input classes with distributions \mathcal{D}_1 and \mathcal{D}_2 have identical mean firing rates but
 871 distinct pairwise correlations:

$$\begin{aligned} 872 \quad \frac{1}{\tau} \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_1} [\mathbf{S} \mathbf{1}_\tau] &= \frac{1}{\tau} \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_2} [\mathbf{S} \mathbf{1}_\tau] = \mathbf{c} \\ 873 \quad \frac{1}{\tau} \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_1} [\mathbf{S} \mathbf{S}^T] &= \mathbf{C}_1 \neq \frac{1}{\tau} \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_2} [\mathbf{S} \mathbf{S}^T] = \mathbf{C}_2 \end{aligned} \quad (\text{A1})$$

876 where $\mathbf{1}_\tau$ is the all-ones column vector with length τ . (Gerstner & Kistler, 2002) have demonstrated
 877 that for spiking neuron models with dynamics of the form given in $\tau \frac{dV(t)}{dt} = -(V(t) - V_{rest}) + RI(t)$,
 878 in the input regime where the current is sufficient to elicit spiking, the firing rate is proportional to the
 879 average input current. Assuming that the average firing rate is sufficiently high to induce spiking, we
 880 obtain the following theorem

881 **Theorem A1.** *Let two input spike train distributions \mathcal{D}_1 and \mathcal{D}_2 be defined as in Eq. (5). Then there
 882 always exists a bilinear coefficient matrix \mathbf{K} which can distinguish two corresponding input currents
 883 to the DLIF neuron, i.e.,*

$$884 \quad \delta I = |\mathbb{E}[I|\mathcal{D}_1] - \mathbb{E}[I|\mathcal{D}_2]| > 0.$$

885 Moreover, under the constraint $\|\mathbf{K}\|_F \leq 1$, the optimal choice of \mathbf{K} that maximizes δI is given by

$$887 \quad \mathbf{K}^* = \pm \frac{\mathbf{C}_1 - \mathbf{C}_2}{\|\mathbf{C}_1 - \mathbf{C}_2\|_F}.$$

890 *Proof.* Let \mathbf{w} and \mathbf{K} denote the weight vector and the bilinear coefficient matrix of a DLIF neuron,
 891 respectively. With a certain input \mathbf{S} , the total integrated input current is defined as in Eq. (3). Then
 892 the average input current is:

$$893 \quad I = \frac{1}{\tau} \sum_{t=1}^{\tau} I(t) = \frac{1}{\tau} (\mathbf{w}^T \mathbf{S} \mathbf{1}_\tau + \text{tr}(\mathbf{S}^T \mathbf{K} \mathbf{S})) \quad (\text{A2})$$

897 Then the difference of the input current between the two input classes is:

$$898 \quad \delta I = |\mathbb{E}[I|\mathcal{D}_1] - \mathbb{E}[I|\mathcal{D}_2]| = |\text{tr}(\mathbf{K}(\mathbf{C}_1 - \mathbf{C}_2))| \quad (\text{A3})$$

900 Since $\mathbf{C}_1 \neq \mathbf{C}_2$, there exists at least two entries $k = (\mathbf{C}_1 - \mathbf{C}_2)_{ij} = (\mathbf{C}_1 - \mathbf{C}_2)_{ji} \neq 0$ ($\mathbf{C}_1 - \mathbf{C}_2$ is
 901 symmetric). Consider a bilinear coefficient matrix \mathbf{K} that places nonzero values only on these two
 902 entry (e.g., $\mathbf{K}_{ij} = \mathbf{K}_{ji} = 1$ and all other entries zero). Then $\delta I = 2k > 0$, which establishes the
 903 existence of \mathbf{K} such that $\delta I > 0$.

904 Furthermore, under the normalization constraint $\|\mathbf{K}\|_F = 1$, we have

$$905 \quad |\text{tr}(\mathbf{K}(\mathbf{C}_1 - \mathbf{C}_2))| \leq \|\mathbf{K}\|_F \|\mathbf{C}_1 - \mathbf{C}_2\|_F = \|\mathbf{C}_1 - \mathbf{C}_2\|_F. \quad (\text{A4})$$

907 Equality holds if and only if

$$908 \quad \mathbf{K} = \pm \frac{\mathbf{C}_1 - \mathbf{C}_2}{\|\mathbf{C}_1 - \mathbf{C}_2\|_F},$$

910 in which case δI attains its maximal value $\|\mathbf{C}_1 - \mathbf{C}_2\|_F$. Therefore, not only is separation guaranteed,
 911 but there also exists an optimal \mathbf{K} that maximizes the expected difference in input current, ensuring
 912 the clearest distinction between the two classes. \square

914 At the network level, suppose the two input classes are still characterized by Eq. (A1). These
 915 inputs are encoded by M hidden neurons, and we denote the input current to the hidden neurons
 916 as $\mathbf{I} = [\mathbf{i}(1), \mathbf{i}(2), \dots, \mathbf{i}(\tau)] \in \mathbb{R}^{M \times \tau}$. Assume that the two classes exhibit significantly different
 917 correlation structures; without loss of generality, we let $\|\mathbf{C}_1 - \mathbf{C}_2\|_F = 1$. For each class, we
 define the correlation matrix of \mathbf{Q}_c of \mathbf{I} as $\mathbf{Q}_c = \frac{1}{\tau} \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [\mathbf{I} \mathbf{I}^T]$ for $c \in \{1, 2\}$, and denote the

918 resulting matrices for LIF and DLIF neurons by $\mathbf{Q}_1^{\text{LIF}}, \mathbf{Q}_2^{\text{LIF}}, \mathbf{Q}_1^{\text{DLIF}}, \mathbf{Q}_2^{\text{DLIF}}$, respectively. Let
919 $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_M] \in \mathbb{R}^{M \times N}$ be the weight matrix and $\mathbf{K} = [\mathbf{K}_1, \dots, \mathbf{K}_M]$ with $\mathbf{K}_m \in \mathbb{R}^{N \times N}$
920 be the bilinear coefficient matrices. Without loss of generality, assume that the LIF and DLIF neurons
921 share the same synaptic weight matrix $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_M] \in \mathbb{R}^{M \times N}$. Suppose further that the
922 weight vectors and bilinear coefficient matrices are normalized such that $\|\mathbf{w}_i\|_F \leq 1$ and $\|\mathbf{K}_i\|_F \leq 1$
923 for all $i = 1, \dots, M$. Then we obtain the following lemma:

924 **Lemma A1.** *Let the input spike trains be drawn from distributions \mathcal{D}_1 and \mathcal{D}_2 defined in Eq. (5).
925 Then for any choice of synaptic weight matrices \mathbf{W} , there exists bilinear coefficient matrices \mathbf{K} for
926 the DLIF neurons such that*

$$927 \quad \|\mathbf{Q}_1^{\text{DLIF}} - \mathbf{Q}_2^{\text{DLIF}}\|_F \geq C > 0.$$

928 and

$$929 \quad \|\mathbf{Q}_1^{\text{DLIF}} - \mathbf{Q}_2^{\text{DLIF}}\|_F > \|\mathbf{Q}_1^{\text{LIF}} - \mathbf{Q}_2^{\text{LIF}}\|_F.$$

931 *Proof.* The input current to i th hidden neurons are defined as

$$933 \quad \mathbf{I}_{i,:}^{\text{LIF}} = \mathbf{w}_i^T \mathbf{S}, \quad \mathbf{I}_{i,:}^{\text{DLIF}} = \mathbf{w}_i^T \mathbf{S} + \Phi_i(\mathbf{S}), \quad (A5)$$

935 where $\Phi_i(\mathbf{S}) = [\mathbf{s}(1)^\top \mathbf{K}_i \mathbf{s}(1), \dots, \mathbf{s}(\tau)^\top \mathbf{K}_i \mathbf{s}(\tau)]$. For class $c \in \{1, 2\}$, define the correlation
936 matrix as

$$937 \quad (\mathbf{Q}_c^*)_{ij} = \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [\mathbf{I}_{i,:}^*(\mathbf{I}_{j,:}^*)^T], \quad (A6)$$

938 where $*$ $\in \{\text{LIF}, \text{DLIF}\}$.

940 Step 1 (LIF case)

941 For LIF neurons we have

$$943 \quad (\mathbf{Q}_c^{\text{LIF}})_{ij} = \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [\mathbf{I}_{i,:}^{\text{LIF}}(\mathbf{I}_{j,:}^{\text{LIF}})^T] = \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [\mathbf{w}_i^T \mathbf{S} \mathbf{S}^T \mathbf{w}_j] = \mathbf{w}_i^T \mathbf{C}_c \mathbf{w}_j \quad (A7)$$

944 where $\mathbf{C}_c = \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [\mathbf{S} \mathbf{S}^T]$ is the input correlation matrix of class c . Hence

$$946 \quad \Delta_{ij}^{\text{LIF}} = (\mathbf{Q}_1^{\text{LIF}} - \mathbf{Q}_2^{\text{LIF}})_{ij} = \mathbf{w}_i^T (\mathbf{C}_1 - \mathbf{C}_2) \mathbf{w}_j. \quad (A8)$$

948 Step 2 (DLIF case)

949 For DLIF neurons, we have

$$951 \quad (\mathbf{Q}_c^{\text{DLIF}})_{ij} = \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [\mathbf{I}_{i,:}^{\text{DLIF}}(\mathbf{I}_{j,:}^{\text{DLIF}})^T] \\ 952 \quad = \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [(\mathbf{w}_i^T \mathbf{S} \mathbf{S}^T \mathbf{w}_j + \Phi_i(\mathbf{S}) \mathbf{S}^T \mathbf{w}_j + \mathbf{w}_i^T \mathbf{S} \Phi_j^T(\mathbf{S}) + \Phi_i(\mathbf{S}) \Phi_j^T(\mathbf{S}))] \quad (A9)$$

954 We abbreviate

$$955 \quad G_{ij}(c) := \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [\Phi_i(\mathbf{S}) \mathbf{S}^T \mathbf{w}_j + \mathbf{w}_i^T \mathbf{S} \Phi_j(\mathbf{S})^T], \\ 956 \quad H_{ij}(c) := \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [\Phi_i(\mathbf{S}) \Phi_j(\mathbf{S})^T].$$

957 Then

$$959 \quad \Delta_{ij}^{\text{DLIF}} = (\mathbf{Q}_1^{\text{DLIF}} - \mathbf{Q}_2^{\text{DLIF}})_{ij} = \underbrace{\mathbb{E}_{\mathbf{S} \sim \mathcal{D}_1} [\mathbf{w}_i^T \mathbf{S} \mathbf{S}^T \mathbf{w}_j] - \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_2} [\mathbf{w}_i^T \mathbf{S} \mathbf{S}^T \mathbf{w}_j]}_{\Delta_{ij}^{\text{LIF}}} \\ 960 \\ 961 \quad + \underbrace{G_{ij}(1) - G_{ij}(2)}_{\text{linear-bilinear term}} + \underbrace{H_{ij}(1) - H_{ij}(2)}_{\text{bilinear-bilinear term}}. \quad (A10)$$

965 Since $s_i(t) \in \{0, 1\}$, we have $s_i(t)^r = s_i(t)$ for any $r \in \mathbb{N}^*$. We can define $s_i(t)s_j(t)$ as the
966 second-order moments for $i \neq j$, $s_i(t)s_j(t)s_k(t)$ as the third-order moments for $i \neq j \neq k$ and so
967 on.

968 For the linear-bilinear term, we have

$$971 \quad G_{ij}(c) = \sum_{t=1}^{\tau} \sum_{p \neq q} \sum_u (\mathbf{K}_i)_{pq} s_p(t) s_q(t) \mathbf{w}_{ju} s_u(t) + \sum_{t=1}^{\tau} \sum_{p \neq q} \sum_u (\mathbf{K}_j)_{pq} s_p(t) s_q(t) \mathbf{w}_{iu} s_u(t) \quad (A11)$$

972 Since the higher-order moments are negligible compared to second-order moments, then we have
 973

$$\begin{aligned} 974 \quad G_{ij}(c) &= \sum_{p \neq q} [((\mathbf{K}_i)_{pq} \mathbf{w}_{jp} + (\mathbf{K}_i)_{pq} \mathbf{w}_{jq} + (\mathbf{K}_j)_{pq} \mathbf{w}_{ip} + (\mathbf{K}_j)_{pq} \mathbf{w}_{iq}) (\sum_{t=1}^{\tau} s_p(t) s_q(t))] \\ 975 \\ 976 \quad &= \mathbf{1}^T \{ [(\mathbf{w}_i \mathbf{1}^T + \mathbf{1} \mathbf{w}_i^T) \odot \mathbf{K}_j + (\mathbf{w}_j \mathbf{1}^T + \mathbf{1} \mathbf{w}_j^T) \odot \mathbf{K}_i] \odot \mathbf{C}_c \} \mathbf{1} \end{aligned} \quad (\text{A12})$$

978 where \odot is the Hadamard product. And we have
 979

$$\Delta_{ij}^G = G_{ij}(1) - G_{ij}(2) = \mathbf{1}^T \{ [(\mathbf{w}_i \mathbf{1}^T + \mathbf{1} \mathbf{w}_i^T) \odot \mathbf{K}_j + (\mathbf{w}_j \mathbf{1}^T + \mathbf{1} \mathbf{w}_j^T) \odot \mathbf{K}_i] \odot (\mathbf{C}_1 - \mathbf{C}_2) \} \mathbf{1} \quad (\text{A13})$$

981 Similarly, for the bilinear-bilinear term, we have
 982

$$983 \quad H_{ij}(c) = \sum_{t=1}^{\tau} \sum_{p \neq q} \sum_{u \neq v} (\mathbf{K}_i)_{pq} s_p(t) s_q(t) (\mathbf{K}_j)_{uv} s_u(t) s_v(t) \quad (\text{A14})$$

986 Since the higher-order moments are negligible compared to second-order moments, then we have
 987

$$\begin{aligned} 988 \quad H_{ij}(c) &= \sum_{p \neq q} [(\mathbf{K}_i)_{pq} (\mathbf{K}_j)_{pq} \sum_{t=1}^{\tau} s_p(t) s_q(t)] \\ 989 \\ 990 \quad &= \mathbf{1}^T (\mathbf{K}_i \odot \mathbf{K}_j \odot \mathbf{C}_c) \mathbf{1} \end{aligned} \quad (\text{A15})$$

$$\Delta_{ij}^H = H_{ij}(1) - H_{ij}(2) = \mathbf{1}^T [\mathbf{K}_i \odot \mathbf{K}_j \odot (\mathbf{C}_1 - \mathbf{C}_2)] \mathbf{1} \quad (\text{A16})$$

993 Step 3 (Norm comparison)

994 Since

$$\Delta_{ij}^{\text{DLIF}} = \Delta_{ij}^{\text{LIF}} + \Delta_{ij}^G + \Delta_{ij}^H \quad (\text{A17})$$

996 WLOG, we suppose that $\Delta_{ij}^{\text{LIF}} \geq 0$. Since $\|\mathbf{C}_1 - \mathbf{C}_2\| = 1$, there exists $p \neq q$ such that $k =$
 997 $(\mathbf{C}_1 - \mathbf{C}_2)_{pq} \neq 0$. We can select $\mathbf{K}_i = \mathbf{K}_j = \alpha(\mathbf{e}_p \mathbf{e}_q^T + \mathbf{e}_q \mathbf{e}_p^T)$, then
 998

$$\begin{aligned} 999 \quad \Delta_{ij}^H &= 2\alpha^2 k \\ 1000 \quad \Delta_{ij}^G &= (\mathbf{w}_{ip} + \mathbf{w}_{iq} + \mathbf{w}_{jp} + \mathbf{w}_{iq}) \alpha k \end{aligned} \quad (\text{A18})$$

1002 Since $\alpha = 0$ is one of the zeros of $\Delta_{ij}^H + \Delta_{ij}^G$, there exists a small ϵ such that $\Delta_{ij}^H + \Delta_{ij}^G > 0$ when
 1003 $\alpha = \epsilon$ and satisfying $\|\mathbf{K}_i\|_F = \|\mathbf{K}_j\|_F < 1$. Therefore, we have
 1004

$$|\Delta_{ij}^{\text{DLIF}}| = |\Delta_{ij}^{\text{LIF}} + \Delta_{ij}^G + \Delta_{ij}^H| \geq C > 0 \quad (\text{A19})$$

1006 and

$$|\Delta_{ij}^{\text{DLIF}}| > |\Delta_{ij}^{\text{LIF}}| \quad (\text{A20})$$

$$|\Delta_{ij}^{\text{DLIF}}| = |\Delta_{ij}^{\text{LIF}} + \Delta_{ij}^G + \Delta_{ij}^H| > 0 \quad (\text{A21})$$

1009 When $\Delta_{ij}^{\text{LIF}} < 0$, we can select $\mathbf{K}_i = \alpha(\mathbf{e}_p \mathbf{e}_q^T + \mathbf{e}_q \mathbf{e}_p^T)$ and $\mathbf{K}_j = -\alpha(\mathbf{e}_p \mathbf{e}_q^T + \mathbf{e}_q \mathbf{e}_p^T)$, then
 1010

$$\begin{aligned} 1011 \quad \Delta_{ij}^H &= -2\alpha^2 k \\ 1012 \quad \Delta_{ij}^G &= (-\mathbf{w}_{ip} - \mathbf{w}_{iq} + \mathbf{w}_{jp} + \mathbf{w}_{iq}) \alpha k \end{aligned} \quad (\text{A22})$$

1014 Similarly, since $\alpha = 0$ is still one of the zeros of $\Delta_{ij}^H + \Delta_{ij}^G$, there exists a small ϵ such that
 1015 $\Delta_{ij}^H + \Delta_{ij}^G < 0$ when $\alpha = \epsilon$ and satisfying $\|\mathbf{K}_i\|_F = \|\mathbf{K}_j\|_F < 1$. Therefore, we have
 1016

$$|\Delta_{ij}^{\text{DLIF}}| = |\Delta_{ij}^{\text{LIF}} + \Delta_{ij}^G + \Delta_{ij}^H| \geq C > 0 \quad (\text{A23})$$

1018 and

$$|\Delta_{ij}^{\text{DLIF}}| > |\Delta_{ij}^{\text{LIF}}| \quad (\text{A24})$$

$$|\Delta_{ij}^{\text{DLIF}}| = |\Delta_{ij}^{\text{LIF}} + \Delta_{ij}^G + \Delta_{ij}^H| > 0 \quad (\text{A25})$$

1022 In general, we have

$$\|\Delta^{\text{DLIF}}\|_F \geq C > 0. \quad (\text{A26})$$

1023 and

$$\|\Delta^{\text{DLIF}}\|_F > \|\Delta^{\text{LIF}}\|_F. \quad (\text{A27})$$

1025 This completes the proof. \square

1026 The above lemma demonstrates that, compared to LIF neurons, DLIF neurons can better preserve
 1027 the correlation of the original input spike trains at the current-input level. (De La Rocha et al., 2007)
 1028 further proved that, for spiking neurons of the form given in Eq. (1), the correlation of the output
 1029 spike train is positively correlated with that of the input current, leading to the following lemma.
 1030

1031 **Lemma A2.** *Consider two spiking neurons defined by Eq. (1). Let the correlation of their input
 1032 currents be a in the expectation sense. Then, there exists a constant $k > 0$ such that the correlation
 1033 of their output spike trains, also measured in expectation, satisfies $b = ka$.*

1034 The proof of Lemma A2 can refer to (De La Rocha et al., 2007).

1035 Then we denote the output spike trains of the hidden neurons as $\mathbf{Y} = [\mathbf{y}(1), \mathbf{y}(2), \dots, \mathbf{y}(\tau)] \in$
 1036 $\{0, 1\}^{M \times \tau}$. For each class, we define the correlation matrix \mathbf{P}_c of \mathbf{Y} as $\mathbf{P}_c =$
 1037 $\frac{1}{\tau} \mathbb{E}_{\mathbf{S} \sim \mathcal{D}_c} [\mathbf{Y} \mathbf{Y}^T]$ for $c \in \{1, 2\}$, and denote the resulting matrices for LIF and DLIF neurons by
 1038 $\mathbf{P}_1^{\text{LIF}}, \mathbf{P}_2^{\text{LIF}}, \mathbf{P}_1^{\text{DLIF}}, \mathbf{P}_2^{\text{DLIF}}$, respectively. Let $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_M] \in \mathbb{R}^{M \times N}$ be the weight
 1039 matrix and $\mathbf{K} = [\mathbf{K}_1, \dots, \mathbf{K}_M]$ with $\mathbf{K}_m \in \mathbb{R}^{N \times N}$ be the bilinear coefficient matrices. We suppose
 1040 that $\|\mathbf{w}_i\|_F \leq 1$ and $\|\mathbf{K}_i\|_F \leq 1$ for $i = 1, \dots, M$. Then we obtain the following theorem

1041 **Theorem A2.** *Let the input spike trains be drawn from distributions \mathcal{D}_1 and \mathcal{D}_2 defined in Eq. (A1).
 1042 Then, for any choice of synaptic weight matrices \mathbf{W}^{LIF} and \mathbf{W}^{DLIF} , there exists bilinear coefficient
 1043 matrices \mathbf{K} for the DLIF neurons such that*

$$1044 \quad 1045 \quad \|\mathbf{P}_1^{\text{DLIF}} - \mathbf{P}_2^{\text{DLIF}}\|_F \geq C > 0.$$

1046 and

$$1047 \quad \|\mathbf{P}_1^{\text{DLIF}} - \mathbf{P}_2^{\text{DLIF}}\|_F > \|\mathbf{P}_1^{\text{LIF}} - \mathbf{P}_2^{\text{LIF}}\|_F.$$

1049 *Proof.* According to Lemma A1 and Lemma A2, we have

$$1050 \quad 1051 \quad \|\mathbf{P}_1^{\text{DLIF}} - \mathbf{P}_2^{\text{DLIF}}\|_F = k \|\mathbf{Q}_1^{\text{DLIF}} - \mathbf{Q}_2^{\text{DLIF}}\|_F \geq C > 0. \quad (\text{A28})$$

$$1052 \quad 1053 \quad \begin{aligned} \|\mathbf{P}_1^{\text{DLIF}} - \mathbf{P}_2^{\text{DLIF}}\|_F &= k \|\mathbf{Q}_1^{\text{DLIF}} - \mathbf{Q}_2^{\text{DLIF}}\|_F \\ &> k \|\mathbf{Q}_1^{\text{LIF}} - \mathbf{Q}_2^{\text{LIF}}\|_F = \|\mathbf{P}_1^{\text{LIF}} - \mathbf{P}_2^{\text{LIF}}\|_F \end{aligned} \quad (\text{A29})$$

1055 \square

1056 A.2 DETAILS ABOUT SPIKING NEURON MODELS AND NETWORKS

1058 A.2.1 DYNAMICS

1060 The sub-threshold somatic membrane potential $V(t)$ is governed by:

$$1062 \quad 1063 \quad \tau \frac{dV(t)}{dt} = -(V(t) - V_{\text{rest}}) + RI(t), \quad (\text{A30})$$

1064 For computational implementation, we set R and the time interval to 1, yielding the discrete dynamics
 1065 equations:

$$1068 \quad \begin{cases} U[t] &= (1 - \frac{1}{\tau})V[t-1] + \frac{1}{\tau}I[t], \\ S[t] &= H(U[t] - V_{\text{th}}), \\ V[t] &= (1 - S[t])U[t] + S[t]V_{\text{rest}}. \end{cases} \quad (\text{A31})$$

1072 where $U[t]$ and $V[t]$ represents the membrane potential before and after reset operations, respectively.
 1073 $t = 1, 2, 3, \dots, \tau$ denotes the time step, and τ is the time duration. $H(x)$ is the Heaviside step
 1074 function. In our experiments, V_{th} and V_{rest} are set to be 1 and 0, respectively. The choice of τ is
 1075 specified in the supplementary.

1076 Eq. (A31) defines the update rule for neuronal dynamics in SNNs. Notably, SNN architectures
 1077 maintain structural parallels with conventional ANNs, permitting direct adaptation of established
 1078 frameworks such as VGG, ResNet and Transformer through substitution of activation functions
 1079 with spiking neuron models. Standard operations including convolution and pooling remain fully
 compatible.

1080

1081

Table 6: Comparison of Training Time and Memory Cost

1082

1083

Neuron Model	Network Architecture	Training Time	Memory Cost	Accuracy
LIF	ResNet-34	1.54h	20.17G	70.23%
LIF	ResNet-50	1.81h	23.54G	70.79%
DLIF	ResNet-34	1.66h	22.39G	71.06%

1084

1085

1086

1087

1088

SNNs support both neuromorphic and static image data processing. While neuromorphic data naturally contains temporal information, static images require conversion to temporal inputs via pixel value encoding (Rueckauer et al., 2017; Diehl & Cook, 2015; Shrestha & Orchard, 2018). The network output is determined by the highest average firing rate among output layer neurons, which corresponds to the predicted class label.

1089

1090

1091

1092

1093

1094

1095

Training spiking neural networks faces a fundamental challenge: the non-differentiability of spike sequences, which prevents direct gradient-based optimization. This limitation is overcome by combining Backpropagation Through Time (BPTT) with surrogate gradient methods (Huh & Sejnowski, 2018; Shrestha & Orchard, 2018; Wu et al., 2018; 2019). The non-differentiable term $\frac{\partial S}{\partial V}$ can be approximated by the surrogate functions such as rectangle or triangle functions (Wu et al., 2018): $\frac{\partial S}{\partial V} = \frac{1}{a} \text{sgn}(|V - V_{th}| < \frac{a}{2})$ or $\frac{\partial S}{\partial V} = \frac{1}{a^2} \max(0, a - |V - V_{th}|)$, where a is a hyperparameter and sgn is the sign function. With the surrogate gradient, the gradient-based algorithm can be applied to train SNNs.

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

A.2.2 TRAINING ALGORITHM

1106

1107

1108

1109

1110

1111

We conducted additional measurements comparing the training time and memory overhead of DLIF with the standard LIF-based SNN. To ensure a fair evaluation, we performed experiments on ImageNet using the ResNet-34 architecture trained with the standard BPTT algorithm, with a batch size of 256, running on a single NVIDIA A100 GPU. The reported training time corresponds to the wall-clock time per epoch. The wall-clock training time and memory cost are computed based on the first three epochs of training.

1112

1113

1114

1115

1116

1117

The results in Table 6 show that DLIF increases per-epoch training time by 8% and GPU memory consumption by 11%. However, this overhead remains acceptable for large-scale SNN training. To further demonstrate that the performance improvement of DLIF is not merely due to an increase in parameter count, we also conducted experiments using the LIF model with ResNet-50. In this setting, the training time and memory consumption are both higher than those of the DLIF-based ResNet-34, yet the accuracy remains lower than that achieved by DLIF-ResNet-34.

1118

1119

A.3 EXPERIMENTS OF COMPARING TRAINING TIME AND MEMORY COST

1120

1121

1122

1123

1124

1125

1126

1127

Reinforcement learning represents a fundamental machine learning paradigm where agents learn optimal decision-making policies through environmental interactions, guided by reward signals (Kaelbling et al., 1996; Wiering & Van Otterlo, 2012). The Atari game has emerged as a standard benchmark for evaluating RL algorithms, challenging agents to maximize game scores through pixel-level inputs (Mnih et al., 2015). While Q-learning (Watkins & Dayan, 1992) and its deep learning variants have demonstrated strong performance, recent work has successfully adapted spiking neural networks for Q-value approximation, enabling efficient processing of high-dimensional state spaces (Patel et al., 2019; Tan et al., 2021; Chen et al., 2024).

1128

1129

1130

1131

1132

1133

In our experiments, we implement DLIF models within a deep spiking Q-network (DSQN) architecture and evaluate the performance across 16 Atari games (Chen et al., 2024). A comparative analysis with the LIF-based DSQN reveals that DLIF models achieve an average performance improvement of 20.62% in final game scores across all tested environments as shown in Table 7. Due to slight variations in input and output dimensions across different games, the computational cost exhibits minor fluctuations. On average, the DSQN model based on the LIF neuron has $0.21M$ parameters, $0.83M$ FLOPs, and an energy cost of $0.81\mu J$. In comparison, the DLIF-based DSQN incurs $0.23M$

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

Table 7: Results on Atari Games

Game	DSQN with LIF (Mean \pm Std)	DSQN with DLIF (Mean \pm Std)
Atlantis	2515926.7 \pm 73782.9	2942971.5 \pm 73462.3
Beam Rider	5327.6 \pm 178.0	7306.9 \pm 544.6
Boxing	82.7 \pm 8.7	97.0 \pm 10.5
Breakout	368.1 \pm 9.8	472.1 \pm 8.7
Crazy Climber	95164.4 \pm 1232.9	100673.6 \pm 1519.2
Gopher	4233.1 \pm 176.5	6151.4 \pm 219.4
Jamesbond	469.4 \pm 82.7	587.2 \pm 84.7
Kangaroo	5824.4 \pm 540.8	7374.2 \pm 702.9
Krull	6991.1 \pm 107.0	7883.5 \pm 262.1
Name this game	6981.0 \pm 192.8	8041.2 \pm 208.4
Pong	19.5 \pm 0.4	20.3 \pm 0.6
Road Runner	27725.6 \pm 3954.0	29401.1 \pm 4507.1
Space Invaders	1209.9 \pm 61.2	2769.6 \pm 105.3
Star Gunner	1657.8 \pm 102.0	1984.4 \pm 136.1
Tutankham	266.5 \pm 12.2	294.2 \pm 11.5
Video Pinball	408032.6 \pm 41687.8	436980.0 \pm 41047.2

Bold values represent the best results for each Atari game

Table 8: Ablation Study of Bilinear Coefficients

Dataset	Method	Network	Neuron	Mean \pm Std(%)
TET	ResNet-34		LIF	64.79
			DLIF	67.32 \pm 0.39
			DLIF*	25.83 \pm 2.67
ImageNet	STBP-tdBN	ResNet-34	LIF	63.72
			DLIF	66.79 \pm 0.53
			DLIF*	21.36 \pm 1.89
Meta-SpikeFormer	Transformer		LIF	80.00
			DLIF	80.57 \pm 0.28
			DLIF*	17.12 \pm 5.81

Bold values represent the best results for each method;* means removing \mathbf{K} after training

parameters ($+0.02M$, $+9.52\%$), $0.9M$ FLOPs ($+0.07M$, $+8.43\%$), and an energy cost of $0.86\mu J$ ($+0.05\mu J$, $+6.17\%$). These modest increases in computational and energy costs are justified by the corresponding performance gains.

A.5 ABLATION STUDY

To highlight the contribution of the bilinear coefficients \mathbf{K} in the DLIF model, we perform ablation studies on the ImageNet dataset under three training paradigms: TET, STBP-tdBN, and Meta-SpikeFormer. We consider two ways of removing the bilinear matrices: (i) removing \mathbf{K} before training, which reduces the DLIF model to a standard LIF model, and (ii) removing \mathbf{K} after training to assess their impact on the learned representations. As shown in Table 8, both settings consistently lead to a drop in test accuracy across all paradigms, confirming the critical role of bilinear coefficients in the DLIF model.

To further examine how different parameterizations of the bilinear matrix \mathbf{K} influence DLIF performance, we evaluated two structured variants—a diagonal-block sparse matrix and a low-rank factorization, motivated by biological or computational considerations. In addition to the random 90% sparse matrix used in our main experiments, we constructed (i) a diagonal-block matrix with bandwidth $n = 8$, matched to the same overall sparsity level (90%), and (ii) a low-rank factorization $\mathbf{K} = \mathbf{U}\mathbf{V}^T$ with ranks $r = 1, 2, 3$. We also include the zero-rank case ($r = 0$), which removes \mathbf{K}

1188
1189
1190
1191
1192
1193

Table 9: Comparison of different parameterizations of the bilinear matrix

Matrix Type	ZR	LR (r=1)	LR (r=2)	LR (r=3)	DB	RS
#Params (M)	12.17	12.30	12.43	12.56	13.21	13.21
ACC (%)	74.38	74.55	74.82	75.27	76.82	76.89

ZR=zero rank; LR=low rank; DB=diagonal block; RS=random sparse

entirely and reduces DLIF to a standard LIF model. All variants were evaluated on CIFAR-100 using ResNet-18 trained with SLTT.

The results in Table 9 highlight two distinct conclusions. First, low-rank parameterization substantially reduces the number of bilinear parameters but yields noticeably weaker performance, with accuracy consistently below the sparse formulations. Second, the diagonal-block matrix performs comparably to the random 90% sparse matrix, suggesting that incorporating locality structure neither improves nor degrades performance under similar sparsity levels. These observations indicate that while our current sparse formulation provides an effective balance between accuracy and parameter efficiency, exploring richer biologically inspired structural priors for \mathbf{K} remains an interesting direction for future investigation.

A.6 IMPLEMENTATION DETAILS

A.6.1 PARAMETER COUNT, FLOPS, ENERGY COST

In addition to reporting accuracy, we also evaluate models using three standard metrics: parameter count, FLOPs, and theoretical energy consumption. The parameter count is obtained by summing all trainable weights in the network. When computing the parameter count, we explicitly account for the sparsity of the bilinear matrix—only the non-zero entries after masking are included as trainable parameters. To enforce this sparsity in practice, we generate a fixed binary mask \mathbf{M} before training, where 90% of the entries are set to zero and the remaining 10% to one. During training, the bilinear matrix is parameterized as $\tilde{\mathbf{K}} = \mathbf{K} \odot \mathbf{M}$ where \odot denotes the Hadamard product. This procedure ensures that the effective bilinear parameters strictly follow the desired sparsity pattern, and only the unmasked entries contribute to the parameter count and optimization. For the ResNet and VGG architectures, we incorporate the bilinear operation into the convolutional layers of the first two blocks. For the Transformer architecture, we apply the bilinear operation to the FFN layers in the first two encoder blocks.

FLOPs are estimated by counting all multiplication and addition operations required in a single forward pass across all layers. Theoretical energy consumption is then computed as the weighted sum of these operations, where each multiplication incurs an energy cost of E_{MAC} and each addition incurs an energy cost of E_{AC} . Following prior work(Kundu et al., 2021; Lemaire et al., 2022; Yao et al., 2025; Zhou et al., 2023; Yao et al., 2023b; Hu et al., 2024), we adopt $E_{\text{MAC}} = 4.6 \text{ pJ}$ and $E_{\text{AC}} = 0.9 \text{ pJ}$ under 45nm CMOS technology(Horowitz, 2014). Accordingly, the total theoretical energy of an SNN is given by $E_{\text{SNN}} = \tau \cdot r \cdot (E_{\text{MAC}} \cdot N_{\text{MAC}} + E_{\text{AC}} \cdot N_{\text{AC}})$, where N_{MAC} and N_{AC} denote the total number of multiplications and additions during one forward pass, τ is the number of timesteps, and r is the average spiking firing rate.

A.6.2 OTHER SPIKING NEURON MODELS

The dynamics of the PLIF, GLIF and DH-LIF models can be found in (Fang et al., 2021), (Yao et al., 2022) and citepzheng2024temporal, respectively. The dynamics of the QIF model are defined as:

$$\tau \frac{dv}{dt} = a_0(v - v_{\text{rest}})(v - v_c) + RI \quad (\text{A32})$$

while the dynamics of the EIF model are given by:

$$\tau \frac{dv}{dt} = -(v - v_{\text{rest}}) + \Delta_T \exp\left(\frac{v - v_{\text{th}}}{\Delta_T}\right) + RI \quad (\text{A33})$$

The QIF and EIF models are configured with the following hyperparameters: $v_{\text{rest}} = 0$, $v_c = 0.8$, $a_0 = 1$, and $\Delta_T = 1$. For a fair comparison, we evaluate the performance of QIF, EIF, and DLIF

1242 models across CIFAR-10, CIFAR-100, ImageNet, and DVS-CIFAR10 using the same network
 1243 architecture and hyperparameters as those adopted in (Yao et al., 2022), while for DVS-Gesture as
 1244 those adopted in (Fang et al., 2021). In addition, when comparing DLIF with the DH-LIF model,
 1245 we follow the feedforward network architecture with comparable parameters and hyperparameter
 1246 configurations provided in (Zheng et al., 2024).

1247 **A.6.3 DATASETS**

1250 We conduct experiments on a custom-designed XOR task and several visual classification datasets,
 1251 including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Deng
 1252 et al., 2009), DVS-Gesture (Amir et al., 2017), and DVS-CIFAR10 (Li et al., 2017). Additionally, we
 1253 evaluate performance on Atari games using the Gym (Brockman et al., 2016) and CleanRL (Huang
 1254 et al., 2022) libraries.

1255 **XOR Task** In the XOR task, each neuron receives 10 Poisson-distributed synaptic inputs over a
 1256 duration of 200 time steps, with an Poisson rate of 0.5. For inputs where only half of the synapses are
 1257 activated, the target output spike count is 2. In contrast, for inputs where all synapses are activated,
 1258 the target output spike count is 0. A total of 1000 samples are generated for training and 200 for
 1259 testing.

1260 **2D Correlated Input** We randomly sample two-dimensional Poisson inputs. In each trial, both
 1261 input dimensions share the same Poisson rate, which is a random number between 0 and 1. Each
 1262 sequence has a duration of 1000 time steps, and we collect a total of 1200 samples, with 1000 used
 1263 for training and 200 for testing.

1264 **10D Correlated Input** We first fix two symmetric input second-order moment matrices, C_1 and
 1265 C_2 , such that $\|C_1 - C_2\|_F = 1$. The average number of input spikes is set to 200, with a sequence
 1266 length of 1000. Based on the specified second-order moments and firing rate, we then generate two
 1267 distinct classes of inputs, with 500 samples per class for training and 100 samples per class for testing.

1268 **CIFAR-10** The CIFAR-10 dataset comprises 60,000 natural images distributed across 10 classes,
 1269 with 6,000 images per class. Of these, 50,000 images are designated for training and 10,000 for
 1270 testing. The dataset is normalized to scale pixel values to the range [0, 1]. Subsequently, each image
 1271 is replicated T times to generate temporal inputs, where T denotes the number of time steps in the
 1272 evolution of the SNN.

1273 **CIFAR-100** The CIFAR-100 dataset is similar to CIFAR-10 but contains 100 classes of objects. It
 1274 comprises 50,000 training samples and 10,000 test samples. The same preprocessing steps applied to
 1275 CIFAR-10 are utilized for this dataset.

1276 **ImageNet** The ImageNet dataset contains over 14 million natural images across more than 20,000
 1277 classes, making it one of the largest and most diverse image classification datasets. In this work,
 1278 we utilize the ImageNet-1K subset, which includes approximately 1.2 million training images and
 1279 50,000 validation images across 1,000 classes. Our data pre-processing uses the usual practice, which
 1280 randomly crops and flips the 224×224 image with general normalization method. Each image is then
 1281 replicated T times to generate temporal inputs.

1282 **DVS-Gesture** The DVS-Gesture dataset comprises 1,176 neuromorphic spiking gesture training
 1283 samples and 288 test samples, each represented as 128×128 pixel frames. The dataset includes 11
 1284 gesture types, such as waving, arm rotation, and forearm rolling. It is collected using a dynamic
 1285 vision sensor, capturing data from 29 subjects under three distinct lighting conditions: natural light,
 1286 fluorescent light, and LED.

1287 **DVS-CIFAR10** The DVS-CIFAR10 dataset is derived from the original CIFAR-10 dataset using a
 1288 neuromorphic vision sensor to generate temporal sequences. It includes 9,000 training sequences and
 1289 1,000 test sequences.

SHD and SSC Spiking Heidelberg digits (SHD) and spiking speech command (SSC) datasets convert the original audio data into the spike format through a bionic inner ear model. SHD contains about 10,000 high-quality recordings of English and German speech for digits ranging from 0 to 9. In particular, the SHD training and testing sets contain 8,156 and 2,264 pieces of data, respectively; the SSC training, testing, and validation sets contain 75,466, 9,981, and 20,382 pieces of data.

Atari Games The Atari game dataset comprises data generated from playing various Atari 2600 games, often used for reinforcement learning research. For this study, we evaluate our model using 16 selected games: Atlantis, Beam Rider, Boxing, Breakout, Crazy Climber, Gopher, James Bond, Kangaroo, Krull, Name This Game, Pong, Road Runner, Space Invaders, Star Gunner, Tutankham, and Video Pinball.

A.6.4 TRAINING METHODS AND SNN ARCHITECTURES

XOR Task For the XOR task, we employ a single DLIF or LIF model. The time constant is set to 2, and the firing threshold is fixed at $V_{th} = 1$. We control the bilinear matrices to be symmetric with zero diagonals and initialize both the weights and bilinear coefficient from a normal distribution. Both DLIF and LIF neurons are trained using the BPTT algorithm, with the mean squared error as the loss function. Training is performed for 100 epochs with a batch size of 128 and a learning rate of 0.1. We constrain the Frobenius norm of \mathbf{K} to be 1 during training.

Network Correlation Simulation For the two-dimensional case, we train DLIF and LIF models to maximize the normalized correlation of the output spike trains toward 1. For the ten-dimensional case, we train the models such that the Frobenius norm of the difference between the output correlation matrices of the two input classes approaches 1. In both settings, the mean squared error is used as the loss function. The bilinear matrices are constrained to be symmetric with zero diagonals, and both the weights and bilinear coefficients are initialized from a normal distribution. Training is conducted using the BPTT algorithm for 100 epochs with a batch size of 128 and a learning rate of 0.1. During training, we constrain the Frobenius norms of both the weight vectors and the bilinear matrices to be 1.

Experiments in Large-scale SNNs In the results presented in Section 4, we consistently control the bilinear matrices to be symmetric with zero diagonals, and, except for the ablation experiments, we always fix the sparsity level at 90%. For all experiments, the training process is repeated five times with different initial values, and the mean and standard deviation of test set accuracy are calculated. For experiments where the original spiking neurons are replaced with DLIF neurons in SNNs, we adopt the same training methods and network architectures as described in the original works, which are detailed as below:

SLTT Spatial Learning Through Time (SLTT) (Meng et al., 2023) is a training method designed to reduce the number of scalar multiplications and achieve memory efficiency that is independent of the total number of time steps, compared with BPTT. For CIFAR-10, CIFAR-100, DVS-Gesture, and DVS-CIFAR10, the adopted network architectures are ResNet-18, ResNet-18, VGG-11, and VGG-11, respectively, with the total number of time steps set to 6, 6, 20, and 10, respectively. The time constant is set to $\tau = 2$. To improve compatibility with neuromorphic hardware, max-pooling layers are replaced with average-pooling layers in the network architectures. The loss function combines cross-entropy loss and mean-squared-error loss (Deng et al., 2022). For all tasks, stochastic gradient descent (SGD) (Rumelhart et al., 1986) with a momentum of 0.9 is employed to train the networks, and a cosine annealing scheduler (Loshchilov & Hutter, 2016) is used to adjust the learning rate. The training hyperparameters are as follows: for the CIFAR-10 and CIFAR-100 datasets, models are trained for 200 epochs with a learning rate of 0.1, a batch size of 128, and weight decays of 5×10^{-5} and 5×10^{-4} , respectively. For the DVS-Gesture dataset, models are trained for 300 epochs with a learning rate of 0.1, a batch size of 16, and a weight decay of 5×10^{-4} . For the DVS-CIFAR10 dataset, models are trained for 300 epochs with a learning rate of 0.05, a batch size of 128, and a weight decay of 5×10^{-4} .

ESG Evolutionary Surrogate Gradients (ESG) (Guo et al., 2022a) is a novel method for differentiable spike activity estimation, designed to ensure sufficient model updates during the initial stages

1350 of training and accurate gradient calculations at later stages. For CIFAR-10, CIFAR-100, and DVS-
 1351 CIFAR10, the adopted network architectures are VGG-16, VGG-16, and ResNet-19, respectively,
 1352 with the total number of time steps set to 5, 5, and 10, respectively. The time constant is configured as
 1353 $\tau = 1.33$. To enhance compatibility with neuromorphic hardware, max-pooling layers are replaced
 1354 with average-pooling layers in the network architectures. Cross-entropy loss is used as the loss
 1355 function. For all tasks, the SGD optimizer with a momentum of 0.9 is employed to train the networks
 1356 over 100 epochs, with a batch size of 128, a learning rate of 0.1, and a weight decay of 1×10^{-4} .
 1357

1358 **OTTT** Online Training Through Time (OTTT) (Xiao et al., 2022) is an extension of BPTT that
 1359 enables forward-in-time learning by tracking presynaptic activities and leveraging instantaneous
 1360 loss and gradients. The VGG-11 network architecture is utilized for all experiments on CIFAR-10,
 1361 CIFAR-100, DVS-CIFAR10, and DVS-Gesture, with the total number of time steps set to 6, 6, 20,
 1362 and 10, respectively. The time constant is configured as $\tau = 2$. All models are trained using the SGD
 1363 optimizer with a momentum of 0.9. For CIFAR-10, CIFAR-100, and DVS-CIFAR10, models are
 1364 trained for 300 epochs with a batch size of 128. The initial learning rate is set to 0.1 and decayed
 1365 to 0 using a cosine annealing scheduler. For DVS-CIFAR10, dropout is applied to all layers with a
 1366 dropout rate of 0.1. The loss function combines cross-entropy loss and mean-squared-error loss. For
 1367 DVS-Gesture, models are trained for 300 epochs with a batch size of 16 using the Adam optimizer.
 1368 The initial learning rate is set to 0.001 and decayed to 0 using a cosine annealing scheduler.
 1369

1370 **STBP-tdBN** The threshold-dependent batch normalization method based on spatio-temporal back-
 1371 propagation (STBP-tdBN) (Zheng et al., 2021) addresses the gradient vanishing and explosion prob-
 1372 lems while adjusting the firing rate. For CIFAR-10, ImageNet, DVS-Gesture, and DVS-CIFAR10, the
 1373 adopted network architectures are ResNet-19, ResNet-34, ResNet-17, and ResNet-19, respectively,
 1374 with the total number of time steps set to 6, 6, 40, and 10, respectively. The time constant is configured
 1375 as $\tau = 1.33$. Cross-entropy loss is used as the loss function. For all experiments, the SGD optimizer
 1376 is employed with an initial learning rate of 0.1, a momentum of 0.9, a batch size of 40, and 500
 1377 training epochs. The learning rate r decays to $0.1r$ every 35 epochs.
 1378

1379 **TET** The Temporal Efficient Training (TET) algorithm (Deng et al., 2022) is designed to mitigate
 1380 the loss of momentum in gradient descent with stochastic gradients (SG), facilitating convergence to
 1381 flatter minima and improved generalizability. The ResNet-34 architecture is utilized for the ImageNet
 1382 dataset, with the time constant configured as $\tau = 2$. The SGD optimizer with a momentum of 0.9
 1383 and a weight decay of 4×10^{-5} is employed. The learning rate is initialized at 0.1 and decays to 0
 1384 using a cosine schedule. The network is trained for 120 epochs.
 1385

1386 **SSNN** The Shrinking Spiking Neural Network (SSNN) (Ding et al., 2024) is designed to achieve
 1387 low-latency neuromorphic object recognition. The VGG-9 network architecture is utilized with a
 1388 total of 8 time steps across all datasets. The time constant is configured as $\tau = 2$. All models are
 1389 trained for 100 epochs with an initial learning rate of 0.1, which decays to one-tenth of its previous
 1390 value every 30 epochs. The batch size is set to 64, and the SGD optimizer with a momentum of 0.9
 1391 and a weight decay of 1×10^{-3} is employed.
 1392

1393 **ESL** The Error Compensation Learning (ESL) (Liu et al., 2025a) introduced a learnable threshold
 1394 clipping function, dual-threshold neurons, and an optimized membrane potential initialization strategy
 1395 to mitigate the conversion error. For CIFAR-10 and ImageNet, the adopted network architectures
 1396 are ResNet-18 and VGG-16, with the total number of time steps set to 64 and 128, respectively. We
 1397 use the same training strategy as in STBP-tdBN since the original text does not provide a detailed
 1398 description of the training parameters.
 1399

1400 **TSER** Temporal Separation with Entropy Regularization (TSER) (Yu et al., 2025a) introduced
 1401 knowledge distillation in spiking neural networks. The teacher models for CIFAR-10, CIFAR and
 1402 ImageNet datasets are VGG-16, VGG-16 and ResNet-34, respectively. The time steps are all set to 4.
 1403 We use the same training strategy as in STBP-tdBN since the original text does not provide a detailed
 1404 description of the training parameters.
 1405

1406 **FSTA** Frequency-based Spatial-Temporal Attention (FSTA) module is proposed to enhance feature
 1407 learning in SNNs (Yu et al., 2025b). For CIFAR-10, CIFAR-100, ImageNet, and DVS-CIFAR10, the
 1408

1404 adopted network architectures are ResNet-19, ResNet-19, ResNet-34, and ResNet-20, respectively,
 1405 with the total number of time steps set to 2, 2, 4, and 16, respectively. We use the same training
 1406 strategy as in STBP-tdBN since the original text does not provide a detailed description of the training
 1407 parameters.

1408

1409 **SSSA** Saccadic Spike Self-Attention (SSSA) method is proposed to address the issues of the
 1410 mismatch between the vanilla self-attention mechanism and spatio-temporal spike trains (Wang et al.,
 1411 2025b). ViTs are used for CIFAR-10, CIFAR-100, ImageNet and DVS-CIFAR10 datasets with time
 1412 steps of 4. We use the same training strategy as in STBP-tdBN since the original text does not provide
 1413 a detailed description of the training parameters.

1414

1415 **Spike-driven Transformer** The Spike-driven Transformer is an SNN architecture that incorporates
 1416 the spike-driven paradigm into Transformer (Yao et al., 2023a). This architecture combines the low
 1417 power of SNN and the excellent accuracy of the Transformer. The time constant is set to $\tau = 2$.
 1418 For ImageNet, the batch size is set to 256 during 310 training epochs with a cosine-decay learning
 1419 rate whose initial value is 0.0005. The optimizer is Lamb and the timestep is $T = 4$. For the
 1420 other four datasets, we employ timesteps $T = 4$ on CIFAR-10 and CIFAR-100, and $T = 16$ on
 1421 DVS-CIFAR10 and DVS-Gesture. The training epoch for these four datasets is 200. The batch size is
 1422 32 for CIFAR10/100 and 16 for DVS-Gesture/CIFAR10. The learning rate is initialized to 0.0005
 1423 for CIFAR10/100, 0.0003 for DVS-Gesture, and 0.01 for DVS-CIFAR10. All of them are reduced
 1424 with cosine decay. In addition, the network structures used in CIFAR-10, CIFAR-100, ImageNet,
 1425 DVS-CIFAR10, and DVS-Gesture are: Transformer-2-512, Transformer-2-512, Transformer-10-512
 1426 Transformer-2-256 and Transformer-2-256, respectively, where Transformer- L - D in represents a
 1427 model with L encoder blocks and D channels.

1428

1429 **Meta-SpikeFormer** Meta-SpikeFormer is a general Transformer-based SNN architecture for future
 1430 next-generation Transformer-based neuromorphic chip designs (Yao et al., 2024). A 55M Transformer
 1431 is used for ImageNet dataset with 4 timesteps. The AdamW is employed with an initial learning rate
 1432 of $1e - 3$ that will decay in the polynomial decay schedule with a power of 0.9. To speed up training,
 we warm up the model for 1.5k iterations with a linear decay schedule.

1433

1434 **DSQN** The network architecture of Deep Spiking Q-Network (DSQN) (Chen et al., 2024) is struc-
 1435 tured as Input-32C8S4-SN-64C4S2-SN-64C3S1-SN-Flatten-512-SN- N_A -SN, where SN represents
 1436 spiking neurons, which can be either LIF or DLIF neurons, and N_A denotes the number of actions in
 1437 the task. The model is trained over a total of 20 million frames. During evaluation, the agent begins
 1438 each episode with a random number (up to 30) of no-op actions, and the behavior policy follows an
 1439 ϵ -greedy approach, with ϵ fixed at 0.05. The simulation timesteps are set to 8, and the membrane time
 1440 constant is configured as $\tau = 2$. The model uses a minibatch size of 32, a replay start size of 50,000,
 1441 and a replay memory size of 1,000,000. The target network is updated every 10,000 steps. The
 1442 Adam optimizer is employed with a learning rate of 0.00025 and an ϵ value of 1×10^{-8} . Exploration
 1443 starts at an initial value of 1.0, decaying linearly to a final value of 0.1 over 1,000,000 frames. The
 1444 maximum number of no-op actions per episode is set to 30. These hyperparameters remain consistent
 1445 across all games.

1446

1447 All implementations are built on the PyTorch (Paszke et al., 2019) and SpikingJelly (Fang et al.,
 1448 2023) frameworks. All the experiments are conducted on an NVIDIA Tesla A100 GPU with 6,912
 1449 CUDA cores and 432 tensor cores.

1450

1451

1452

1453

1454

1455

1456

1457