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ABSTRACT

As widely used neuron model in Spiking Neural Networks (SNNs), the Leaky
Integrate-and-Fire (LIF) model assumes the linear summation of injected currents.
However, recent studies have revealed that a biological neuron can integrate inputs
nonlinearly and perform computations such as XOR while an LIF neuron cannot.
To bridge this gap, we propose the Dendritic LIF (DLIF) model, which incorporates
a bilinear dendritic integration rule derived from neurophysiological experiments.
At the single-neuron level, we theoretically demonstrate that a DLIF neuron can cap-
ture input correlations, enabling it to perform nonlinear classification tasks. At the
network level, we prove that DLIF neurons can preserve and propagate correlation
structures from the input layer to the readout layer. These theoretical findings are
further confirmed by our numerical experiments. Extensive experiments across di-
verse architectures—including ResNet, VGG, and Transformer—demonstrate that
DLIF achieves state-of-the-art performance on static (CIFAR-10/100, ImageNet)
and neuromorphic (DVS-Gesture, DVS-CIFAR10) benchmarks, surpassing LIF
and other advanced alternatives while maintaining comparable computational cost.
This work provides a biologically plausible and computationally powerful spiking
neuron model, paving the way for next-generation brain-inspired computing.

1 INTRODUCTION

Spiking neural networks (SNNs) are increasingly recognized as the next generation of neural network
paradigm that closely emulates biological neural systems through discrete spike-based communication
between neurons (Maass, 1997). Unlike traditional artificial neural networks (ANNs), which operate
on continuous-valued activations (Deng et al., 2020), SNNs employ event-driven computation via
discrete spikes. This fundamental difference enables SNNs to achieve significantly more efficient and
sparse data processing, offering substantial energy efficiency advantages over conventional ANNs
(Roy et al., 2019; Davies et al., 2018; Pei et al., 2019; Ma et al., 2022).

Most SNNs employ the Leaky Integrate-and-Fire (LIF) neuron model, a simplified abstraction of
biological neurons that omits dendritic processing. In biological neurons, dendrites receive and
integrate multiple input currents before transmitting them to the soma. The LIF model assumes the
linear summation of the input currents. However, numerous studies have revealed that the integration
process on the dendrites is nonlinear (Polsky et al., 2004; Poirazi et al., 2003; Ujfalussy et al.,
2018; Beniaguev et al., 2021), which plays a critical role in complex computations of biological
neurons, such as direction selectivity (Branco et al., 2010), coincidence detection (Agmon-Snir
et al., 1998), and logical operations (Gidon et al., 2020). Consequently, incorporating nonlinear
dendritic integration features into spiking neuron models is an increasingly important direction in
brain-inspired computing (Pagkalos et al., 2024; Acharya et al., 2022).

In this paper, we propose a novel spiking neuron model, termed the Dendritic Leaky Integrate-
and-Fire (DLIF) model, which is based on a bilinear dendritic integration rule observed in recent
experiments (Hao et al., 2009; Li et al., 2014; 2019). Theoretically, we show that at the single-neuron
level a DLIF neuron can capture input correlations, while at the network level DLIF neurons preserve
and propagate correlation structures across layers, with these results further validated by numerical
experiments. We also show that, across various tasks and deep neural network architectures, using
DLIF models can significantly improve the performance of SNNs compared to those with LIF models
and other spiking neuron models, with no significant increase in computational cost.
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The main contributions of this paper are summarized as follows:

1. We propose the Dendritic Leaky Integrate-and-Fire (DLIF) model, a biologically plausible
spiking neuron model that incorporates a bilinear dendritic integration rule observed in
neurophysiological experiments.

2. We theoretically establish, and numerically confirm, that DLIF neurons can capture input
correlations to perform nonlinear classification at the single-cell level, and preserve and
propagate these correlations through the network.

3. We demonstrate that, across multiple architectures, DLIF neurons achieve an average accu-
racy of 85.18%, with a 1.23% improvement over conventional LIF-based SNNs (83.95%),
and set state-of-the-art performance on both static and dynamic vision benchmarks. This
improvement is obtained with only a 0.17 mJ energy overhead (a 3.05% relative increase).

4. We show that the DLIF models possess computational advantages comparable to those of
other advanced spiking neuron models, including PLIF, GLIF, EIF, QIF and DH-LIF.

2 RELATED WORK

Bilinear Neural Networks. Several studies have explored bilinear neural networks in conventional
ANNs. A line of work has focused on feature fusion and pooling for visual recognition (Lin et al.,
2015; Gao et al., 2016; Kong & Fowlkes, 2017). Another direction has investigated bilinear neurons
as architectural primitives: one-rank bilinear neurons (Yun et al., 2019), pixel-wise bilinear filters
(Zoumpourlis et al., 2017), and bilinear networks with stabilized training strategies (Fan et al.,
2025a). In addition, bilinear formulations have also been applied in other domains, including MRI
reconstruction (Ahmed et al., 2022) and low-rank structures (Pearce et al., 2025). (Qi & Wang, 2022)
further highlighted that bilinear networks can achieve substantially higher efficacy and efficiency
than conventional neural networks. Our work differs by introducing bilinear dendritic integration into
the spiking neural network framework and providing a theoretical analysis of its role in preserving
input correlations, a perspective absent in prior bilinear ANN models.

Models and Algorithms Inspired by Dendritic Computation. Recent studies have increasingly
incorporated dendritic computation principles into machine learning frameworks. Some works
have drawn inspiration from dendritic cable theory, local learning rules, and dendritic event-based
processing (Bicknell & Häusser, 2021; Payeur et al., 2021; Sacramento et al., 2018; Yang et al.,
2021). Others have focused on network structures inspired by dendritic compartmentalization
and connectivity (Guerguiev et al., 2017; Chavlis & Poirazi, 2025; Gao et al., 2018). Meanwhile,
practical applications of dendritic integration have been demonstrated in diverse architectures, such
as convolutional networks with dendritic modules (Liu et al., 2024) and dendritic artificial neural
networks (Egrioglu & Bas, 2024). Together, these works highlight the growing importance of
dendritic principles as a powerful source of inspiration for advancing machine learning.

Neuron Models in SNNs. Various extensions of the standard LIF model have been proposed
to enhance the representational capacity of SNNs. Some works introduce additional flexibility in
neuronal dynamics, such as learnable time constants or adaptive thresholds (Fang et al., 2021; Bellec
et al., 2020; Feng et al., 2022; Chen et al., 2022). Others enrich the computational structure of
spiking neurons through gating mechanisms, soft reset strategies, or membrane potential rectifiers
(Yao et al., 2022; Guo et al., 2022b). Multi-compartment and multi-branch models further capture
dendritic or temporal heterogeneity (Zheng et al., 2024; Wang et al., 2025a; Liu et al., 2025b), while
multi-synaptic formulations enable simultaneous integration at different scales (Fan et al., 2025b).
These diverse extensions underline the central role of neuron model design in advancing the power of
SNNs. However, to the best of our knowledge, no prior work has sought to optimize spiking neuron
models through the bilinear form of dendritic integration.

3 DENDRITIC LEAKY INTEGRATE-AND-FIRE (DLIF) MODEL

Biological neurons have complex dendritic structures that are responsible for receiving multiple
external inputs, integrating them, and transmitting the processed signals to the soma (Stuart et al.,
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2016). The spiking neuron model faithfully replicates key functional properties of biological neurons
through temporal integration of input signals and subsequent generation of output spikes (Gerstner
et al., 2014). The sub-threshold somatic membrane potential V (t) of a spiking neuron is always
governed by:

µ
dV (t)

dt
= −(V (t)− Vrest) +RI(t), (1)

where µ represents the time constant, Vrest is the resting potential, R denotes the resistance, and
I(t) is the input current. When V (t) reaches a certain firing threshold Vth, the neuron emits a spike
and resets the potential back to Vrest. The resulting output spike train Y (t) is formally expressed
as Y (t) =

∑
i δ(t− ti), where δ is the Dirac delta function, and ti marks the i-th firing time of the

neuron. As the commonly used model in SNNs, the LIF model assumes linear summation of external
inputs (Burkitt, 2006), i.e.

I(t) =
∑
i

wisi(t) = wTs(t). (2)

where w = (wi)
n
i=1 denotes the synaptic weight from the pre-synaptic neurons to the target post-

synaptic neuron, and s(t) = (si(t))
n
i=1 represents the {0, 1} spike trains from pre-synaptic neuron.

However, biological experiments indicate that dendrites integrate inputs in a nonlinear manner (Polsky
et al., 2004; Spruston, 2008). This dendritic nonlinearity is essential for various computational
functions, such as direction selectivity (Branco et al., 2010), coincidence detection (Agmon-Snir
et al., 1998), and logical operations (Gidon et al., 2020). Consequently, the linear dendritic integration
mechanism of LIF models fails to fully capture the complex characteristics of biological neurons
and cannot perform the rich nonlinear computations. To address this limitation, we propose a novel
spiking neuron model, termed the Dendritic Leaky Integrate-and-Fire (DLIF) model.

3.1 FORMULATION OF THE DLIF MODEL

Recent neurophysiological experiments and theoretical analysis have demonstrated that the dendritic
integration of synaptic inputs by a single neuron is not linear, but conforms to a bilinear form
(Hao et al., 2009; Li et al., 2014; 2019). This bilinear integration property can be characterized by
considering two synaptic inputs a and b, where the dendritic integration yields not just the linear
sum a+ b but includes an additional bilinear interaction term kab. Thus, the total integrated input
becomes a+ b+ kab. Here, k is referred to as the bilinear dendritic integration coefficient, which
is independent of the input intensities and only dependent on the relative spatial positions of the
two synaptic inputs. Consequently, when a neuron receives multiple synaptic input spike trains
s(t) = (si(t))

n
i=1 with connection weights w, there will be additional bilinear integration terms

si(t)sj(t) (1 ≤ i < j ≤ n), associated with a symmetric bilinear coefficient matrix K = (Kij)
n
i,j=1

whose diagonal entries are zero. The integrated input can then be expressed as:

I(t) =

n∑
i=1

wisi(t) +

n∑
i=1

n∑
j>i

2Kijsi(t)sj(t) = wTs(t) + sT (t)Ks(t). (3)

Note that si(t)sj(t) can be directly realized through an AND operation, Eq. (3) won’t introduce
any additional multiplication operations. This preserves SNNs’ computational efficiency, as their
spike-based communication naturally favors additive operations over multiplicative (Roy et al., 2019).
Then the dynamics of the somatic membrane potential in the DLIF model can be described as:

τ
dV (t)

dt
= −(V (t)− Vrest) +R[wTs(t) + sT (t)Ks(t)]. (4)

3.2 THEORETICAL ANALYSIS OF DLIF’S COMPUTATIONAL ADVANTAGES

We first demonstrate the advantage of the DLIF neuron model from a theoretical perspective. We
consider a binary classification problem where each input sample is represented as a binary matrix,
where each column corresponds to the spike trains of N input neurons at a given time step: S =
[s(1), s(2), · · · , s(τ)] ∈ {0, 1}N×τ , where N ∈ N and N ≥ 2, and τ is the total time steps. Two
input classes with distributions D1 and D2 have identical mean firing rates but distinct pairwise
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correlations:
1

τ
ES∼D1

[S1τ ] =
1

τ
ES∼D2

[S1τ ] = c

1

τ
ES∼D1

[SST ] = C1 ̸= 1

τ
ES∼D2

[SST ] = C2

(5)

where 1τ is the all-ones column vector with length τ . We claim that a single DLIF neuron can
discriminate between two input classes by exhibiting distinct firing rates in response to them. (Gerstner
& Kistler, 2002)) have demonstrated that for spiking neuron models with dynamics of the form given
in Eq. (1), in the input regime where the current is sufficient to elicit spiking, the output firing rate is
proportional to the average input current. Therefore, in this regime, a significant difference in firing
rates is equivalent to a difference in input currents. Suppose the time-averaged input current to DLIF
neuron is denoted as I , we can obtain the following theorem (See proof in Section A.1).
Theorem 1. Let two input spike train distributions D1 and D2 be defined as in Eq. (5). Then there
always exists a bilinear coefficient matrix K which can distinguish two corresponding input currents
to the DLIF neuron, i.e.,

δI = |E[I|D1]− E[I|D2]| > 0.

Moreover, under the constraint ∥K∥F ≤ 1, the optimal choice of K that maximizes δI is given by

K∗ = ± C1 −C2

∥C1 −C2∥F
.

This theorem shows that DLIF neurons can exploit input correlation structures for classification via
the bilinear matrix K. However, for multi-layer SNNs, it is generally reasonable to assume that
correlated inputs appear at the input layer. In what follows, we further show that a two-layer SNN
with DLIF neurons can preserve input correlations in the hidden layer.

Building upon the same input spike train distributions as in Eq. (5), without loss of generality, we
assume that ∥C1 −C2∥F = 1. These spike trains are encoded by M hidden neurons, and we denote
the output spike trains of the hidden neurons as Y = [y(1),y(2), · · · ,y(τ)] ∈ {0, 1}M×τ . For each
class, we define the correlation matrix Pc of Y as Pc =

1
τ ES∼Dc

[Y Y T ] for c ∈ {1, 2}, and denote
the resulting matrices for LIF and DLIF neurons by P LIF

1 ,P LIF
2 ,PDLIF

1 ,PDLIF
2 , respectively. Let

W = [w1, . . . ,wM ] ∈ RM×N be the weight matrix and K = [K1, . . . ,KM ] with Km ∈ RN×N

be the bilinear coefficient matrices. We suppose that ∥wi∥F ≤ 1 and ∥Ki∥F ≤ 1 for i = 1, · · · ,M .
Then we obtain the following theorem (See proof in Section A.1).
Theorem 2. Let the input spike trains be drawn from distributions D1 and D2 defined in Eq. (5).
Then for any choice of synaptic weight matrices W LIF and WDLIF, there exists bilinear coefficient
matrices K for the DLIF neurons such that

∥PDLIF
1 − PDLIF

2 ∥F ≥ C > 0,

and furthermore,
∥PDLIF

1 − PDLIF
2 ∥F > ∥P LIF

1 − P LIF
2 ∥F .

This theorem demonstrates that DLIF networks are more capable than LIF networks at preserving
the correlation structures inherent in the input data. Combined with Theorem 1, which proves that
the DLIF neuron model can classify inputs with correlated structures, these theoretical derivations
collectively guarantee the superior computational and representational power of DLIF neurons over
LIF neurons. Next, we further validate the above theorems through several numerical experiments.

3.3 NUMERICAL VERIFICATION

Verification of Theorem 1 We first verify Theorem 1 by showing that a single DLIF neuron can
implement the XOR operation, consistent with recent biological findings that individual neurons can
perform such computations (Gidon et al., 2020), whereas a standard LIF neuron cannot (Mostafa,
2017). In our simulation, the neuron receives inputs from two pathways (five synapses each) with
identical Poisson firing rates (Fig. 1A). The target is to fire when exactly one pathway is active but
remain silent otherwise (Fig. 1B). We group the three non-trivial input patterns into two classes: Class
1 (both pathways active) and Class 2 (only one pathway active). Under this setup, the spike trains of
the two input classes follow a similar distribution as in Eq. (5). We train w for LIF and both w and
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Figure 1: A single DLIF model can effectively solve the XOR problem.
(A): A neuron receives inputs from two distinct pathways (represented in blue and red), each
containing five synaptic inputs.
(B): The XOR operation schematic: the neuron remains inactive when both pathways are on or off,
but it fires when only one pathway is on, thereby implementing the XOR operation. It is trivial that
the neuron is inactive when both pathways are off. Therefore, we only consider the other three input
patterns, which are labeled as 1⃝, 2⃝, and 3⃝, respectively.
(C): Expectation of the normalized difference in correlation matrices between two classes C1−C2

∥C1−C2∥F
.

(D): Expectation of the bilinear coefficient K for the DLIF neuron.
(E): Three different patterns in the XOR problem. Pathway 1 includes synapse indices 1-5, while
pathway 2 includes synapse indices 6-10. The DLIF model keeps silent when both pathways are
activated (labeled as 1⃝) and fires when receiving input patterns with only one pathway is activated
(labeled as 2⃝ and 3⃝), thus achieving the XOR operation (orange). In contrast, the LIF model still
fires when both pathways are active (labeled as 1⃝), thus it is unable to perform the XOR operation.

K for DLIF to minimize the mean squared error between actual and target firing rates. As shown
in Fig. 1E, the DLIF model successfully performs XOR while the LIF model fails, and the learned
bilinear matrices K closely match C1−C2

∥C1−C2∥F
(Fig. 1C, D), consistent with theoretical predictions.

Verification of Theorem 2 To validate Theorem 2, we design controlled numerical experiments
at both low and moderate input dimensionalities. First, a two-dimensional case provides a simple
and interpretable setting, where two Poisson input spike trains are received by two hidden neurons
which employs either LIF or DLIF neurons. The network is trained to maximize output correlation
(details in the Appendix), and we compute the normalized correlation between output spike trains.
As shown in Fig. 2A, DLIF neurons preserve input correlations substantially more effectively than
LIF neurons. To further examine whether this advantage persists in more complex scenarios, we
consider a ten-dimensional case where two distinct input classes with distributions D1 and D2 as in
Eq. (5). These inputs are fed into a ten-dimensional hidden layer, and the training procedure is similar
to the 2D case. As illustrated in Fig. 2B, DLIF neurons again yield significantly larger separation
between the output correlation matrices of the two classes compared to LIF neurons. Together, these
results confirm the theoretical prediction in Theorem 2 that DLIF neurons more effectively amplify
and propagate correlation differences across layers.

4 PERFORMANCE OF DLIF MODELS IN SNNS

We further investigate whether the advantage of DLIF models can be scaled to large-scale SNN
architectures. The detailed SNN architectures and experimental setup used in this work are presented
in the Appendix.
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A B

Figure 2: DLIF neurons can preserve and propagate input correlations.
(A): For the two-dimensional case, we compare the input-output correlation across 1000 simulation
trials for both LIF and DLIF neurons. Each dot represents an individual trial. The regression slopes
indicate that DLIF neurons preserve input correlations more effectively (slope = 0.292, R= 0.494)
than LIF neurons (slope = 0.038, R=0.261).
(B): For the ten-dimensional case, we compare the Frobenius norm of the difference between the
output correlation matrices of two input classes across 1,000 simulation trials for both LIF and DLIF
neurons. Each dot corresponds to an individual trial. The scatter plot, together with the marginal
distributions, demonstrates that DLIF neurons consistently produce a larger separation between input
classes than LIF neurons.

As shown in Eq. (3), the DLIF model introduces additional bilinear parameters K. Through both
biological recordings and computational modeling, Li et al. (2019) reported that dendritic bilinear
interactions are inherently sparse (≈ 90%). Motivated by this, we adopt a sparsification scheme in
which only a small fraction of coefficients are trainable. Specifically, we set sparsity level to 90%, a
choice that is both biologically inspired and empirically validated by an ablation study as shown in
Section 4.4. In the following experiments, we compare not only model accuracy but also parameter
count, FLOPs, and energy consumption (detailed calculation methods are provided in the Appendix).

4.1 EXPERIMENTS IN LARGE-SCALE SNNS FOR STATIC DATASETS

We first evaluate the performance of the DLIF models in the SNNs on static image classification
benchmarks, including CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009) and
ImageNet (Deng et al., 2009) datasets. Additionally, we test the DLIF models’ applicability across
diverse network architectures and training methods. Specifically, we explore the integration of DLIF
models in large-scale SNNs, including VGG (Simonyan & Zisserman, 2014), ResNet (He et al.,
2016) and Transformer (Ashish et al., 2017). We also experiment using different learning paradigms
including SLTT (Meng et al., 2023), ESG (Guo et al., 2022a), OTTT (Xiao et al., 2022), STBP-tdBN
(Zheng et al., 2021), TET (Deng et al., 2022), ESL (Liu et al., 2025a), TSER (Yu et al., 2025a), FSTA
(Yu et al., 2025b), SSSA (Wang et al., 2025b), Spike-driven Transformer (Yao et al., 2023a) and
Meta-SpikeFormer (Yao et al., 2024), as proposed in previous works.

As summarized in Table 1, our results reveal consistent and substantial accuracy improvements
attributable to DLIF models across all configurations. Specifically, DLIF-based SNNs achieve
absolute accuracy gains of 0.33%–1.19% on CIFAR-10, with even more pronounced improvements
of 0.48%–3.66% on CIFAR-100 and 0.52%–3.07% on ImageNet. Notably, these performance
enhancements come with only minimal energy overhead, quantified as just 0.23 mJ average increase
(2.61% relative to LIF implementations).
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Table 1: Results on Static Datasets

Dataset Method Network Neuron Params
(M)

FLOPs
(G)

Energy Cost
(mJ)

Mean± Std
(%)

CIFAR10

SLTT ResNet-18 LIF 12.08 1.82 1.77 94.44±0.21
DLIF 12.20 1.83 1.78 95.51±0.47

STBP-tdBN ResNet-19 LIF 12.61 1.94 1.88 93.16
DLIF 12.78 1.95 1.89 94.35±0.27

ESL ResNet-18 LIF 12.08 1.83 1.77 96.39
DLIF 12.20 1.83 1.78 96.72±0.11

TSER VGG-16 LIF 138.08 15.48 15.05 95.01±0.10
DLIF 136.02 15.94 15.57 95.97±0.12

FSTA ResNet-19 LIF 12.61 1.94 1.88 96.52±0.09
DLIF 12.78 1.95 1.89 96.91±0.08

SSSA Transformer LIF 5.57 1.21 1.04 96.10
DLIF 5.68 1.28 1.10 96.81±0.17

Spike-driven
Transformer Transformer LIF 9.32 1.08 1.05 95.60

DLIF 10.05 1.10 1.07 96.22±0.17

CIFAR100

SLTT ResNet-18 LIF 12.17 1.82 1.77 74.38±0.30
DLIF 13.21 1.83 1.78 76.89±0.29

ESG VGG-16 LIF 138.44 15.50 15.07 70.18±0.09
DLIF 146.86 16.04 15.60 73.52±0.16

OTTT VGG-11 LIF 123.60 7.63 7.42 71.05±0.04
DLIF 136.71 8.13 7.91 74.71±0.19

TSER VGG-16 LIF 138.44 15.50 15.07 77.06±0.04
DLIF 146.86 16.04 15.60 78.37±0.14

FSTA ResNet-19 LIF 12.74 1.94 1.88 80.42±0.09
DLIF 12.91 1.95 1.89 80.97±0.12

SSSA Transformer LIF 5.57 1.21 1.04 80.10
DLIF 5.63 1.30 1.12 80.58±0.09

Spike-driven
Transformer Transformer LIF 9.35 1.08 1.05 78.40

DLIF 10.12 1.10 1.07 79.46±0.32

ImageNet

TET ResNet-34 LIF 21.80 3.66 3.56 64.79
DLIF 23.42 3.85 3.74 67.32±0.39

STBP-tdBN ResNet-34 LIF 21.80 3.66 3.56 63.72
DLIF 23.42 3.85 3.74 66.79±0.53

ESL VGG-16 LIF 138.44 15.50 15.00 74.32
DLIF 146.86 16.04 15.60 75.11±0.28

TSER ResNet-34 LIF 21.80 3.66 3.56 73.16±0.15
DLIF 23.42 3.85 3.74 73.82±0.29

FSTA ResNet-34 LIF 21.80 3.66 3.56 70.23±0.12
DLIF 23.42 3.85 3.74 71.06±0.15

SSSA Transformer LIF 53.7 36.75 35.75 80.23
DLIF 57.37 37.04 36.11 80.75±0.24

Meta-SpikeFormer Transformer LIF 55.40 53.92 52.40 80.00
DLIF 58.73 54.35 53.68 80.57±0.28

Bold values represent the best results for each method

4.2 EXPERIMENTS IN LARGE-SCALE SNNS FOR NEUROMORPHIC DATASETS

In contrast to static image datasets, neuromorphic datasets like DVS-Gesture (Amir et al., 2017)
and DVS-CIFAR10 (Li et al., 2017) naturally encode temporal information, thereby better show-
casing SNNs’ inherent advantages in processing spatiotemporal patterns. We further evaluate the
performance of SNNs using DLIF models versus LIF models across different network architectures
including including VGG , ResNet and Transformer, and different learning paradigms such as SLTT,
OTTT, STBP-tdBN, SSNN, Spike-driven Transformer and FSTA.
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Table 2: Results on Neuromorphic Datasets

Dataset Method Network Neuron Params
(M)

FLOPs
(G)

Energy Cost
(mJ)

Mean± Std
(%)

DVS-Gesture

SLTT VGG-11 LIF 123.24 7.61 7.40 98.50±0.21
DLIF 125.96 7.85 7.63 98.92±0.24

OTTT VGG-11 LIF 123.24 7.61 7.40 96.88
DLIF 125.96 7.85 7.63 97.43±0.46

STBP-tdBN ResNet-17 LIF 11.74 1.71 1.67 96.87
DLIF 11.87 1.72 1.68 98.05±0.41

SSNN VGG-9 LIF 27.48 2.13 2.08 94.91
DLIF 28.55 2.23 2.18 96.27±0.32

Spike-driven
Transformer Transformer LIF 2.59 0.36 0.35 99.30

DLIF 3.02 0.37 0.36 99.43±0.27

DVS-CIFAR10

SLTT VGG-11 LIF 123.24 7.61 7.40 82.20±0.95
DLIF 125.96 7.85 7.63 83.74±0.62

STBP-tdBN ResNet-19 LIF 12.61 1.94 1.88 67.8
DLIF 12.78 1.95 1.89 70.88±0.45

SSNN VGG-9 LIF 27.48 2.13 2.08 78.57
DLIF 28.55 2.23 2.18 80.85±0.42

FSTA ResNet-20 LIF 13.57 2.21 2.17 82.70±0.10
DLIF 13.85 2.38 2.31 82.98±0.13

SSSA Transformer LIF 1.52 0.54 0.52 82.30
DLIF 1.84 0.56 0.53 82.91±0.15

Spike-driven
Transformer Transformer LIF 2.59 0.36 0.35 80.00

DLIF 3.02 0.37 0.36 81.76±0.27
Bold values represent the best results for each method

Table 3: Comparisons with Other Point Spiking Neuron Models.

Neuron Model Accuracy
CIFAR-10(%)

Accuracy
CIFAR-100(%)

Accuracy
ImageNet(%)

Accuracy
DVS-CIFAR10(%)

Accuracy
DVS-Gesture(%)

PLIF 93.50 - 69.26 74.80 97.92
GLIF 95.03±0.08 77.35±0.07 69.09 78.10 -
QIF 92.98±0.14 75.91±0.08 67.49±0.25 73.27±0.19 96.18±0.11
EIF 93.08±0.17 76.18±0.15 67.14±0.30 76.27±0.39 97.01±0.18

DLIF 95.78±0.21 78.27±0.39 71.27±0.24 80.46±0.17 98.61±0.31
Bold values represent the best results for each dataset;− indicates result is not reported

The experimental results in Table 2 demonstrate consistent performance gains when using DLIF
models. Specifically, on DVS-Gesture, DLIF-based SNNs achieve 0.13%-1.36% higher accuracy,
while on the more complex DVS-CIFAR10, the improvements reach 0.28%-3.08%. Importantly,
these significant accuracy gains come with only 0.10 mJ average energy increase (3.24% relative to
LIF models), further validating DLIF’s practical utility in neuromorphic computing applications.

In addition, we further compare the training time and memory cost of DLIF and LIF models in
Section A.3. The results show that DLIF increases per-epoch training time and GPU memory usage
by roughly 10%, but this overhead remains acceptable for large-scale SNN training.

Beyond static and neuromorphic benchmarks, we further evaluate DLIF models in reinforcement
learning (RL) by integrating them into a deep spiking Q-network (DSQN) (Chen et al., 2024). On
Atari games, the DLIF-based DSQN outperforms its LIF counterpart, demonstrating the flexibility of
DLIF models to adapt effectively across diverse task paradigms (see Section A.4 for details).
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Table 4: Comparisons with DH-LIF.

Neuron Model Accuracy on SHD(%) Accuracy on SSC(%)

DH-LIF 92.10 82.46
DLIF 92.71 83.13
Bold values represent the best results for each dataset

4.3 COMPARISONS WITH OTHER SPIKING NEURON MODELS

Several studies have proposed modifications to the existing LIF models in SNNs. For instance,
Fang et al. (2021) introduced the Parametric Leaky Integrate-and-Fire (PLIF) model, which included
learnable time constants to enhance heterogeneity. Yao et al. (2022) proposed the Gated Leaky
Integrate-and-Fire (GLIF) model, incorporating gating units into LIF models to improve their rep-
resentation capacity. In addition to the PLIF and GLIF models, other variants introduce nonlinear
operations to the LIF model, such as the Quadratic Integrate-and-Fire (QIF) model and the Exponen-
tial Integrate-and-Fire (EIF) model (Gerstner et al., 2014). The detailed of the dynamics of the QIF
and EILF model are shown in the Appendix. To ensure fair comparison, we adopt the same network
architectures and hyperparameter configurations as in prior works. Across CIFAR-10, CIFAR-100,
ImageNet, DVS-CIFAR10, and DVS-Gesture, our results (Table 3) show that DLIF consistently
outperforms these advanced point-neuron models.

In addition to point-neuron models, we also compare DLIF with a multi-compartment spiking
neuron model––the DH-LIF proposed by (Zheng et al., 2024), which incorporates temporal dendritic
heterogeneity. We follow the experimental setup in (Zheng et al., 2024) and conduct comparisons
on two spiking speech recognition datasets SHD and SSC (Cramer et al., 2020). Under comparable
parameter settings, DLIF consistently surpasses DH-LIF on both tasks, demonstrating its effectiveness
relative to dendritic neuron models as well (Table 4).

4.4 ABLATION STUDY

Sparsity Level We conducted a systematic ablation study by varying sparsity levels from 0% to
100% on the CIFAR-100 dataset with the ResNet-18 architecture trained using SLTT. As summarized
in Table 5, the ACC/FLOPs ratio consistently reaches its maximum at 90%. This indicates that
90% sparsity provides the most favorable trade-off between computational efficiency and predictive
performance. Combined with biological evidence that dendritic bilinear interactions are naturally
sparse at about 90% (Li et al., 2019), these results justify our adoption of 90% sparsity.

Table 5: Ablation Study of Sparsity Level
Sparsity level(%) 0 15 30 45 60

FLOPs(G) 1.92 1.905 1.89 1.875 1.86
ACC(%) 78.67 78.45 78.14 77.42 77.26

ACC/FLOPs((%/G) 40.97 41.18 41.34 41.29 41.54

Sparsity level(%) 75 85 90 95 100
FLOPs(G) 1.845 1.835 1.83 1.825 1.82
ACC(%) 76.33 76.38 76.89 74.61 74.38

ACC/FLOPs((%/G) 41.67 41.62 42.02 40.88 40.87
Bold values represent the best results

Bilinear Coefficients To further illustrate the role of the bilinear coefficients K in the DLIF model,
we conduct ablation studies to assess their impact. As shown in Section A.5, removing the bilinear
coefficients—either before or after training—consistently reduces test accuracy, confirming their
critical importance in the DLIF model. In addition, our structured- and low-rank-parameterization
experiments show that low-rank formulations, while offering stronger compression, lead to clearly
weaker performance, whereas the diagonal-block and random sparse formulations perform compara-
bly under matched sparsity levels. Together with sparsity-level ablations showing that performance
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peaks around 90% sparsity, these findings reinforce the central role of the bilinear coefficients K
in the DLIF model and highlight that a 90% random sparse matrix provides a simple yet effective
parameterization.

5 DISCUSSION AND CONCLUSION

This paper proposed the DLIF model, which incorporates a biologically inspired dendritic bilinear
integration rule into spiking neurons. While (Li et al., 2019) investigated bilinear dendritic integration
using a conductance-based model with voltage-dependent synaptic dynamics, this formulation is
difficult to scale to large SNNs. In contrast, our DLIF model adopts a current-based abstraction
that removes these biophysical dependencies and enables efficient, scalable implementation while
preserving the bilinear rule. We further provided theoretical guarantees and numerical verification
that DLIF neurons can exploit input correlations for nonlinear computation and preserve correlation
structures across layers. Experiments on static, neuromorphic and RL benchmarks consistently
showed that DLIF can achieve superior performance over LIF and other advanced spiking models,
with minimal additional energy cost.

There remain some important avenues for further research. One direction is to extend DLIF beyond
vision and RL tasks to natural language processing, especially in light of the rapid progress of large
language models. Another direction concerns hardware adaptation. While DLIF models demonstrate
strong algorithmic efficiency, adopting them onto neuromorphic hardware will be crucial to fully
exploit the low-power and low-latency advantages of SNNs. Addressing these open challenges would
further enhance the applicability and impact of DLIF models.

In summary, we propose a novel spiking neuron model for SNNs that enhances computational
capabilities at both the single-neuron and network levels. We believe this work provides a solid
foundation for the design and application of future brain-inspired computing.

6 REPRODUCIBILITY STATEMENT

We ensure reproducibility at several levels. First, the DLIF model is clearly described in the main
text, including its mathematical formulation and theoretical analysis. Second, the assumptions and
complete proofs of all theorems are provided in Appendix. Third, experimental settings—including
datasets, architectures, hyperparameters, and training paradigms—are specified in Appendix. Finally,
we are committed to releasing the source code publicly upon publication of this work.

7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to polish the manuscript, for example by improving phrasing and checking spelling and
grammar. LLMs were also employed to assist in literature search and discovery, such as by providing
keywords to retrieve related works. However, the core ideas, methodology, and contributions of this
paper were conceived independently and did not rely on LLMs.
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A APPENDIX

A.1 PROOFS OF THEOREMS

We consider a binary classification problem where each input sample is a binary matrix: S =
[s(1), s(2), · · · , s(τ)] ∈ {0, 1}N×τ , where N ∈ N and N ≥ 2, and τ is the total number of discrete
time steps. Two input classes with distributions D1 and D2 have identical mean firing rates but
distinct pairwise correlations:

1

τ
ES∼D1 [S1τ ] =

1

τ
ES∼D2 [S1τ ] = c

1

τ
ES∼D1 [SS

T ] = C1 ̸= 1

τ
ES∼D2 [SS

T ] = C2

(A1)

where 1τ is the all-ones column vector with length τ . (Gerstner & Kistler, 2002) have demonstrated
that for spiking neuron models with dynamics of the form given in τ dV (t)

dt = −(V (t)−Vrest)+RI(t),
in the input regime where the current is sufficient to elicit spiking, the firing rate is proportional to the
average input current. Assuming that the average firing rate is sufficiently high to induce spiking, we
obtain the following theorem
Theorem A1. Let two input spike train distributions D1 and D2 be defined as in Eq. (5). Then there
always exists a bilinear coefficient matrix K which can distinguish two corresponding input currents
to the DLIF neuron, i.e.,

δI = |E[I|D1]− E[I|D2]| > 0.

Moreover, under the constraint ∥K∥F ≤ 1, the optimal choice of K that maximizes δI is given by

K∗ = ± C1 −C2

∥C1 −C2∥F
.

Proof. Let w and K denote the weight vector and the bilinear coefficient matrix of a DLIF neuron,
respectively. With a certain input S, the total integrated input current is defined as in Eq. (3). Then
the average input current is:

I =
1

τ

τ∑
t=1

I(t) =
1

τ
(wTS1τ + tr(STKS)) (A2)

Then the difference of the input current between the two input classes is:

δI =
∣∣E[I|D1]− E[I|D2]

∣∣ = ∣∣tr(K(C1 −C2))
∣∣ (A3)

Since C1 ̸= C2, there exists at two entries k = (C1 − C2)ij = (C1 − C2)ji ̸= 0 (C1 − C2 is
symmetric). Consider a bilinear coefficient matrix K that places nonzero values only on these two
entry (e.g., Kij = Kji = 1 and all other entries zero). Then δI = 2k > 0, which establishes the
existence of K such that δI > 0.

Furthermore, under the normalization constraint ∥K∥F = 1, we have∣∣tr(K(C1 −C2))
∣∣ ≤ ∥K∥F ∥C1 −C2∥F = ∥C1 −C2∥F . (A4)

Equality holds if and only if

K = ± C1 −C2

∥C1 −C2∥F
,

in which case δI attains its maximal value ∥C1−C2∥F . Therefore, not only is separation guaranteed,
but there also exists an optimal K that maximizes the expected difference in input current, ensuring
the clearest distinction between the two classes.

At the network level, suppose the two input classes are still characterized by Eq. (A1). These
inputs are encoded by M hidden neurons, and we denote the input current to the hidden neurons
as I = [i(1), i(2), · · · , i(τ)] ∈ RM×τ . Assume that the two classes exhibit significantly different
correlation structures; without loss of generality, we let ∥C1 − C2∥F = 1. For each class, we
define the correlation matrix of Qc of I as Qc = 1

τ ES∼Dc [II
T ] for c ∈ {1, 2}, and denote the
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resulting matrices for LIF and DLIF neurons by QLIF
1 ,QLIF

2 ,QDLIF
1 ,QDLIF

2 , respectively. Let
W = [w1, . . . ,wM ] ∈ RM×N be the weight matrix and K = [K1, . . . ,KM ] with Km ∈ RN×N

be the bilinear coefficient matrices. Without loss of generality, assume that the LIF and DLIF neurons
share the same synaptic weight matrix W = [w1, . . . ,wM ] ∈ RM×N . Suppose further that the
weight vectors and bilinear coefficient matrices are normalized such that ∥wi∥F ≤ 1 and ∥Ki∥F ≤ 1
for all i = 1, . . . ,M .Then we obtain the following lemma:

Lemma A1. Let the input spike trains be drawn from distributions D1 and D2 defined in Eq. (5).
Then for any choice of synaptic weight matrices W , there exists bilinear coefficient matrices K for
the DLIF neurons such that

∥QDLIF
1 −QDLIF

2 ∥F ≥ C > 0.

and
∥QDLIF

1 −QDLIF
2 ∥F > ∥QLIF

1 −QLIF
2 ∥F .

Proof. The input current to ith hidden neurons are defined as

ILIF
i,: = wT

i S, IDLIF
i,: = wT

i S +Φi(S), (A5)

where Φi(S) = [s(1)⊤Kis(1), . . . , s(τ)
⊤Kis(τ)]. For class c ∈ {1, 2}, define the correlation

matrix as
(Q∗

c)ij = ES∼Dc [I
∗
i,: (I

∗
j,:)

T ], (A6)

where ∗ ∈ {LIF,DLIF}.

Step 1 (LIF case)

For LIF neurons we have

(QLIF
c )ij = ES∼Dc

[ILIF
i,: (ILIF

j,: )T ] = ES∼Dc
[wT

i SS
Twj ] = wT

i Ccwj (A7)

where Cc = ES∼Dc
[SST ] is the input correlation matrix of class c. Hence

∆LIF
ij = (QLIF

1 −QLIF
2 )ij = w⊤

i (C1 −C2)wj . (A8)

Step 2 (DLIF case)

For DLIF neurons, we have

(QDLIF
c )ij =ES∼Dc

[IDLIF
i,: (IDLIF

j,: )T ]

=ES∼Dc
[(wT

i SS
Twj +Φi(S)S

Twj +wT
i SΦ

T
j (S) + Φi(S)Φ

T
j (S))]

(A9)

We abbreviate
Gij(c) := ES∼Dc

[
Φi(S)S

Twj +wT
i S Φj(S)

T
]
,

Hij(c) := ES∼Dc

[
Φi(S)Φj(S)

T
]
.

Then

∆DLIF
ij = (QDLIF

1 −QDLIF
2 )ij =ES∼D1 [w

T
i SS

Twj ]− ES∼D2 [w
T
i SS

Twj ]︸ ︷︷ ︸
∆LIF

ij

+Gij(1)−Gij(2)︸ ︷︷ ︸
linear-bilinear term

+Hij(1)−Hij(2)︸ ︷︷ ︸
biliear-bilinear term

.
(A10)

Since si(t) ∈ {0, 1}, we have si(t)
r = si(t) for any r ∈ N∗. We can define si(t)sj(t) as the

second-order moments for i ̸= j, si(t)sj(t)sk(t) as the third-order moments for i ̸= j ̸= k and so
on.

For the linear-bilinear term, we have

Gij(c) =

τ∑
t=1

∑
p̸=q

∑
u

(Ki)pqsp(t)sq(t)wjusu(t) +

τ∑
t=1

∑
p̸=q

∑
u

(Kj)pqsp(t)sq(t)wiusu(t) (A11)
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Since the higher-order moments are negligible compared to second-order moments, then we have

Gij(c) =
∑
p̸=q

[((Ki)pqwjp + (Ki)pqwjq + (Kj)pqwip + (Kj)pqwiq)(

τ∑
t=1

sp(t)sq(t))]

= 1T {[(wi1
T + 1wT

i )⊙Kj + (wj1
T + 1wT

j )⊙Ki]⊙Cc}1

(A12)

where ⊙ is the Hadamard product. And we have

∆G
ij = Gij(1)−Gij(2) = 1T {[(wi1

T+1wT
i )⊙Kj+(wj1

T+1wT
j )⊙Ki]⊙(C1−C2)}1 (A13)

Similarly, for the biliear-bilinear term, we have

Hij(c) =

τ∑
t=1

∑
p̸=q

∑
u̸=v

(Ki)pqsp(t)sq(t)(Kj)uvsu(t)sv(t) (A14)

Since the higher-order moments are negligible compared to second-order moments, then we have

Hij(c) =
∑
p̸=q

[(Ki)pq(Kj)pq

τ∑
t=1

sp(t)sq(t)]

= 1T (Ki ⊙Kj ⊙Cc)1

(A15)

∆H
ij = Hij(1)−Hij(2) = 1T [Ki ⊙Kj ⊙ (C1 −C2)]1 (A16)

Step 3 (Norm comparison)

Since
∆DLIF

ij = ∆LIF
ij +∆G

ij +∆H
ij (A17)

WLOG, we suppose that ∆LIF
ij ≥ 0. Since ∥C1 − C2∥ = 1, there exists p ̸= q such that k =

(C1 −C2)pq ̸= 0. We can select Ki = Kj = α(epe
T
q + eqe

T
p ) , then

∆H
ij = 2α2k

∆G
ij = (wip +wiq +wjp +wiq)αk

(A18)

Since α = 0 is one of the zeros of ∆H
ij +∆G

ij , there exists a small ϵ such that ∆H
ij +∆G

ij > 0 when
α = ϵ and satisfying ∥Ki∥F = ∥Kj∥F < 1. Therefore, we have

|∆DLIF
ij | = |∆LIF

ij +∆G
ij +∆H

ij | ≥ C > 0 (A19)

and
|∆DLIF

ij | > |∆LIF
ij | (A20)

|∆DLIF
ij | = |∆LIF

ij +∆G
ij +∆H

ij | > 0 (A21)

When ∆LIF
ij < 0, we can select Ki = α(epe

T
q + eqe

T
p ) and Kj = −α(epe

T
q + eqe

T
p ), then

∆H
ij = −2α2k

∆G
ij = (−wip −wiq +wjp +wiq)αk

(A22)

Similarly, since α = 0 is still one of the zeros of ∆H
ij + ∆G

ij , there exists a small ϵ such that
∆H

ij +∆G
ij < 0 when α = ϵ and satisfying ∥Ki∥F = ∥Kj∥F < 1. Therefore, we have

|∆DLIF
ij | = |∆LIF

ij +∆G
ij +∆H

ij | ≥ C > 0 (A23)

and
|∆DLIF

ij | > |∆LIF
ij | (A24)

|∆DLIF
ij | = |∆LIF

ij +∆G
ij +∆H

ij | > 0 (A25)
In general, we have

∥∆DLIF∥F ≥ C > 0. (A26)
and

∥∆DLIF∥F > ∥∆LIF∥F . (A27)
This completes the proof.
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The above lemma demonstrates that, compared to LIF neurons, DLIF neurons can better preserve
the correlation of the original input spike trains at the current-input level. (De La Rocha et al., 2007)
further proved that, for spiking neurons of the form given in Eq. (1), the correlation of the output
spike train is positively correlated with that of the input current, leading to the following lemma.
Lemma A2. Consider two spiking neurons defined by Eq. (1). Let the correlation of their input
currents be a in the expectation sense. Then, there exists a constant k > 0 such that the correlation
of their output spike trains, also measured in expectation, satisfies b = ka.

The proof of Lemma A2 can refer to (De La Rocha et al., 2007).

Then we denote the output spike trains of the hidden neurons as Y = [y(1),y(2), · · · ,y(τ)] ∈
{0, 1}M×τ . For each class, we define the correlation matrix Pc of Y as Pc =
1
τ ES∼Dc

[Y Y T ] for c ∈ {1, 2}, and denote the resulting matrices for LIF and DLIF neurons by
PLIF

1 ,PLIF
2 ,PDLIF

1 ,PDLIF
2 , respectively. Let W = [w1, . . . ,wM ] ∈ RM×N be the weight

matrix and K = [K1, . . . ,KM ] with Km ∈ RN×N be the bilinear coefficient matrices. We suppose
that ∥wi∥F ≤ 1 and ∥Ki∥F ≤ 1 for i = 1, · · · ,M . Then we obtain the following theorem
Theorem A2. Let the input spike trains be drawn from distributions D1 and D2 defined in Eq. (A1).
Then, for any choice of synaptic weight matrices W LIF and WDLIF, there exists bilinear coefficient
matrices K for the DLIF neurons such that

∥PDLIF
1 − PDLIF

2 ∥F ≥ C > 0.

and
∥PDLIF

1 − PDLIF
2 ∥F > ∥PLIF

1 − PLIF
2 ∥F .

Proof. According to Lemma A1 and Lemma A2, we have

∥PDLIF
1 − PDLIF

2 ∥F = k∥QDLIF
1 −QDLIF

2 ∥F ≥ C > 0. (A28)

∥PDLIF
1 − PDLIF

2 ∥F = k∥QDLIF
1 −QDLIF

2 ∥F
> k∥QDIF

1 −QLIF
2 ∥F = ∥PLIF

1 − PLIF
2 ∥F

(A29)

A.2 DETAILS ABOUT SPIKING NEURON MODELS AND NETWORKS

A.2.1 DYNAMICS

The sub-threshold somatic membrane potential V (t) is governed by:

τ
dV (t)

dt
= −(V (t)− Vrest) +RI(t), (A30)

For computational implementation, we set R and the time interval to 1, yielding the discrete dynamics
equations:


U [t] = (1− 1

τ )V [t− 1] + 1
τ I[t],

S[t] = H(U [t]− Vth),

V [t] = (1− S[t])U [t] + S[t]Vrest.

(A31)

where U [t] and V [t] represents the membrane potential before and after reset operations, respectively.
t = 1, 2, 3, · · · , τ denotes the time step, and τ is the time duration. H(x) is the Heaviside step
function. In our experiments, Vth and Vrest are set to be 1 and 0, respectively. The choice of τ is
specified in the supplementary.

Eq. (A31) defines the update rule for neuronal dynamics in SNNs. Notably, SNN architectures
maintain structural parallels with conventional ANNs, permitting direct adaptation of established
frameworks such as VGG , ResNet and Transformer through substitution of activation functions
with spiking neuron models. Standard operations including convolution and pooling remain fully
compatible.
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Table 6: Comparison of Training Time and Memory Cost

Neuron Model Network Architecture Training Time Memory Cost Accuracy

LIF ResNet-34 1.54h 20.17G 70.23%
LIF ResNet-50 1.81h 23.54G 70.79%

DLIF ResNet-34 1.66h 22.39G 71.06%

SNNs support both neuromorphic and static image data processing. While neuromorphic data
naturally contains temporal information, static images require conversion to temporal inputs via
pixel value encoding (Rueckauer et al., 2017; Diehl & Cook, 2015; Shrestha & Orchard, 2018). The
network output is determined by the highest average firing rate among output layer neurons, which
corresponds to the predicted class label.

A.2.2 TRAINING ALGORITHM

Training spiking neural networks faces a fundamental challenge: the non-differentiability of spike
sequences, which prevents direct gradient-based optimization. This limitation is overcome by com-
bining Backpropagation Through Time (BPTT) with surrogate gradient methods (Huh & Sejnowski,
2018; Shrestha & Orchard, 2018; Wu et al., 2018; 2019). The non-differentiable term ∂S

∂V can be
approximated by the surrogate functions such as rectangle or triangle functions (Wu et al., 2018):
∂S
∂V = 1

a sgn(|V − Vth| < a
2 ) or ∂S

∂V = 1
a2 max(0, a− |V − Vth|), where a is a hyperparameter and

sgn is the sign function. With the surrogate gradient, the gradient-based algorithm can be applied to
train SNNs.

A.3 EXPERIMENTS OF COMPARING TRAINING TIME AND MEMORY COST

We conducted additional measurements comparing the training time and memory overhead of DLIF
with the standard LIF-based SNN. To ensure a fair evaluation, we performed experiments on ImageNet
using the ResNet-34 architecture trained with the standard BPTT algorithm, with a batch size of 256,
running on a single NVIDIA A100 GPU. The reported training time corresponds to the wall-clock
time per epoch. The wall-clock training time and memory cost are computed based on the first three
epochs of training.

The results in Table 6 show that DLIF increases per-epoch training time by 8% and GPU memory
consumption by 11%. However, this overhead remains acceptable for large-scale SNN training. To
further demonstrate that the performance improvement of DLIF is not merely due to an increase in
parameter count, we also conducted experiments using the LIF model with ResNet-50. In this setting,
the training time and memory consumption are both higher than those of the DLIF-based ResNet-34,
yet the accuracy remains lower than that achieved by DLIF-ResNet-34.

A.4 EXPERIMENTS IN LARGE-SCALE SNNS FOR REINFORCEMENT LEARNING TASKS

Reinforcement learning represents a fundamental machine learning paradigm where agents learn
optimal decision-making policies through environmental interactions, guided by reward signals
(Kaelbling et al., 1996; Wiering & Van Otterlo, 2012). The Atari game has emerged as a standard
benchmark for evaluating RL algorithms, challenging agents to maximize game scores through pixel-
level inputs (Mnih et al., 2015). While Q-learning (Watkins & Dayan, 1992) and its deep learning
variants have demonstrated strong performance, recent work has successfully adapted spiking neural
networks for Q-value approximation, enabling efficient processing of high-dimensional state spaces
(Patel et al., 2019; Tan et al., 2021; Chen et al., 2024).

In our experiments, we implement DLIF models within a deep spiking Q-network (DSQN) architec-
ture and evaluate the performance across 16 Atari games (Chen et al., 2024). A comparative analysis
with the LIF-based DSQN reveals that DLIF models achieve an average performance improvement
of 20.62% in final game scores across all tested environments as shown in Table 7. Due to slight
variations in input and output dimensions across different games, the computational cost exhibits
minor fluctuations. On average, the DSQN model based on the LIF neuron has 0.21M parameters,
0.83M FLOPs, and an energy cost of 0.81µJ . In comparison, the DLIF-based DSQN incurs 0.23M
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Table 7: Results on Atari Games
Game DSQN with LIF (Mean± Std) DSQN with DLIF (Mean± Std)

Atlantis 2515926.7± 73782.9 2942971.5±73462.3
Beam Rider 5327.6± 178.0 7306.9±544.6

Boxing 82.7± 8.7 97.0±10.5
Breakout 368.1± 9.8 472.1±8.7

Crazy Climber 95164.4± 1232.9 100673.6±1519.2
Gopher 4233.1± 176.5 6151.4±219.4

Jamesbond 469.4± 82.7 587.2±84.7
Kangaroo 5824.4± 540.8 7374.2±702.9

Krull 6991.1± 107.0 7883.5±262.1
Name this game 6981.0± 192.8 8041.2±208.4

Pong 19.5± 0.4 20.3±0.6
Road Runner 27725.6± 3954.0 29401.1±4507.1

Space Invaders 1209.9± 61.2 2769.6±105.3
Star Gunner 1657.8± 102.0 1984.4±136.1
Tutankham 266.5± 12.2 294.2±11.5

Video Pinball 408032.6± 41687.8 436980.0±41047.2
Bold values represent the best results for each Atari game

Table 8: Ablation Study of Bilinear Coefficients
Dataset Method Network Neuron Mean± Std(%)

ImageNet

TET ResNet-34
LIF 64.79

DLIF 67.32±0.39
DLIF* 25.83±2.67

STBP-tdBN ResNet-34
LIF 63.72

DLIF 66.79±0.53
DLIF* 21.36±1.89

Meta-SpikeFormer Transformer
LIF 80.00

DLIF 80.57±0.28
DLIF* 17.12±5.81

Bold values represent the best results for each method;∗ means removing K after training

parameters (+0.02M,+9.52%), 0.9M FLOPs (+0.07M,+8.43%), and an energy cost of 0.86µJ
(+0.05µJ,+6.17%). These modest increases in computational and energy costs are justified by the
corresponding performance gains.

A.5 ABLATION STUDY

To highlight the contribution of the bilinear coefficients K in the DLIF model, we perform ablation
studies on the ImageNet dataset under three training paradigms: TET, STBP-tdBN, and Meta-
SpikeFormer. We consider two ways of removing the bilinear matrices: (i) removing K before
training, which reduces the DLIF model to a standard LIF model, and (ii) removing K after training
to assess their impact on the learned representations. As shown in Table 8, both settings consistently
lead to a drop in test accuracy across all paradigms, confirming the critical role of bilinear coefficients
in the DLIF model.

To further examine how different parameterizations of the bilinear matrix K influence DLIF per-
formance, we evaluated two structured variants—a diagonal-block sparse matrix and a low-rank
factorization, motivated by biological or computational considerations. In addition to the random
90% sparse matrix used in our main experiments, we constructed (i) a diagonal-block matrix with
bandwidth n = 8, matched to the same overall sparsity level ( 90%), and (ii) a low-rank factorization
K = UV T with ranks r = 1, 2, 3. We also include the zero-rank case (r = 0), which removes K
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Table 9: Comparison of different parameterizations of the bilinear matrix

Matrix Type ZR LR (r=1) LR (r=2) LR (r=3) DB RS

#Params (M) 12.17 12.30 12.43 12.56 13.21 13.21
ACC (%) 74.38 74.55 74.82 75.27 76.82 76.89
ZR=zero rank; LR=low rank; DB=diagonal block; RS=random sparse

entirely and reduces DLIF to a standard LIF model. All variants were evaluated on CIFAR-100 using
ResNet-18 trained with SLTT.

The results in Table 9 highlight two distinct conclusions. First, low-rank parameterization substantially
reduces the number of bilinear parameters but yields noticeably weaker performance, with accuracy
consistently below the sparse formulations. Second, the diagonal-block matrix performs comparably
to the random 90% sparse matrix, suggesting that incorporating locality structure neither improves
nor degrades performance under similar sparsity levels. These observations indicate that while our
current sparse formulation provides an effective balance between accuracy and parameter efficiency,
exploring richer biologically inspired structural priors for K remains an interesting direction for
future investigation.

A.6 IMPLEMENTATION DETAILS

A.6.1 PARAMETER COUNT, FLOPS, ENERGY COST

In addition to reporting accuracy, we also evaluate models using three standard metrics: parameter
count, FLOPs, and theoretical energy consumption. The parameter count is obtained by summing all
trainable weights in the network. When computing the parameter count, we explicitly account for
the sparsity of the bilinear matrix—only the non-zero entries after masking are included as trainable
parameters. To enforce this sparsity in practice, we generate a fixed binary mask M before training,
where 90% of the entries are set to zero and the remaining 10% to one. During training, the bilinear
matrix is parameterized as K̃ = K⊙M where ⊙ denotes the Hadamard product. This procedure
ensures that the effective bilinear parameters strictly follow the desired sparsity pattern, and only
the unmasked entries contribute to the parameter count and optimization. For the ResNet and VGG
architectures, we incorporate the bilinear operation into the convolutional layers of the first two
blocks. For the Transformer architecture, we apply the bilinear operation to the FFN layers in the
first two encoder blocks.

FLOPs are estimated by counting all multiplication and addition operations required in a single
forward pass across all layers. Theoretical energy consumption is then computed as the weighted
sum of these operations, where each multiplication incurs an energy cost of EMAC and each addition
incurs an energy cost of EAC. Following prior work(Kundu et al., 2021; Lemaire et al., 2022; Yao
et al., 2025; Zhou et al., 2023; Yao et al., 2023b; Hu et al., 2024), we adopt EMAC = 4.6 pJ and
EAC = 0.9 pJ under 45nm CMOS technology(Horowitz, 2014). Accordingly, the total theoretical
energy of an SNN is given by ESNN = τ · r ·

(
EMAC ·NMAC + EAC ·NAC

)
, where NMAC and NAC

denote the total number of multiplications and additions during one forward pass, τ is the number of
timesteps, and r is the average spiking firing rate.

A.6.2 OTHER SPIKING NEURON MODELS

The dynamics of the PLIF, GLIF and DH-LIF models can be found in (Fang et al., 2021), (Yao et al.,
2022) and citepzheng2024temporal, respectively. The dynamics of the QIF model are defined as:

τ
dv

dt
= a0(v − vrest)(v − vc) +RI (A32)

while the dynamics of the EIF model are given by:

τ
dv

dt
= −(v − vrest) + ∆T exp

(
v − vth
∆T

)
+RI (A33)

The QIF and EIF models are configured with the following hyperparameters: vrest = 0, vc = 0.8,
a0 = 1, and ∆T = 1. For a fair comparison, we evaluate the performance of QIF, EIF, and DLIF
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models across CIFAR-10, CIFAR-100, ImageNet, and DVS-CIFAR10 using the same network
architecture and hyperparameters as those adopted in (Yao et al., 2022), while for DVS-Gesture as
those adopted in (Fang et al., 2021). In addition, when comparing DLIF with the DH-LIF model,
we follow the feedforward network architecture with comparable parameters and hyperparameter
configurations provided in (Zheng et al., 2024).

A.6.3 DATASETS

We conduct experiments on a custom-designed XOR task and several visual classification datasets,
including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Deng
et al., 2009), DVS-Gesture (Amir et al., 2017), and DVS-CIFAR10 (Li et al., 2017). Additionally, we
evaluate performance on Atari games using the Gym (Brockman et al., 2016) and CleanRL (Huang
et al., 2022) libraries.

XOR Task In the XOR task, each neuron receives 10 Poisson-distributed synaptic inputs over a
duration of 200 time steps, with an Poisson rate of 0.5. For inputs where only half of the synapses are
activated, the target output spike count is 2. In contrast, for inputs where all synapses are activated,
the target output spike count is 0. A total of 1000 samples are generated for training and 200 for
testing.

2D Correlated Input We randomly sample two-dimensional Poisson inputs. In each trial, both
input dimensions share the same Poisson rate, which is a random number between 0 and 1. Each
sequence has a duration of 1000 time steps, and we collect a total of 1200 samples, with 1000 used
for training and 200 for testing.

10D Correlated Input We first fix two symmetric input second-order moment matrices, C1 and
C2, such that ∥C1 − C2∥F = 1. The average number of input spikes is set to 200, with a sequence
length of 1000. Based on the specified second-order moments and firing rate, we then generate two
distinct classes of inputs, with 500 samples per class for training and 100 samples per class for testing.

CIFAR-10 The CIFAR-10 dataset comprises 60,000 natural images distributed across 10 classes,
with 6,000 images per class. Of these, 50,000 images are designated for training and 10,000 for
testing. The dataset is normalized to scale pixel values to the range [0, 1]. Subsequently, each image
is replicated T times to generate temporal inputs, where T denotes the number of time steps in the
evolution of the SNN.

CIFAR-100 The CIFAR-100 dataset is similar to CIFAR-10 but contains 100 classes of objects. It
comprises 50,000 training samples and 10,000 test samples. The same preprocessing steps applied to
CIFAR-10 are utilized for this dataset.

ImageNet The ImageNet dataset contains over 14 million natural images across more than 20,000
classes, making it one of the largest and most diverse image classification datasets. In this work,
we utilize the ImageNet-1K subset, which includes approximately 1.2 million training images and
50,000 validation images across 1,000 classes. Our data pre-processing uses the usual practice, which
randomly crops and flips the 224×224 image with general normalization method. Each image is then
replicated T times to generate temporal inputs.

DVS-Gesture The DVS-Gesture dataset comprises 1,176 neuromorphic spiking gesture training
samples and 288 test samples, each represented as 128×128 pixel frames. The dataset includes 11
gesture types, such as waving, arm rotation, and forearm rolling. It is collected using a dynamic
vision sensor, capturing data from 29 subjects under three distinct lighting conditions: natural light,
fluorescent light, and LED.

DVS-CIFAR10 The DVS-CIFAR10 dataset is derived from the original CIFAR-10 dataset using a
neuromorphic vision sensor to generate temporal sequences. It includes 9,000 training sequences and
1,000 test sequences.
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SHD and SSC Spiking Heidelberg digits (SHD) and spiking speech command (SSC) datasets
convert the original audio data into the spike format through a bionic inner ear model. SHD contains
about 10,000 high-quality recordings of English and German speech for digits ranging from 0 to 9.
In particular, the SHD training and testing sets contain 8,156 and 2,264 pieces of data, respectively;
the SSC training, testing, and validation sets contain 75,466, 9,981, and 20,382 pieces of data.

Atari Games The Atari game dataset comprises data generated from playing various Atari 2600
games, often used for reinforcement learning research. For this study, we evaluate our model using
16 selected games: Atlantis, Beam Rider, Boxing, Breakout, Crazy Climber, Gopher, James Bond,
Kangaroo, Krull, Name This Game, Pong, Road Runner, Space Invaders, Star Gunner, Tutankham,
and Video Pinball.

A.6.4 TRAINING METHODS AND SNN ARCHITECTURES

XOR Task For the XOR task, we employ a single DLIF or LIF model. The time constant is set to
2, and the firing threshold is fixed at Vth = 1. We control the bilinear matrices to be symmetric with
zero diagonals and initialize both the weights and bilinear coefficient from a normal distribution.
Both DLIF and LIF neurons are trained using the BPTT algorithm, with the mean squared error as
the loss function. Training is performed for 100 epochs with a batch size of 128 and a learning rate of
0.1. We constrain the Frobenius norm of K to be 1 during training.

Network Correlation Simulation For the two-dimensional case, we train DLIF and LIF models to
maximize the normalized correlation of the output spike trains toward 1. For the ten-dimensional case,
we train the models such that the Frobenius norm of the difference between the output correlation
matrices of the two input classes approaches 1. In both settings, the mean squared error is used as the
loss function. The bilinear matrices are constrained to be symmetric with zero diagonals, and both
the weights and bilinear coefficients are initialized from a normal distribution. Training is conducted
using the BPTT algorithm for 100 epochs with a batch size of 128 and a learning rate of 0.1. During
training, we constrain the Frobenius norms of both the weight vectors and the bilinear matrices to be
1.

Experiments in Large-scale SNNs In the results presented in Section 4, we consistently control
the bilinear matrices to be symmetric with zero diagonals, and, except for the ablation experiments,
we always fix the sparsity level at 90%. For all experiments, the training process is repeated five times
with different initial values, and the mean and standard deviation of test set accuracy are calculated.
For experiments where the origincal spiking neurons are replaced with DLIF neurons in SNNs, we
adopt the same training methods and network architectures as described in the original works, which
are detailed as below:

SLTT Spatial Learning Through Time (SLTT) (Meng et al., 2023) is a training method designed to
reduce the number of scalar multiplications and achieve memory efficiency that is independent of the
total number of time steps, compared with BPTT. For CIFAR-10, CIFAR-100, DVS-Gesture, and
DVS-CIFAR10, the adopted network architectures are ResNet-18, ResNet-18, VGG-11, and VGG-11,
respectively, with the total number of time steps set to 6, 6, 20, and 10, respectively. The time
constant is set to τ = 2. To improve compatibility with neuromorphic hardware, max-pooling layers
are replaced with average-pooling layers in the network architectures. The loss function combines
cross-entropy loss and mean-squared-error loss (Deng et al., 2022). For all tasks, stochastic gradient
descent (SGD) (Rumelhart et al., 1986) with a momentum of 0.9 is employed to train the networks,
and a cosine annealing scheduler (Loshchilov & Hutter, 2016) is used to adjust the learning rate. The
training hyperparameters are as follows: for the CIFAR-10 and CIFAR-100 datasets, models are
trained for 200 epochs with a learning rate of 0.1, a batch size of 128, and weight decays of 5× 10−5

and 5× 10−4, respectively. For the DVS-Gesture dataset, models are trained for 300 epochs with
a learning rate of 0.1, a batch size of 16, and a weight decay of 5× 10−4. For the DVS-CIFAR10
dataset, models are trained for 300 epochs with a learning rate of 0.05, a batch size of 128, and a
weight decay of 5× 10−4.

ESG Evolutionary Surrogate Gradients (ESG) (Guo et al., 2022a) is a novel method for differen-
tiable spike activity estimation, designed to ensure sufficient model updates during the initial stages
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of training and accurate gradient calculations at later stages. For CIFAR-10, CIFAR-100, and DVS-
CIFAR10, the adopted network architectures are VGG-16, VGG-16, and ResNet-19, respectively,
with the total number of time steps set to 5, 5, and 10, respectively. The time constant is configured as
τ = 1.33. To enhance compatibility with neuromorphic hardware, max-pooling layers are replaced
with average-pooling layers in the network architectures. Cross-entropy loss is used as the loss
function. For all tasks, the SGD optimizer with a momentum of 0.9 is employed to train the networks
over 100 epochs, with a batch size of 128, a learning rate of 0.1, and a weight decay of 1× 10−4.

OTTT Online Training Through Time (OTTT) (Xiao et al., 2022) is an extension of BPTT that
enables forward-in-time learning by tracking presynaptic activities and leveraging instantaneous
loss and gradients. The VGG-11 network architecture is utilized for all experiments on CIFAR-10,
CIFAR-100, DVS-CIFAR10, and DVS-Gesture, with the total number of time steps set to 6, 6, 20,
and 10, respectively. The time constant is configured as τ = 2. All models are trained using the SGD
optimizer with a momentum of 0.9. For CIFAR-10, CIFAR-100, and DVS-CIFAR10, models are
trained for 300 epochs with a batch size of 128. The initial learning rate is set to 0.1 and decayed
to 0 using a cosine annealing scheduler. For DVS-CIFAR10, dropout is applied to all layers with a
dropout rate of 0.1. The loss function combines cross-entropy loss and mean-squared-error loss. For
DVS-Gesture, models are trained for 300 epochs with a batch size of 16 using the Adam optimizer.
The initial learning rate is set to 0.001 and decayed to 0 using a cosine annealing scheduler.

STBP-tdBN The threshold-dependent batch normalization method based on spatio-temporal back-
propagation (STBP-tdBN) (Zheng et al., 2021) addresses the gradient vanishing and explosion prob-
lems while adjusting the firing rate. For CIFAR-10, ImageNet, DVS-Gesture, and DVS-CIFAR10, the
adopted network architectures are ResNet-19, ResNet-34, ResNet-17, and ResNet-19, respectively,
with the total number of time steps set to 6, 6, 40, and 10, respectively. The time constant is configured
as τ = 1.33. Cross-entropy loss is used as the loss function. For all experiments, the SGD optimizer
is employed with an initial learning rate of 0.1, a momentum of 0.9, a batch size of 40, and 500
training epochs. The learning rate r decays to 0.1r every 35 epochs.

TET The Temporal Efficient Training (TET) algorithm (Deng et al., 2022) is designed to mitigate
the loss of momentum in gradient descent with stochastic gradients (SG), facilitating convergence to
flatter minima and improved generalizability. The ResNet-34 architecture is utilized for the ImageNet
dataset, with the time constant configured as τ = 2. The SGD optimizer with a momentum of 0.9
and a weight decay of 4× 10−5 is employed. The learning rate is initialized at 0.1 and decays to 0
using a cosine schedule. The network is trained for 120 epochs.

SSNN The Shrinking Spiking Neural Network (SSNN) (Ding et al., 2024) is designed to achieve
low-latency neuromorphic object recognition. The VGG-9 network architecture is utilized with a
total of 8 time steps across all datasets. The time constant is configured as τ = 2. All models are
trained for 100 epochs with an initial learning rate of 0.1, which decays to one-tenth of its previous
value every 30 epochs. The batch size is set to 64, and the SGD optimizer with a momentum of 0.9
and a weight decay of 1× 10−3 is employed.

ESL The Error Compensation Learning (ESL) (Liu et al., 2025a) introduced a learnable threshold
clipping function, dual-threshold neurons, and an optimized membrane potential initialization strategy
to mitigate the conversion error. For CIFAR-10 and ImageNet, the adopted network architectures
are ResNet-18 and VGG-16, with the total number of time steps set to 64 and 128. respectively. We
use the same training strategy as in STBP-tdBN since the original text does not provide a detailed
description of the training parameters.

TSER Temporal Separation with Entropy Regularization (TSER) (Yu et al., 2025a) introduced
knowledge distillation in spiking neural networks. The teacher models for CIFAR-10, CIFAR and
ImageNet datasets are VGG-16, VGG-16 and ResNet-34, respectively. The time steps are all set to 4.
We use the same training strategy as in STBP-tdBN since the original text does not provide a detailed
description of the training parameters.

FSTA Frequency-based Spatial-Temporal Attention (FSTA) module is proposed to enhance feature
learning in SNNs (Yu et al., 2025b). For CIFAR-10, CIFAR-100, ImageNet, and DVS-CIFAR10, the
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adopted network architectures are ResNet-19, ResNet-19, ResNet-34, and ResNet-20, respectively,
with the total number of time steps set to 2, 2, 4, and 16, respectively. We use the same training
strategy as in STBP-tdBN since the original text does not provide a detailed description of the training
parameters.

SSSA Saccadic Spike Self-Attention (SSSA) method is proposed to address the issues of the
mismatch between the vanilla self-attention mechanism and spatio-temporal spike trains (Wang et al.,
2025b). ViTs are used for CIFAR-10, CIFAR-100, ImageNet and DVS-CIFAR10 datasets with time
steps of 4. We use the same training strategy as in STBP-tdBN since the original text does not provide
a detailed description of the training parameters.

Spike-driven Transformer The Spike-driven Transformer is an SNN architecture that incorporates
the spike-driven paradigm into Transformer (Yao et al., 2023a). This architecture combines the low
power of SNN and the excellent accuracy of the Transformer. The time constant is set to τ = 2.
For ImageNet, the batch size is set to 256 during 310 training epochs with a cosine-decay learning
rate whose initial value is 0.0005. The optimizer is Lamb and the timestep is T = 4. For the
other four datasets, we employ timesteps T = 4 on CIFAR-10 and CIFAR-100, and T = 16 on
DVS-CIFAR10 and DVS-Gesture. The training epoch for these four datasets is 200. The batch size is
32 for CIFAR10/100 and 16 for DVS-Gesture/CIFAR10. The learning rate is initialized to 0.0005
for CIFAR10/100, 0.0003 for DVS-Gesture, and 0.01 for DVS-CIFAR10. All of them are reduced
with cosine decay. In addition, the network structures used in CIFAR-10, CIFAR-100, ImageNet,
DVS-CIFAR10, and DVS-Gesture are: Transformer-2-512, Transformer-2-512, Transformer-10-512
Transformer-2-256 and Transformer-2-256, respectively, where Transformer-L-D in represents a
model with L encoder blocks and D channels.

Meta-SpikeFormer Meta-SpikeFormer is a general Transformer-based SNN architecture for future
next-generation Transformer-based neuromorphic chip designs (Yao et al., 2024). A 55M Transformer
is used for ImageNet dataset with 4 timesteps. The AdamW is employed with an initial learning rate
of 1e− 3 that will decay in the polynomial decay schedule with a power of 0.9. To speed up training,
we warm up the model for 1.5k iterations with a linear decay schedule.

DSQN The network architecture of Deep Spiking Q-Network (DSQN) (Chen et al., 2024) is struc-
tured as Input-32C8S4-SN-64C4S2-SN-64C3S1-SN-Flatten-512-SN-NA-SN, where SN represents
spiking neurons, which can be either LIF or DLIF neurons, and NA denotes the number of actions in
the task. The model is trained over a total of 20 million frames. During evaluation, the agent begins
each episode with a random number (up to 30) of no-op actions, and the behavior policy follows an
ϵ-greedy approach, with ϵ fixed at 0.05. The simulation timesteps are set to 8, and the membrane time
constant is configured as τ = 2. The model uses a minibatch size of 32, a replay start size of 50,000,
and a replay memory size of 1,000,000. The target network is updated every 10,000 steps. The
Adam optimizer is employed with a learning rate of 0.00025 and an ϵ value of 1× 10−8. Exploration
starts at an initial value of 1.0, decaying linearly to a final value of 0.1 over 1,000,000 frames. The
maximum number of no-op actions per episode is set to 30. These hyperparameters remain consistent
across all games.

All implementations are built on the PyTorch (Paszke et al., 2019) and SpikingJelly (Fang et al.,
2023) frameworks. All the experiments are conducted on an NVIDIA Tesla A100 GPU with 6,912
CUDA cores and 432 tensor cores.
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