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ABSTRACT

In recent years, a body of works has emerged, studying shape and texture biases
of off-the-shelf pre-trained deep neural networks (DNN) for image classification.
These works study how much a trained DNN relies on image cues, predominantly
shape and texture. In this work, we switch the perspective, posing the following
questions: What can a DNN learn from each of the image cues, i.e., shape, texture
and color, respectively? How much does each cue influence the learning success?
And what are the synergy effects between different cues? Studying these ques-
tions sheds light upon cue influences on learning and thus the learning capabilities
of DNNs. We demonstrate that the way DNNs perceive the world can be broken
down into distinct sources of evidence. We study these questions on semantic seg-
mentation which allows us to address our questions on pixel level. To conduct this
study, we develop a generic procedure to decompose a given dataset into multiple
ones, each of them only containing either a single cue or a chosen mixture. This
framework is then applied to two real-world datasets, Cityscapes and PASCAL
Context, and a synthetic data set based on the CARLA simulator. We learn the
given semantic segmentation task from these cue datasets, creating cue experts.
Early fusion of cues is performed by constructing appropriate datasets. This is
complemented by a late fusion of experts which allows us to study cue influence
location-dependent on pixel level. Our study on three datasets reveals that neither
texture nor shape clearly dominate the learning success, however a combination
of shape and color but without texture achieves surprisingly strong results. Our
findings hold for convolutional and transformer backbones. In particular, qualita-
tively there is almost no difference in how both of the architecture types extract
information from the different cues.

1 INTRODUCTION

Visual perception relies on visual stimuli, so-called visual cues, providing information about the per-
ceived scene. Visual environments offer multiple cues about a scene, and observers need to assess
the reliability of each cue to integrate the information effectively Jacobs (2002). To recognize and
distinguish objects, for example, their shape and texture provide complementary cues. In cognitive
science and psychology the influence of different cues and their combinations for human percep-
tion is addressed in various studies Bankieris et al. (2017); Jacobs (2002); Michel & Jacobs (2008).
Given the widespread use of deep neural networks (DNNs) for automatically extracting semantic
information from scenes, it is important to investigate 1) how these models process and rely on dif-
ferent types of cue information, as well as 2) what they are able to learn when only having access to
specific cues. With respect to the first question several hypotheses about dominating cue exploitation
(cue biases) of trained convolutional neural networks (CNNs) were formulated and supported by ex-
perimental results for image classification tasks Geirhos et al. (2018); Islam et al. (2021); Tuli et al.
(2021). Early in the evolution of CNNs a shape bias was hypothesized, stating that representations
of CNN outputs seem to relate to human perceptual shape judgement Kubilius et al. (2016). Even
though this suggests that CNNs tend to base their prediction on shape information, this is only valid
on a local perspective Baker et al. (2018) and not an intrinsic property Hosseini et al. (2018). On the
contrary, multiple studies were performed on ImageNet-trained CNNs Deng et al. (2009), indicating
that those CNNs have a bias towards texture Geirhos et al. (2018); Baker et al. (2018); Brendel &
Bethge (2018). To reveal biases in trained DNNs, cue conflicts are often generated Geirhos et al.
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textureshape pixel colororiginal image

Figure 1: A sample of cues and cue combinations extracted from the Cityscapes dataset, based on
which cue expert models are trained.

(2018); Gavrikov et al. (2024). To this end, a style transfer with a texture image of one class, e.g.
showing an animal’s fur or skin, is applied to an ImageNet image representing a different class.

In summary, previous studies 1) mostly study the biases of trained DNNs w.r.t. to image cues and
their influence on the networks robustness Geirhos et al. (2018); Kamann & Rother (2020); Naseer
et al. (2021); Qiu et al. (2024), 2) often rely on style transfer or similar image manipulations to
test for biases Li et al. (2020); Islam et al. (2021); Dai et al. (2022), and 3) largely focus on image
classification DNNs Brendel & Bethge (2018); Hermann et al. (2020); Tuli et al. (2021).

In this work, we present a study that is novel in all three aspects. 1) We switch the perspective,
studying how much influence different image cues (and arbitrary combinations of those) have on
the learning success of DNNs. 2) We do not rely on style transfer but rather utilize and develop
a set of methods, combining them into a generic procedure to derive any desired cue combination
of shape, texture and color from a given dataset, cf. fig. 1. 3) We lift our study to the task of
semantic segmentation. This opens up paths to completely new studies as it allows for the decompo-
sition of datasets into arbitrary combinations of cues and enables more fine-grained analyses such as
image-location-dependent cue influences. Our study setup serves as basis to train expert networks
exclusively relying on a specific cue or cue combination. We perform an in-depth behavioral analy-
sis of CNNs and transformers on three different semantic segmentation datasets, namely Cityscapes
Cordts et al. (2016), PASCAL Context Mottaghi et al. (2014) and a synthetic one recorded with the
CARLA driving simulator Dosovitskiy et al. (2017). Our study brings the different cue and cue com-
bination influences on DNN learning into a consistent and intuitive but prior to this not proven order.
It turns out that neither texture nor shape clearly dominate in terms of learning success. However, a
combination of shape and color achieves surprisingly strong results. These findings hold for CNNs
and transformers. In particular, qualitatively there is almost no difference in how both architecture
types extract information from the different cues, i.e., the choice of backbone has almost no impact
on the order of the cue influences. Additionally, by a pixel-wise late fusion of cue (combination)
experts, we study the role of each pixel for cue influences, showing quantitatively that small objects
and pixels at object borders are dominantly better predicted by shape experts. Our contributions are
summarized as follows:

• We provide a generic procedure to derive cue combination datasets from a given semantic
segmentation dataset. In particular, we provide a method to derive texture-only datasets.

• Our general setup allows to study disentangled image cues, down to the detail degree of
brightness-only. We perform an in-depth analysis with up to 14 learned cue combination
experts per dataset and several late fusion models, contributing the first cue influence study
in semantic segmentation. Additionally, we include transformers that are so far underre-
searched in the broader context of cue influences.

• While previous studies report strong biases of ImageNet-trained DNNs towards texture
under style transfer, our study reveals that for real-world data shape and texture are equally
important cues for successful learning. The role of the cues varies across classes and image
location, but not w.r.t. choosing between CNNs and transformers.

Our code including the data generation procedure is publicly available at TBA.
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2 RELATED WORK

Cue biases and cue decompositions are pivotal concepts in understanding how neural networks in-
terpret visual information. We start by reviewing existing approaches of cues bias analyses in clas-
sification, followed by methods to decompose or manipulate data to allow for investigations on
different cues. We conclude by addressing the underexplored area of texture and shape biases in
semantic segmentation.

Shape and Texture Biases in Image Classification. DNNs learn unintended cues that help to
solve the given task but limit their generalization capability Geirhos et al. (2020). In Geirhos et al.
(2018) it was measured whether the shape or the texture cue dominates the decision process of an
ImageNet-trained classification CNN by inferring images with conflicting cues (e.g. shape of a cat
combined with the skin of an elephant), revealing that ImageNet pre-training leads to a texture bias.
Technically, Geirhos et al. (2018) stylize images via style transfer to create cue conflict images. This
was also adopted by Li et al. (2020) and Islam et al. (2021). In the latter work, the bias is computed
on a per-neuron level. Hermann et al. (2020) showed that the selection of data and the nature of
the task influence the cue biases learned by a CNN. Experiments in Naseer et al. (2021); Tripathi
et al. (2023); Tuli et al. (2021); Geirhos et al. (2021) demonstrate that transformers exhibit a shape
bias in classification tasks, which is attributed to their content-dependent receptive field Naseer et al.
(2021). Our focus differs in two key aspects: 1) we study cue influences on learning success rather
than biases, 2) we consider the task of semantic segmentation instead of image classification.

Data Manipulation for Bias Investigation. To examine the influence of cues, datasets are ma-
nipulated by either artificially combining cues to induce conflicts Baker et al. (2018); Geirhos et al.
(2018); Tripathi et al. (2023); Theodoridis et al. (2022) or by selectively removing specific cues
from the data Dai et al. (2022); Zhang & Mazurowski (2024). To remove all but the shape cue, edge
maps Baker et al. (2018); Mummadi et al. (2020); Tripathi et al. (2023), contour maps Baker et al.
(2018), silhouettes Baker et al. (2018) or texture reduction methods Dai et al. (2022); Heinert et al.
(2024) are used. Patch shuffling has been proposed to remove the shape cue but preserve the texture
Brendel & Bethge (2018); Luo et al. (2020); Dai et al. (2022). In contrast to classification, data
preparation is more complex for semantic segmentation as multiple objects and classes are present
in the input which differ in their cues. In particular semantic segmentation on texture-only data is
challenging Cote et al. (2023). Removing shape by dividing and shuffling an image as used by Dai
et al. (2022) for classification compromises semantic integrity of the image and disrupts the seg-
mentation task. Therefore, we propose an alternative method for extracting texture from the dataset,
which is sufficiently flexible to generate new segmentation tasks using in-domain textures from the
original dataset.

Shape and Texture Biases in Image Segmentation. Up to now, a limited number of works stud-
ied shape and texture biases beyond image classification. In Li et al. (2020), for image classification,
images are stylized using a second image from the same dataset. For semantic segmentation, only
a specific object rather than the full image is used as texture source to perform style transfer. The
stylized data is added to the training data to debias the CNN and increase its robustness. Similarly,
Theodoridis et al. (2022) stylize data to analyze the robustness of instance segmentation networks
under randomized texture. Additionally, an object-centric and a background-centric stylization are
used for this study. In Zhang & Mazurowski (2024), the change in shape bias of semantic segmenta-
tion networks is studied under varying cues in data. The experiments on datasets with a limited num-
ber of images and classes reveal that CNNs prioritize non-shape cues if multiple cues are present.
Kamann & Rother (2020) propose to colorize images with respect to the class IDs to reduce the
influence of texture during training to prevent texture bias and thereby improving robustness of the
trained model. In Heinert et al. (2024), an anisotropic diffusion image processing method is used for
removing texture from images. Based on that the texture bias is studied and also reduced. All works
mentioned in this paragraph study or reduce biases of DNNs in image segmentation. To the best of
our knowledge, the present work is the first one to switch the perspective and study the influence of
cues and cue combinations on learning success in semantic segmentation DNNs. This is done on
complex datasets with at least 15 classes, by which we obtain different insights.
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mosaic images texture dataset

texture filled
voronoi diagrams

pool of mosaic images
of every classtexture patches

voronoi
diagrams

Figure 2: Extraction process of the texture (T) cue. It consists of the three main steps: class-wise
patch extraction, class-wise mosaic image construction and segmentation dataset creation based on
Voronoi diagrams.

3 CUE DECOMPOSITION AND CUE EXPERT FUSION

In this section we introduce the different methods that extract image cues and cue combinations from
a given base dataset (original dataset with all cues), from which we train cue and cue combination
experts. Technical and implementation details of the methods are provided in appendix A.2.

Color (C) Cue Extraction. Most cue extractions presented in this work modify the base dataset.
In order to isolate the color information, we do not modify the base dataset but constrain the cue
expert, i.e., the neural network, to process a single pixel’s color values via (1 × 1)-convolutions.
This prevents the model from learning spatial patterns such as shapes or textures. Furthermore, we
decompose color into two components: its gray value (V) and its chromatic value (HS) by switching
to the HSV color space and discarding the value channel. Gray values are obtained by averaging or
maximizing RGB channels to extract the degree of darkness or lightness of a given color. In what
follows, we use the shorthand C=V+HS to refer to the respective cues.

Texture (T) Cue Extraction. The texture dataset is constructed in three main steps. 1) For all
images in the base dataset texture is extracted by isolating individual segments for each respective
class using the semantic segmentation masks to identify and define the boundaries of these segments
for cropping. This generates a pool of texture patches per class. 2) For each class a pool of ‘mosaic’
image is created by randomly stitching texture patches extracted in 1) for one class in an overlapping
manner until no texture-free space is left. 3) A new semantic segmentation task, serving as surrogate
task, is constructed via Voronoi diagrams. Each cell is uniformly at random assigned a class of the
base dataset and filled with a cutout of a random mosaic image corresponding to that class. This
step is repeated until a chosen number of Voronoi diagrams are generated, e.g., as many as in the
base dataset. Figure 2 illustrates this process.

Shape (S) Cue Extraction. The shape of an object can be described in multiple ways Feldman
(2024), defined by the object with unrecognizable/removed texture or by the object defining edges.
To this end, we consider two shape extraction methods: Holistically-nested edge detection (HED)
Xie & Tu (2015) and a variation of Edge Enhancing Diffusion (EED) Heinert et al. (2024). HED
approximately extracts the object defining edges based on a fully convolutional network which has
learned to predict a dense edge map through end-to-end training and nested multiscale feature learn-
ing. HED approximates the S cue. In contrast, EED diminishes texture through diffusion along
small color gradients in a given image. The diffusion process follows a partial-differential-equation
formulation. As it preserves color, it extracts the cue combination S+V+HS. By gray-scaling the
diffused image, the cues S+V are obtained and and analogously to the treatment described in Color
Cue Extraction by switching to the HSV color space and discarding the value channel extracts the
cues S+HS.

Texture-free Image Data from CARLA (Srmv). In the case of simulated data where access to the
rendering engine is granted, a nearly texture-free environment can be generated. The open-source
simulator CARLA Dosovitskiy et al. (2017) was employed to generate a virtual environment devoid
of texture. We replaced all objects’ textures by a gray checkerboard, a default texture pattern in
CARLA. In addition, weather conditions were set to ’clear noon’ to obtain a uniform appearance of
the sky. Strongly subsampled video sequences were recorded from an ego perspective in gray scale.
This procedure provides an additional way to obtain the cues S+V in CARLA.
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Table 1: Overview of cues and cue extraction methods. The included cues are S = shape, T =
texture, V = gray component of the color and HS = hue and saturation component of the color. Orig
is replaced by a shorthand of the respective base dataset.

shorthand included cues description

all cues S + T + V + HS original images / all cues
OrigHS S + T + HS all but gray cues
OrigV S + T + V all but chromatic cues
TRGB T + V + HS texture with color; shape removed
THS T + HS texture with hue and saturation only
TV T + V texture with grayness only;
SEED-RGB S + V + HS shape with color via smoothing texture by edge enhancing diffusion
SEED-HS S + HS shape with hue and saturation by edge enhancing diffusion
SEED-V S + V shape with grayness by grayscaled edge enhancing diffusion results
SHED S shape only via contour map by holistically-nested edge detection
Srmv S + V shape with grayness via texture removal in the CARLA simulation
RGB V + HS complete color component of an RGB image, pixel-wise
HS HS hue and saturation of an RGB image, pixel-wise
V V gray component of an RGB image, pixel-wise
no info no information about the data is given representing the absence of all cues

Remaining Cue Combinations and Summary. The remaining cue combinations are obtained as
follows: S+T+V+HS, S+T+HS and S+T+V are obtained by treating an original image analogously
to the color cue extraction, i.e., by transforming it into HSV color space and projecting accordingly.
Analogously, we can process texture images to obtain T+HS as well as T+V. To represent the
complete absence of cues, i.e. no information is given, we consider the performance of randomly
initialized DNNs. An overview of all cue expert (datasets) including additional shorthands, encoding
the method used and the cue extracted, are summarized in table 1. Note that, in what follows we
rely heavily on the shorthands. For additional technical details and exemplary images of the cue
extraction methods, we refer the reader to appendices A.1 and A.2.

Late Fusion of Cue Experts. Fusing the cue experts’ softmax activations serves as an assessment
of the reliability of the different cues to combine the information of multiple cues effectively.

4 EXPERIMENTS

To analyze the cue influence in learning semantic segmentation tasks, we train all cue and cue
combination experts on three different base datasets introduced below and ranging from real-world
street scenes over synthetic street scenes to diverse in- and outdoor scenes. We perform an in-
depth analysis and comparison of several cue (combination) experts across these three datasets,
across different evaluation granularities ranging from dataset-level over class-level to pixel-level
evaluations. This is complemented by a comparison of CNN and transformer results. Additional
experimental studies and qualitative examples are provided in appendix A.3.

4.1 BASE DATASETS & NETWORKS

Cityscapes. Cityscapes Cordts et al. (2016) is an automotive dataset which consists of high-
resolution images of street scenes from 50 (mostly German) cities with pixel annotations for 30
classes, respectively. There are 2,975 fine labeled training and 500 validation images. As common
practice we use only the 19 common classes and the validation data for testing. For model selection
purposes we created another validation set from a subset of the 20,000 coarsely annotated images of
Cityscapes by pseudo-labelling that subset using an off-the-shelf DeepLabV3+ Chen et al. (2018).

CARLA. We generated a dataset using the open-source simulator CARLA Dosovitskiy et al.
(2017), version 0.9.14, containing multiple enumerated maps of which we used the towns 1–5 and
7 of similar visual detail level for data generation. We record one frame per second from an ego
perspective while driving with autopilot through a chosen city, accumulating 5,000 frames per city
in total. For comparability to Cityscapes, we reduced the set of considered classes to 15: road,
sidewalk, building, wall, pole, traffic lights, traffic sign, vegetation, terrain, sky, person, car, truck,
bus, guard rail. The classes ‘bicycle’, ‘rider’ and ‘motorcycle’ are excluded for technical reasons

5
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because these actors were problematic for the autopilot mode in CARLA. To ensure a location-wise
disjoint training and test split, we use town 1 and 5 for testing only, whereas 2, 3, 4 and 7 are used
for training. This results in 20,000 training images and 10,000 test images. For model selection
purposes, we randomly split of 10% of the training images for validation.

PASCAL Context. As a third dataset we analyze cue influences on the challenging PASCAL
Context dataset Mottaghi et al. (2014). It provides annotations for the whole images of PASCAL
VOC 2010 Everingham et al. (2010) in semantic segmentation style. The images are photographs
from the flickr1 photo-sharing website recorded and uploaded by consumers covering diverse indoor
and outdoor scenes Everingham et al. (2010). We consider 33 labels that are contextual categories
from Mottaghi et al. (2014). In our experiments we use 4,996 training images, 2,042 validation
images and 3,062 test images where the training images of Mottaghi et al. (2014) are split into
training and validation images and the original validation images are utilized as test images.

Neural Networks and Training Details. For better comparison and to ensure that only the in-
tended cues are learned, all neural networks are trained from scratch multiple times with different
random seeds. For all cue (combination) expert models, except for the color cue ones, we employ
DeepLabV3 with a ResNet18 backbone Chen et al. (2017); He et al. (2016) (15.9 million learnable
parameters) and a SegFormer model with B1 backbone Xie et al. (2021) (13.7 million learnable pa-
rameters). Both models have similar learning capacity and achieve similar mean IoU (mIoU) Jaccard
(1912) segmentation accuracy. For the color experts, the receptive field is constrained to one pixel,
achieved through a fully convolutional neural network with two to three (1× 1)-convolutions (tuned
to achieve maximal mIoU). We trained the CNN models with the Adam optimizer for 200 epochs
and a poly-linear learning rate decay with an initial learning rate of 5 · 10−4. The transformers were
trained with the default optimizer and inference settings as specified in the MMSegmentation library
MMSegmentation Contributors (2020) except that we increased the number of gradient update steps
to 170,000 iterations. Note that, to not mix cues unexpectedly, we restricted data augmentation
to cropping and horizontal flipping and refrained from augmentations like color jittering. For the
late-fusion approach, we use an even smaller version of DeepLabV3 by limiting the backbone to
two instead of four blocks to prevent overfitting to the simpler task. The weights of the late fusion
models are initialized randomly within a uniform distribution of [−10−3, 10−3].

Evaluation Protocol. Cue influence is measured by evaluating the different cue (combination)
experts in terms of (m)IoU on the test images across the three different base datasets. To ensure
input compatibility, we evaluate experts with a reduced number of channels like the TV expert on
the corresponding OrigV data. Comparing the performance drop (gap) between the reduced model
and the model trained on the original RGB images (all cues) demonstrates the significance of the
removed cues in terms of their impact on the original semantic segmentation task. We use mIoU to
capture the performance of all classes equally as, in particular the rare classes often represent vul-
nerable road users in automotive driving datasets. For the sake of completeness, we report frequency
weighted IoU values in the appendix.

4.2 NUMERICAL RESULTS

Cue Influence on Mean Segmentation Performance. In this section, we analyze the general cue
influence in terms of mean segmentation performance. The corresponding results are presented in
tables 2 and 3. Firstly, we note a certain expected consistency in the presented mIoU results across
base datasets. C experts are mostly dominated by T experts as well as S experts, and those are in turn
dominated by S+T experts. The S+T+V expert is the only one getting close to the ‘expert’ trained
on all cues. Nevertheless, the influence of the specific cue (combinations) for the learning success
in terms of rankings varies slightly across datasets, however not drastically. These changes are
particularly pronounced when comparing domains with greater difference in their characteristics,
such as synthetic vs. real-world data. Furthermore, we observe across all three datasets that the
RGB version of EED providing the cues S+C achieves surprisingly high mIoU values compared
to its S+V counter part, when evaluated on the corresponding original image. This indicates that
color and shape in absence of texture encode enough information for a DNN to predict a decent
segmentation mask for the original data. However, this mIoU value is dominated by S+T+V as well

1https://www.flickr.com
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Table 2: Cue influence in terms of mIoU performance drop on Cityscapes for DeepLabV3 with
ResNet backbone and SegFormer. Cue description follows the listing in table 1. MIoU gaps to max-
imal performance are stated in percent points (pp.). The abbreviation “City” refers to Cityscapes.

Color CNN mIoU CNN gap transformer mIoU transformer gap change in rank
S T V HS (%, ↑) (pp., ↓) (%, ↑) (pp., ↓) w.r.t. CNN

no info 0.25± 0.35 64.97 0.33± 0.47 66.02 →
V ✓ 6.39± 0.04 58.83

HS ✓ 9.33± 0.18 55.89
RGB ✓ ✓ 11.31± 0.52 53.91

SHED ✓ 13.38± 2.00 51.84 11.31± 1.95 55.05 →
TV ✓ ✓ 17.85± 1.30 47.37 29.02± 0.31 37.33 →

SEED-HS ✓ ✓ 19.48± 3.19 45.74 30.93± 0.64 35.42 ↘1

TRGB ✓ ✓ ✓ 20.10± 0.98 45.12 31.88± 0.38 34.47 ↘1

THS ✓ ✓ 20.63± 1.41 44.59 29.49± 0.50 36.86 ↗2

SEED-V ✓ ✓ 27.86± 3.17 37.36 39.01± 0.75 27.34 →
SEED-RGB ✓ ✓ ✓ 42.22± 2.13 23.00 50.48± 0.55 15.87 →
CityHS ✓ ✓ ✓ 59.89± 0.74 5.33 58.79± 0.40 7.56 →
CityV ✓ ✓ ✓ 64.21± 0.60 1.01 64.47± 0.21 1.88 →

all cues ✓ ✓ ✓ ✓ 65.22± 0.47 0.00 66.35± 0.29 0.00 →

Table 3: Cue influence measured in terms of mIoU performance on the synthetic CARLA dataset
and PASCAL Context (short: PASCAL). MIoU gaps to maximal performance are stated absolute in
percent points (pp.).

CARLA PASCAL Context
mIoU gap rank change w.r.t. mIoU gap rank change w.r.t.
(%, ↑) (pp., ↓) Cityscapes CNN (%, ↑) (pp., ↓) Cityscapes CNN

no info 0.38± 0.44 75.13 → no info 0.11± 0.11 45.34 →
V 6.01± 0.08 69.50 → V 2.27± 0.04 43.18 →

SHED 11.17± 0.65 64.34 ↗2 HS 3.35± 0.10 42.10 →
HS 14.88± 0.38 60.63 ↘1 SHED 4.71± 1.15 40.74 ↗1

RGB 15.77± 0.57 59.74 ↘1 RGB 4.91± 0.05 40.54 ↘1

Stextureless 26.60± 1.76 48.91
SEED-V 37.25± 1.76 38.26 ↗4 THS 11.39± 0.36 34.06 ↗3

SEED-HS 44.78± 0.85 30.73 → TRGB 17.75± 0.82 27.70 ↗1

TV 46.11± 2.73 29.40 ↘2 SEED-HS 17.80± 1.67 27.65 ↘1

THS 52.66± 1.46 22.85 → TV 18.43± 0.47 27.02 ↘3

TRGB 55.89± 1.90 19.62 ↘2 SEED-V 25.80± 2.40 19.65 →
SEED-RGB 61.46± 1.03 14.05 → SEED-RGB 31.32± 0.82 14.13 →

CARLAHS 70.34± 1.56 5.17 → PASCALHS 36.10± 0.34 9.35 →
CARLAV 73.17± 5.19 2.34 → PASCALV 45.39± 0.71 0.06 →
all cues 75.51± 1.50 0.00 → all cues 45.45± 0.18 0.00 →

as S+T+HS. Note that a combination of S+T only is impossible since T cannot exist without some
kind of brightness or color cue, i.e., V and/or HS.

An additional surprise might be that HED, representing the S cue, reaches only very low mIoU,
showing consistently weak performance across all datasets. At the first glance, this is in contrast to
human vision since an HED image seems almost enough for a human to estimate the class of each
segment in an HED image, cf. fig. 1. It should be noted that each expert is trained on its specific cue
and then tested on an original input image from the given base dataset. When alternatively applying
a given experts cue extraction technique as pre-processing to real-world images, like Cityscapes
or PASCAL Context, HED (with HED pre-processing) surpasses EED (with EED-pre-processing)
distinctly and achieves 55.80%±0.59 percent points (pp.) mIoU compared to 48.47%±0.45 pp. by
EED on Cityscapes. On CARLA, EED and HED are on par, reaching an mIoU of 65.93%±0.72 pp.
and 63.33%±1.11 pp. respectively. A comprehensive study of this domain-shift-free cue evaluation
is given in the appendix.

Cue Influence on Different Semantic Classes. Figure 3 provides an evaluation for Cityscapes,
comparing a shape expert based on colored EED images providing the cues S+C and another expert
trained on colored Voronoi cells of class-specific stitched patches, providing the queues T+C. This
evaluation is broken down into IoU values over the 19 Cityscapes classes. In a visual inspection,
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Figure 3: Class-specific cue influence for CNN based SEED-RGB and TRGB on Cityscapes.
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Figure 4: Comparison of the prediction of the two experts SEED-RGB (left) and TRGB (mid) for
Cityscapes, CARLA and PASCAL Context. As a reference the ground truth is displayed in the
third column (right).

we found that an IoU of at least 20% for a given class starts to support the claim that the chosen
expert extracts information for the given class. Hence, we see in fig. 3 that the S+C expert can deal
with most of the classes while the T+C expert specializes to classes that usually cover large areas of
the image, like vegetation, road and building although the texture expert was trained on a uniform
class distribution. The results show that CNNs extract more discriminative information from colored
shape than colored texture in real-world semantic segmentation tasks. Figures 10 to 11 show that
the results reported on Cityscapes generalize to the other base datasets as well as to the transformer
model. For visual examples see also figs. 4 and 16.

Cue Influence Dependent on Location in an Image. In this paragraph, we provide for all three
datasets a detailed comparison of the same two experts from the previous paragraph, the shape expert
based on EED having access to the cues S and C, and the texture expert based on the Voronoi images
having access to the cues T and C. Here, cues are considered based on their location in an image.

We already noted in the previously presented class-specific study that the T+C expert focuses on
classes covering larger areas of an image. Furthermore, we see a size dependence within a single
class which is studied in fig. 5 for CARLA as base dataset for the classes road and person, where the
former frequently occurs (30%) and the latter is comparably rare (2%) in terms of pixel counts. To
study this effect in-depth, we trained a late fusion that processes the softmax outputs of both experts
T+C and S+C, learning a pixel-wise weighting of both experts’ outputs. We base our measurements
on the output of the fusion model to decide for each pixel which cue contributes most on solving the
learning task. By consistently adopting the prediction of the most influential expert, we calculate
for each expert the segment-wise recall, which is the fraction of pixels in the ground truth segment
covered by predictions of the same class. This metric measures the proportion of influence each

8
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Figure 5: Coverage of experts over the classes ’road’ (left) and ’person’ (right) on the CARLA
dataset. The recall on the y-axis is defined by the fraction of pixels in a ground-truth segment
covered by a prediction of the same class.

texture expert (T+C) prediction shape expert (S+C) prediction

1.0

0.8

0.4

0.2

0.0

0.6

heatmap for shape influence

input image prediction of fusion model ground truth

Figure 6: A visual example of the predictions of an S+C and a T+C expert as well as the fusion
model of an Cityscapes image. This is complemented with a heatmap depicting the pixel-wise
input-dependent weighting for shape. Consequently, in lighter areas the texture cue is dominating.

expert has on a correct prediction of the specific segment. It can be seen that for the large road
segments, the texture expert achieves a high segment-wise recall, indeed finding most of the road
segments, while the shape expert has only a low segment-wise recall for those large segments. A
similar trend can be observed for the rare class person.

In addition, we analyzed the influence dependent on the location in an image by our late fusion
approach. A visual example for Cityscapes is provided in fig. 6. In general, we observe that the
shape influences the fusion in regions containing boundaries of class-segments while priority is
given to the texture inside larger segments. As can also be seen in fig. 6, the texture experts often
have difficulties to accurately segment the boundaries of areas corresponding to a semantic class.
We measured this effect quantitatively and provide results in table 4. The results reveal that the
shape experts clearly outperform the texture expert on segment boundaries in terms of accuracy
averaged over all boundary pixels. Herein, a pixel is considered as part of a segment boundary, if
its neighborhood of four pixels distance (in Manhattan metric) contains a pixel of a different class
according to the ground truth. On the segments’ interior, on Cityscapes and PASCAL Context, the
shape expert is on average still more useful than the texture expert. This is the other way round
in CARLA. This can be explained by the observations that Cityscapes is in general relatively poor
in texture and the textures in both real-world datasets are not very discriminatory. However, in the
driving simulator CARLA, the limited number of different textures rendered onto objects is highly
discriminatory and increases the texture expert’s performance.

Comparing the pixel-wise predictions of two experts offers insights into ambiguities across different
cues. If the texture cue expert predicts the class car but the shape expert predicts the class road,
this can be a valuable source of redundancy and provide interpretable hints towards the safety of
the overall prediction. The contradiction between two experts gives rise to an uncertainty metric.
Quantitative and additional qualitative results for the late fusion of cue experts as well as qualitative
examples for a contradiction / uncertainty heatmap are provided in the appendix.
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Table 4: Comparison of the pixel accuracy for SEED-RGB and TRGB with respect to segment boundary
pixels and segment interior pixels.

pixel-averaged Cityscapes CARLA PASCAL Context
accuracy (%, ↑) SEED-RGB TRGB SEED-RGB TRGB SEED-RGB TRGB

segment interior 88.59 75.10 82.63 89.83 56.48 39.96
segment boundary 56.49 37.16 70.44 47.94 38.83 25.99

overall 86.17 72.24 81.84 87.09 55.15 38.91

Cue Influence in Different Architectures. In addition to the previously discussed CNN-based
cue experts, we also studied the cue extraction capabilities of a segmentation transformer, namely
SegFormer-B1 Xie et al. (2021). The results on Cityscapes are provided in table 2. Although the
CNN and transformer mIoU are almost on par when all cues are present, we observe a distinct
increase in mIoU for the individual cue experts when using a transformer instead of a CNN. This
holds for all T experts and S experts and their combinations with V and HS, respectively, with
one exception which is the HED cue extraction. We expect that the HED mIoU suffers from the
strong domain shift between HED images and original images, to which the HED expert is applied
in table 2. Similarly, SegFormer achieves an mIoU of 54.81% ± 0.36 pp. when applying HED as
pre-processing. Nonetheless, qualitatively, i.e., in terms of the rankings of the different cue experts,
we do not observe any serious differences between CNNs and transformers although pre-trained
transformers are said to be more biased towards shape than CNNs Tuli et al. (2021). This indicates
that the presence of a shape bias in semantic segmentation networks does not imply that transformers
are less effective at learning from texture. These findings generalize to the class level where we
observe an increase in performance in nearly all classes independent of the expert, but qualitatively
the influence of the cues does not change. We conjecture that the increased cue performance of
the transformer model results from the increased cross-domain performance as shown for Vision
Transformers Yang et al. (2023) and for semantic segmentation transformers Wang et al. (2023).

5 CONCLUSION AND OUTLOOK

In this paper, we provided the first study on what can be learned by semantic segmentation DNNs
from different image cues. Here, as opposed to image classification, studying cue influence is much
more intricate and yields more specific and more fine-grained results. We introduced a generic
procedure to extract cue-specific datasets from a given semantic segmentation dataset and studied
several cue (combination) expert models, CNNs and transformers, across three different datasets
and different evaluation granularities. We compared different cue (combination) experts in terms of
mIoU on the whole dataset, in terms of semantic classes and in terms of image-location dependence.
Our study provides the first empirical evidence for the following widely presumed statements: Ex-
cept for grayscale images, there is no reduced cue combination that achieves a performance close
to all cues. Cues influence the learning of DNNs over image locations, indeed shape often matters
more in the vicinity of semantic class boundaries. Shape cues are important for all classes, tex-
ture cues mostly for classes where the corresponding segment covers large regions of the images in
the dataset. Despite the difference in architecture, these findings generalize to transformers. Our
generic cue extraction procedure (or at least parts of it) can also be utilized for studying biases in
pre-trained off-the-shelf DNNs in cue conflict schemes, typical for that field of research. In addition,
our data decompositions offer insights into ambiguities across different cues providing interpretable
hints towards the safety of the overall prediction. For the future, a quantitative in-depth study is
planned. Additionally, future research includes exploring different learning tasks like panoptic seg-
mentation and different sensors like hyperspectral or infrared cameras as well as investigating how
our analysis can be used to quantify the complexity of a learning task. We propose that the required
cues to achieve a certain target accuracy could indicate learning complexity.
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A APPENDIX

In the appendix, we provide additional results as well as technical details of the procedure.

A.1 CUE DECOMPOSITION

In fig. 7 we show exemplary images of cues extracted from the Cityscapes dataset. For all but the
images containing the T cue, the cues can be extracted solely based on the base image (all cues). In
contrast, the texture image is generated based on multiple images of the base dataset.

A.2 TECHNICAL AND IMPLEMENTATION DETAILS

Texture Data Generation Details. A detailed scheme of the texture extraction procedure is given
in fig. 8. The class-wise texture extraction is realized by masking all segments of one class and
isolating each segment with the help of the border following algorithm proposed by Suzuki & Abe
(1985). We discard segments with less than 36 pixels. The remaining segments are used to mask the
original image and cut out the image patch of the enclosing bounding box of the segment. To enlarge
the resulting patch pool, we apply horizontal flipping, random center crop and shift-scale-rotation
augmentation. To mitigate the class imbalance in terms of pixel counts, we add more transformed
patches for underrepresented classes than for classes which cover large areas of an image. It is
essential to ensure that the transformations do not alter the texture. Once all the texture patches
from all images within the underlying dataset have been extracted, they are randomly composed
into mosaic images. We iteratively fill images of the same size as images from the base dataset with
overlapping texture patches until we obtain completely filled mosaic images. To further reduce an
unintended dependency on the shape cue we fill the mosaics in the original segmentation mask but
assign each pixel to the same class (contour filled texture images). This implies that the segment
boundaries are not discriminatory anymore. Based on a pool of contour filled texture images of
different classes we can create a surrogate segmentation task by filling the segments of arbitrary
segmentation masks with the generated texture images. We choose Voronoi diagrams Torquato
(2002) as surrogate segmentation task and fill each cell randomly but uniformly with respect to the
class with crops of the pool of contour filled texture images. To generate an entire dataset, we create
and fill as many Voronoi diagrams as the number of images in the base dataset. Note, that this
extraction method does not allow for one to one correspondence between a base dataset image and
a texture image.

HED Implementation Details. To generate object defining edge maps we use the implementation
and pre-trained model of Harary et al. (2022) which bases on the PyTorch re-implementation of the
original method by Niklaus (2018).

EED Data Generation Details. EED is an anisotropic diffusion technique based on Partial Differ-
ential Equations (PDEs) Perona et al. (1994); Weickert et al. (1998). Starting with the original image
as the initial value, it utilizes a spatially dependent variation of the Laplace operator to propagate
color information along edges but not across them, thus leading to texture being largely removed
from images and higher level features being largely preserved. For the production of the EED data
Weickert et al. (1998) we have used a variation proposed in Heinert et al. (2024) that avoids cir-
cular artifacts and preserves shapes particularly well by applying spatial orientation smoothing as
proposed for Coherence Enhancing Diffusion in Weickert (1999). The PDE is solved using explicit
Euler, channel coupling from (Weickert & Welk, 2006, p. 321) and the discretization described in
(Weickert et al., 2013, p. 380-391).

The diffusion parameters are the same for all three data sets, Cityscapes, CARLA and PASCAL
Context:

• Contrast parameter λ = 1/15.

• Gaussian blurring kernel size k = 5 and standard deviation σ =
√
5.

• Time step length τ = 0.2 and artificial spatial distance h = 1.

• Number of time steps NEED = 8192.
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(a) all cues (b) CityV (c) CityHS

(d) TRGB (e) T (f) THS

(g) SEED-RGB (h) SEED-V (i) SEED-HS

(j) RGB (k) SHED (l) HS

(m) gray

Figure 7: Overview of the cue decomposition of a Cityscapes image (all cues) into texture, shape,
hue and saturation (HS) and gray components. For the color cues the RGB, HS and V value distri-
bution of the image are scattered for visualization purpose.

• Discretization parameters α = 0.49 and β = 0.

For a visual example see fig. 7.

Carla Data Generation Details. Although CARLA claims to support online texture switching
as of version 0.9.14, this feature is limited to specific instances and found to be inadequate for the
purposes of this study. As a consequence, we manually modified each material instance, replacing
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patch
transformations

texture patches
texture patch croppingclass-wise

segment masking
basis for class-wise

texture cropping

contour filled
texture images mosaic

pool of
mosaic images

pool of contour filled
texture images of every class

texture dataset
texture filled

voronoi diagrams
filling voronoi diagrams

with different classes

images

Figure 8: Detailed scheme of the texture cue extraction process. It consists of the three main steps:
class-wise patch extraction, class-wise mosaic image construction and segmentation dataset creation
based on Voronoi diagrams.

(a) basic texture (b) texture removed CARLA city (c) post-processed frame

Figure 9: Basic components to extract shape with grayness via texture removal in CARLA.

surface textures with a basic default texture pattern (gray checkerboard). Since the sky is not a
meshed object, it was not possible to manipulate its texture. Instead, we set the weather conditions
to clear noon to achieve a uniform texture. The dataset is recorded by a vehicle in CARLA with
an RGB camera and semantic segmentation sensor in the ego perspective driving in autopilot mode
as described in section 4.1. In a post-processing step the images are gray scaled to remove the sky
color. The basic components of the procedure are visualized in fig. 9.

Model Implementation Details. For the CNN-based models we adapt the DeepLabV3 model
from torchvision2 to our needs. For the transformer models we use the MMSegmentation framework
MMSegmentation Contributors (2020).

A.3 ADDITIONAL NUMERICAL EXPERIMENTS

Comparison of Cue Influence Without Domain Shift. The texture and shape cue experts face
a domain shift when evaluated on the corresponding base dataset image. Except for the texture
extraction procedure all cue extraction methods can be applied as an online transformation during
inference. This allows us to compare the cue influence without domain shift for the shape experts.
We observe that the S cue based on object contours (SHED) mostly outperforms other experts trained
on shape cues, also when the latter receive additional color cue information, see table 5. The gen-
eration of the texture cue dataset does not allow a one to one correspondence between a texture and

2https://github.com/pytorch/vision/blob/main/torchvision/models/

segmentation/deeplabv3.py
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Table 5: Cue influence in terms of mIoU performance for the CNN experts when evaluated in-
domain, i.e., the validation dataset is pre-processed with the same cue extraction method as the
training dataset. Each column is sorted in ascending order according to the in-domain cue perfor-
mance on Cityscapes.

Cityscapes CARLA PASCAL Context
mIoU mIoU rank change w.r.t. mIoU rank change w.r.t.

(%, ↑) Cityscapes CNN (%, ↑) Cityscapes CNN

no info 0.25± 0.35 no info 0.38± 0.44 → no info 0.11± 0.11 →
V 6.39± 0.04 V 6.01± 0.08 → V 2.27± 0.04 →

HS 9.33± 0.18 HS 14.88± 0.38 → HS 3.35± 0.10 →
RGB 11.31± 0.52 RGB 15.77± 0.57 → RGB 4.91± 0.05 →

SEED-V 45.02± 0.51 SEED-V 60.73± 2.20 → THS 25.80± 0.10 ↗7

Stextureless 61.45± 1.70
SEED-HS 46.00± 0.46 SEED-HS 62.20± 1.89 → SEED-HS 29.13± 1.15 →

SEED-RGB 48.47± 0.45 SHED 62.65± 1.88 ↗1 SEED-V 33.20± 0.62 ↘2

SHED 55.80± 0.59 SEED-RGB 65.83± 0.63 ↘1 SEED-RGB 35.33± 0.78 ↘1

CityHS 59.89± 0.74 CARLAHS 70.34± 1.56 → PascalHS 36.10± 0.34 ↗1

CityV 64.21± 0.60 CARLAV 73.17± 5.19 → SHED 37.63± 0.15 ↘2

all cues 65.22± 0.47 all cues 75.71± 1.50 → TV 39.37± 0.50 ↗3

THS 79.63± 2.22 THS 94.30± 0.77 → TRGB 39.73± 0.55 ↗1

TRGB 81.20± 1.34 TRGB 97.08± 1.12 → PascalV 45.39± 0.71 ↘3

TV 86.20± 1.43 TV 97.53± 0.13 → all cues 45.45± 0.18 ↘3

base dataset image. However, we can evaluate the expert performance on a texture dataset generated
from the validation images of the base dataset. For Cityscapes and CARLA, we find that the T cue
outperforms all other cues. We conclude that learning texture is easier but either suffers stronger
from the domain shift or overfits to its training domain.

Cue Influence on Frequency-weighted Segmentation Performance. Dependent on the use-case,
different metrics may be better suited to quantify the performance of a model. MIoU is often used
in semantic segmentation, if all classes are equally important. The frequency-weighted Intersection
over Union (fwIoU) can be used to weight each class importance depending on their frequency of
appearance Ulku & Akagündüz (2022). Comparing the ranking of the cue influences measured by
mIoU (see tables 2 and 3) and by fwIoU (see table 6), we observe only minor differences for real-
world datasets. For the CARLA dataset we see a slightly higher influence of the texture which aligns
with our findings that the T cue is mostly valuable for larger segments.

Table 6: Cue influence w.r.t. frequency-weighted segmentation performance.

Cityscapes CNN CARLA PASCAL Context
CNN fwIoU rank change CNN fwIoU rank change fwIoU rank change

(%, ↑) w.r.t. mIoU (%, ↑) w.r.t. mIoU (%, ↑) w.r.t. mIoU

V 25.78± 0.148324 → V 17.70± 0.69 → V 06.50± 0.10 →
HS 33.22± 0.4711688 → SHED 26.07± 1.65 → SHED 07.97± 1.64 ↗1

RGB 40.06± 1.2136721 → HS 45.10± 1.19 → HS 09.07± 0.23 ↘1

SHED 45.62± 5.6935929 → SEED-V 46.00± 3.91 ↗1 RGB 12.67± 0.12 →
SEED-HS 51.04± 5.0604348 ↗1 RGB 46.83± 1.25 ↘1 THS 17.30± 0.20 →

TV 57.32± 1.7512852 ↘1 SEED-HS 63.97± 4.70 → TV 23.50± 1.04 ↗2

TRGB 58.90± 3.4907019 → TV 70.83± 4.15 → TRGB 23.67± 2.23 ↘1

THS 59.04± 2.9896488 → SEED-RGB 71.48± 1.18 ↗2 SEED-HS 26.10± 1.84 ↘1

SEED-V 62.54± 6.1313131 → TRGB 78.35± 1.60 → SEED-V 32.73± 2.36 →
SEED-RGB 78.14± 2.9441467 → THS 78.83± 1.03 ↘1 SEED-RGB 39.97± 0.75 →
CityHS 88.26± 0.181659 → all cues 82.18± 2.36 ↗2 PASCALHS 44.33± 0.32 →
CityV 89.24± 0.181659 → CARLAV 86.33± 3.43 → PASCALV 52.40± 0.61 →

all cues 89.84± 0.1516575 → CARLAHS 88.43± 5.34 ↘2 PASCALRGB 53.50± 0.00 →

Cue Influence on Different Semantic Classes. Figures 10 to 11 show that the results reported on
Cityscapes generalize to the other base datasets as well as to the transformer model. However, for
the CARLA base dataset we observe that the texture is more discriminatory compared to the real-
world datasets (cf. column 4 ‘rank change’ in table 3) and the performance of the TRGB expert on
classes like road, sidewalk and building surpasses the performance of the comparable shape expert
SEED-RGB. In fig. 16 we provide additional qualitative results for this finding.
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Figure 10: Class-specific cue influence for the shape and texture cue, both with RGB color cue, on
CARLA and PASCAL Context.
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Figure 11: Class-specific cue influence for the transformer based shape and texture cue, both with
RGB color cue, on Cityscapes.

Cue Influence Dependent on Location in an Image. In this section we provide additional nu-
merical results on the study of the two experts SEED-RGB and TRGB on pixel level. In our experiments
for the CARLA base dataset on pixel level we found that the S+C and T+C cues are complemen-
tary. Fusing SEED-RGB and TRGB improves the overall scene understanding by a notable margin. The
fusion model achieves a performance of 78.10% mIoU on the CARLA test set which is about 19 pp.
superior to the test set performance of SEED-RGB and more than 22 pp. superior to when relying only
on TRGB (cf. fig. 10). In CARLA the described dominated shape influence on segment boundaries
(cf. table 4) is more pronounced and thus exploited by the fusion model, see fig. 12. Additional
qualitative results of the fusion prediction and the corresponding pixel-wise weighting of the expert
influence is depicted in fig. 13.

A qualitative overview of the predictions of all cue experts is shown in figs. 17 to 19 for Cityscapes,
CARLA and PASCAL Context, respectively. We observed for the street scene base datasets that
already a non-negligible amount of information, like the position of a car, can be learned solely
based on the color value of a pixel (cf. figs. 17 and 18 last row).

Reliable predictions are of major concern when using DNNs in safety critical applications like au-
tonomous driving or medical imaging. We suggest that cue experts with a similar performance serve
as different sources of evidence for a prediction. If the texture cue expert predicts a car but the shape
expert predicts road, this can be a valuable source of redundancy and provide interpretable hints
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prediction of texture expert prediction of shape expert

1.0

0.8

0.4

0.2

0.0

0.6

heatmap for shape influence

input image prediction of fusion model ground truth

Figure 12: A comparison of the prediction of the fusion model and the TRGB and SEED-RGB experts
on a CARLA test set image. The heatmap shows where and how much each expert’s prediction
influences the prediction of the fusion model. Dark green pixels mean the fusion model bases its
prediction on the shape expert, while light purple pixels mean it is based on the texture expert.

1.0

0.8

0.4

0.2

0.0

0.6

Figure 13: Fusion of the softmax prediction of SEED-RGB and TRGB on CARLA (see fig. 16 for the
single expert prediction). The heatmap shows how much influence the expert’s prediction has in the
fusion model. Dark green pixels mean the fusion model bases its prediction on the shape expert,
while light purple pixels mean it is based on the texture expert.
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(a) image (b) SEED-RGB pred. (c) TRGB pred.

(d) Total Variation (e) Heatmap majority vote (f) Majority vote pred.

(g) image (h) SEED-RGB pred. (i) TRGB pred.

(j) Total Variation (k) Heatmap majority vote (l) Majority vote pred.

Figure 14: Example of a contradiction heatmap based on the total variation distance for the predicted
class distributions of the SEED-RGB and TRGB expert on Cityscapes and CARLA for an unusual road
user. In d) light denote a high total variation distance and can be understood as high prediction
uncertainties. In e) pixels in green correspond to predictions based on the shape expert.

towards the safety of the overall prediction. This information could also be weighted with respect to
the findings of our study, e.g., that we rely more on the shape expert for segment boundary pixels.
We generate an uncertainty heatmap by calculating the total variation distance ||pS − pT||1 between
the predicted class distributions given by the softmax activations pS and pT of the respective experts,
SEED-RGB and TRGB. In each pixel the joint prediction of the two experts is the prediction of the ex-
pert which is more confident. That is, for each pixel the prediction is set to the class with the highest
softmax activation among both experts. We qualitatively evaluate our approach on street scenes with
unusual road users in the real and synthetic world. The results are visualized in fig. 14. In both cases
we observe a high total variation distance, indicating that the experts’ predictions contradict on the
unusual road user. This can be used as an uncertainty metric for the joint prediction. We plan to
explore this direction in future work.

Cue Influence in Different Architectures. The transformer experiments conducted on the PAS-
CAL Context dataset (see table 7) demonstrate results comparable to those obtained on the
Cityscapes dataset (cf. table 2). These findings suggest that the influence of cues remains largely
consistent between CNN and transformer architectures, as the order of cues has not experienced
significant changes (see last column of table 7 for reference).

To gain deeper insights, we investigate, whether the backbone depth of the CNN expert models
has an impact on the cue extraction capability. We analyze the influence of the number of ResNet
layers for the experts SEED-RGB, TRGB and all cues. We trim the ResNet backbone to either 2, 3 or
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Table 7: Cue influence in terms of mIoU performance drop on PASCAL Context for DeepLabV3
with ResNet backbone and SegFormer. Cue description follows the listing in table 1. MIoU gaps to
maximal performance are stated in percent points (pp.). “PASCAL” refers to PASCAL Context.

Color CNN mIoU CNN gap transformer mIoU transformer gap change in rank
S T V HS (%, ↑) (pp., ↓) (%, ↑) (pp., ↓) w.r.t. CNN

no info 0.11± 0.11 45.34 0.45± 0.34 43.14 →
V ✓ 2.27± 0.04 43.18

HS ✓ 3.35± 0.10 42.10

SHED ✓ 4.71± 1.15 40.74 5.04± 0.47 38.55 ↘1

RGB ✓ ✓ 4.91± 0.05 40.54
THS ✓ ✓ 11.39± 0.36 34.06 13.70± 0.14 29.89 →

TRGB ✓ ✓ ✓ 17.75± 0.82 27.70 19.99± 0.21 23.60 →
SEED-HS ✓ ✓ 17.80± 1.67 27.65 21.15± 0.49 22.44 ↘1

TV ✓ ✓ 18.43± 0.47 27.02 20.27± 0.23 23.32 ↗1

SEED-V ✓ ✓ 25.80± 2.40 19.65 22.78± 0.65 20.81 →
SEED-RGB ✓ ✓ ✓ 31.32± 0.82 14.13 32.09± 0.75 11.50 →

PASCALHS ✓ ✓ ✓ 36.10± 0.34 9.35 35.03± 0.16 8.56 →
PASCALV ✓ ✓ ✓ 45.39± 0.71 0.06 43.22± 0.04 0.37 →

all cues ✓ ✓ ✓ ✓ 45.45± 0.18 0.00 43.59± 0.36 0.00 →

layer width # layers mIoU # parameters

256 2 11.31 84,288
256 3 11.79 150,336
256 5 11.95 282,432
128 30 11.06 487,584
256 14 10.49 876,864
512 5 11.55 1,121,920
512 7 12.03 1,648,256

Figure 15: Layer study: Left: Change in performance w.r.t. the number of ResNet layers. The per-
formance is normalized w.r.t. the mIoU obtained by the corresponding cue expert with a ResNet18
backbone evaluated on the base dataset. Right: Comparison of the performance for the color expert
with respect to the model capacity. The backbone of the FCN with only 1×1-convolutions is varied
between 2 to 30 layers with varying width.

4 ResNet layers each with a single ResNet block, and term them ResNet6, ResNet8 and ResNet10,
respectively. When training each ResNet on the cue-specific dataset and evaluating it on the base
dataset, we observe that the texture expert improves performance with fewer ResNet layers. In
contrast, the performance of the shape expert and of the expert trained on the original data with all
cues increases with more layers. The results suggest, that relevant features are learned in earlier
layers since a moderate depth is enough to correctly predict segments. Furthermore, we observe
that the texture expert overfits to its training domain for deeper ResNet architectures, leading to a
decreased performance on the original dataset. In contrast, the shape expert, presumably needs a
larger field of view to predict segments based on shape features since a deeper architecture improves
the performance.

Additionally, we compare the performance of the color expert with respect to different FCN back-
bones varying in the width and the number of layers. The results in fig. 15 show that increasing the
capacity up to an factor of 19.5 (last row) does not significantly increase the model performance. Our
evaluation is limited to 1,648,256 parameters due to reaching the maximal GPU RAM capacity of an
A100 with 80 GB RAM. We conclude that the model capacity in terms of learnable parameters used
in our experiments of the main manuscript (first row) is not a limiting factor for the segmentation
performance.
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Figure 16: Comparison of the prediction of the two experts SEED-RGB (left) and TRGB (mid) for
Cityscapes, CARLA and PASCAL Context. As a reference the ground truth is displayed in the third
column (right).
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(a) image (b) ground truth (c) all cues
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(m) gray (n) HS (o) RGB

Figure 17: Overview of the predictions of all cues for a Cityscapes image
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(a) image (b) ground truth (c) all cues
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Figure 18: Overview of the predictions of all cues for a CARLA image
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(a) image (b) ground truth (c) all cues
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Figure 19: Overview of the predictions of all cues for a PASCAL Context image.
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