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Abstract

This paper proposes a novel matrix quantization method, Binary Quadratic Quan-
tization (BQQ). In contrast to conventional first-order quantization approaches—
such as uniform quantization and binary coding quantization—that approximate
real-valued matrices via linear combinations of binary bases, BQQ leverages the
expressive power of binary quadratic expressions while maintaining an extremely
compact data format. We validate our approach with two experiments: a matrix
compression benchmark and post-training quantization (PTQ) on pretrained Vision
Transformer-based models. Experimental results demonstrate that BQQ consis-
tently achieves a superior trade-off between memory efficiency and reconstruction
error than conventional methods for compressing diverse matrix data. It also
delivers strong PTQ performance, even though we neither target state-of-the-art
PTQ accuracy under tight memory constraints nor rely on PTQ-specific binary
matrix optimization. For example, our proposed method outperforms the state-of-
the-art PTQ method by up to 2.2% and 59.1% on the ImageNet dataset under the
calibration-based and data-free scenarios, respectively, with quantization equivalent
to 2 bits. These findings highlight the surprising effectiveness of binary quadratic
expressions for efficient matrix approximation and neural network compression.

1 Introduction

Modern information systems increasingly demand efficiency in both computation and resource usage,
driven by growing model sizes, data volumes, and deployment requirements across diverse hardware
environments. In these systems, real-valued matrices frequently appear as weight parameters in
deep neural networks (DNNs), as high-dimensional embeddings in retrieval systems, and as training
datasets. Because such matrices are central to a wide range of data processing and applications, their
efficient representation and compression is crucial for reducing the costs of storage, computation,
and data movement—an essential step toward deploying models on edge devices, reducing memory
usage in retrieval systems, or scaling to large datasets learning.

A widely adopted strategy for this purpose is quantization, which approximates continuous-valued
data with discrete levels to save memory and enable faster computation. Most existing methods rely
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on first-order scalar quantization approaches—such as Uniform Quantization (UQ) or Binary Coding
Quantization (BCQ) [23]]—that represent real-valued matrices as linear combinations of binary bases.
While effective under moderate compression, such first-order methods often struggle to accurately
reconstruct the original matrix with ultra-low-bit quantization, as the number of possible values for
each element becomes extremely limited. Beyond these scalar quantization approaches, alternative
techniques such as Vector Quantization (VQ) [15] and its variants (e.g., Product Quantization
(PQ) [31] and Lattice Vector Quantization (LVQ) [1L[16L/60]), as well as low-rank approximations [13]],
have also been explored. While these methods can capture correlations among dimensions more
effectively, they typically rely on codebooks or factorized components that contain unquantized real
values. Consequently, although the index or low-rank representation is compact, their dependence on
floating-point vectors limits hardware efficiency, unlike scalar quantization methods. Although several
studies [11} 22} 164, |56] have explored combining low-rank approximation with scalar quantization,
the use of extremely low-bit (e.g., binary) representations for the factorized components has not
yet been fully explored. Furthermore, to our knowledge, no prior work has applied, as in BCQ,
independent scaling factors for each binary matrix in a factorized representation. Incorporating
such strategies could potentially enable even more efficient matrix approximation under extreme
low-bit constraints. Motivated by these observations, we introduce Binary Quadratic Quantization
(BQQ), a framework that represents matrices using quadratic combinations of binary variables,
with independent scaling factors assigned to each binary matrix. Specifically, the target matrix is
represented as a sum of binary matrix products, enabling expressive nonlinear approximations while
maintaining an exceptionally compact data format. This approach pushes the boundaries of matrix
quantization by addressing the limitations of traditional methods and offering a fundamentally new
perspective on matrix approximation.

In this paper, we demonstrate the effectiveness of BQQ through comprehensive evaluations: (i)
measuring the trade-off between quantization error and memory usage across various matrix datasets,
(ii) assessing performance when applied to post-training quantization (PTQ) of DNNs. Beyond
these applications, the generality of our framework suggests its potential for other scenarios where
efficient matrix approximations are essential, such as accelerating approximate nearest neighbor
(ANN) [12,47]]-based retrieval systems and improving the scalability of large-scale learning powered
by abundant training data [70, 73].

Our main contributions are:

* We propose BQQ, a novel matrix quantization framework based on quadratic expressions of
binary matrices, offering a new perspective on extreme matrix compression.

* Minimizing the quantization error under the BQQ formulation naturally leads to an NP-hard
optimization problem. To address this issue, we develop an efficient solution based on
polynomial unconstrained binary optimization (PUBO) and convex quadratic programming.

* We demonstrate that BQQ consistently achieves an excellent trade-off between memory
usage and quantization error for compressing diverse matrix data.

* We show that BQQ also delivers state-of-the-art (SOTA) performance in weight PTQ of
Vision Transformer [[12]-based models (ViTs), even though our PTQ method is based mainly
on minimizing weight reconstruction error, rather than explicitly minimizing activation error
to achieve SOTA performance.

To the best of our knowledge, this is the first study to achieve practical accuracy—such as
72% ImageNet top-1 accuracy on the DeiT-base model-using data-free PTQ for ViTs at a
model size equivalent to 2-bit quantization.

2 Related Works

Quantization Quantization is a fundamental technique for reducing the precision of real-valued
parameters, widely used for model compression and efficient processing. It converts continuous
values into a limited set of discrete levels, with methods varying in granularity and complexity
depending on hardware constraints and the acceptable accuracy-performance trade-off. UQ is the
most commonly used quantization method, which approximates a real-valued matrix W € R *"™ as:
p—1
Wra) 2'B; +b1, 1)
=0
where B; € {0,1}™*", a € R is the scaling factor, and b € R is a bias (or zero-point). This
form corresponds to p-bit quantization with uniform step sizes. On the other hand, non-uniform



quantization assigns quantization levels in a data-aware manner, allowing better alignment with the
underlying distribution of matrices and reducing quantization error. One example is BCQ [23]], which
approximates a real-valued matrix as a sum of binary bases with individual scaling factors:

p—1
W =~ ZaiBi, (2)
=0

where a; € R and B; € {0,1}™*" [6] or {—1, 1}">™ [62] [29] 37, 23,163} 3, 53]. By introducing a
bias term, the {0, 1}™*™ and {—1, 1}™*" representations can be made equivalent and encompass UQ.
This enables flexible quantization levels that can better capture the characteristics of W. Alternatively,
some methods apply a nonlinear transformation before quantization. One such method is logarithmic
quantization [51]], which approximates the logarithmic scale of the original weights: log,|W| =~
> ' 2B, + b1, where B; € {0,1}"*™ and b € R. This technique is particularly effective when
the dlstrlbution of matrix values is highly skewed. It also offers a hardware-friendly implementation
of matrix multiplication, as the powers-of-two representation allows the operation to be performed
using efficient bit-shift operations. However, because the sign information is lost in the logarithmic
transformation, an additional bit is required to retain the original sign of each element.

Matrix Factorization Matrix factorization expresses a matrix W™ *" exactly or approximately
as a product W ~ YZ, and is a fundamental tool in signal processing, machine learning, and data

analysis. The target matrix W™ %" and the factor matrices Y™ *! and Z'*™ are subject to different
constraints depending on the specific method. For example:

« Singular Value Decomposition (SVD) [19]: W € R™*" Y ¢ R™*! | Z ¢ R™*" |
Note that singular value diagonal matrix and orthogonal matrix are described as one.

» Non-negative Matrix Factorization (NMF) [38]: W € R’goxn, Y € ]RTZ"OXZ, Zc RZEXO"

+ Real/Binary Matrix Factorization (RBMF) [58): W € R™*", Y € R™*!, Z € {0,1}'*"

¢ Non-negative/Binary Matrix Factorization (NBMF) [52]: W < Ran Y € R’;OXZ, Z €
{0, 1}1%"

« Binary Matrix Factorization (BMF) [69]: W € {0,1}™*", Y € {0,1}™*",Z € {0,1}'*"

* Boolean Matrix Factorization (BoolMF) [49] 50]: W € {0,1}"™*", Y € {0, 1}’”“, AR
{0, 1}, with Boolean product: W;; = \/f,C:l(Y”C A Zy;)

Such matrix factorization techniques are widely used not only in data analysis but also for matrix
compression through low-rank approximation (i.e., | < min(m,n)) [13]]. Building on this idea,
Low-Rank Adaptation (LoRA) [25] enables efficient fine-tuning of large pre-trained models by
restricting weight updates to a low-rank subspace. More recently, [11} 164} 22]] combines LoRA with
quantization, further reducing memory usage while preserving model quality, and has become a
widely adopted approach for resource-efficient fine-tuning.

3 Preliminaries

Polynomial Unconstrained Binary Optimization (PUBO) Polynomial Unconstrained Binary
Optimization (PUBO) [17, [18]] is a class of combinatorial optimization problems defined as the
minimization of a multivariate polynomial over binary variables. Formally, it can be expressed as:

L(s) = ZJfl)szl + Z Jffz)zszlsl2 +- 4 Z 1(1’?2 . H Sijs 3)

i1 11 <i2 1] <ig<---<ip

where s € {0, 1} is a binary vector and .J(*) denotes the k-th order interaction coefficients. In the
special case where the degree k = 2, the problem reduces to the well-known Quadratic Unconstrained
Binary Optimization (QUBO) formulation [54} 35]. QUBO is equivalent to minimizing the energy
function of the Ising model [27]] and has been widely studied in various fields, including physics,
computer science, and artificial intelligence. In general, solving PUBO, including QUBO, problems
is NP-hard, and thus, a broad range of heuristics [33} 20} 211 [7, 36, 46|, optical computing [26, [24]]
and quantum computing [32] 30] have been proposed to tackle them efficiently.

Annealed Mean Field Descent One of the recent promising approaches for solving QUBO prob-
lems is Annealed Mean Field Descent (AMFD) [36]], which is based on Mean Field Annealing [3]. It



aims to find minimum solutions by gradually annealing the temperature while optimizing a mean-field

approximation to the canonical distribution: Pc(s) = £ exp (— L(TS)> . Z =) €exp (—#)

Since computing the distribution is generally intractable due to the exponential number of configura-
tions, it is approximated by an independent distribution for each variable (mean-field approximation):
Pyr(s) = Hfil pi(s;), where p;(s;) denotes the probability of taking value s;. AMFD minimizes
the Kullback-Leibler (KL) divergence between Pyr(s) and P, (s) by gradient descent-based updates.
At low temperatures, the canonical distribution concentrates on minimum states, thereby allowing
the extraction of approximate minimum solutions. While AMFD derived an explicit form of the KL,
divergence for QUBO problems, this work extends the framework to general PUBO problems. We
show that the KL divergence between Pyr(s) and Pc(s) can be written as:

L(z) o
DKL (PMF(S) || Pc(S)) = T + hlZ —+ Z [(1 — IZ) ln(l — £Ez> + xT; lnxl] s (4)

i=1

where z; = Ziizo s;pi(si) = pi(1) is the expectation of s; under the mean-field distribution. Please

refer to the App.[A.T|for a detailed derivation of this formulation. Note that z; is a real-valued variable
ranging from O to 1, rather than a binary variable. Therefore, the KL divergence is differentiable
with respect to x;. One iteration of the AMFD algorithm is illustrated in Alg. [I] Note that the
term [(1 — ;) In(1 — ;) + x; In 2] in Eq. @) is approximated by a second-order Taylor expansion
around z; = 0.5 to prevent numerical overflow when z; is close to 0 or 1. This paper applies the
extended AMFD to optimize quantized representations under the general PUBO setting.

4 Proposed Method

4.1 Binary Quadratic Quantization (BQQ)

A primary limitation of conventional first-order quantization methods like UQ and BCQ is the limited
number of distinct values each element can take. For example, 1-bit quantization allows only two
levels (e.g., {—1,+1} or {0, 1}), and 2-bit quantization increases this to just four. Such coarse
granularity restricts representational flexibility, especially under aggressive compression. While
such methods are limited in expressiveness, binary matrix multiplication can yield outputs with a
wider value range, enabling multi-bit representations even though each binary matrix individually
encodes only minimal information. This property suggests a previously underexplored potential
for approximating real-valued matrices through compositions of binary matrices, offering a new
perspective beyond traditional quantization methods. Nonetheless, existing matrix decomposition
approaches operate within fixed numerical domains—either real-to-real (e.g., SVD, NMF) or binary-
to-binary (e.g., BMF, BoolMF). Hybrid methods like RBMF and NBMF bridge these domains but
stop short of fully binary decompositions of real-valued matrices.

Motivated by this gap, we explore a novel quantization scheme that, unlike BCQ which uses linear
combinations of binary matrices, is based on linear combinations of binary matrix products:

p—1
W = Z(OéiYi + Bily)(viZi + dilz), (5)

=0
where W € R™*" Y; € {0,1}™*! and Z; € {0,1}*™ are binary matrices, while a;,7; € R are
scaling factors, and 3;,d; € R are bias terms. Also, 1y,12,1 denote all-ones matrices with the
same shape as Y, Z, W, respectively. Notably, this formulation subsumes BCQ as a special case.

Algorithm 1 One Iteration of AMFD [36]

Input: L, T4, Tewr, T, AT, 1, ¢
OUtPUt: Lcurs Lnews T

1: Tfwd < Teur + € (Teur — Told) > Forward point
2: ® + VL(xwa) > Gradient of the first term in Eq. (@), scaled by T
3: F T (xcur —0.5) > Gradient of the other terms in Eq. (4) (approx. expr.) scaled by T'
4: Tpew < clip (2xeyr — Toa — 7 (F + ®),0,1) > Descent with acceleration and constraints
5: T« T—AT > Annealing




Specifically, when [ = max(m, n), setting «; ¥; + 3;1y as the identity matrix (if m > n), or setting
v:Z; + 0;17 as the identity matrix (if m < n), recovers the standard BCQ structure. We now turn
our attention to the generalized form of Eq. (3)), referred to as Binary Quadratic Quantization (BQQ):
p—1
W (rnYiZi+sYily + tily Z;) + ul, (6)
=0
where 7;,s;,t;,u € R are scalar coefficients. Note that the all-one matrices are used only for
notational convenience and do not need to be stored explicitly; only the binary matrices and scalar
coefficients must be preserved. Also, the intermediate dimension [ can be arbitrarily set, allowing the
number of binary elements to be adjusted independently of the original matrix size.

4.2 Mixed Integer Programming for BQQ

To realize BQQ formulation (Eq. (6)), we consider minimizing the squared error between the original
real-valued matrix and its approximation. The objective function is given by:
2

; )

2

Lpoq =

p—1
‘W - [Z (rYiZ; + s:Yilz + tily Z;) + ul

=0

where the goal is to optimize 3p + 1 real-valued coefficients and the elements of 2p binary matrices.
This is a mixed-integer optimization problem and is NP-hard, making analytical solutions intractable.

To address this, we adopt the following strategy:
1. We apply greedy optimization independently to each index ¢ in Eq. to mitigate the
increasing complexity from a growing number of binary variables.

2. We decouple the optimization of real-valued and binary variables, and alternate between
convex quadratic optimization and PUBO.

To perform greedy optimization for each index i in Eq. (7), we first define the residual matrix
VVreZ) as the difference between the orlglnal matrix W and the partial reconstruction using variables
up to index i — 1: W) = W — [Ej 0 (rY;Z; + ;Y17 +t1v Z; + uy )] . Notably, as an

exception, we set VVr(e(S)) = W. Then, the i-th subproblem can be formulated as the minimization of
the following objective:

. 2
Ls(ut)) - varg) - (TZKZZ +s5,Yilz +t,1vZ; + uil)H2 . (8)

Next, to minimize the objective function (Eq. (8)), we adopt an alternating optimization approach that
separates continuous and binary variables. When the continuous coefficients are fixed, the problem

Algorithm 2 Subproblem Solving via AMFD

Input: Input matrix W € R™*" initial temperature Tiy;;, final temperature Ty, steps Niep, learning
rate 7), accelerating rate (, intermediate dimension [
Output: Binary matrices Y € {0, 1}™*!, Z € {0, 1}'*", scaling factors r;, s;,t;, u; € R

I: Let1 € {1}™*" 1y € {1}, and 17 € {1}"*"

2: Sample Yold, Ziolg ~ U (0,1) > Initial expectation values
3: Y — Yold (Yold — 0. 5) Z — Zold — n(Zold — 0.5)

4 W W/ maX(W) min(W)) > Normalization
5: AT «+ ( init — Tﬁn)/(N%tep - ]-)

6: T < Tt

7: [riy Siy tiy wi] < SFD(Y, Z, W) > SFO: scaling factors optimization using Eq. (I0)
8: for t = 1 to Nyep do

9: [YAvOld, Zold]; [?, Z], T <+ AMFD (L(l) (W, [’I“i7 Si, ti7 ul]), [Yoldv Zold]a [Y, Z], T’7 AT, 7, C)

pubo
> AMFD: AMFD iteration using Alg.[I]

10 [ri, 86,5, u;) < SFO(Y,Z, W)
11: Y « step(Y — 0.5), Z < step(Z — 0.5) > Binarization to the higher probability
12: [ri, 84, b, ug] < (max(W) — min(W)) - SFO(Y,Z, W)




Algorithm 3 Greedy Binary Quadratic Quantization

Input: Matrix W, learning rate 7, accelerating rate (, initial temperature T}, final temperature T,
steps Nyp, intermediate dimension /, binary matrix stacks p

Output: Binary matrices [Yy, Y1, ..., Y,—1], [Z0o, Z1, ..., Z—1], scaling factors 7, s,t € RP, u € R
1: Wees + W
2: fori=0to(p—1)do
3: Yi, Z;,ri, si, ti, u; < SS(Wies, Tinits Thin, Nstep, 7, ¢, 1) > SS: subproblem solving via Alg.
4: Wies < Whes — (1Y Z; + ;Y1 + t, 1y Z; + u;1)
50 u 4 Zf:_ol u;

.. [ - . . 1 . . . .
Original I First-order Quantization i Binary Quadratic Quantization
Input : Input : Input
X : X 1 X
U = P
1 1
i\?\% ?ﬁ} i ?\Cﬁ? ?}P ? H %% Small Binary Matrix
Large Real-valued Matrix 1 Large Binary Matrix 1 1100 1 0)
12 21 09 -02 31 04 1 111010 1 ) 01110 1
(o.e 02 07 13 03 1.5) 1 (1 0110 1) Xp 4 Xp
04 11 02 —01 17 23 1 0100 11 1
1 1 Small Binary Matrix
1 1 10
1 = 1 = 01
l : ) 1 ) 11
1 ! [
1 1
Output 1 Output 1 Output
wx ] p-1 ] p-1
: (az 2B, +b1)X : u1+2(r.-v,-z,-+sivi11+rllyz,-) X
=0 i=0

Figure 1: Comparison between BQQ and first-order quantization in a DNN layer.

reduces to optimizing over binary variables only. In this case, the objective can be reformulated as
a PUBO by reducing powers of binary variables using y? = y, making each such term linear. The
resulting objective takes the following form:

Ly = LG + 71 3 [ViZi = (Yi 0 Yi)(Z: © Z0)
+sfnZ[Yi - Y, 0Y)] +tfmZ[Zi —(Z: 0 Z;)] ©
+2ri8 Y [YiZi — (Y QYi)Zi] + 2riti y_ [YiZi — Yi(Z: © Zi))],

where Y denotes the elementwise sum over all entries of the corresponding matrix.

On the other hand, fixing the binary matrices, the continuous coefficients 7;, s;, t;, u; can be optimized
in closed form via the convexity of the /5 norm.

[riy Siy t'i7 ul] = _[’Uri s Us; s Uty s Uu’i}HZpibn’ (10)
where Hy, € R*** and v € R? are the Hessian matrix and the first-order coefficients of Eq. (9)
with respect to r;, s;, t;, u;, respectively. By incorporating the optimization of the scaling factors into
a single iteration of the AMFD algorithm for PUBO, we aim to solve the subproblem. The complete
procedure is presented in Alg.[2] Using the solution of this subproblem, we then approximate the
original real-valued matrix in a greedy manner. This overall approach is described in Alg.

4.3 Post-Training Quantization via BQQ

This subsection presents a model compression technique for deep neural networks (DNNs) based
on BQQ. In particular, we focus on ViT-based models, which have recently achieved remarkable
success in image processing but still struggle with ultra-low-bit quantization. Quantization methods
for ViTs, as well as for general DNNs, can be categorized into two types: Quantization-Aware
Training (QAT) [44! 39, 163]], which integrates quantization into the training process using labeled
data, and Post-Training Quantization (PTQ) [43\ 41} 68|, [71} [72]], which applies quantization to a
pretrained model using either unlabeled or limited data. Especially, in situations where training data is
unavailable due to privacy constraints or data access limitations, the need to address these challenges
has driven interest in data-free quantization techniques [40} 42]]. Our work focuses on PTQ under
two different scenarios. In the data-free setting, we perform only data-free weight quantization. In
the calibration-based setting, we first apply data-free weight quantization, followed by correction



of bias and normalization parameters using a small amount of unlabeled calibration data. Previous
studies have explored weight quantization to reduce model size and inference costs, as well as
quantization of both weights and activations to further reduce inference costs. In this study, we focus
exclusively on weight quantization to clarify the standalone effectiveness of BQQ. Note that, unlike
standard first-order quantization, BQQ approximates the original matrix using a combination of

binary matrices with altered shapes, as illustrated in Fig.[T] (a): channel-wise (column-wise) scaling factors

Data-Free Quantization First, we apply a data-free
quantization approach, directly quantizing the weights.
Specifically, we formulate weight quantization as an op-
timization problem that minimizes the squared reconstruc-
tion error between a pretrained weight matrix W and
its quantized counterpart via BQQ, as shown in Eq. (7).
While prior methods often use channel-wise (i.e., column-

Num. of scaling factors : x

(b): group-wise scaling factors

wise) scaling factors to maintain accuracy, they result in Wesgial > | | "V gioupy

H wEO WPy, , || W, BPUPaw,
a large number of scaling parameters. Instead, we adopt z 2. § B
a group-wise quantization strategy [65], in which each [ Wonge (-mp"'m,‘,z] [W’"’Tgro'upw’“"'"]
weight matrix is divided into smaller submatrices, and Wit #ma | = | Wi Wonn
BQQ is applied independently to each with its own set of Num. of scaling factors : v
scaling factors (see Fig[2)). This can reduce the number of (group size >> m)
scaling parameters, thereby shrinking the model size. Figure 2: Weight scaling methods.

Correction of Bias and Normalization Parameters After quantizing all weight matrices, we
optionally apply a lightweight correction step using a small set of unlabeled calibration inputs.
Similar to [5], we refine only the bias and layer normalization parameters—while keeping all other
parameters fixed—by minimizing the mean squared error between the output logits of the original fo,
and quantized models fqy, as a form of knowledge distillation:

ming || forg(Bore) — fa(0)||5 / | fore(Borg)| , Where 8 denotes the bias and normalization parameters.
This correction step compensates for quantization-induced errors and helps recover lost accuracy
without requiring full fine-tuning or access to labeled data.

5 Evaluation

Implementation Details As described in Eq. (6), BQQ decomposes a real-valued matrix of size
m x n into binary matrices Y; € {0,1}™*! and Z; € {0, 1}'*™. To ensure a fair comparison with
baseline methods like UQ and BCQ, we fix the intermediate dimension ! = round(mn/(m + n)) for
all binary matrices. This ensures the total number of binary parameters matches that of UQ and BCQ,
making p in Eq. (6) the pseudo bit width. Another way to match the number of binary parameters is to
adjust the ratio between the intermediate dimension [ and the number of stacks p in Eq. (6); however,
this paper adopts the approach described above. Unless otherwise noted, the hyperparameters used in
Alg. E]are set to the following values throughout all experiments: i, = 0.2, T, = 0.005, n = 0.06,
¢ = 4, and Ngep = 50,000. Also, the scaling factor and the bias for UQ are optimized via grid search
to minimize the mean squared error (MSE), as described in App.[A.2] For BCQ, we implement the
method based on [62], referring to parts of the open-source code provided in [65]].

Matrix Data Compression We evaluate the trade-off between approximation error and memory size
across five types of real-valued matrices: (i) a random matrix sampled from a Gaussian distribution,
(i1) a weight matrix from the DeiT-S model [39], (iii) an inter-city distance matrix from the TSPLIB
dataset [53]], (iv) a matrix composed of multiple 128-dimensional feature vectors extracted from the
SIFT dataset [28], commonly used in ANN search, (v) a red channel matrix of an image from the
ImageNet dataset [[10]. Each matrix is standardized to have zero mean and a variance of one prior to
quantization. We compare nine methods: (1) SVD, a low-rank approximation using SVD; (2) SVD +
p-bit UQ, SVD low-rank approximation followed by p-bit UQ of the factorized matrices; (3) UQ; (4)
BCQ; (5)VQ, vector quantization where groups of values are clustered using k-means and encoded
as indices of a codebook; (6) VQ + p-bit UQ, VQ followed by p-bit UQ of centroids; (7) Fs LVQ,
lattice vector quantization using the Ejg lattice with 240 centroids of norm V2, representing each
8-dimensional input as a linear combination of centroids stored in 8 bits; (8) 8-bit UQ + JPEG; a
combination of 8-bit UQ and JPEG-style compression [61], where discrete cosine transformation is
applied before quantization to exploit spatial redundancy in images; (9) BQQ. The performance is
measured in terms of MSE and the memory size of the quantized matrices.
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Figure 3: Comparison of the trade-off between reconstruction error (MSE) and memory size for five
matrix datasets. Rows 1-4 show the trade-off curves, value distributions, singular value distributions,
and 3D plots of the matrices, respectively.

Fig. 3] presents trade-off curves along with visualizations of value distributions, singular value
distributions, and 3D surface plots derived from the original matrices. Across all datasets, BQQ
consistently achieves a superior trade-off between compression rate and reconstruction accuracy,
demonstrating its general effectiveness for matrix data approximation. Notably, the advantage of
BQQ over UQ, BCQ, and LVQ becomes especially pronounced for matrices whose singular value
spectrum is dominated by a few large components. In contrast, for matrices with relatively flat
singular value distributions—i.e., those lacking dominant components—the gain over them is smaller.
This suggests that BQQ particularly benefits from matrices with concentrated spectral energy. On
the other hand, when compared to SVD, SVD + UQ, VQ, and VQ + UQ, the opposite trend is
observed: BQQ exhibits greater advantage for matrices with more uniform singular value spectra.
Admittedly, on the ImageNet dataset, BQQ yields a less favorable trade-off between memory size and
reconstruction error compared to JPEG. However, since JPEG combines discrete cosine transform
with quantization, integrating BQQ with transform-based approaches could potentially lead to further
improvements in compression efficiency.

Post-Training Quantization for ViTs Following the methodology outlined in Sec.[#.3] we evaluate
the performance of BQQ on pretrained ViTs. Specifically, we compare BQQ with several leading
PTQ methods, including COMQ [68]], FQ-ViT [43]], PTQ4ViT [66], RepQ-ViT [41]], ERQ [71]], and
PSAQ-VIT [40], using two representative ViT architectures: DeiT [59] and Swin Transformer [43].
All methods are tested under the 32-bit activation setting to ensure a fair comparison. Additionally, to
appropriately assess the effectiveness of BQQ, we also compare it with variants that use the exact
same process but replace the quantization method with UQ or BCQ, as baselines. In our quantization
framework, we apply group-wise quantization with submatrices of size 384 x 384 for DeiTs and
96 x 96 for Swins based on the first block’s channel number. If a weight matrix matches the group size,
it is not subdivided further (i.e., layer-wise quantization). As a special case, the final classification
layer uses a group size of 100 x 96. Also, the linear patch embedding layer in DeiT is grouped based
on its embedding dimension (384 x 384 for DeiT-S and 784 x 784 for DeiT-B), while Swin’s patch
embedding layer, implemented as a convolutional layer, uses channel-wise UQ instead of BQQ. The
same group sizes are applied in the UQ and BCQ baselines for fair comparison. In the case of bias
and normalization parameter correction (denoted as c-UQ, c-BCQ, and c-BQQ for each quantization
method), we optimize them using the Adam optimizer with a learning rate of 0.001 for 15 epochs



Table 1: Comparison of ImageNet top-1 accuracy across various quantization methods on ViTs.

Top-1 Accuracy [%]

Method W bit  Data Free W scale Deil-S Deil.B  Swin-T  Swin-S
COMQ 2 X column-wise 67.19 77.14 74.05 78.02
ERQ 2 X column-wise 31.95 63.67 45.97 35.44
RepQ-ViT 2 X column-wise 0.31 0.42 0.12 0.12
c-UQ 2 X group-wise 52.21 60.57 67.49 74.16
c¢-BCQ 2 X group-wise 60.13 73.37 68.09 73.97
c¢-BQQ 2% X group-wise 69.41 77.94 74.03 78.47
PSAQ-ViT 2 v column-wise 0.27 0.19 0.15 0.14
UuQ 2 v group-wise 3.23 2.45 14.69 30.69
BCQ 2 v group-wise 10.83 12.99 18.62 34.84
BQQ 2% v group-wise 58.25 72.09 57.37 68.17
COMQ 3 X column-wise 77.47 80.47 79.31 81.95
ERQ 3 X column-wise 75.56 79.73 77.99 80.87
RepQ-ViT 3 X column-wise 58.26 68.80 21.41 69.57
FQ-ViT 3 X column-wise 51.06 65.64 65.38 71.88
PTQ4ViT 3 X layer-wise 70.22 75.42 70.74 73.46
c-UQ 3 X group-wise 72.08 78.85 78.11 80.91
¢-BCQ 3 X group-wise 75.53 79.78 78.60 81.19
c-BQQ 3% X group-wise 77.33 80.81 79.34 81.86
PSAQ-ViT 3 v column-wise 52.76 66.40 65.87 72.53
UQ 3 v group-wise 42.28 58.56 70.90 75.72
BCQ 3 v group-wise 63.46 69.09 72.99 76.18
BQQ 3% v group-wise 75.61 79.90 77.33 80.36
COMQ 4 X column-wise 78.98 81.40 80.89 82.85
ERQ 4 X column-wise 78.95 81.46 80.85 82.99
RepQ-ViT 4 X column-wise 75.39 78.77 75.08 81.53
FQ-ViT 4 X column-wise 76.23 79.92 78.81 81.89
PTQ4ViT 4 X layer-wise 77.50 80.07 78.46 80.24
c-UQ 4 X group-wise 78.15 81.01 80.42 82.40
c¢-BCQ 4 X group-wise 78.67 81.22 80.46 82.47
c-BQQ 4% X group-wise 79.12 81.47 80.57 82.72
PSAQ-ViT 4 v column-wise 76.59 80.23 79.15 81.94
UuQ 4 v group-wise 73.53 77.49 79.17 81.47
BCQ 4 v group-wise 75.82 78.58 79.63 81.72
BQQ 4% v group-wise 78.76 81.20 80.21 82.21
Full Precision 32 - - 79.83 81.80 81.37 83.21

*: Pseudo p™-bit BQQ has a model size matching that of a p-bit quantized model, despite each matrix being 1 bit.

via a minibatch size of 16, and calibration data are randomly selected from the ImageNet [10] training
dataset, with 2048 samples for DeiTs and 1024 samples for Swins, in accordance with [68]] setting.

Tab. [I|summarizes the experimental results. Here, W bit denotes the bit width for weight quantization,
while W scale indicates the granularity of scaling factors (e.g., per-layer, per-group, or per-column).
Note that although each weight matrix in BQQ is binary, its configuration is designed to match the
information content of a first-order p-bit quantized model, which we refer to as pseudo p*-bit. The
results for COMQ [68]], FQ-ViT [43]], and PTQ4ViT [66] are cited from [68]], while those for RepQ-
ViT [41], ERQ [71]], and PSAQ-ViT [40] were obtained using publicly available implementations.
As shown in the experimental results, BQQ consistently achieves SOTA performance regardless of
whether calibration data is used, demonstrating a compelling trade-off between accuracy and model
size. In particular, it shows notable improvements both in data-free settings and in configurations
with model size equivalent to 2-bit quantization. To the best of our knowledge, this is the first study to
achieve practically usable accuracy with a model size equivalent to 2-bit quantization in the absence
of any data. In addition, while most existing methods preserve accuracy by using column-wise scaling
factors—resulting in larger model size-BQQ adopts group-wise scaling, which can reduce parameter
overhead. Despite using a more compact scaling strategy, it still achieves competitive accuracy.

6 Discussion

BQQ Effectiveness and Characteristics As shown in the matrix compression experiments, the
advantage of BQQ over UQ, BCQ, and LVQ becomes more pronounced for matrices with skewed
singular value distributions, where a few dominant singular values capture most of the spectral energy.
Conversely, when the singular values are more uniformly distributed, the performance gap between
these methods and BQQ becomes smaller. On the other hand, BQQ shows a clear advantage over
SVD- and VQ-based methods when the singular value spectrum is relatively flat. This is likely because
SVD and VQ are designed to capture and compress redundant patterns in the matrix, which works



well for low-rank or structured data. When such redundancy is absent—as in random-like matrices
with weak spectral bias—their performance tends to degrade. Unlike SVD and VQ, UQ, BCQ, and
LVQ quantize each element or vector independently to its nearest representative value. This makes it
difficult to exploit pattern redundancy, but it also allows these methods to remain relatively stable
across different spectral shapes. In fact, when the data lacks significant structure, such independent
quantization can lead to more efficient compression than pattern-based approaches. Overall, BQQ
integrates the strengths of both pattern-oriented and element-wise quantization strategies. It leverages
the ability to capture structural redundancy—similar to SVD and VQ—while also benefiting from
the stability and granularity of scalar quantization methods like UQ, BCQ, and LVQ. As a result, it
achieves robust compression performance across a wide range of singular value distributions.

In addition, PTQ experiments on ViTs demonstrate that BQQ achieves SOTA performance in both
data-free and calibration-based settings. While COMQ or ERQ slightly outperforms it in some
cases, they adopt channel-wise quantization with more scaling parameters, whereas our group-wise
approach yields a more compact model. Moreover, in contrast to most PTQ methods that optimize
discrete parameters by minimizing output error, our approach optimizes binary parameters by simply
minimizing the reconstruction error from the original weight matrix (i.e, no PTQ-specific binary
variable optimization is performed). Despite this, BQQ matches or even surpasses PTQ-specialized
methods, which is a noteworthy outcome. These results are likely due to BQQ’s ability to capture
structural redundancy often overlooked by first-order methods in overparameterized layers. It is also
noteworthy that the matrix multiplication between weights and inputs can be performed using only
addition operations, resulting in minimal computational overhead for inference (see App[A.4). This
suggests that significant acceleration could be achieved with specialized hardware.

Further Potential and Limitations Despite the demonstrated effectiveness of BQQ, there remains
significant room for further improvement. In the current implementation, we adopt a greedy op-
timization strategy as described in Alg. (3| which is suboptimal from a global perspective. Jointly
optimizing all binary matrices and scaling factors could potentially lead to further reductions in
quantization error. In addition, although our PTQ framework with BQQ is based on minimizing
weight approximation error—except for the correction of bias and normalization parameters—it is
generally more effective to minimize output quantization error, as demonstrated in many previous
studies. Adapting BQQ to optimize binary matrices with respect to output error could therefore
lead to even greater PTQ accuracy. Nevertheless, it is noteworthy that BQQ already achieves SOTA
performance. Moreover, in our experiments, the intermediate dimension is fixed, as described in
Sec.[5} However, this configuration may not be optimal under a fixed binary parameter budget. Ex-
ploring the optimal ratio between the intermediate dimension and the number of binary matrix stacks
(p in Eq. (6)) could further improve approximation error (see App.[A.9). While BQQ holds such
potential, this work has certain limitations. Specifically, while an upper bound on the approximation
error is provided (see App.[A.T0), it does not yet establish a theoretical guarantee that our method
outperforms first-order quantization under specific conditions. Additionally, the quantization process
still incurs a non-negligible computational cost (see App.[A.5). Nonetheless, we believe that BQQ
has the capacity to contribute to a wide range of applications beyond the experiments presented in
this study, and could have a significant impact.

7 Conclusion

We introduced Binary Quadratic Quantization (BQQ), a novel quantization framework that approx-
imates real-valued matrices as linear combinations of binary matrix products. Across both matrix
compression and ViT-based PTQ tasks, BQQ consistently outperforms existing methods in terms of
accuracy and compression ratio. These findings highlight the remarkable capability of second-order
binary representations in capturing complex structures beyond the reach of first-order schemes,
while maintaining an extremely compact data format. By providing an expressive and versatile
framework for compressing real-valued matrices using binary bases, BQQ opens new possibilities
for building efficient, scalable systems across a wide range of machine learning and information
processing applications. We believe this work lays the groundwork for future research into quadratic
binary representations and their role in high-performance model compression, retrieval systems, and
large-scale learning on massive training data.
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Appendix
A.1 Derivation of Equation ()
In order to extend the QUBO formulation, which is the domain of application for AMFD, to a general

PUBO formulation, we prove that the KL divergence between the mean-field approximate distribution
and the canonical distribution for the PUBO formulation is given by Eq. (@).

Proof.
From the definition of KL divergence:
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For the third term in Eq. (S.I):
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From Eq. (S.I)—(S-4), we obtain the KL divergence expression in Eq. (@). Therefore, the claim is
proven. O

A.2 Uniform Quantization with Grid Search

Here, we provide a detailed explanation of UQ algorithm introduced in Sec.[5} As shown in Alg.[S.T]
the scaling factor is determined via grid search so as to minimize the MSE between the original
matrix and the quantized matrix. We optimized with Ny = 100 for all experiments.

Algorithm S.1 MSE-Aware Uniform Quantization with Grid Search

Input: Input matrix W, bit width Ny, the number of grid divisions N,
Output: Quantized matrix @, scaling factor a, bias b, dequantized matrix W,

1: L+ 2N > The number of quantization levels
2: p + mean(W) > Search range setting
3: Wpin < min(W)

4: Wpax < max(W)

5: Initialize £ < oo, Q < None, («, ) < None

6: for each 75 € linspace(t, Wimax, Nepiit) do

7: for each ru,in € linspace(wmin, , Nepiic) do

8: Wc — CllP(W7 Tmin Tmax) > Chp W to [Tmina Tmax]
9: Q. ng% (L — 1)1 > Quantize to [0, L — 1]
10: W, + % “ (Pmax — Tmin) + Tmin > Dequantize
11: e+ ﬁ S(W —W,)?2 > Compute quantization error
12: if e < ¢ then
13: e<e > Save best quantization setting
14: Q<+ Q.
15: @ 4 Tmaxmin b <y
16: W, < W,

return Q, a, b, W,

A.3  Ej Lattice Vector Quantization Using 240 Centroids of Norm /2

Here, we describe the F'g LVQ algorithm introduced in Sec.[5| In this work, we construct a codebook
consisting of all 240 Ejy lattice vectors with Euclidean norm /2 as centroids. For a given 8-
dimensional vector, the nearest centroid is selected to approximate it. To minimize the MSE, after
selecting the centroid based on cosine similarity, the optimal scalar scaling factor is computed. Each
8-dimensional vector is thus associated with a single 8-bit index, which is equivalent to approximately
one bit of scalar quantization. By iteratively applying this procedure to the residual errors, the
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quantization can be extended to multiple bits. However, maintaining a separate scaling factor for
each 8-dimensional vector would make the memory overhead non-negligible. Therefore, in this
work, the scaling factors are quantized using 2-bit uniform quantization, which was empirically
found to achieve the best trade-off between memory efficiency and quantization error. The resulting
residual-based multi-bit LVQ algorithm is summarized in Alg.[S.2]

Algorithm S.2 Fg Lattice Vector Quantization with Residual Greedy Search
RM XN

Input: Input matrix W € , number of quantization bits Ny, scale bits S
Output: Quantized and reconstructed matrix W, code vector indices k*, scaling factors o

1: Flatten W to Wy,
2: Pad Wy, with zeros so that its length is a multiple of 8
3: Reshape Wy, to D € R**8
4: Construct the Eg codebook C € R240%8 consisting of all lattice vectors with norm V2
5: Initialize reconstruction Dy < 0
6: for bit = 1 to Ny;s do
7: Normalize codebook and data: Cyorm = C/||Cll2, Dyorm = D/||D]|2
8: Compute cosine similarity matrix:
S = DoormCllorm
9: Select closest code vector index for each row:
k¥ =arg max S r=1,...,n
" gk-:l,...,240 mks B
10: Select corresponding codes: Cgelected +— C[k*]
: Z?:l Dr,j Cselected,r,j
11: Compute scalar coefficients a € R™ for each row of D: «, = 3 5
Zj:l Cselected,r,j
12: Quantize « using uniform quantization with S
13: Reconstruct partial matrix: Dyy ¢— o - Celected
14: Update residual: D <— D — Dy
15: Accumulate reconstruction: Dot < Diotal + Dhat

16: Reshape Do to original shape of W: Wy < Dygral
17: return Wy, k*, o

A4 Inference Computational Cost Analysis of the BQQ Layer in DNN

Since p-bit quantization typically incurs approximately p times the computational cost of 1-bit
quantization, we analyze the computational cost based on the 1-bit case for both the conventional
first-order quantization and the proposed BQQ layer. We focus on a single linear layer, which is
where weights in ViTs are concentrated. Let the input be a real-valued matrix X € R™*?, and the
1-bit quantized weight for the first-order baseline be W, € {0, 1}"*". For the BQQ method, the
weights are represented as Y € {0,1}™*! and Z € {0, 1}!*", where [ is the intermediate rank.

Here, AND refers to bitwise operations between binary weights and real-valued inputs (not binary-
binary operations), ADD denotes real-valued addition, and MUL represents real-valued multiplication.

As described in the experimental setting in Sec. |5} we set [ = round (n’;‘fn) for the BQQ layer. Note

that the cost of computing the zero-point bias is omitted because it is a common term and does not
change as the bit width increases.

First-Order 1-Bit Quantization
OUTFOQ = anX

The matrix multiplication involves the following computational cost:
COSTrog = mnd AND + md(n — 1) ADD + md MUL

BQQ 1*-Bit Quantization The output is computed as:
OUTBQQ = (TYZ +sY1, + t]_yZ) X
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The computational steps are broken down as follows:
A <+ ZX :IndAND + (n — 1)ld ADD
B+ 1;X:(n—1)dADD
C < Y(rA + sB) : 21dMUL + Id ADD + mld AND + (I — 1)md ADD
D < 1y - tA : (I — 1)d ADD + Id MUL
Out <+~ C+ D : mdADD

The total computational cost becomes:

COSTgqq = ld(m + n) AND + d[(m + n + 1)l +n — m — 2] ADD + 31d MUL
Relative Cost Ratio We compare the computational cost between the first-order 1-bit quantization
and the BQQ method. The relative ratio is given by:

COSTeqq  ld(m + n)AND + d[(m + n + 1)l +n — m — 2] ADD + 3ld MUL

COSTroq mnd AND + md(n — 1) ADD + md MUL
— 2)ADD - MUL
_1 dl(n+1-2) + (31 — m) MUL] - (where ! = mn
mnd AND + md(n — 1) ADD 4+ md MUL m+n

yielding a computational complexity ratio of O(1), since the first-order quantization has O(mnd)
operations while the BQQ method has O((m + n)ld) operations, and for [ ~ ;™ their ratio
becomes of order one:

COSTgqo (m+n)ld mn
COST}:OQ O( O( )’ when m-+n

mnd

Practical Examples For the DeiT model in Sec. with m=n=384,1=192:
574 ADD + (3 - 192 — 384) MUL

1.0052
3342 AND + 334 383 ADD + 3840~ 00
For the Swin model with m = n = 96, [ = 48:
142 ADD S48 — MUL
+ (348 — 96) < 1.0207

962 AND + 96 - 95 ADD -+ 96 MUL

These results demonstrate that the inference computational cost of the BQQ layer is nearly equivalent
to that of the conventional first-order 1-bit quantization.

A.5 BQQ Execution Time for PTQ

We report the quantization time required by our proposed method, BQQ, under a data-free setting.
All experiments were conducted using the following environment:

e Python 3.9.19

» PyTorch 2.6.0 with CUDA 12.4

* Four NVIDIA GeForce RTX 4090 GPUs
* AMD EPYC 7313 16-Core Processor

During quantization, we parallelized the process by assigning each matrix to a separate GPU thread,
enabling concurrent quantization of multiple layers. Quantization time was measured using Python’s
time module. We evaluated quantization time using a small model (DeiT-S, 22M parameters) and a
large model (DeiT-B, 86M parameters).

Tab. [S.T| summarizes the computation time for pseudo 2*-bit, 3*-bit, and 4*-bit quantization using
BQQ. The reported times indicate the total time required to quantize the entire model. Note that the
larger the pseudo bit width, the longer it takes because of greedy optimization for each pseudo bit
index, as shown in Alg.|3|Since processing is performed in parallel on each GPU, speedup is possible
by increasing the number of GPUs, but computation time is a barrier to scaling up the applicability of
PTQ to large-scale models such as large language models.

20



Table S.1: Execution time of BQQ on DeiT-S and DeiT-B.

BQQ Time [min]
2% bit 3% bit 4% bit

Model #layers #parameters

DeiT-S 12 22M 13 17 21
DeiT-B 12 86M 32 45 57

A.6 Effect of Ngep on Accuracy and Computation Time

We investigate the effect of the number of optimization steps Ny, (and the total quantization time)
on the final ImageNet top-1 accuracy and computation time under the data-free quantization setting.
The results on DeiT-Small (DeiT-S) and DeiT-Base (DeiT-B) models are shown in Fig. @ As
expected, increasing Ny, generally results in longer quantization time but also enables more precise
optimization, which tends to improve final accuracy. In particular, it is noteworthy that increasing
Niiep beyond 50,000—the setting used in the main manuscript—yields even more accurate results.
For instance, with DeiT-S, an accuracy of 60.24% is achieved at pseudo 2*-bit precision, which is
1.99% higher than the accuracy reported in the main manuscript. Similarly, with DeiT-B, an accuracy
of 72.91% is obtained at pseudo 2*-bit precision, representing a 0.82% improvement. As shown in
the figure, in highly compressed settings such as pseudo 2*-bit quantization, a large Ny, is essential
to prevent significant accuracy degradation. In contrast, for pseudo 3*-bit or 4*-bit quantization,
accuracy remains relatively stable even with smaller Ny, values.

These observations suggest that more aggressive compression schemes are more sensitive to the
quality of optimization, as even small quantization errors can have a greater impact on final accuracy.
Therefore, more rigorous optimization is required in such cases. Notably, the time required for
accuracy to reach saturation appears largely independent of the pseudo bit-width, with convergence
observed in approximately 10 minutes for DeiT-S and 20 minutes for DeiT-B—durations that are not
prohibitive in practical applications.

=@= pseudo 2* bit === pseudo 2* bit

Accuracy [%]
g

40 =@==_ pseudo 3* bit 40 =@==_pseudo 3* bit
30 =@==pseudo 4* bit 30 === pseudo 4* bit
== Full Precision == Full Precision
20 20
104 10° 104 10°
Nstep Nstep
80 7

-
o

(2]
o

=@=pseudo 2* bit == pseudo 2* bit

Accuracy [%]
g

40 =0==_pseudo 3* bit 40 =0== pseudo 3* bit
30 =@=pseudo 4* bit 30 === pseudo 4* bit
== Full Precision == Full Precision
20 10! 20 10t 102
Quantization Time [min] Quantization Time [min]

Figure S.1: Effect of the number of optimization steps N, (top) and total quantization time
(bottom) on final ImageNet top-1 accuracy in the data-free quantization setting.
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A.7 Accuracy Under Extreme Compression

We present additional results beyond those in the main manuscript, focusing on further compression—
specifically, setting the model size to pseudo 1.5* bit. In the main experiments, the factorization
was performed using binary matrices Y; € {0,1}™*! and Z; € {0,1}!*", where the intermediate

mn
m—+n

dimension was set to [ = round ( . Here, we increase the intermediate dimension to [ =

round (1.5~ T;"fn) (i.e., 1.5 times the original parameter count), and fix the number of stacks
(denoted as p in Eq. (6)) to 1. This results in an effectively 1.5-bit quantized model, noting that
all weight elements remain binary (1-bit). Tab.[S.2]reports the top-1 accuracy on ImageNet after
compression. While the accuracy significantly deteriorates in the data-free setting, it is remarkable
that with only a small amount of calibration data, the accuracy remains reasonably high. Notably, for
DeiT-B, the top-1 accuracy exceeds 70%, demonstrating that even under such severe compression,

practical accuracy can be retained—an impressive outcome.

Table S.2: ImageNet top-1 accuracy of BQQ under extreme compression.

ImageNet Top-1 Accuracy [%]
DeiT-S DeiT-B  Swin-T  Swin-S

Method W bit Data Free

c-BQQ  1.5% X 53.67 71.36 61.25 69.89
BQQ 1.5% v 7.41 35.21 10.82 20.06

A.8 Evaluation on Language Models

Here, we evaluate our quantization methods on several compact language models that are well-suited
for edge deployment: Qwen2.5-0.5B, Qwen2.5-1.5B, and DeepSeek-R1-Distill-Qwen1.5B. We
compare three approaches: (1) BQQ, which performs data-free quantization; (2) tuned-BQQ (t-BQQ),
which first applies BQQ and then fine-tunes only the continuous parameters; and (3) GPTQ [14], a
standard post-training quantization (PTQ) method. For both t-BQQ and GPTQ, the calibration data
consist of the full training split of WikiText-2.

Tab. [S.3] reports the perplexity on WikiText-2 [48] and the accuracy on six downstream tasks:
PIQA [4]], Winogrande (WinoG) [57]], ARC-Easy (ArcE) and ARC-Challenge (ArcC) [9], HellaSwag
(HellaS) [67], and BoolQ [8]]. The table also includes the average accuracy across all tasks. BQQ
achieves higher average accuracy than GPTQ on the 1.5B models, particularly under low-bit settings
(2-bit and 3-bit). Notably, even without any calibration data, BQQ attains comparable or superior
performance to GPTQ. In contrast, for the smaller 0.5B model, BQQ struggles to maintain accuracy.
We attribute this to the model-dependent discrepancy between the quantization distributions that
minimize activation error and those that minimize weight error. When this discrepancy becomes
large, the performance of BQQ tends to degrade.

Although the performance of neural network quantization is not always guaranteed to be superior, we
emphasize that the current work proposes BQQ as a general binary quantization framework rather
than a dedicated quantization technique for neural networks. In our implementation, BQQ quantizes
weights by minimizing reconstruction error in the weight space, without relying on output-based
error signals that are commonly used in many neural network quantization methods. This implies that
BQQ does not yet exploit task-specific loss functions or activation statistics. We therefore believe
that adapting BQQ to incorporate such feedback—especially minimizing the downstream output
error—could lead to significant further improvements in model performance, and this represents a
highly promising avenue for future research.

A.9 Quantization Error vs. Binary Matrix Stack-to-Intermediate Dimension Ratio

mn
m+n

In the main manuscript, we fixed the intermediate dimension as [ = round ( ) for all experiments.

However, this setting is not necessarily optimal. The same compression ratio can also be achieved by
varying the number of stacked binary matrices and the intermediate dimension. In this subsection,
we investigate how the quantization error (MSE) changes with respect to the number of stacks p and
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Table S.3: WikiText-2 perplexity and downstream task accuracy.

Model Method Bit PPL ArcE  ArcC  BoolQ  HellaS PiQA  WinoG  Avg.
BQQ 2 17106.9 28.3 20.3 37.8 26.3 54.0 50.5 36.2

t-BQQ 2 49.5 371 24.2 39.7 29.9 56.4 52.1 399

GPTQ 2 4392.5 25.3 21.3 43.2 25.7 52.7 49.0 36.2

BQQ 3 1808.8 31.5 19.1 38.0 26.5 544 50.5 36.7

Qwen2.5-0.5B t-BQQ 3 19.4 452 27.2 43.0 39.7 62.1 56.1 45.6
GPTQ 3 21.8 45.8 21.0 56.5 34.0 63.6 56.0  46.1

BQQ 4 71.7 38.8 21.6 439 30.5 61.2 512 412

t-BQQ 4 14.7 51.4 30.5 52.7 45.6 66.6 54.3 50.2

GPTQ 4 14.4 62.9 279 57.4 38.9 68.2 56.2 51.9

baseline 16 13.1 64.6 29.5 58.8 40.6 70.2 56.4 53.4

BQQ 2 688.3 33.8 19.1 57.7 27.2 56.6 51.9 41.0

t-BQQ 2 23.6 45.1 28.5 62.0 40.2 61.2 53.8 485

GPTQ 2 922.4 26.0 21.1 45.0 26.0 51.6 52.2 37.0

BQQ 3 14.6 63.6 32.0 63.9 41.7 71.1 57.9 55.0

Qwen2.5-1.5B t-BQQ 3 11.8 61.8 38.3 60.6 57.0 72.0 59.0 58.1
GPTQ 3 12.1 59.5 30.0 60.7 43.6 70.0 57.1 53.5

BQQ 4 10.5 72.4 38.5 69.1 47.7 74.8 60.7 60.5

t-BQQ 4 9.9 73.0 45.1 65.5 62.9 73.8 61.3 63.6

GPTQ 4 9.7 74.5 40.0 70.8 49.3 75.2 63.1 62.1

baseline 16 9.3 71.5 45.1 73.0 67.8 76.1 63.4 66.1

BQQ 2 921.2 29.8 18.8 47.9 26.5 53.6 49.3 37.6

t-BQQ 2 46.1 41.1 22.7 52.5 31.0 58.8 52.6 43.1

GPTQ 2 872.4 26.6 20.2 47.6 25.7 52.9 49.1 37.0

BQQ 3 59.2 56.1 30.6 51.2 33.8 63.2 52.9 48.0

Deepseek-R1-Distill t-BQQ 3 28.5 50.7 329 59.3 41.2 61.7 55.7 50.3
Qwen-1.5B GPTQ 3 59.6 52.3 25.6 54.0 32.8 62.4 51.9 46.5
BQQ 4 394 59.3 31.8 66.5 36.0 64.8 57.5 52.7

t-BQQ 4 21.7 54.1 31.9 65.2 439 63.8 56.0 52.5

GPTQ 4 434 58.5 32.2 66.9 36.0 65.9 56.3 52.6

baseline 16 40.4 56.1 34.6 68.6 44.8 65.8 55.6 54.2

the normalized intermediate dimension [y, Where the actual intermediate dimension is defined as

[ = round (lscale #ﬁn

resulting MSE.

Tab. summarizes the experimental results. These results show that the optimal balance between
the number of stacks and the intermediate dimension varies across datasets, indicating that fixing

). We conducted experiments by sweeping over p and Iy, and measuring the

mn
m—+n

l= round( ) is not always optimal. Therefore, adaptively determining this ratio can potentially

lead to more efficient compression.

A.10 Theoretical Upper Bound of BQQ

In this subsection, we provide a theoretical analysis of the approximation error inherent in the BQQ
formulation. To derive a concrete upper bound, we consider a particular case of Eq. (3)) by setting
Bi = —0.5ay, §; = 1, and ; = —0.5. Although this specific case does not yield a closed-form
optimal solution, an approximate one can be obtained by aligning the binary components with
the sign patterns of the singular vectors obtained from SVD, combined with appropriate scaling.
This leads to a theoretical upper bound on the square root of the subproblem error, denoted by

1/ Lgﬁ, (Eq. (). The overall error of BQQ is then obtained by summing over all stack indices i:
BQQ total error = ) . L) Based on the Eckart—Young—Mirsky theorem and the triangle inequality,

sub*
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Table S.4: Quantization error (MSE) with varying the number of stacked binary matrices p and the
intermediate dimension scaling I .,.. Note that the MSE values are scaled by a factor of 103,

Random DeiT Distance SIFT ImageNet

#stacks (p)  Icate Size [KB] MSE Size [KB] MSE Size[KB] MSE | Size[KB] MSE Size [KB] MSE
1 1 2.1 3243 184  298.1 1.3 14.6 2.1 97.8 6.3 427
2 0.5 2.1 329.9 185 3094 1.3 9.2 2.1 108.1 6.3 29.7
4 0.25 2.1 337.1 185 3173 1.3 122 2.1 110.8 6.3 49.6
1 2 4.1 106.4 36.9 101.9 25 7.7 4.1 46.3 12.6 20.5
2 1 4.1 105.3 36.9 95.8 25 2.3 4.1 30.0 12.6 10.9
4 0.5 4.1 108.4 36.9 100.8 2.6 25 4.1 34.4 12.6 8.9
8 0.25 42 1142 37.0 105.6 25 35 4.2 359 12.6 14.1
2 1.5 6.2 33.2 553 30.6 3.8 1.3 6.2 10.9 18.8 42
3 1 6.2 344 553 31.0 3.8 0.7 6.2 9.7 18.9 35
6 0.5 6.2 36.0 554 332 3.8 0.9 6.2 115 18.9 2.9
12 0.25 6.3 384 55.4 35.7 3.7 1.2 6.3 122 19.0 4.7
2 2 8.2 115 73.8 10.9 5.0 0.6 8.2 4.9 25.1 2.1
4 1 8.2 11.2 73.8 10.0 5.1 0.2 8.2 3.2 25.1 1.1
8 0.5 83 11.9 73.8 10.9 5.1 0.3 83 3.8 252 1.0
16 0.25 84 13.0 73.9 12.0 5.0 0.4 84 4.1 25.3 1.6

we obtain the following bound:

min \/ L% < min HWW — [ei(Yi — 0.5-1y)(Zi — 0.5 - 1Z)]H (S.5)
— min HW(” WD+ W [0i(Yi — 0.5-1y)(Zi — 0.5 - 1Z)]H (S.6)
< min [ WO W@ +|Wi - lau(¥i - 05 1v)(Zi - 0.5 1)) S.7)
min(m,n) . ) .
<miny| > o4 W - asen (USD) sen (V)| (58)
j=l+1
R (@) (Wi sen (UN) sem (Vi) ) (@) @)
= Z O-JZ + V‘/Svd - 2 - sgn (de) sgn (‘/wd ) ’
) ) (@) (®) ) )
Jj=l+1 Hsgn (de) sgn (‘/;vd )
(S.9)
where o; and Ws(vid) denote the singular values and the reconstructed matrix after applying an [-rank
approximation to the SVD of W (), respectively. Furthermore, Us(ja)l and V;Sd) represent the left and

right singular vectors obtained from the SVD of W (), where US(\Z already incorporates the top [
singular values.

This result indicates that the approximation error of the BQQ formulation is closely related to the
magnitude of the discarded singular values. Consequently, BQQ achieves higher representational
fidelity for matrices with rapidly decaying singular spectra, while its approximation quality degrades
when the low-rank truncation leaves substantial residual energy. This theoretical property can also be
observed in the trends shown in Fig. 3]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions of this work,
including the proposed quantization framework, the associated optimization method, and
its empirical performance. The claims are consistent with the theoretical and experimental
results, and appropriately scoped to reflect the evaluated settings and assumptions.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of this work are discussed in the subsection “Further Potential
and Limitations” in Section[6] We specifically address the suboptimality of the greedy
optimization strategy, the lack of a theoretical upper bound on the approximation error,
and the relatively high quantization time. Additionally, we consider possible directions for
improving the method through broader adaptation and structural refinement, in line with the
NeurIPS Code of Ethics on transparency and reproducibility.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: This work has derived the KL divergence between the mean-field approxima-
tion distribution and the canonical distribution in the PUBO cost function (Equation ) to
extend the previous AMFD algorithm from QUBO to PUBO, as shown in Appendix

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all necessary details for experimental reproducibility, in-
cluding the optimization algorithms used and the full set of hyper-parameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code is not currently publicly available. We plan to release it after
publication for reproducing the main results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided the experimental settings and details in Section 3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: The paper reports results from a single run with a fixed random seed, following
common practice in recent quantization studies. While error bars and statistical signifi-
cance are not reported, the results were consistently observed across multiple settings and
benchmarks. We leave more extensive statistical analysis as future work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments were run on local CPU/GPU machines. Appendix [A.5]
includes hardware details and measured runtimes for several experiments, providing a
sufficient indication of the compute requirements for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research presented in the paper fully conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: None of social impacts we feel must be specifically highlighted here.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk data or models are released in this work, so safeguards are not
applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: This work makes use of existing assets, including datasets, pretrained models,
and quantization methods. All such assets are credited in the paper, and their licenses and
terms of use are properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This work introduces new code, which is not released publicly at this time.
However, relevant implementation details are clearly described in the paper. Therefore, the
question regarding documentation alongside released assets is not applicable.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects were involved in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were used in the development of the proposed method, experiments,
or analysis, and they had no influence on the contributions of this work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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