
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MITIGATING OVER-EXPLORATION IN LATENT SPACE OPTIMIZA-
TION USING LES

Anonymous authors
Paper under double-blind review

ABSTRACT

We develop Latent Exploration Score (LES) to mitigate over-exploration in Latent Space Optimiza-
tion (LSO), a popular method for solving black-box discrete optimization problems. LSO utilizes
continuous optimization within the latent space of a Variational Autoencoder (VAE) and is known to
be susceptible to over-exploration, which manifests in unrealistic solutions that reduce its practical-
ity. LES leverages the trained decoder’s approximation of the data distribution, and can be employed
with any VAE decoder–including pretrained ones–without additional training, architectural changes
or access to the training data. Our evaluation across five LSO benchmark tasks and twenty-two VAE
models demonstrates that LES always enhances the quality of the solutions while maintaining high
objective values, leading to improvements over existing solutions in most cases. We believe that new
avenues to LSO will be opened by LES’ ability to identify out of distribution areas, differentiability,
and computational tractability.

1 INTRODUCTION

Figure 1: Incorporating LES promotes valid solutions. We consider the task of approximating the expression 1/3
+ x + sin(x * x), using LSO. Optimization trajectories with (blue) and without (red) LES constraint in the
latent space of a VAE are projected onto a two-dimensional subspace that contains the starting point and the end-
points obtained after 10 gradient ascent steps. In the left panel, we show the LES score for latent vectors on the
two-dimensional subspace, with darker shades corresponding to lower LES. In the right panel, we show the validity of
the decoder outputs for each latent vector, with orange denoting invalid generations. High LES values correlate with
valid areas, and incorporating LES in LSO produce an expression that adheres to the grammatical rules of example 1.

Many important tasks in scientific fields, such as small molecule discovery and protein engineering, can be framed as
discrete black-box optimization problems. In contrast to conditional sampling-based approaches, including GFlowNet
(Bengio et al., 2023) and Diffusion (Corso et al., 2022; Igashov et al., 2024), which are better suited for applications
like linker design (Du et al., 2024), optimization is particularly effective when the goal is to improve a specific property,
such as enhancing a drug’s safety.

Latent Space Optimization (LSO) was recently developed to enhance the sample efficiency of discrete optimization
algorithms, such as genetic algorithms, in the black-box setting (Gómez-Bombarelli et al., 2018). LSO transfers the
optimization problem to the domain of the latent space of a VAE, which can be efficiently explored using continuous

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

optimization techniques. However, ensuring that LSO solutions respect the structure of the original space remains a
challenge. To illustrate this issue, we first provide some examples of such structures.

Example 1 (Arithmetic expressions). An expression built up using numbers, arithmetic operators and parentheses is
called an arithmetic expression. However, not every sequence of the above elements correspond to a valid expression.
For instance, the expression ”sin(x) + x” is a valid expression while ”sin(xxx” is not.

Example 2 (Simplified molecular-input line-entry system (SMILES)). SMILES provides a syntax to describe
molecules using short ASCII strings. Atoms are represented by letters (e.g., water:”O”), bonds are represented by
symbols (e.g., triple: ”#”, double: ”=”, . . .), branches are represented in parentheses and cyclic structures are repre-
sented by inserting numbers at the beginning and the end. Like the arithmetic expressions case, not every combination
of the elements described above corresponds to a valid molecule. For example, while ”C1CCCCC1” is valid, both
”C1CCCCC2” and ”C1CCCCC)” are not.

Example 3 (Quality filters for molecules). Chemists often seek molecules that not only optimize desired chemical
properties but are also stable and easy to synthesize. This has led to the development of rules such as Lipinski’s
Rule of Five (RO5, Lipinski et al. (1997)), which helps determine if the bioavailability (i.e., the proportion of a drug
or other substance that enters the circulation when introduced into the body) of a given compound meets a certain
threshold. For example, RO5 suggests that poor absorption is more likely when the octanol-water partition coefficient
(logP) exceeds 5. Similarly, the Pan Assay Interference Compounds (PAINS, Baell & Holloway (2010)) filter helps in
identifying false positives in assay screenings. Recently, the rd filters (Walters, 2019) package has curated many
such rules and is considered a ”high precision, low recall surrogate measure” (Brown et al., 2019). Following Notin
et al. (2021) we consider a sample valid if it passes the rd filters quality filters 1

Numerous directions have been explored to overcome the challenge of providing valid solutions, including specialized
VAE architectures (Kusner et al., 2017; Jin et al., 2018) or robust representations for discrete data (Krenn et al., 2020).
Additionally, constrained objectives can be formulated under the assumption that one has access to a function which
quantifies the validity of any point in the latent space (Griffiths & Hernández-Lobato, 2020). However, in many
realistic scenarios, such as example 3, these solutions may not be directly applicable, as the structure of the sequence
space may not be sufficiently well understood. To address this, Notin et al. (2021) proposed using an estimator
of the uncertainty of the decoder, based on the variational approximation to a posterior distribution over the VAE
parameters, encouraging LSO to respect the sequence space structure (details are provided appendix D). Although
this approach proved effective, the non-differentiable nature of the uncertainty score required its integration into LSO
through heuristic approaches. Additionally, the computation of the uncertainty score is not exact (i.e., it relies on
variational approximation and Monte Carlo sampling) and requires significant amount of time to compute. Therefore,
there is a need for robust methods that work across different VAEs and sequence space structures, and can be easily
integrated into existing LSO pipelines.

To achieve this goal, we develop LES, a score that can be used as a constraint in LSO optimization to increase the
number of solutions that respect a given structure. The distinctive characteristics of LES are differentiability and
robustness that allow its easy integration into existing LSO pipelines. Specifically, our contributions are as follows:

• We introduce LES, a score that achieves higher values in regions of the latent space closer to the training data.
Our results demonstrate that LES is highly effective at identifying regions that preserve the structure of the
sequence space. Although LES’ computation scales cubically with the latent dimension, it is up to 80% faster
than the current state-of-the-art for identifying out-of-distribution data points in the latent space of generative
models for discrete sequences (tables 1 and 2).

• We develop a numerically stable optimization procedure to incorporate LES as a constraint in LSO.

• We evaluate LES-constrained LSO across thirty optimization tasks, including twenty-two VAEs and five
benchmark problems, demonstrating its robustness in generating valid solutions and achieving high objective
values. Specifically, in 18 out of the 30 LSO experiments, our method either finds the best solution on
average or achieves a solution within 1 standard deviation of the best solution across 10 independent runs.
This outperforms the six alternative methods we considered by 11% (tables 3 and 8).

2 BACKGROUND: LATENT SPACE OPTIMIZATION

LSO is a method for solving black box optimization problems in discrete and structured spaces, such as the space of
valid arithmetic expressions. Formally, let V ⊂ RL×D be a discrete and structured space, represented as a sequence of

1We use the Inpharmatica rule set comprised of 91 alerts, which is the default option

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

L one-hot vectors of dimension D. We represent sequences of length L of categorical variables with D categories. L
is set as the maximum sequence length that we are optimizing for, and one of the D categories is used as an ”empty”
category. For instance, in the case of valid arithmetic expressions, V would be the set of all sequences that define such
expressions. Let M : V → R be the objective function. LSO aims to solve,

argmax
x∈V

M(x). (1)

In this setting, we assume that evaluations of the objective function (M) are expensive to conduct. For example, the
objective may be the binding affinity of a compound to a given protein, measured through a wet lab experiment.

A popular approach to solve eq. (1) is Bayesian Optimization (BO), which utilizes first order optimization of a surro-
gate model for M. However, since the space is discrete, first order optimization cannot be directly applied.
In an attempt to make BO applicable for solving eq. (1), Gómez-Bombarelli et al. (2018) proposed to transfer the
optimization problem into that over a domain of the latent space of a deep generative model and subsequently per-
form BO in this space. The main idea is to (1) learn a continuous representation of the discrete objects (e.g., using a
VAE) and (2) perform BO in the latent space while decoding the solution at each step. Formally, given a pre-trained
encoder (Eθ) and decoder (Gθ) the initial labelled dataset D = {xi, yi}ni=1 is first encoded into the latent space
Dz = {zi = Eθ(xi), yi}ni=1. Using the encoded dataset, an iterative BO procedure is conducted, which we describe
in algorithm 1. Most commonly, a Gaussian process is used as the surrogate model for M, and the acquisition function
is the expected improvement, defined as (Frazier, 2018)

Af̂ (z) = Ef̂ max(f̂(z)−max
i

yi, 0), (2)

where the expectation is with respect to the distribution of the function f̂ , conditioned on Dz .

Algorithm 1 Latent Space Optimization
for t = 1 to T do

1. Fit a surrogate model f̂ to the encoded dataset, Dz

2. Generate a new batch of query points by optimizing a chosen acquisition function (A)

z(new) = argmax
z

Af̂ (z) (3)

3. Decode x(new) = Gθ(z
(new)), evaluate the corresponding true objective values (y(new) = M(x(new))) and

update Dz with (z(new), y(new)).

Over-exploration in LSO Multiple studies (Notin et al., 2021; Kusner et al., 2017) have found that unconstrained
latent space optimization (LSO) often yields solutions that disregard the aforementioned structures. For example, when
searching for arithmetic expressions, invalid equations like ”ssin(xxx” frequently occur. Similarly, many solutions in
molecule searches fail to pass basic quality filters (example 3), limiting their practical utility (Maus et al., 2022).

While acquisition functions such as expected improvement (eq. (2)) are designed to balance exploration and exploita-
tion based on the estimated uncertainty from the Gaussian process model for M. The frequent generation of invalid
solutions during acquisition optimization, which implies that the estimated uncertainty can be problematic in this
setting, underscores the need for additional regularization (Tripp et al., 2020), which we aim to address.

To mitigate over-exploration, we propose adding a penalty to eq. (3). The penalty uses a new score, giving higher
values over the latent space valid set, defined as:
Definition 4 (Latent space valid set). Let Gθ : Z → RL×D be a decoder network, and let V ⊂ RL×D be the set of
valid sequences, the latent space valid set is defined as

{z;Gθ(z) ∈ V}. (4)

The derivation of our score leverages the Continuous Piecewise Affine (CPA) representation of neural networks, which
we briefly review below.

Deep generative networks as CPA Following (Humayun et al., 2022; 2021; Balestriero & Baraniuk, 2018), we con-
sider the representation of Deep Generative Networks (DGNs) as Continues Piecewise Affine (CPA) Splines operators.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Let fθ be any neural network with affine layers and piecewise affine activations then it holds that

fθ(z) =
∑
ω∈Ω

(Aωz + bω) 1{z∈ω}, (5)

where Ω is the input space partition induced by fθ, ω is a particular region and the parameters Aω and bω defines the
affine transformation depending on ω.

In cases where the neural network fθ is not composed solely of piecewise affine layers and activations, we leverage
the result from Daubechies et al. (2022) to assert that eq. (5) either exactly represents fθ or provides a sufficiently
accurate approximation for our practical purposes (Humayun et al., 2022). We therefore argue that all the decoder
neural networks included in our study (i.e., GRU, LSTM, and Transformers) can be approximated with high accuracy
as continuous piecewise affine (CPA) functions.

3 A LATENT EXPLORATION SCORE TO REDUCE OVER-EXPLORATION IN LSO

In this section, we introduce Latent Exploration Score (LES), our new score to reduce over-exploration in LSO. We
begin by motivating LES and proceed to formally derive it in section 3.1. In section 3.2, we provide empirical evidence
that LES gives higher values in the latent space valid set. The use of LES to regularize or constrain LSO is left for
section 4.

Motivation Our goal is to develop a meaningful constraint for optimizing the acquisition function within a latent
space of a given VAE. Specifically, we aim to construct a constraint that is a continuous function of z with higher
values, indicating that it is more likely that z resides within valid regions of the latent space (definition 4).

Such a score should be higher in regions near training data points, assuming most of VAE training data is valid. To
achieve this, we treat the latent space of the VAE as a probability space, i.e. z ∼ pz , for some prior distribution p
(for example standard Gaussian). The prior should reflect our best guess for the distribution of the observed data in
the latent space. Solutions are mapped back to sequences by the decoder through a deterministic (we do not consider
x to follow a conditional distribution given z) transformation of the latent vectors. Therefore, any distribution on the
latent space defines a distribution over the space of sequences. Our score uses the density function of the push-forward
measure of x = Gθ(z), which we call the sequence density. Consequentially, our score depends only on the decoder
network, not the encoder, and can potentially be applied to other generative models like GANs or diffusion models.

Why use the sequence density function? We argue that for a well-trained decoder network, the density should be
higher in areas of the sequence space close to the training data. To see why, consider a decoding model Gθ trained on
a dataset {(zi,xi)}ni=1. The average loss (denoted as L) at z is

ℓ(Gθ(z)) = Ex|Eθ(x)=zL(Gθ(z),x). (6)
As the training process is designed to minimize the population loss: Eℓ(Gθ(z)), if successful, we hypothesize that
the distribution of Gθ(z) puts higher weight in the areas where ℓ(Gθ(z)) is low. Since we expect most of the training
data to be valid and to achieve low expected loss, the sequence density should put higher weight on the latent space
valid set. In, section 3.2 we provide an empirical validation for this hypothesis, for examples 1 to 3. We highlight that
this relationship between the valid set and the sequence density depends on how well the decoder fits the data.

3.1 DERIVATION OF LES

Analytical formula for LES DGNs for discrete sequences typically output a matrix of logits, transformed into
normalized scores by the softmax function:

Gθ(z) = Softmax(Lθ(z)). (7)

Lθ(z) is a D × L logits matrix (D - vocabulary size, L - sequence length) and Softmax is the softmax operation
applied to every column of Lθ(z). In order to avoid a violation of the assumption that Gθ is bijective, we extend
the function’s output to include the normalizing constant for each column. We find that parametrizing the output to
include the inverse of the normalizing constant (eq. (8)), helps in avoiding numerical instabilities that are caused by
the constant being potentially very large. With this formulation, we can now derive the sequence density function.
Theorem 5 (DGN sequence density). Let

Gθ(z) =
(
p(1)
z , (c(1)z)−1, . . . ,p(L)

z , (c(L)
z)−1

)
(8)

= xz (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

CPA representation

Logits as CPA

ScaLES

Prior over latent

 ScaLES (pushfoward)

Encoder - Decoder

Continous
Latent space

c1cccc1 c1cccc1

En
co

de
r

D
ec

od
er

*SM = SoftMax

Figure 2: Derivation of LES. The decoder network (Gθ), which maps from the latent space to the output space, is
assumed to be the composition of a softmax operation over a continuous piecewise affine (CPA) spline operator. LES
is the density of a random variable (z) in the latent space, under the decoder transformation. Calculating LES only
requires a pre-trained decoder and LES does not have any hyperparameters.

where p(i)
z = Softmax(Lθ(z)).i and c

(i)
z =

∑D
j=1 e

Lθ(z)ji . Assume that Lθ is bijective and can be expressed as a CPA
(eq. (5)), and that z ∼ pz , then the density function of Gθ(z) is given by:

fp(z)

√√√√det

(
L∑

i=1

(A†
i)

T (Bi)TBiA
†
i

)
(10)

for

Bi =

(
diag

(
1

(p
(i)
z)1

, . . . ,
1

(p
(i)
z)D

)
,−1

1

c
(i)
z

)T

(11)

A†
i =

(
A(1)

ω , . . . ,A(L)
ω

)†
(i·D):(i+1·D).

, (12)

where
(
A

(1)
ω , . . . ,A

(L)
ω

)†
is the Moore–Penrose inverse of

(
A

(1)
ω , . . . ,A

(L)
ω

)
, and fp is the density function of pz .

The proof is provided in appendix A. We define LES to be the logarithm of the determinant term,

S(z) = log


√√√√det

(
L∑

i=1

(A†
i)

T (Bi)TBiA
†
i

) , (13)

as the contribution of the prior is negligible in magnitude in all the decoders we study.

Remark: LES can be calculated directly without assuming the decoder logits follow a CPA function (Ben-Israel,
1999). However, using the expessions derived in eq. (13) has two computational benefits for calculating the derivative
of LES. First, using Jacobi’s formula and observing that

∑L
i=1(A

†
i)

T (Bi)
TBiA

†
i is a quadatic formula of the softmax

probabilites, we can calculate the derivative of LES in closed form. Second, by the CPA assumption, the matrices A(i)
ω

are a constant function of z and therefore ∂A(i)
ω

∂z = 0. As a results, we avoid the need to calculate the hessian of the
decoder when taking the derivative of LES.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Limitations of theorem 5 Our derivation relies on the decoder logits being (i) a CPA operator and (ii) bijective
between the latent space and the generated manifold in the ambient space. We argue that (i) is not a restrictive
assumption, as approximation theory has already demonstrated that any continuous model can be approximated by a
CPA network. Therefore, one always recovers Theorem 5 even when using non-CPA models (see Daubechies et al.
(2022) for proof).

On the other hand, (ii) is a stronger assumption that practitioners should be mindful of, as it would invalidate ScaLES
as a meaningful metric for comparing different samples. For (ii) to be violated, i.e., for eq. (30) to be incorrect, the
Lebesgue measure of the set CGθ

= {z; |;∃z∗;Gθ(z) = Gθ(z
∗)} must be larger than 0 (see lemma 7 for proof).

This would suggest some degeneracy in the decoder function, where large regions of the latent space map to the same
output, resulting in a zero gradient of the decoder with respect to its input. However, we believe this is rare in practice.
In our experiments, where we compute the gradient of the decoder with respect to the input to calculate LES, we did
not encounter any instances where the gradient was exactly zero.

Although we do not formally validate (ii) (the bijectivity assumption), we argue through our empirical analysis in
table 2, conducted across 22 VAEs (including pre-trained models), that (ii) may hold or, at the very least, serve as a
reasonable approximation for real-world VAEs.

Lastly, it is crucial to highlight that the ability of LES to detect out-of-distribution data is closely tied to the decoder’s
capacity to accurately model the data. While theorem 5 remains valid even for a poorly trained decoder under the
specified conditions, we do not recommend practitioners to rely on LES in such scenarios.

Computing LES LES is a function of the matrices Bi and Aω . The matrices Bi are a function of the logits and
can be calculated using a single forward run of Gθ. The matrix Aω is equal to the derivative of Lθ at z, and can
therefore can be obtained using automatic differentiation ((Paszke et al., 2017)). To avoid the (pseudo) inversion of
the matrix Aω we can exploit the inverse function theorem which states that JG−1

θ = (JGθ)
−1 and we can take

S(z) = −0.5 log det((Aω
∂Gθ(Lθ)

∂Lθ
)(Aω

∂Gθ(Lθ)
∂Lθ

)T), where ∂Gθ(Lθ)
∂Lθ

(derivative of the softmax w.r.t the logits) admits
a simple closed form solution. Ideally, LES can be computed by performing all of the above calculations in parallel
using a single forward call to the Gθ network. In addition, the computation of the determinant is done via SVD on a
square matrix whose dimension is the latent dimension of the decoder (d) with a computational complexity of O(d3).

In table 1 we provide the wall clock times for calculating LES for a batch of 20 latent vectors across all architectures
and datasets studies in this work. LES is compared with the Bayesian uncertainty score proposed by Notin et al.
(2021)(with the default configuration (num sampled models=10,num sampled outcomes=40)), which was
previously used to regularize LSO.We also compare with a Likelihood score defined as

ℓ(z) = max
x

pGθ
(X = x|Z = z) (14)

where pGθ
(z) is the distribution defined by the decoder softmax probabilities, which reflects the likelihood of the most

likely x conditioned on the latent vector z.

For 9 out of the 10 models, particularly when the latent dimension is larger (e.g., SMILES and SELFIES), LES is
computed faster than the Uncertainty score, achieving reductions of up to 85% in some cases. As the Likelihood score
requires only a single forward pass of the decoder it offers a more computationally efficient alternative, which comes
with some performance trade-offs, as we show in sections 3.2 and 4 and appendix C.1.

3.2 VALIDATING THE RELATIONSHIP BETWEEN LES AND VALID GENERATION

To assess LES’s ability to identify valid regions (as defined in examples 1 to 3), we sample data points in the latent
space using the twenty-two VAEs studied in section 4. Specifically, we sample 500 data points from three distributions:
train, prior (N (0, I)), and out-of-distribution (N (0, I · 5)). We decode each data point and determine if the decoded
sequence is valid.

Identifying if a point in the latent space decodes into a valid sequence can be viewed as a classification problem,
in which the different scores (i.e., LES or the Bayesian uncertainty score) provide (unnormalized) probabilities for
a sequence being valid. We measure the performance of these scores using the AUROC metric. Besides LES, the
Bayesian uncertainty score and the Likelihood score, we add three additional baseline scores for comparison. The
first is the density of a standard Gaussian (Prior), which is the distribution the latent vectors are regularized to follow
during VAE training. The second is the polarity score (Polarity) (Humayun et al., 2022), based only on the derivative
of the decoder logits with respect to the latent vector, which shows the gains due to accounting for the softmax non-
linearity in the derivation of LES (theorem 5). We also consider the average distance to the closest three data points
within a random sample of 1000 points from the training data in the latent space (Train distances).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Wall clock times in seconds (lower is better) for calculating LES and the Bayesian uncertainty score (Notin
et al., 2021) for a sample of 20 latent vectors. In most cases (8 out of 10), LES is faster to compute, with a reduction
in compute of up to 85%.

Dataset Architecture Latent dim. LES (ours) Uncertainty Likelihood

Expressions
GRU 25 0.730 0.823 0.025
LSTM 25 0.164 0.857 0.049
Transformer 25 0.526 0.481 0.029

SMILES
GRU 56 0.663 3.157 0.103
LSTM 56 0.696 3.990 0.123
Transformer 56 0.581 0.726 0.185

SELFIES

GRU 75 0.498 1.925 0.064
LSTM 75 0.525 2.442 0.071
Transformer 75 0.451 0.583 0.085
Transformer 25 256 7.422 42.882 0.410

Average – – 1.226 5.787 0.114

The results are shown in table 2. LES provides the best performance in 18 out of the 22 VAEs in this analysis, and in
all cases provides a clear signal for identifying valid regions, as indicated by AUROC values that are at least 0.75. This
is while being much faster to compute than the Uncertainty score (table 1) and without the need to store a potentially
large array of latent vectors required by the Train distances approach.

Table 2: AUROC values (higher is better) for identifying valid data points within the latent space, across datasets and
decoder architectures. Data points are sampled from the training data, the VAE prior (standard Gaussian) and out of
distribution (Gaussian with std of 5). LES achieves the best performance in most cases (18 out of 22) and on average.
In addition, LES achieves AUROC values of at least 0.75 in all cases, indicating it can effectively differentiate valid
from invalid data points.

Dataset Architecture β LES (ours) Polarity (17) Prior Uncertainty Train distances Likelihood

SMILES

GRU
0.05 0.93 0.42 0.09 0.85 0.85 0.94
0.1 0.94 0.72 0.12 0.84 0.86 0.94
1.0 0.91 0.35 0.16 0.87 0.80 0.92

LSTM
0.05 0.99 0.93 0.07 0.99 0.91 0.98
0.1 0.89 0.67 0.21 0.89 0.81 0.9
1.0 0.97 0.76 0.12 0.95 0.85 0.96

Transformer
0.05 0.93 0.89 0.14 0.84 0.77 0.92
0.1 0.94 0.91 0.14 0.87 0.86 0.93
1.0 0.97 0.93 0.10 0.89 0.85 0.95

Expressions

GRU
0.05 0.96 0.89 0.38 0.96 0.67 0.88
0.1 0.94 0.86 0.42 0.94 0.71 0.8
1.0 0.94 0.80 0.57 0.94 0.75 0.89

LSTM
0.05 0.96 0.86 0.38 0.90 0.67 0.96
0.1 0.95 0.83 0.37 0.91 0.66 0.95
1.0 0.95 0.79 0.56 0.91 0.72 0.91

Transformer
0.05 0.91 0.79 0.43 0.86 0.71 0.90
0.1 0.91 0.79 0.53 0.87 0.78 0.89
1.0 0.86 0.61 0.70 0.92 0.89 0.92

SELFIES Transformer
0.05 1.0 0.99 0.02 0.99 0.62 0.97
0.1 0.99 0.98 0.03 0.96 0.81 0.98
1.0 0.95 0.94 0.06 0.85 0.72 0.93

SELFIES 25 Transformer – 0.75 0.39 0.69 0.33 0.69 0.70

Average 0.93 0.78 0.29 0.88 0.77 0.91

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 LES-CONSTRAINED LSO

Our investigation in section 3.2 shows that LES is a robust score that obtains higher values in the latent space valid
set (definition 4). Furthermore, LES is differentiable, which means it can easily be used to constrain any optimization
problem. Therefore, we propose adding an explicit constraint to eq. (3), encouraging the solution to achieve a high
LES value. We modify algorithm 1 by penalizing step (2) as follows:

znew = argmax
z

A(f̂(z)) + λS(z). (15)

4.1 EXPERIMENTAL SETUP

VAE models To evaluate the effectiveness of LES as a general purpose regularization method for LSO, we trained
twenty-two VAEs, focusing on varying the decoder architectures and the β parameter, which controls the trade-off
between reconstruction loss and alignment with the prior (KL divergence term). All models use a convolutional
encoder based on the architecture proposed by Kusner et al. (2017), and were trained for 300 epochs using the Adam
optimizer (Kingma, 2014) with a learning rate of 0.001 and batch size of 256.

The VAEs for the Expressions dataset, sourced from Kusner et al. (2017), were trained on 80k data points with a
latent dimension of 25. The SMILES VAEs were trained on the ZINC250k dataset, consisting of approximately 250k
drug-like molecules in SMILES format. Following Kusner et al. (2017) and Notin et al. (2021), a latent dimension of
56 was used. For the SELFIES VAEs, we used a subset of approximately 200k molecules from the ZINC250k dataset
that passed a set of quality filters (Walters, 2019), using the SELFIES representation (Krenn et al., 2020), with a latent
dimension of 75. Additionally, the pre-trained VAE by Maus et al. (2022) had a latent dimension of 256.

LSO setup Building on the setup described in Notin et al. (2021), we begin our experiments by training a single-
task Gaussian Process on an initial dataset, where samples are encoded into the latent space and paired with their true
objective values. For the Expressions and SMILES VAEs, we start with 500 data points, while for the SELFIES VAEs,
we use a larger sample of 1500 data points. Across all experiments, we generate 500 candidate solutions per problem,
using a batched approach that generates 20 solutions per batch.

For the SELFIES VAEs (both from Maus et al. (2022) and those trained by us), we employ a deep kernel that reduces
the latent space to 12 dimensions before fitting the Gaussian Process. To mitigate vanishing gradients, we use log
expected improvement (Ament et al., 2024) as our acquisition function, which is sequentially maximized during the
optimization process.

Optimization tasks The Expressions dataset consists of arithmetic expressions that are functions of a single variable
(e.g., sin(x), 1 + x ∗ x). Our objective is to find an expression that approximates 1/3 + x + sin(x * x), as
described by Kusner et al. (2017). The optimization target is defined as M(x) = − log(1+MSE(x)), where MSE(x)
is the mean-squared error between the expression x and 1/3 + x + sin(x * x), evaluated over the range -10
to 10 using a grid of 1000 equally spaced points.

For the SMILES dataset, our goal is to maximize the octanol-water partition coefficient, which is calculated using
the prediction model developed by Wildman & Crippen (1999). In the case of the SELFIES dataset, following Maus
et al. (2022), we focus on three objectives: Perindopril MPO, Ranolazine MPO, and Zaleplon MPO, all of which are
part of the Guacamol benchmarks (Brown et al., 2019). While the SELFIES syntax is 100% robust, we consider only
solutions that pass a set of quality filters for evaluation (see example 3 for more details).

LES-constrained LSO For ease of implementation and numerical stability, when applying LES regularization, we
adopt a simple optimization procedure in which the acquisition function is optimized using 10 steps of normalized
gradient ascent. This is because we empirically find that the norm of the derivative of the constraint (i.e., S(z)) is
typically much larger than the norm of the derivative of the acquisition function. As a result, using the gradient ascent
update rule z(i+1) = ∂A(f̂(z(i))) + λ∂S(z(i)) leads to a numerically unstable optimization process. To address this
issue, we propose the following update rule:

z(i+1) =
∂A(f̂(z(i)))

∥∂A(f̂(z(i)))∥2
+ λ

∂Sρ(z
(i))

∥∂Sρ(z(i))∥2
. (16)

We set λ = 0.05 for the Expressions dataset, λ = 0.1 for the SELFIES models we trained, and λ = 0.5 for both
the SMILES dataset and the pre-trained SELFIES VAE. This is because, without regularization, the SMILES and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

pre-trained SELFIES models tend to produce a lower percentage of valid solutions (table 10). Based on our findings,
we suggest λ = 0.5 as a reasonable default value, while leaving the exploration of an optimal, potentially adaptive,
choice for future work.

Table 3: Average of the top 20 solutions found during LSO (higher is better) across datasets and decoder architectures.
We bold the best method and underline the second-best. The average ranking for each method (lower is better) is
provided, along with the number of times each method is within one standard deviation of the best. LES achieves the
highest value in most experiments (20 out of 30) and outperforms other methods in terms of both the average ranking
and the frequency of being within one standard deviation of the best result.

Architecture β LES LSO (L-BFGS) UC LSO (GA) Prior TuRBO Likelihood

E
xp

re
ss

io
ns

GRU

0.05 -1.43 (0.05) -1.72 (0.07) -1.5 (0.05) -1.25 (0.06) -1.28 (0.05) -2.1 (0.11) -1.15 (0.09)

0.1 -1.34 (0.08) -1.93 (0.09) -2.01 (0.12) -1.21 (0.09) -1.18 (0.11) -2.14 (0.18) -1.31 (0.08)

1 -0.84 (0.02) -1.97 (0.07) -0.91 (0.03) -0.84 (0.02) -0.89 (0.05) -1.34 (0.05) -0.88 (0.03)

LSTM

0.05 -1.06 (0.06) -1.78 (0.09) -1.53 (0.06) -0.98 (0.05) -1.02 (0.03) -1.59 (0.13) -1.0 (0.07)

0.1 -0.8 (0.03) -1.39 (0.08) -1.09 (0.04) -0.79 (0.03) -0.79 (0.03) -1.32 (0.13) -0.75 (0.03)

1 -1.79 (0.02) -2.04 (0.04) -2.02 (0.03) -1.81 (0.02) -1.83 (0.02) -2.22 (0.08) -1.81 (0.03)

Transformer

0.05 -1.0 (0.04) -2.93 (0.13) -1.64 (0.08) -1.03 (0.04) -0.99 (0.05) -2.16 (0.09) -0.93 (0.05)

0.1 -0.77 (0.02) -2.69 (0.25) -1.79 (0.08) -0.77 (0.04) -0.78 (0.03) -1.39 (0.12) -0.81 (0.03)

1 -1.36 (0.09) -2.41 (0.09) -1.52 (0.09) -1.5 (0.07) -1.41 (0.08) -1.77 (0.12) -1.45 (0.12)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.37 (0.0) 0.21 (0.01) 0.36 (0.0) 0.37 (0.0) 0.37 (0.0) 0.04 (0.01) 0.37 (0.0)

0.1 0.36 (0.0) 0.19 (0.01) 0.35 (0.0) 0.36 (0.0) 0.34 (0.0) 0.01 (0.0) 0.36 (0.0)

1 0.35 (0.0) 0.25 (0.01) 0.31 (0.01) 0.33 (0.0) 0.28 (0.01) 0.23 (0.02) 0.34 (0.0)

Transformer (rano)

0.05 0.21 (0.0) 0.03 (0.0) 0.22 (0.0) 0.21 (0.0) 0.21 (0.0) 0.06 (0.0) 0.21 (0.0)

0.1 0.21 (0.0) – 0.23 (0.01) 0.21 (0.0) 0.22 (0.0) 0.03 (0.01) 0.22 (0.0)

1 0.21 (0.0) 0.07 (0.0) 0.22 (0.01) 0.19 (0.0) 0.2 (0.0) – 0.21 (0.0)

Transformer (zale)

0.05 0.33 (0.0) 0.13 (0.01) 0.32 (0.0) 0.33 (0.0) 0.32 (0.0) 0.04 (0.01) 0.33 (0.0)

0.1 0.34 (0.0) 0.06 (0.0) 0.31 (0.01) 0.32 (0.01) 0.31 (0.0) 0.04 (0.01) 0.34 (0.0)

1 0.31 (0.0) 0.18 (0.02) 0.26 (0.01) 0.29 (0.01) 0.23 (0.01) 0.17 (0.02) 0.3 (0.01)

SE
L

FI
E

S
25 Transformer (pdop) 1 0.39 (0.01) 0.33 (0.01) 0.38 (0.0) 0.38 (0.0) 0.4 (0.0) 0.4 (0.01) 0.37 (0.0)

Transformer (rano) 1 0.27 (0.01) 0.12 (0.01) 0.26 (0.01) 0.26 (0.0) 0.27 (0.0) 0.15 (0.01) 0.24 (0.0)

Transformer (zale) 1 0.29 (0.01) 0.29 (0.01) 0.3 (0.01) 0.31 (0.0) 0.3 (0.01) 0.36 (0.01) 0.24 (0.01)

SM
IL

E
S

GRU

0.05 2.31 (0.04) 0.52 (0.12) 2.18 (0.05) 2.21 (0.05) 2.2 (0.04) 0.82 (0.15) 2.31 (0.03)

0.1 2.3 (0.05) 0.12 (0.14) 1.68 (0.04) 2.09 (0.07) 1.93 (0.06) 0.41 (0.19) 2.12 (0.07)

1 1.64 (0.14) – – 1.19 (0.2) 0.58 (0.28) -0.16 (0.0) 1.49 (0.14)

LSTM

0.05 2.33 (0.03) 0.66 (0.12) 2.02 (0.03) 2.22 (0.05) 2.13 (0.05) 1.54 (0.41) 2.28 (0.03)

0.1 1.57 (0.1) – – 0.8 (0.12) 0.9 (0.09) – 1.43 (0.12)

1 1.94 (0.1) 0.7 (0.2) 0.95 (0.24) 1.14 (0.21) 0.81 (0.26) 0.52 (0.26) 1.67 (0.13)

Transformer

0.05 2.26 (0.04) 0.42 (0.15) 2.04 (0.05) 2.22 (0.03) 2.24 (0.03) 0.97 (0.19) 2.25 (0.03)

0.1 2.26 (0.03) 0.61 (0.15) 2.08 (0.04) 2.21 (0.03) 2.17 (0.03) 0.62 (0.14) 2.23 (0.02)

1 2.17 (0.05) 0.23 (0.12) 1.32 (0.09) 1.98 (0.06) 1.82 (0.06) 0.48 (0.18) 2.16 (0.05)

Average rank 1.83 6.47 4.4 2.97 3.5 6.03 2.8

within 1 std of best 21 0 4 8 8 2 14

Benchmark methods We compare our LES-constrained method (LES) with five alternative approaches for opti-
mizing the acquisition function. First, we evaluate a non-regularized version of eq. (16) , where λ = 0 (LSO (GA)),
and a two regularization methods that uses the prior density (i.e., ℓ2 regularization) and likelihood (eq. (14)) instead of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

LES (Prior, and Likelihood respectively), using similar λ values described above(λ = 0.05 for Expressions, λ = 0.1
for SELFIES VAEs trained by us, and λ = 0.5 for SMILES and pre-trained SELFIES VAE).

Additionally, we consider optimizing the acquisition function using the Limited-memory BFGS method within a sym-
metric hypercube centered at 0 (LSO (L-BFGS)), which is the default approach in the BoTorch package (Balandat
et al., 2020). Since recent state-of-the-art LSO pipelines (Maus et al., 2022; Lee et al., 2024) have utilized trust regions
centered around the best observed value (Eriksson et al., 2019), we also compare with this approach (TuRBO). Lastly,
we implement the Uncertainty Censoring (UC) method proposed by Notin et al. (2021), which suggests early stopping
of the optimization when the estimated uncertainty exceeds a certain threshold. For this threshold, we use the 99th
percentile of the observed uncertainty values in the training data, as recommended by Notin et al. (2021).

Hyperparameters We calibrate the step size, which affects LES, UC, Prior, Likelihood, and LSO (GA), to ensure
that our gradient ascent procedure (with λ = 0) consistently improves the acquisition function values across different
initializations. The same step size is applied to all models within the same dataset: Expressions = 0.8, SMILES =
0.003, SELFIES = 0.03, and SELFIES pre-trained = 0.3. The LSO (L-BFGS) method has a single hyperparameter,
the facet length, which is set to 5. For TuRBO, there are three primary hyperparameters: the initial length, which we
set to 0.8, along with the success and failure tolerances, determining when to expand or shrink the trust region, set at
10 and 2, respectively. An ablation study for these choices is provided in appendix B.

4.2 RESULTS

Optimization results The experimental results, presenting the average across 10 independent LSO runs for the top
20 and best solutions found, are summarized in tables 3 and 8 respectively. In both cases, LES achieves the average
best performance most frequently (20 and 14 out of 30 times, respectively). Furthermore, LES outperforms other
methods in both the average ranking across LSO tasks and the frequency with which it falls within one standard
deviation of the best-performing method. These findings demonstrate that using LES as a regularization technique
generally enhances optimization performance.

In table 10 we present the percentage of valid solutions found by each method across datasets and decoder architec-
tures. LES improves upon the non-regularized version of gradient ascent by 7% on average and upon TuRBO and
LSO (L-BFGS) by 24% and 35% on average respectively. While UC achieves a 3% higher percentage of valid solu-
tions on average, we show in table 9 that the number of valid solutions can be increased by setting a higher λ value.
However, in our experiments, this did not improve the optimization performance.

5 DISCUSSION

We proposed LES to mitigate over-exploration in latent space optimization (LSO). LES is differentiable and fully
parallelizable. Extensive evaluations demonstrate that incorporating LES as a penalty in LSO consistently enhances
solution quality and objective outcomes. Moreover, LES outperforms alternative regularization techniques, proving
to be the most robust across diverse datasets and varying definitions of validity. In addition, LES has only a single
hyperparameter (the regularization strength), and we observe empirically that deploying LES can provide significant
performance gains–without any instability or having to resort to implementation tricks. We therefore believe LES
offers a powerful and robust approach for discovering more realistic solutions, particularly when the criteria for realism
are difficult to define or validate.

While LES is fully parallelizable, it requires the calculation of the derivative of the decoder as well as the determinant
of the change-of-variables term, which can be computationally expensive. This step can become a bottleneck when
the size of the output and the latent dimension are both large. It is left for future work to develop a fast approximation
for this operation in order to enable the use of LES in applications involving large generative models, such as large
language models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Unexpected improve-
ments to expected improvement for bayesian optimization. Advances in Neural Information Processing Systems,
36, 2024.

Jonathan B Baell and Georgina A Holloway. New substructure filters for removal of pan assay interference compounds
(pains) from screening libraries and for their exclusion in bioassays. Journal of medicinal chemistry, 53(7):2719–
2740, 2010.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon Wilson, and
Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In Advances in Neural
Information Processing Systems 33, 2020. URL http://arxiv.org/abs/1910.06403.

Randall Balestriero and Richard Baraniuk. Mad max: Affine spline insights into deep learning. arXiv preprint
arXiv:1805.06576, 2018.

Adi Ben-Israel. The change-of-variables formula using matrix volume. SIAM Journal on Matrix Analysis and Appli-
cations, 21(1):300–312, 1999.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio. Gflownet foundations.
The Journal of Machine Learning Research, 24(1):10006–10060, 2023.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking models for de
novo molecular design. Journal of chemical information and modeling, 59(3):1096–1108, 2019.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Diffusion steps, twists,
and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Ingrid Daubechies, Ronald DeVore, Nadav Dym, Shira Faigenbaum-Golovin, Shahar Z Kovalsky, Kung-Chin Lin,
Josiah Park, Guergana Petrova, and Barak Sober. Neural network approximation of refinable functions. IEEE
Transactions on Information Theory, 69(1):482–495, 2022.

Yuanqi Du, Arian R Jamasb, Jeff Guo, Tianfan Fu, Charles Harris, Yingheng Wang, Chenru Duan, Pietro Liò, Philippe
Schwaller, and Tom L Blundell. Machine learning-aided generative molecular design. Nature Machine Intelligence,
pp. 1–16, 2024.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable global optimization
via local bayesian optimization. Advances in neural information processing systems, 32, 2019.

Peter I Frazier. Bayesian optimization. In Recent advances in optimization and modeling of contemporary problems,
pp. 255–278. Informs, 2018.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. In international conference on machine learning, pp. 1050–1059. PMLR, 2016.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamı́n Sánchez-
Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven continuous representation of molecules. ACS central science,
4(2):268–276, 2018.

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for automatic chemical
design using variational autoencoders. Chemical science, 11(2):577–586, 2020.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Magnet: Uniform sampling from deep genera-
tive network manifolds without retraining. In International Conference on Learning Representations, 2021.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Polarity sampling: Quality and diversity control
of pre-trained generative networks via singular values. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10641–10650, 2022.

Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal Frossard, Max Welling,
Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion model for molecular linker design.
Nature Machine Intelligence, pp. 1–11, 2024.

11

http://arxiv.org/abs/1910.06403

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular graph gen-
eration. In International conference on machine learning, pp. 2323–2332. PMLR, 2018.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-referencing em-
bedded strings (selfies): A 100% robust molecular string representation. Machine Learning: Science and Technol-
ogy, 1(4):045024, 2020.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder. In International
conference on machine learning, pp. 1945–1954. PMLR, 2017.

Seunghun Lee, Jaewon Chu, Sihyeon Kim, Juyeon Ko, and Hyunwoo J Kim. Advancing bayesian optimization via
learning correlated latent space. Advances in Neural Information Processing Systems, 36, 2024.

Christopher A Lipinski, Franco Lombardo, Beryl W Dominy, and Paul J Feeney. Experimental and computational
approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug
delivery reviews, 23(1-3):3–25, 1997.

Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner, John Bradshaw, and Jacob Gardner. Local latent space
bayesian optimization over structured inputs. Advances in neural information processing systems, 35:34505–34518,
2022.

Pascal Notin, José Miguel Hernández-Lobato, and Yarin Gal. Improving black-box optimization in vae la-
tent space using decoder uncertainty. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 802–
814. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
06fe1c234519f6812fc4c1baae25d6af-Paper.pdf.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization in the latent space
of deep generative models via weighted retraining. Advances in Neural Information Processing Systems, 33:11259–
11272, 2020.

P. Walters. rd filters, 2019. URL https://github.com/PatWalters/rd_filters. Accessed: January 14,
2019.

Scott A Wildman and Gordon M Crippen. Prediction of physicochemical parameters by atomic contributions. Journal
of chemical information and computer sciences, 39(5):868–873, 1999.

12

https://proceedings.neurips.cc/paper/2021/file/06fe1c234519f6812fc4c1baae25d6af-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/06fe1c234519f6812fc4c1baae25d6af-Paper.pdf
https://github.com/PatWalters/rd_filters

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOFS

Lemma 6. Let fθ be a DGN as defined in eq. (8) and assume that fθ can be expressed as a CPA (eq. (5)) and is
inevitable, then

Jf−1
θ (x) =


B1 · · · 0

...
. . .

...
0 · · · BL

A†
ω


T

, (17)

where A†
ω is the Moore–Penrose inverse of the slope matrix, at the knot whose image constrains x, and

Bi =

(
diag

(
1

(p
(i)
z)1

, . . . ,
1

(p
(i)
z)D

)
,−1

1

c
(i)
z

)T

. (18)

Proof. First we write

fθ(z) = Softmax+(ℓθ(z)), (19)

Where Softmax+ is the extension of the column wise Softmax function to include the normalizing constants. Specifi-
cally, for L by D ℓθ(z) matrix, we have

Softmax+(ℓθ(z)) =
(
p(1)
z , (c(1)z)−1, . . . ,p(L)

z , (c(L)
z)−1

)
= xz, (20)

with p
(i)
z = (e

ℓθ(z)1i

c
(i)
z

), and c
(i)
z =

∑D
j=1 exp(ℓθ(z)ji).

Next,

f
(−1)
θ (x) = ℓ−1

θ (Softmax−1
+ (x)) (21)

A direct calculation yields,

Softmax−1
+ (x) =

(
log(p(1)

z) + log(c(1)z), . . . , log(p(L)
z) + log(c(L)

z)
)
. (22)

As we assume ℓθ is bijective and can be written as

ℓθ(z) =
∑
ω∈Ω

(Aωz + bω) 1z∈ω, (23)

we have that

ℓ−1
θ (Softmax−1

+ (x)) = (Softmax−1
+ (x)− bω)A

†
ω. (24)

Lastly, as

∂Softmax−1
+ (x)

∂x
=

B1 · · · 0
...

. . .
...

0 · · · BL

 , (25)

for

Bi =

(
diag

(
1

(p
(i)
z)1

, . . . ,
1

(p
(i)
z)D

)
,−1

1

c
(i)
z

)T

. (26)

we obtain the final result.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Proof of theorem 5. First, we note that by our invertibility assumption we have that P(x ∈ W) = P(z ∈ f
(−1)
θ (W)).

We then proceed with a direct calculation

P(x ∈ W) = P(z ∈ f
(−1)
θ (W)) (27)

=
∑
ω∈Ω

P(z ∈ (f
(−1)
θ (W) ∩ ω)) (28)

=
∑
ω∈Ω

∫
f
(−1)
θ (W)∩ω

fz(z)dz (29)

=
∑
ω∈Ω

∫
W∩fθ(ω)

fz(f
(−1)
θ (x))

√
det
(
Jf

(−1)
θ (x)Jf

(−1)
θ (x)T

)
dx (30)

=

∫
W

∑
ω∈Ω

fz(f
(−1)
θ (x))

√
det
(
Jf

(−1)
θ (x)Jf

(−1)
θ (x)T

)
1{x∈fθ(ω)}dx. (31)

Using lemma 6, we get that the volume element is

Jf
(−1)
θ (x)Jf

(−1)
θ (x)T =


B1 · · · 0

...
. . .

...
0 · · · BL

A†
ω


T 

B1 · · · 0
...

. . .
...

0 · · · BL

A†
ω

 (32)

(A†
ω)

T

B
T
1 · · · 0
...

. . .
...

0 · · · BT
L ,




B1 · · · 0

...
. . .

...
0 · · · BL

A†
ω

 (33)

=

L∑
i=1

(A†
i)

T (Bi)
TBiA

†
i , (34)

where A†
i =

(
A

(1)
ω , . . . ,A

(L)
ω

)†
(i·D):(i+1·D).

.

Lemma 7. Let f : Z → X be a function and define f† : X → Z as f†(x) ∈ {z : f(z) = x}. Let µ be the Lebesgue
measure and assume that µ({z;∃z′ s.t. f(z) = f(z′)}) = 0, then for every B ⊆ Z we have

µ({z; f(z) ∈ B}) = µ(f†(B)) (35)

Proof. We proceed with direct calculation

µ({z; f(z) ∈ B}) ≤ µ(f†(B)) + µ({z;∃z′ s.t. f(z) = f(z′)}) (36)

Now assume that µ({z;∃z′ s.t. f(z) = f(z′)}) = 0, we have that µ({z; f(z) ∈ B}) ≤ µ(f†(B)). The other direction
follows immediately from the definition of f†.

lemma 7 implies that eq. (30) can still hold under the assumption that µ({z;∃z′ s.t. fθ(z) = fθ(z
′)}) = 0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: Ablation study for the initial length, success tolerance and failure tolerance for the TuRBO method. Average
across 10 independent runs, of the top 20 best values across datasets, architectures. Column names indicate the
length/success/fail values. Results from the main paper are in bold.

Architecture β 0.8/10/10 0.8/10/2 0.8/2/10 0.8/2/2 1.6/10/10 1.6/10/2 1.6/2/10 1.6/2/2

E
xp

re
ss

io
ns

GRU

0.05 -2.03 (0.12) -2.1 (0.11) -2.0 (0.09) -2.0 (0.11) -1.93 (0.09) -1.92 (0.08) -1.91 (0.06) -1.93 (0.07)

0.1 -2.18 (0.15) -2.14 (0.18) -2.11 (0.2) -2.14 (0.2) -1.98 (0.13) -2.05 (0.12) -2.0 (0.17) -2.09 (0.22)

1 -1.39 (0.12) -1.34 (0.05) -1.56 (0.11) -1.61 (0.11) -1.36 (0.08) -1.42 (0.11) -1.45 (0.12) -1.38 (0.12)

LSTM

0.05 -1.45 (0.09) -1.59 (0.13) -1.63 (0.12) -1.49 (0.1) -1.46 (0.08) -1.52 (0.08) -1.51 (0.12) -1.31 (0.07)

0.1 -1.31 (0.12) -1.32 (0.13) -1.37 (0.11) -1.31 (0.11) -1.31 (0.1) -1.36 (0.13) -1.36 (0.11) -1.35 (0.09)

1 -2.16 (0.06) -2.22 (0.08) -2.23 (0.08) -2.23 (0.08) -2.13 (0.07) -2.16 (0.06) -2.15 (0.05) -2.08 (0.06)

Transformer

0.05 -2.07 (0.12) -2.16 (0.09) -2.03 (0.17) -2.15 (0.14) -1.96 (0.13) -1.74 (0.13) -2.09 (0.1) -1.79 (0.11)

0.1 -1.45 (0.13) -1.39 (0.12) -1.56 (0.13) -1.38 (0.13) -1.32 (0.11) -1.43 (0.17) -1.4 (0.1) -1.33 (0.12)

1 -1.96 (0.11) -1.77 (0.12) -1.81 (0.11) -1.85 (0.09) -1.85 (0.11) -1.76 (0.08) -1.78 (0.08) -1.75 (0.09)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.02 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.09 (0.01) 0.09 (0.03) 0.08 (0.01) 0.09 (0.02)

0.1 0.01 (0.0) 0.01 (0.0) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.08 (0.03) 0.04 (0.02) 0.05 (0.02)

1 0.24 (0.01) 0.23 (0.02) 0.21 (0.02) 0.24 (0.01) 0.27 (0.01) 0.26 (0.01) 0.28 (0.01) 0.26 (0.01)

Transformer (rano)

0.05 0.06 (0.01) 0.06 (0.0) 0.06 (0.01) 0.06 (0.01) 0.04 (0.01) 0.02 (0.0) 0.04 (0.0) 0.03 (0.01)

0.1 0.03 (0.01) 0.03 (0.01) 0.03 (0.0) 0.02 (0.0) – – – –

1 – – 0.08 (0.0) – 0.05 (0.01) 0.07 (0.01) 0.07 (0.0) –

Transformer (zale)

0.05 0.02 (0.01) 0.04 (0.01) 0.02 (0.01) 0.04 (0.01) 0.07 (0.01) 0.07 (0.02) 0.06 (0.01) 0.06 (0.01)

0.1 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01) 0.01 (0.0) 0.02 (0.0) 0.09 (0.0) 0.04 (0.0)

1 0.16 (0.02) 0.17 (0.02) 0.16 (0.02) 0.17 (0.02) 0.18 (0.02) 0.16 (0.02) 0.18 (0.02) 0.19 (0.02)

SE
L

FI
E

S
25 Transformer (pdop) 1 0.4 (0.01) 0.4 (0.01) 0.39 (0.02) 0.37 (0.02) 0.35 (0.0) 0.36 (0.01) 0.35 (0.01) 0.35 (0.01)

Transformer (rano) 1 0.14 (0.01) 0.15 (0.01) 0.16 (0.01) 0.16 (0.01) 0.15 (0.01) 0.13 (0.01) 0.14 (0.01) 0.16 (0.01)

Transformer (zale) 1 0.36 (0.01) 0.36 (0.01) 0.36 (0.01) 0.36 (0.01) 0.3 (0.01) 0.29 (0.01) 0.29 (0.01) 0.3 (0.01)

SM
IL

E
S

GRU

0.05 0.89 (0.19) 0.82 (0.15) 0.64 (0.2) 0.89 (0.14) 1.0 (0.14) 0.98 (0.19) 0.7 (0.24) 1.07 (0.19)

0.1 0.4 (0.22) 0.41 (0.19) 0.63 (0.26) 0.55 (0.14) 0.83 (0.13) 0.96 (0.33) 0.69 (0.18) 0.75 (0.18)

1 1.44 (0.0) -0.16 (0.0) – – 0.14 (0.65) – – 1.14 (0.0)

LSTM

0.05 1.18 (0.25) 1.54 (0.41) 1.1 (0.15) 1.1 (0.36) 0.86 (0.27) 1.05 (0.21) 1.07 (0.29) 1.22 (0.27)

0.1 – – – – 0.21 (0.0) – – –

1 0.61 (0.16) 0.52 (0.26) 0.48 (0.13) 0.7 (0.23) 0.67 (0.23) 1.13 (0.16) 0.97 (0.28) 0.88 (0.23)

Transformer

0.05 0.88 (0.18) 0.97 (0.19) 0.92 (0.14) 0.67 (0.15) 0.93 (0.17) 1.16 (0.1) 1.09 (0.11) 0.97 (0.24)

0.1 0.42 (0.12) 0.62 (0.14) 0.44 (0.16) 0.73 (0.14) 0.91 (0.1) 0.6 (0.14) 0.81 (0.14) 0.7 (0.14)

1 0.72 (0.18) 0.48 (0.18) 0.61 (0.15) 0.47 (0.16) 0.99 (0.12) 0.74 (0.15) 0.83 (0.16) 0.68 (0.15)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Ablation study for the initial length, success tolerance and failure tolerance for the TuRBO method. Av-
erage across 10 independent runs, of the best value across datasets, architectures. Column names indicate the
length/success/fail values. Results from the main paper are in bold.

Architecture β 0.8/10/10 0.8/10/2 0.8/2/10 0.8/2/2 1.6/10/10 1.6/10/2 1.6/2/10 1.6/2/2

E
xp

re
ss

io
ns

GRU

0.05 -0.65 (0.11) -0.73 (0.12) -0.71 (0.09) -0.61 (0.1) -0.65 (0.12) -0.59 (0.06) -0.62 (0.11) -0.72 (0.13)

0.1 -0.56 (0.05) -0.61 (0.07) -0.59 (0.07) -0.71 (0.1) -0.54 (0.04) -0.58 (0.05) -0.62 (0.04) -0.63 (0.04)

1 -0.56 (0.05) -0.54 (0.05) -0.54 (0.06) -0.6 (0.08) -0.56 (0.06) -0.61 (0.05) -0.6 (0.04) -0.59 (0.05)

LSTM

0.05 -0.46 (0.03) -0.43 (0.02) -0.43 (0.02) -0.38 (0.02) -0.43 (0.02) -0.43 (0.02) -0.47 (0.04) -0.4 (0.01)

0.1 -0.38 (0.04) -0.39 (0.0) -0.41 (0.01) -0.42 (0.02) -0.42 (0.02) -0.42 (0.02) -0.42 (0.02) -0.42 (0.02)

1 -0.96 (0.09) -0.86 (0.0) -0.86 (0.0) -1.01 (0.11) -0.88 (0.01) -0.98 (0.06) -0.92 (0.04) -0.88 (0.01)

Transformer

0.05 -0.39 (0.04) -0.44 (0.02) -0.39 (0.04) -0.4 (0.05) -0.44 (0.02) -0.39 (0.04) -0.38 (0.04) -0.42 (0.02)

0.1 -0.38 (0.04) -0.41 (0.02) -0.42 (0.02) -0.42 (0.02) -0.39 (0.04) -0.41 (0.01) -0.41 (0.02) -0.37 (0.04)

1 -0.67 (0.1) -0.58 (0.1) -0.52 (0.08) -0.62 (0.06) -0.66 (0.11) -0.62 (0.07) -0.56 (0.05) -0.54 (0.05)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.13 (0.02) 0.15 (0.03) 0.17 (0.03) 0.18 (0.03) 0.23 (0.03) 0.17 (0.04) 0.22 (0.04) 0.2 (0.04)

0.1 0.08 (0.02) 0.09 (0.03) 0.1 (0.03) 0.09 (0.03) 0.1 (0.03) 0.12 (0.04) 0.1 (0.03) 0.14 (0.04)

1 0.36 (0.02) 0.31 (0.03) 0.36 (0.02) 0.34 (0.02) 0.38 (0.01) 0.38 (0.0) 0.4 (0.01) 0.36 (0.02)

Transformer (rano)

0.05 0.17 (0.02) 0.2 (0.02) 0.2 (0.02) 0.18 (0.02) 0.11 (0.02) 0.08 (0.01) 0.12 (0.02) 0.13 (0.02)

0.1 0.09 (0.02) 0.1 (0.01) 0.11 (0.02) 0.1 (0.02) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01) 0.06 (0.01)

1 0.07 (0.02) 0.05 (0.02) 0.11 (0.03) 0.07 (0.02) 0.16 (0.02) 0.16 (0.03) 0.11 (0.02) 0.12 (0.02)

Transformer (zale)

0.05 0.11 (0.02) 0.15 (0.03) 0.12 (0.02) 0.16 (0.03) 0.22 (0.03) 0.23 (0.03) 0.21 (0.04) 0.19 (0.03)

0.1 0.14 (0.01) 0.16 (0.01) 0.15 (0.02) 0.14 (0.01) 0.1 (0.02) 0.12 (0.02) 0.13 (0.02) 0.14 (0.03)

1 0.36 (0.02) 0.31 (0.03) 0.38 (0.02) 0.36 (0.02) 0.38 (0.01) 0.34 (0.02) 0.31 (0.03) 0.38 (0.02)

SE
L

FI
E

S
25 Transformer (pdop) 1 0.5 (0.01) 0.49 (0.02) 0.49 (0.01) 0.47 (0.01) 0.45 (0.01) 0.46 (0.01) 0.45 (0.01) 0.46 (0.01)

Transformer (rano) 1 0.34 (0.01) 0.31 (0.02) 0.32 (0.02) 0.32 (0.01) 0.31 (0.01) 0.32 (0.01) 0.33 (0.01) 0.33 (0.01)

Transformer (zale) 1 0.47 (0.02) 0.49 (0.01) 0.48 (0.03) 0.47 (0.01) 0.42 (0.01) 0.4 (0.01) 0.41 (0.01) 0.43 (0.01)

SM
IL

E
S

GRU

0.05 2.47 (0.22) 2.47 (0.22) 2.42 (0.21) 2.24 (0.17) 2.35 (0.23) 2.42 (0.28) 1.97 (0.18) 2.25 (0.31)

0.1 1.76 (0.3) 2.57 (0.31) 2.45 (0.26) 2.07 (0.34) 2.24 (0.28) 2.26 (0.33) 2.24 (0.31) 1.92 (0.24)

1 2.43 (0.32) 2.48 (0.29) 2.76 (0.24) 2.17 (0.49) 2.43 (0.32) 2.35 (0.37) 1.4 (0.52) 2.04 (0.33)

LSTM

0.05 2.65 (0.32) 2.73 (0.33) 2.89 (0.26) 3.02 (0.34) 2.64 (0.3) 2.91 (0.29) 2.77 (0.23) 2.68 (0.37)

0.1 1.97 (0.37) 1.78 (0.43) 1.98 (0.4) 2.16 (0.29) 2.36 (0.41) 1.87 (0.39) 2.34 (0.33) 1.73 (0.41)

1 3.06 (0.2) 2.71 (0.34) 2.65 (0.16) 2.83 (0.25) 2.75 (0.28) 3.49 (0.26) 2.68 (0.31) 3.16 (0.35)

Transformer

0.05 2.47 (0.23) 2.88 (0.24) 2.42 (0.17) 2.67 (0.27) 2.91 (0.3) 2.25 (0.2) 2.43 (0.24) 2.48 (0.29)

0.1 3.03 (0.3) 2.15 (0.18) 2.51 (0.25) 2.41 (0.24) 2.28 (0.12) 2.28 (0.22) 2.53 (0.26) 2.46 (0.16)

1 2.37 (0.21) 2.25 (0.18) 2.16 (0.17) 2.21 (0.25) 2.46 (0.2) 2.11 (0.12) 2.31 (0.16) 2.71 (0.32)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B ABLATION STUDIES

Table 6: Ablation study for the facet length parameter of LSO (L-BFGS) method. Average across 10 independent runs
of the average top 20 values across datasets, architectures, and bound methods are displayed for facet lengths of size
1, 5 and 10. Results from the main paper are bold.

Architecture β 1 5 10
E

xp
re

ss
io

ns

GRU

0.05 -1.79 (0.08) -1.72 (0.07) -1.72 (0.07)

0.1 -1.73 (0.11) -1.93 (0.09) -1.89 (0.11)

1 -1.94 (0.07) -1.97 (0.07) -2.03 (0.09)

LSTM

0.05 -1.89 (0.09) -1.78 (0.09) -1.93 (0.06)

0.1 -1.29 (0.06) -1.39 (0.08) -1.37 (0.06)

1 -2.04 (0.05) -2.04 (0.04) -2.04 (0.05)

Transformer

0.05 -3.11 (0.14) -2.93 (0.13) -3.02 (0.09)

0.1 -3.19 (0.28) -2.69 (0.25) -2.93 (0.22)

1 -2.44 (0.11) -2.41 (0.09) -2.28 (0.11)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.22 (0.01) 0.21 (0.01) 0.25 (0.01)

0.1 0.25 (0.01) 0.19 (0.01) 0.22 (0.03)

1 0.26 (0.01) 0.25 (0.01) 0.27 (0.01)

Transformer (rano)

0.05 0.04 (0.0) 0.03 (0.0) –

0.1 – – –

1 0.09 (0.02) 0.07 (0.0) 0.08 (0.01)

Transformer (zale)

0.05 0.12 (0.02) 0.13 (0.01) 0.11 (0.01)

0.1 0.08 (0.01) 0.06 (0.0) 0.07 (0.0)

1 0.18 (0.02) 0.18 (0.02) 0.19 (0.02)

SE
L

FI
E

S
25 Transformer (pdop) 1 0.33 (0.01) 0.33 (0.01) 0.34 (0.01)

Transformer (rano) 1 0.15 (0.01) 0.12 (0.01) 0.14 (0.01)

Transformer (zale) 1 0.29 (0.01) 0.29 (0.01) 0.27 (0.01)

SM
IL

E
S

GRU

0.05 0.65 (0.12) 0.52 (0.12) 0.52 (0.13)

0.1 0.52 (0.14) 0.12 (0.14) 0.36 (0.15)

1 – – –

LSTM

0.05 0.67 (0.15) 0.66 (0.12) 0.56 (0.2)

0.1 – – –

1 0.49 (0.16) 0.7 (0.2) 0.55 (0.15)

Transformer

0.05 0.52 (0.18) 0.42 (0.15) 0.55 (0.12)

0.1 0.63 (0.18) 0.61 (0.15) 0.56 (0.17)

1 0.16 (0.15) 0.23 (0.12) 0.39 (0.13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Ablation study for the facet length parameter of LSO (L-BFGS) method. Average across 10 independent
runs, of the best value across datasets, architectures, and bound methods are displayed for facet lengths of size 1, 5
and 10. Results from the main paper are bold.

Architecture β 1 5 10

E
xp

re
ss

io
ns

GRU

0.05 -0.57 (0.07) -0.56 (0.04) -0.56 (0.07)

0.1 -0.53 (0.04) -0.46 (0.02) -0.46 (0.02)

1 -0.68 (0.05) -0.77 (0.02) -0.73 (0.04)

LSTM

0.05 -0.57 (0.11) -0.56 (0.04) -0.67 (0.09)

0.1 -0.4 (0.05) -0.44 (0.04) -0.47 (0.04)

1 -1.01 (0.1) -1.02 (0.07) -0.86 (0.0)

Transformer

0.05 -1.06 (0.13) -0.8 (0.1) -1.11 (0.18)

0.1 -0.8 (0.14) -0.65 (0.1) -0.69 (0.09)

1 -0.85 (0.1) -0.82 (0.1) -0.78 (0.12)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.36 (0.01) 0.36 (0.02) 0.34 (0.03)

0.1 0.29 (0.03) 0.34 (0.02) 0.27 (0.03)

1 0.39 (0.01) 0.36 (0.02) 0.35 (0.03)

Transformer (rano)

0.05 0.06 (0.01) 0.07 (0.01) 0.08 (0.01)

0.1 0.08 (0.02) 0.08 (0.02) 0.07 (0.01)

1 0.16 (0.02) 0.16 (0.02) 0.16 (0.02)

Transformer (zale)

0.05 0.27 (0.03) 0.27 (0.03) 0.26 (0.03)

0.1 0.15 (0.04) 0.19 (0.03) 0.18 (0.04)

1 0.38 (0.01) 0.38 (0.02) 0.39 (0.01)

SE
L

FI
E

S
25 Transformer (pdop) 1 0.46 (0.01) 0.43 (0.01) 0.46 (0.01)

Transformer (rano) 1 0.31 (0.02) 0.3 (0.01) 0.31 (0.02)

Transformer (zale) 1 0.41 (0.0) 0.4 (0.01) 0.41 (0.02)

SM
IL

E
S

GRU

0.05 2.06 (0.3) 1.71 (0.24) 2.02 (0.22)

0.1 2.11 (0.28) 1.74 (0.2) 1.94 (0.22)

1 2.4 (0.31) 2.1 (0.32) 2.34 (0.31)

LSTM

0.05 2.31 (0.21) 2.32 (0.19) 2.15 (0.18)

0.1 1.74 (0.5) 1.85 (0.34) 1.47 (0.49)

1 2.8 (0.25) 3.09 (0.16) 2.42 (0.3)

Transformer

0.05 1.82 (0.2) 1.79 (0.13) 1.74 (0.17)

0.1 2.19 (0.16) 2.24 (0.1) 2.09 (0.17)

1 1.72 (0.18) 2.0 (0.14) 1.96 (0.14)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTAL RESULTS

Table 8: Average of the top solution found during LSO (higher is better), across datasets and decoder architectures.
We bold the best method and underline the second-best. The average ranking for each method (lower is better) is
provided, along with the number of times each method is within one standard deviation of the best. LES and Prior
achieve the highest value most frequently (14 out of 30) and outperforms other methods both in terms of the average
ranking and the frequency of being within one standard deviation of the best result.

Architecture β LES LSO (L-BFGS) UC LSO (GA) Prior TuRBO Likelihood

E
xp

re
ss

io
ns

GRU

0.05 -0.55 (0.04) -0.56 (0.04) -0.59 (0.04) -0.45 (0.05) -0.4 (0.07) -0.73 (0.12) -0.4 (0.07)

0.1 -0.45 (0.03) -0.46 (0.02) -0.47 (0.05) -0.43 (0.02) -0.37 (0.03) -0.61 (0.07) -0.43 (0.02)

1 -0.47 (0.03) -0.77 (0.02) -0.51 (0.04) -0.46 (0.02) -0.47 (0.03) -0.54 (0.05) -0.43 (0.01)

LSTM

0.05 -0.43 (0.02) -0.56 (0.04) -0.52 (0.05) -0.43 (0.01) -0.41 (0.01) -0.43 (0.02) -0.4 (0.01)

0.1 -0.32 (0.05) -0.44 (0.04) -0.39 (0.04) -0.38 (0.02) -0.4 (0.01) -0.39 (0.0) -0.32 (0.04)

1 -0.86 (0.0) -1.02 (0.07) -0.86 (0.0) -0.86 (0.0) -0.86 (0.0) -0.86 (0.0) -0.91 (0.04)

Transformer

0.05 -0.43 (0.03) -0.8 (0.1) -0.57 (0.05) -0.44 (0.02) -0.37 (0.05) -0.44 (0.02) -0.38 (0.04)

0.1 -0.36 (0.03) -0.65 (0.1) -0.55 (0.04) -0.39 (0.01) -0.35 (0.04) -0.41 (0.02) -0.41 (0.02)

1 -0.52 (0.05) -0.82 (0.1) -0.58 (0.05) -0.58 (0.04) -0.62 (0.09) -0.58 (0.1) -0.65 (0.08)

SE
L

FI
E

S

Transformer (pdop)

0.05 0.43 (0.0) 0.36 (0.02) 0.42 (0.0) 0.42 (0.0) 0.42 (0.0) 0.15 (0.03) 0.43 (0.0)

0.1 0.43 (0.0) 0.34 (0.02) 0.42 (0.01) 0.42 (0.0) 0.41 (0.01) 0.09 (0.03) 0.43 (0.01)

1 0.41 (0.01) 0.36 (0.02) 0.39 (0.01) 0.4 (0.0) 0.38 (0.01) 0.31 (0.03) 0.4 (0.0)

Transformer (rano)

0.05 0.33 (0.01) 0.07 (0.01) 0.36 (0.01) 0.33 (0.01) 0.32 (0.01) 0.2 (0.02) 0.31 (0.01)

0.1 0.33 (0.01) 0.08 (0.02) 0.36 (0.02) 0.32 (0.01) 0.32 (0.01) 0.1 (0.01) 0.33 (0.01)

1 0.31 (0.01) 0.16 (0.02) 0.39 (0.02) 0.31 (0.01) 0.33 (0.02) 0.05 (0.02) 0.33 (0.01)

Transformer (zale)

0.05 0.43 (0.01) 0.27 (0.03) 0.42 (0.01) 0.43 (0.01) 0.42 (0.0) 0.15 (0.03) 0.44 (0.01)

0.1 0.44 (0.01) 0.19 (0.03) 0.42 (0.01) 0.42 (0.01) 0.42 (0.01) 0.16 (0.01) 0.44 (0.01)

1 0.42 (0.01) 0.38 (0.02) 0.39 (0.01) 0.42 (0.01) 0.37 (0.01) 0.31 (0.03) 0.42 (0.01)

SE
L

FI
E

S
25 Transformer (pdop) 1 0.48 (0.01) 0.43 (0.01) 0.46 (0.01) 0.47 (0.01) 0.51 (0.02) 0.49 (0.02) 0.47 (0.01)

Transformer (rano) 1 0.37 (0.01) 0.3 (0.01) 0.37 (0.01) 0.38 (0.01) 0.36 (0.01) 0.31 (0.02) 0.36 (0.01)

Transformer (zale) 1 0.41 (0.02) 0.4 (0.01) 0.41 (0.01) 0.47 (0.02) 0.41 (0.01) 0.49 (0.01) 0.41 (0.02)

SM
IL

E
S

GRU

0.05 3.29 (0.1) 1.71 (0.24) 3.13 (0.07) 3.26 (0.11) 3.18 (0.06) 2.47 (0.22) 3.26 (0.08)

0.1 3.55 (0.14) 1.74 (0.2) 3.2 (0.1) 3.31 (0.16) 3.15 (0.11) 2.57 (0.31) 3.33 (0.12)

1 3.85 (0.17) 2.1 (0.32) 2.24 (0.28) 3.66 (0.16) 3.89 (0.28) 2.48 (0.29) 3.89 (0.2)

LSTM

0.05 3.29 (0.07) 2.32 (0.19) 3.12 (0.08) 3.3 (0.1) 3.28 (0.1) 2.73 (0.33) 3.37 (0.09)

0.1 3.66 (0.2) 1.85 (0.34) 2.65 (0.19) 3.52 (0.22) 3.57 (0.18) 1.78 (0.43) 3.54 (0.16)

1 3.6 (0.14) 3.09 (0.16) 2.6 (0.3) 3.18 (0.17) 3.28 (0.17) 2.71 (0.34) 3.48 (0.11)

Transformer

0.05 3.21 (0.08) 1.79 (0.13) 3.1 (0.07) 3.14 (0.04) 3.14 (0.04) 2.88 (0.24) 3.19 (0.08)

0.1 3.23 (0.04) 2.24 (0.1) 3.28 (0.08) 3.11 (0.05) 3.09 (0.06) 2.15 (0.18) 3.16 (0.06)

1 3.2 (0.07) 2.0 (0.14) 2.8 (0.13) 3.13 (0.07) 3.11 (0.1) 2.25 (0.18) 3.2 (0.06)

Average rank 1.97 6.47 4.1 3.13 3.63 5.77 2.93

within 1 std of best 18 0 7 9 11 4 16

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Effect of increasing λ parameter for LES, for the expressions dataset. Increasing the value of the parameter λ
increases the percentage of valid solution in all cases.

Architecture β LES (λ = 0.05) LES (λ = 0.5)

GRU
0.05 0.92 0.96
0.1 0.7 0.82
1 0.72 0.87

LSTM
0.05 0.93 0.98
0.1 0.93 0.98
1 0.76 0.97

Transformer
0.05 0.87 0.94
0.1 0.88 0.96
1 0.83 0.85

C.1 COMPARING LIKELIHOOD AND LES FOR DENSITY ESTIMATION

Here’s a smoothed version:

To clarify the differences between Likelihood and LES, we analyze Gaussian vectors (z) of varying dimensions (d =
25, d = 56, d = 75, and d = 256) after applying the softmax transformation to obtain probability vectors (x). For
each data point, we compute LES, the likelihood score, and the true density of x (calculated analytically using the
change-of-variables formula) under the softmax transformation (i.e., x = softmax(z)).

To visualize these differences, we uniformly sample data points between −20 and 20 along the first dimension of z,
while sampling the remaining dimensions from a Gaussian distribution with a standard deviation of 0.1.

The results, shown in fig. 3, clearly demonstrate that LES provides a more accurate estimate of the true density of x.
In contrast, the likelihood score fails to capture the true density’s correct structure.

Figure 3: Normalized density values (divided by the sum) for LES, Likelihood along with the true density of x =
softmax(z). Values of the density are visualized across the first dimension of z, sampled along an evenly spaced grid
between -20 and 20. Across the four dimentions LES provides a better estimate of the true likelihood of x.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Proportion of valid solutions found during LSO (higher is better) across datasets and decoder architectures.
We bold the best method (higher is better) and underline the second best. LES improves the validity of the solutions
compared with LSO (GA) (which is LES with λ = 0) across all datasets.

Architecture β LES LSO (L-BFGS) UC LSO (GA) Prior TuRBO Likelihood

E
xp

re
ss

io
ns

GRU

0.05 0.92 0.59 1.0 0.91 0.91 0.94 0.89

0.1 0.7 0.57 1.0 0.64 0.66 0.9 0.67

1 0.72 0.45 0.99 0.69 0.69 0.83 0.69

LSTM

0.05 0.93 0.62 1.0 0.88 0.89 0.94 0.92

0.1 0.93 0.67 1.0 0.9 0.89 0.94 0.92

1 0.76 0.58 0.99 0.65 0.66 0.89 0.73

Transformer

0.05 0.87 0.37 1.0 0.83 0.85 0.9 0.84

0.1 0.88 0.28 1.0 0.8 0.81 0.89 0.85

1 0.83 0.36 1.0 0.74 0.76 0.87 0.79

SE
L

FI
E

S

Transformer (pdop)

0.05 0.8 0.05 0.81 0.76 0.73 0.14 0.77

0.1 0.68 0.04 0.71 0.62 0.56 0.14 0.64

1 0.59 0.08 0.55 0.49 0.44 0.08 0.53

Transformer (rano)

0.05 0.66 0.02 0.73 0.61 0.57 0.09 0.62

0.1 0.57 0.01 0.67 0.52 0.44 0.04 0.53

1 0.43 0.02 0.49 0.36 0.28 0.01 0.39

Transformer (zale)

0.05 0.71 0.08 0.74 0.66 0.62 0.12 0.69

0.1 0.66 0.01 0.67 0.59 0.51 0.08 0.63

1 0.54 0.18 0.47 0.43 0.35 0.17 0.46

SE
L

FI
E

S
25 Transformer (pdop) 1 0.47 0.23 0.41 0.41 0.42 0.24 0.48

Transformer (rano) 1 0.37 0.14 0.28 0.27 0.28 0.11 0.42

Transformer (zale) 1 0.53 0.48 0.5 0.52 0.51 0.54 0.49

SM
IL

E
S

GRU

0.05 0.61 0.14 0.48 0.47 0.44 0.12 0.59

0.1 0.37 0.07 0.25 0.23 0.22 0.06 0.35

1 0.09 0.02 0.05 0.05 0.04 0.02 0.08

LSTM

0.05 0.6 0.11 0.44 0.42 0.39 0.11 0.57

0.1 0.08 0.01 0.06 0.05 0.04 0.01 0.07

1 0.16 0.09 0.07 0.08 0.07 0.09 0.12

Transformer

0.05 0.7 0.42 0.7 0.68 0.68 0.31 0.72

0.1 0.65 0.67 0.63 0.6 0.55 0.41 0.64

1 0.48 0.35 0.46 0.34 0.26 0.3 0.45

Average 0.61 0.26 0.63 0.54 0.52 0.37 0.58

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D BACKGROUND ON RELATED WORK

Bayesian uncertainty Notin et al. (2021) Under a Bayesian viewpoint, the trained neural network parameters (θ)
follow a variational distribution, which we can sample from using MC-Dropout Gal & Ghahramani (2016). Based on
this distribution, the uncertainty is defined as

M(z) = Hp(p(X|Z = z))− EθHpθ
(pθ(X|Z = z)), (37)

where H is the entropy and p(X|Z = z) is the posterior predictive distribution. The uncertainty is estimated us-
ing MC-Dropout with important sampling (using the posteior predictive as the importance distribution) designed to
approximate the expectations over the random variable X , as it is typically a very large space (i.e., the sample of
molecules that can implemented using a SMILE string with 120 characters)

22

	Introduction
	Background: Latent Space Optimization
	A Latent Exploration Score to Reduce Over-Exploration in LSO
	Derivation of LES
	Validating the relationship between LES and valid generation

	LES-constrained LSO
	Experimental setup
	Results

	Discussion
	Proofs
	Ablation studies
	Additional experimental results
	Comparing Likelihood and LES for density estimation

	Background on related work

