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ABSTRACT

Interpretability in deep learning is one of the largest obstacles to its more
widespread adoption in critical applications. A variety of methods have been in-
troduced to understand and explain decisions made by Deep Models. A class of
these methods highlights which features are most influential to model predictions.
These methods have some key weaknesses. First, most of these methods are ap-
plicable only to the atomic elements that make up raw inputs to the model (e.g.
pixels or words). Second, these methods generally do not distinguish between the
importance of features individually and their importance due to interactions with
other features. As a result, it is difficult to explore high-level questions about how
models use features during decision-making. We tackle these issues by proposing
Sample-Based Semantic Analysis (SBSA). We use Sobol variance decomposition
as our sample-based method which allows us to quantify the importance of se-
mantic combinations of raw inputs and highlight the extent to which these features
are important individually as opposed to due to interactions with other features.
We demonstrate the ability of Sobol-SBSA to answer a richer class of questions
about the behavior of Deep Learning models by exploring how CNN models from
AlexNet to DenseNet use regions when classifying images. We present three key
findings. 1) The architectural improvements from AlexNet to DenseNet mani-
fested themselves in CNN models utilizing greater levels of region interactions
for predictions. 2) These same architectural improvements increased the impor-
tance that CNN models placed on the background of images 3) Adversarially ro-
bust CNNs reduce the reliance of modern CNNs on both interactions and image
background. Our proposed method is generalizable to a wide variety of network
and input types and can help provide greater clarity about model decisions.

1 INTRODUCTION

Deep learning models are becoming endemic in various applications. As models are increasingly
used for critical applications in medicine such as detecting lung nodules (Schultheiss et al., 2021) or
autonomous driving (Li et al., 2021), it is important to either create interpretable models or to make
opaque models human interpretable. This paper focuses on the latter. Existing methods developed
over the last decade for doing this can be broken down into model agnostic vs model dependent.
Model agnostic methods, such as Shapley values (Kononenko et al., 2013) and Integrated Gradients
(Sundararajan et al., 2017) weigh the importance of input features without relying on the structure
of the model. In contrast, methods such as GradCam (Selvaraju et al., 2017) and GradCam++
(Chattopadhay et al., 2018) are heavily dependent on model architecture.

While these methods yield valuable information about models, they share common gaps. First, they
do not distinguish between the features in input space that are individually important and features
that are important because of their interaction with other features. Second, the above methods are
generally applied to inputs at their most granular level (pixels, words, etc..). The combination of
these gaps limits the conclusions that Machine Learning practitioners can make about the behavior
of models as a whole.

We address these limitations in two key ways. First, we introduce a two-part framework called
Sample-Based Semantic Analysis (SBSA). The first part of the framework is a function that gen-
erates semantic representations of inputs and associates these semantic representations with real
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numbers. The second part of the framework is a black-box sample-based sensitivity method. In this
case, the Sobol method which reports the importance of individual features and their interactions.
Second, we demonstrate the ability of Sobol-SBSA to answer a richer set of questions than standard
interpretability methods by applying it to CNN models in the context of ImageNet.

The key results and contributions of this paper are as follows:

1. We present a general-purpose framework for using sample-based sensitivity methods to
analyze the importance of semantic representations of inputs and test it using a variety of
black-box methods.

2. We demonstrate that the Sobol method outperforms other popular black box methods, Inte-
grated Gradients, Shapley (Kernel Shap), and LIME, for selecting both the most and least
important regions to CNN predictions.

3. We show, through direct measurement, that the main impacts of the evolution of CNN
architectures were increasing the extent to which they used region interactions and by which
they relied on background information in images. Similarly, we show that adversarially
robust versions of CNNs reduce both of these effects for modern CNNs. To our knowledge,
Sobol-SBSA is the first pipeline to facilitate the direct measurement of such trends, and to
do so within a single pipeline.

2 METHODOLOGY

In this section, we describe the two components of SBSA and specify how we use it to analyze
the importance of image regions in ImageNet. In particular, we describe how we associate image
regions to quantities that can be analyzed with a sampling-based method, and the specifics of Sobol
as a sampling-based sensitivity method.

2.1 SAMPLE-BASED SEMANTIC ANALYSIS (SBSA)

Let us define the following variables. x ∈ Rd is an input to a model, f : x → y ∈ Rs is a model
that takes x as an argument and produces y, x̃[i] ∈ Rd is a sample of x, and N ∈ Z is a prescribed
integer that helps to determine the number of x̃[i] samples generated. Most sample-based sensitivity
methods operate by generating a number of samples that is some function of N and d. The model
is then evaluated on these samples and the resulting model outputs are used by Sensitivity analysis
methods, such as Sobol, to determine the importance of components of x to the model output, y.

One thing that immediately becomes clear is that for deep learning applications with high-
dimensional inputs, such as images, videos, and long documents, applying this process naively
is prohibitively expensive. This issue can be greatly minimized if one turns to semantic represen-
tations of inputs instead. In this paper, a semantic representation of an input is defined as follows.
A semantic representation of an input, x, is some combination of the raw components of that
input which yields a human recognizable higher order feature, such as the colors in an im-
age, image regions, or grammatical parts of sentences. We define this semantic representation
as {S1, . . . Sl}, Sk ∈ Rm, where m < d. Recalling that most sample-based sensitivity methods
operate on real numbers, we define three mapping objects.

G : x → {S1, . . . , Sl}, G−1 : {S1, . . . , Sl} →≈ x x ∈ Rd, Sk ∈ Rm, l < d, m < d (1)
H : {S1, . . . , Sl},→ {r1, . . . , rl}, Sk ∈ Rm, rk ∈ R, (2)
R : {(r1, S1), . . . , (rl, Sl)) → {S∗

1 , . . . , S
∗
l }, S∗

k ∈ Rm (3)

G maps the raw input, x, to l semantic representations, Sk, H associates the semantic representation
to some lower dimension vector of real numbers, r ∈ Rl, and R creates new semantic representations
based on rk and Sk. G is invertible. SBSA generates samples of r, [r̃[1], . . . , r̃[n]]. From these
samples, R is used to generate samples of the original semantic representations, R

(
r̃
[i]
k , Sk

)
= S̃

[i]
k ,
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and G−1 uses these samples to create samples of the raw inputs, x̃[i].

{R(r̃
[i]
1 , S1), . . . , R(r̃

[n]
l , Sl)} = {S̃[i]

1 , . . . , S̃
[n]
l } (4)

G−1(S̃
[i]
1 , . . . , S̃

[i]
l ) = x̃[i] (5)

The model is then evaluated on the samples of the raw input, x̃[i]. Since the sampling was done in r,
the sensitivity analysis reports the importance of components of the semantic representations of the
input, Sk corresponding to the components of r, rk. G, H , and R can be any functions that derive Sk

from x, associates a real number, rk, with Sk, and produces a semantic representation, S∗
k , as a func-

tion of rk and Sk. However, we recommend two properties to maximize our approach. Property 1
(Sensitivity) Any change in r should result in a change x. Sample-based sensitivity methods observe
how changing different input components impact model outputs in order to determine importance.
Property 1 insures that all samples in r contribute information to SBSA. Property 2 (Approximate
Reconstruction): When using S and r produced from the original input, R and G−1 should closely
approximate x. Sample-based sensitivity analysis methods construct samples that are uniformly dis-
tributed between 0 and 1, and scales these samples to bounds determined by the original r (Herman
& Usher, 2017). Property 2 insures that produced samples of x, x̃[i], will increase and decrease
different semantic components of x with approximately equal probability.

In the following section we describe the use of SBSA via image regions.

2.2 SAMPLE-BASED SEMANTIC ANALYSIS (SBSA) APPLIED TO IMAGENET AND REGIONS

In this section, we discuss how we apply our pipeline to the scenario in which the semantic features
of interest are regions in an image, and the sample-based sensitivity method is Sobol (Sobol-SBSA).
We first describe our mapping functions for regions, then we detail the Sobol method for sensitivity
analysis and the relevant measures that it produces.

Given an image x ∈ Rd where d = W × L, our input to semantic features function, G, extracts
l regions and normalizes them by the sum of pixels in those regions. The mapping, H , associates
each region, Sk, with the sum of pixels in that region, rk. These values are used to construct the
vector r ∈ Rl.

G : x ∈ Rd → {S1, . . . , Sl}, Sk =
x{t,p}∈Sk∑
{t,p}∈Sk

xtp
(6)

H : {S1, . . . , Sl} → {r1, . . . , rl}, rj =
∑

{t,p}∈Sk

xtp (7)

The function, R, multiplies each semantic feature, Sk, with the associated value, rk and finally G−1

creates x by stitching together the regions to reform x. Mathematically, this is as follows.

R : {(r1, S1), . . . , (rl, Sl)} → {S∗
1 , . . . , S

∗
l }, S∗

k = rkSk (8)

G−1 : {S1, . . . , Sl} → x (9)

The above mapping, while simple, satisfies the properties of sensitivity and approximate reconstruc-
tion. As a result the samples of r, r̃[i], produce image samples, x̃[i], that amplify and mask regions of
the image with relatively equal probability and uniformly. The Saltelli method, (Saltelli et al., 2010),
which chooses optimal points in [0, 1] for the Sobol method, are used to construct these samples and
the model outputs of these image samples are fed to the Sobol method.

We will briefly give an overview of the Sobol method. For more details about the implementation of
Sobol, and the associated sampling method, see Saltelli et al. (2010) and Herman & Usher (2017).
The Sobol method is a variance-based sensitivity method. Given a model, f : (x1, . . . , xd) ∈ Rd →
y ∈ Rs, the variance based first order effect of a component of the input, x, is:

Vi = Vxi(Ex∼i(yj |xi)) (10)

3



Under review as a conference paper at ICLR 2023

Figure 1: Sobol-SBSA pipeline for regions and segments (ImageNet-S). 1) Image → Semantic →
Vector extracts semantic features from the image and maps these onto real numbers. 2) Vector
→ Vector Sample produces samples from the vector. 3) Vector Sample → Semantic Sample →
Image Sample produces samples of the image that mask and amplify semantic features based on
the vector samples. 4) Sample Output → Sobol Method sends outputs from the model evaluated
on the image samples to the Sobol method for analysis.

where yj is a component of the model output, xi is a component of the input, x, x∼i are samples
of the input where all components of the input except for i are varied, and Vxi and Ex∼i are the
variance and expectation over xi and x∼i respectively. The Sobol first-order sensitivity is then the
ratio of Vi to the variance of the model output, yj .

Si =
Vi

V (yj)
(11)

Si quantifies the individual importance of the ith component of the input, x, to the jth component
of the output, y. This equation essentially states that Sobol first order index, Si, is the fraction
of the variance of the output, yj that is accounted for by xi. What makes Sobol unique is that
it simultaneously calculates Si and STi

, the total effect index. The total effect index, STi
, is the

importance of feature i due to both the feature independently and every higher level interaction of
this feature with other features.

STi = 1− Vx∼i(Exi(yj |x∼i))

V (yj)
= Si +

∑
k;k ̸=i

Sik +
∑

k,j;k ̸=i,j;j ̸=i

Sikj + . . . (12)

Dividing both sides of equation 12 by ST i yields

1 =
Si

ST i
+

∑
k;k ̸=i

Sik

ST i
+

∑
k,j;k ̸=i,j;j ̸=i

Sikj

ST i
+ · · · = PIR+ . . . (13)

The first term in equation 13 reports the extent to which a feature, xi, is important to the model
output due to the feature by itself. The larger the term, the greater the importance of the region by
itself, contrarily, the smaller the term larger the importance of the interaction of the feature with
other features. We will refer to this as the Primary Index Ratio (PIR) for the rest of the paper. We
note that the number of samples used for the Sobol method is N(d + 2) (Saltelli et al., 2010). For
all of the experiments that follow, N = 50 and d = l, the number of semantic features.

2.2.1 CHOICE OF SEMANTIC FEATURES

In order to demonstrate the ability of our method to address high level questions about CNNs at a
semantic level, we apply our pipelines to three types of regions. 1) Equally sized image patches
2) machine annotated segmentations of the ImageNet training set from Salient ImageNet Singla &
Feizi (2021) and 3) human annotated segmentations from the ImageNet-S 919 validation set (Gao
et al., 2021). Salient ImageNet segments images into core regions (regions that should be important
for predictions) and spurious ones. ImageNet-S is a dataset that was created for use in judging
image segmentation task. A key difference between ImageNet-S and the other types of regions is
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that ImageNet-S strictly respects boundaries between objects and background in an image. Region
patches and Salient ImageNet do not. Figure 1 shows our pipeline when applied to evenly size
regions of an image and to ImageNet-S 919 segments.

3 EXPERIMENTS

3.1 VALIDATING OUR PIPELINE

We validate our pipeline in two ways. First, we demonstrate it’s ability to accurately rank the impor-
tance of regions of different sizes. Second, we demonstrate that Sobol-SBSA accurately reproduces
two trends in how CNNs use regions that were determined indirectly by two mutually exclusive pa-
pers.

• Brendel & Bethge (2019) showed that more modern CNNs use higher levels of interactions
between equally sized region patches than older models.

• Singla et al. (2022) showing that robust versions of CNN models utilize ”spurious” areas of
an image, as determined by machine annotation, less than normal versions of these CNNs.

Having established trust in Sobol-SBSA, we demonstrate how it can be used to further explore how
CNNs use regions, without needing to use a different pipeline. First, we demonstrate the impact of
semantic representation on Brendel & Bethge (2019)’s results by measuring the interaction between
segmented objects and their backgrounds (ImageNet-S). We show that the trend of more modern
CNNs utilizing interactions more than older models is only clear when viewed with respect to regions
that do not strictly respect object boundaries. Second, we demonstrate that, regardless of whether
or not the segmentation respects boundaries, a result of the development of CNN architectures was
greater exploitation of background information when making decisions. Finally, we demonstrate
that, robust models reduce the extent to which models use the interaction if regions which do not
respect boundaries. To the authors’ knowledge, this is the first time that all of these results have
been demonstrated through direct measurement and in a single pipeline. We note that all ImageNet
models were pre-trained Pytorch models from ImageNet1K V1.

3.2 VALIDATING SOBOL-SBSA FOR IMPORTANCE RANKING AND SEMANTIC
UNDERSTANDING

Our SBSA model can be used with a variety of black box models. Thus, we compare the following
two methods against Sobol-SBSA.

• Shapley (Shap-SBSA) (Kononenko et al., 2013): Used with SBSA in a similar manner
as Sobol-SBSA.

• LIME (LIME-SBSA) (Ribeiro et al., 2016): Used with SBSA in a similar manner as
Sobol-SBSA.

We also compare against the following:

• Integrated Gradients (Sundararajan et al., 2017): Cannot be used with SBSA since it
requires gradients with respect to pixels. Instead, we aggregate pixel importance in regions
and rank region importance based on this aggregation.

• Random: A control baseline where regions are randomly selected.

• Ideal: The ideal result based on our metric. This is not experimental.

We use two standard metrics for comparing interpretability methods. First, we measure the change
in the ground truth label score of a model when regions, as specified by the sensitivity method,
are masked. We mask the top and bottom 20% of regions in an image. Second, we measure
sensitivity-n correlation. Sensitivity-n correlation is a quantity proposed by Ancona et al. (2017)
for comparing the effectiveness of attribution methods when determining which features are impor-
tant to a model. Quantitatively, it is a measurement of the Pearson correlation between

∑n
i=1 R

c
i and

Sc(x)−Sc(x[xS=0]).
∑n

i=1 R
c
i is the sum of the attributions associated with the n input features that
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Figure 2: Plots of the change in the ground truth score of the ResNet50 when the top 20% of regions
are masked vs the bottom 20% of regions. A steep slope is indicative of a more effective method
since it means that the change in ground truth scores are significant when the top 20% of images
are masked, but not when the bottom 20% of images are masked. Our measure, STi

is closest to the
ideal.

Figure 3: Plots of the sensitivity-n correlation for different sensitivity methods as a function of the
percentage of regions masked. The sensitivity methods with values closer to one are more effective.
Our measure, STi

is closest to the ideal.

are masked and Sc(x)− Sc(x[xS=0]) is the difference in the score that the model produces when n
input features are masked versus when none are. For each value of i, i random features are selected
to be masked 100 times and the correlation is averaged over the examined data. A value closer to
one means a more effective method.

For all methods, we evaluate the importance of regions to ResNet50 on 1000 randomly selected Im-
ageNet validation images. To explore the importance of image size, we performed our experiments
for 4×4, 8×8, and 16×16 regions. The number of samples is selected as a function of the number
of regions, as detailed in section 2.2. For 4 × 4, 8 × 8, and 16 × 16 regions, d = 16, d = 64, and
d = 256 respectively.

Figures 2 and 3 show the results of the masking and sensitivity-n correlations respectively for all
evenly sized region patches. Figure 2 plots the change in the model score when the most important
regions are masked versus when the least. A steeper curve is more ideal since it means that the sensi-
tivity method significantly decreases the model score when masking the most important regions, but
has little impact when masking the least important regions. The Sobol-SBSA is the most effective by
both the masking and sensitivity-n measures. The key takeaways from the plot are 1) ST i performs
the best overall in picking the most and least important regions in an image, as well as more prop-
erly ranking the regions in between (as measured by sensitivity-n), and 2) ST i is the most robust to
changes in region size, followed closely by Integrated Gradients. The gap in performance between
STi

and Si shows the importance of accounting for region interaction when ranking importance.

We now use Sobol-SBSA to quantify how the importance of interactions between evenly sized
regions to CNN model outputs evolved over time, and test whether or not this matches the trend
found by Brendel & Bethge (2019). Figure 4a plots the average PIR for 10000 validation images
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when run on 4 × 4, 8 × 8, and 14 × 14 regions. A lower PIR means greater region interaction
importance. We see that that for all of these regions, interaction decreases from AlexNet and VGG16
to the more modern InceptionV3, ResNet50, and DenseNet161 architectures, an identical result to
Brendel & Bethge (2019)’s. Because Pytorch’s pre-trained InceptionV3 takes as inputs images of
size 299×299 rather than 224×224, the number of regions used for InceptionV3 are 5×5, 11×11,
and 18 × 18. Finally, we apply Sobol-SBSA to 10000 Salient ImageNet images whose regions
have been labeled as “core” regions that should be important to model predictions, and “spurious”
regions that should not (Singla & Feizi, 2021). Figure 4b plots the average difference between the
total index score of core and spurious regions for the normal and adversarially robust versions of
VGG16 BN, ResNet50, and DenseNet161. We use pre-trained robust weights from Salman et al.
(2020) where the l2 threat radius was 3. For Salient ImageNet, the difference in core and spurious
importance is greater for robust models than their normal counterparts. This compliments Singla
et al. (2022)’s findings that robust CNN models relied less on spurious areas of images than their
normal counterparts.

(a) The plots of the average mean of PIR for 10000 im-
ages for a series of CNN models when applied to im-
ages that are partitioned based on segmentations from
ImageNet-S and Salient ImageNet, as well as when ap-
plied to the top 20% of region patches.

(b) The plots of the average difference in importance,
ST , for segmented objects in ImageNet-S and Salient
ImageNet when applied to normal and robust models.
10000 images from each dataset were used.

Figure 4: PIR trends and the difference in importance between segmented objects and background
for CNN models and their robust counterrparts.

3.3 BEYOND VALIDATION: THE IMPACT OF SEGMENTATION ON REGION IMPORTANCE AND
INTERACTION TRENDS

In the previous subsection we validated Sobol-SBSA’s ability to 1) correctly rank the importance of
regions regardless of size 2) accurately capture trends in how CNNs use regions that were determined
by Singla et al. (2022) and Brendel & Bethge (2019). We now explore the impact of segmentation
type on the trends in region interaction and differences between robust and normal models. We also
measure how the use of background information evolved with models.

Figure 4a plots the PIR for Sobol-SBSA applied to foreground and background regions as deter-
mined by Salient ImageNet and ImageNet-S. For foreground and background areas of an image as
determined by Salient ImageNet, interactions became more important with more modern CNNs.
For ImageNet-S regions, however, these interactions only increased for DenseNet161 and Incep-
tionV3 . Recalling that ImageNet-S regions are segments that strictly respect object boundaries,
we conclude that while modern CNNs use greater interactions between regions that do not respect
object boundaries, this is not consistently the case for those that do. InceptionV3 was not used with
Salient ImageNet since the masks provided were 224×224 which is incompatible with the expected
299 × 299 input to InceptionV3. Figures 4b shows the average difference in the total index score,
STi

, between foreground and background areas of images as determined by ImageNet-S and Salient
ImageNet. This is done for normal and robust models. We see that the trend of robust models
reducing the extent to which CNN architectures use background information holds, regardless of
whether or not the foreground strictly respects object boundaries. Examples of this are shown in
Figure 6. Figure 5a plots the average PIR between foreground and background objects as deter-
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(a) The plots of the average mean of PIR when Sobol-
SBSA is applied to segmented and background objects
in SalientImageNet and ImageNet-S for normal an ro-
bust models. 10000 images were used in their respec-
tive datasets.

(b) The plots of the average difference in importance,
ST and Si for segmented objects in ImageNet-S and
Salient ImageNet as a function of models. 10000 im-
ages from each dataset were used.

Figure 5: PIR trends and the difference in importance between segmented objects and background
for CNN models

mined by ImageNet-S and Salient ImageNet for the robust and normal versions of CNNs. It is seen
that, for areas defined by Salient ImageNet, robust models decreased the reliance of architectures on
interactions, but that for objects and background determined ImageNet-S this was only clearly seen
for DenseNet161. The key take away here is that robust models generally decrease model’s reliance
on interactions between regions that do not respect boundaries, but don’t necessarily do so for those
that do.

Finally, Figure 5b plots the average difference in importance between foreground and background
objects when Sobol-SBSA is applied to ImageNet-S and Salient ImageNet. These results are plotted
for AlexNet to DenseNet161. It is seen that one of the effects of architectural changes in CNN
development was to increase the extent to which these models use background information.

3.3.1 THE LIMIT OF SOBOL-SBSA

While the Sobol-SBSA is a powerful method, it has a similar weakness to other sample-based black
box methods. It assumes that the input features that it is analyzing are uncorrelated. When this is
not the case, the ability of Sobol to decompose importance into independent subsets of the feature
space is weakened (Li et al., 2010). This manifests itself in the Sobol Indices, which are supposed
to satisfy the property that PIR ≤ 1, having at least some input features for which PIR > 1.

The assumption that regions are uncorrelated breaks down as regions become smaller in size. We
observe this in two ways. First, we examine figure 4a and note that PIR increases as the region
sizes decrease. This is intuitively an incorrect result since interactive effects should be greater for
smaller regions, as demonstrated by Brendel & Bethge (2019). To confirm that this result is due to
a breakdown in Sobol assumptions we calculate the average percent of regions for which PIR > 1
across all models for a given region size. For 4× 4, 8× 8, and 14× 14 regions the percentages are
22%, 33%, and 39% respectively. Figure 8 shows an example of how Sobol-SBSA can breakdown
with smaller region sizes. A key direction for future work is to implement a version of Sobol-SBSA
that accounts for correlations in the data.

4 RELATED WORK

In recent years, interest has grown in interpretability methods that can quantify the importance of
feature interactions. Janizek et al. (2020) introduced an extension to Integrated Gradients, called
Integrated Hessians, that quantified the importance of pairwise interactions of features, while Zhang
et al. (2020) built on this work by presenting a similar quantification through Shapley Interactions.
While both methods are powerful, they require the separate calculation of individual feature inter-
actions, as well as pairwise comparisons. Fel et al. (2021) used the Sobol method, but focused on

8



Under review as a conference paper at ICLR 2023

Figure 6: A sample result of the Sobol-SBSA when applied to an segmentations determined by the
ImageNet-S dataset for the normal and robust versions of ResNet50. Robust ResNet50 focuses only
on the segmented objects, while ResNet50 also uses the background.

importance, rather than interactions. None of the above works addressed understanding how mod-
els used semantic representations, or facilitated quantitatively answering high level questions about
models.

5 DISCUSSION AND CONCLUSION

We proposed Sobol-SBSA, a general method for understanding how Deep Learning Models use
semantic features when making decisions. We demonstrated the ability of this method to answer
in one pipeline a rich set of questions about model behavior by using it to study how CNN models
use areas of images during classification. We found 1) that the primary impact of the evolution of
CNN models was to make greater use of region interactions and to increase the importance of image
background to model predictions and 2) that adversarially robust CNN models are less susceptible
to spurious correlations in the data because they force CNN architectures to rely less on region
interactions and on image backgrounds.

The Sobol-SBSA method has a variety of potential applications beyond the image/region-based
analysis that we presented here. Many different types of input partitioning and input modalities can
be analyzed using the SBSA method. For images, the partitioning into image regions can be done
via external metadata, such as object detection results. For natural language processing (NLP), the
use of SBSA is even more straightforward since words/tokens provide a natural way to partition the
input sequence. Hence, our model can be utilized to understand how parts of speech are utilized
for different iterations of various NLP models, including translation, classification, and generative
text models. Beyond unimodal content, SBSA can also be easily extended to multimodal setups.
For example, Sobol-SBSA can be used to measure the strength of bias in Image Captioning systems
by quantifying the extent to which parts of an image correspond to which parts of the generated
caption. In addition to these applications, there are multiple avenues for future work. These include
exploring the combination of Sobol-SBSA with automatic feature detectors, implementing a version
of Sobol-SBSA that accounts for input correlations, and exploring whether PIR can be used as a
proxy for the robustness of non-CNN Deep Learning models.

Through SBSA and Sobol-SBSA we have proposed a strong foundation for obtaining a richer un-
derstanding of how models use semantic representations of inputs, regardless of whether these rep-
resentations are generated automatically or by end users. We hope that it can be used to both provide
clarity about the mechanisms by which Deep Learning makes decisions, and to influence how we
further develop these models.
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A APPENDIX

A.1 10K VS 50K EXPERIMENTS

Figure 7: Average PIR for the top 20% of regions when calculated for 10000 and 50000 ImageNet
validation images. This is done for 4× 4 and 8× 8 regions. The results are identical.

We calculated the average PIR for the top 20% of regions for 10000 and 50000 validation images
in ImageNet using 4 × 4 and 8 × 8 regions respectively. We saw that the results were identical so,
for the smaller regions generated when splitting an image into 14 × 14 regions, we calculated the
average PIR for 10000 images to save computational cost.

A.2 IMPACT OF REGION SIZE

Figure 8: Images of Si and STi for an Ostrich class example for different grid sizes. We see that
4× 4 and 8× 8 regions are consistent, but that this is not the case for 14× 14 regions.

Figure 8 shows an example of Sobol-SBSA when applied to an Ostrich target class for different
region sizes. We see that all of the examples are consistent except for the Robust ReseNet50 14×14
example. One of the weaknesses of Sobol is that the results can be corrupted when the input features
are correlated. As regions get smaller, this is exactly what occurs. Although, overall, Sobol-SBSA
was still able to correctly identify the most and least important regions at the 14 × 14 scale, figure
2, more work must be done to address this weakness so that the Sobol results can be compared
accurately across different sizes of regions or, more generally, features that have different types of
correlations. Future work will involve exploring the impact of sampling size and variations of Sobol
that account of input correlation on addressing this issue.

12


	Introduction
	Methodology
	Sample-Based Semantic Analysis (SBSA)
	Sample-Based Semantic Analysis (SBSA) Applied to ImageNet and Regions
	Choice of Semantic Features


	Experiments
	Validating Our Pipeline
	Validating Sobol-SBSA for Importance Ranking and Semantic Understanding
	Beyond Validation: The Impact of Segmentation on Region Importance and Interaction Trends
	The Limit of Sobol-SBSA


	Related Work
	Discussion and Conclusion
	Appendix
	10K vs 50k Experiments
	Impact of Region Size


