
CAUSAL INFERENCE VIA NONLINEAR VARIABLE
DECORRELATION FOR HEALTHCARE APPLICATIONS

ABSTRACT

Causal inference and model interpretability research are gaining increasing at-
tention, especially in the domains of healthcare and bioinformatics. Despite re-
cent successes in this field, decorrelating features under nonlinear environments
with human interpretable representations has not been adequately investigated.
To address this issue, we introduce a novel method with a variable decorrelation
regularizer to handle both linear and nonlinear confounding. Moreover, we em-
ploy association rules as new representations using association rule mining based
on the original features to further proximate human decision patterns to increase
model interpretability. Extensive experiments are conducted on four healthcare
datasets (one synthetically generated and three real-world collections on different
diseases). Quantitative results in comparison to baseline approaches on param-
eter estimation and causality computation indicate the model’s superior perfor-
mance. Furthermore, expert evaluation given by healthcare professionals validates
the effectiveness and interpretability of the proposed model. Code will be publicly
available after acceptance.

1 INTRODUCTION

With the rapid growth of Machine Learning (ML), healthcare ML research is becoming popular in
the community. Such ML methods have shown encouraging capability for solving medically related
problems, such as disease understanding, diagnosis, and treatment planning, by leveraging a large
number of Electric Health Records (EHR). Although these methods bring benefits to both patients
and healthcare professionals (Herpertz et al., 2017; Li et al., 2020), increasing concerns on judgment
errors (Royce et al., 2019; Gandhi et al., 2006) as well as deficiency of understanding the workflow
of ML systems (Croskerry, 2013) have become major road-blockers for future development and
deployment of ML-based healthcare systems. An important factor behind this difficulty is that
the designed black-box ML models are often associated with a limited capacity for performance
analysis (Ahmad et al., 2018). Therefore, building interpretable ML models for healthcare becomes
an imperative research direction.

To improve the interpretability of black-box models, more and more methods to enhance model
interpretability are emerging (Du et al., 2019; Zafar & Khan, 2019). However, explanations of
black-box models often cannot be perfectly faithful to the original models and leave out much infor-
mation which cannot be made sense of (Rudin, 2019). In addition, traditional ML models might be
influenced by the data they are trained on. In order to enhance the interpretability of the model and
adapt it to human decision patterns, we introduce association rules in place of the original features.

Recently, most of the existing diagnostic algorithms focus on associative inference and are often not
compatible with the situation caused by the incomplete distribution of datasets. Machine learning
methods recognize diseases based on correlations and probability among patients’ symptoms and
medical history (Zhang et al., 2021; Kuang et al., 2020a), while doctors diagnose according to the
best causal explanations corresponding to the symptoms (Imbens & Rubin, 2015). Recently, several
methods have been proposed to address the agnostic distribution, including domain generalization
which is becoming one of the most prominent learning paradigms (Muandet et al., 2013). Another
school of research examines the distribution shift issue from a causal perspective, such as causal
transfer learning (Rojas-Carulla et al., 2018) and Structural Causal Model (SCM) (Pearl, 2009) to
identify causal variables based on the conditional independence test. In spite of their advantageous
analytical qualities, these approaches are rarely employed in high-dimensional real-world applica-
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tions due to the complex causal graph and strict assumptions. More recently, some researchers focus
on more general methods under the stability guarantee by variable decorrelation through sample
reweighting (Kuang et al., 2020b; Zhang et al., 2021; Kuang et al., 2018; 2021). They leveraged co-
variate balancing to eliminate the impact of confounding, assessing the effect of the target feature by
reweighting the data so that the distribution of covariates is equalized across different target feature
values. However, their model are limited to linear environments or binary datasets.

In this paper, we attempt to address the aforementioned difficulties by developing a novel method
that is inherently more interpretable and can be applied to nonlinear environments for stable pre-
diction. We utilize an association rule mining algorithm to extract rules as model features, thereby
enhancing our model’s interpretability. To enable our model to operate in nonlinear environments,
we model the relationships between features with a F (x) function, and perform the Taylor expan-
sion on the F (x) function. The second norm of the parameters from the first derivative to the last
derivative are considered as our regularizer. Experiments conducted on both synthetic and real-world
datasets demonstrate the efficacy of our approach. Promising results in improving the estimation of
model parameters, and the stability of prediction over varying distributions in a nonlinear environ-
ment demonstrate the superior performance of the proposed method to previous methods.

The main contributions of our work are as follows:

(1) We expand the stable learning problem to a nonlinear environment under model misspec-
ification and agnostic distribution so that stable learning can be widely applied in the real
world;

(2) We combine machine learning with association rules to help domain specialists understand
the model and enhance the interpretability of the model; and

(3) We demonstrate the superiority of our methods on synthetic and real-world datasets by
calculating traditional metrics and causality. For medical datasets, we further invite spe-
cialized doctors to validate whether our model can produce the correct rules.

2 RELATED WORK

2.1 MACHINE LEARNING INTERPRETABILITY IN HEALTHCARE

Increasing efforts have been devoted to Machine Learning (ML) interpretability research to facil-
itate ML research and development of real-world applications, especially in healthcare. Among
them, Generalized Additive Models (GAM) (Hastie & Tibshirani, 2017) are a set of classic meth-
ods with univariate terms providing straightforward interpretabilities. GA2M-model (Lou et al.,
2013) brings additional capability for real-world datasets with the selected interacting pairs based
on GAMs. On the other hand, researchers focus on applying essentially interpretable models in
healthcare domain. For example, Lee & Siau (2001) apply association rules to extract knowledge
as complementary information for physicians’ diagnosis. They also provide some strategies for pa-
tients based on the interpretation of association rules. Lately, Ahmed et al. (2021) apply association
rules to detect major body organs in healthcare system. Sornalakshmi et al. (2021) reduce overhead
communication when frequent data are extracted to improve association rules mining algorithm on
healthcare datasets. However, the above models are still black-box models based on joint probability
distribution without causal inference.

2.2 ASSOCIATION RULE MINING

Association rule mining is an important research direction that tries to identify interesting associa-
tions, frequent patterns, or causal structures (Perçın et al., 2019; Ordonez et al., 2006). In particular,
association rules are able to discover predictive rules with numeric and categorical attributes. In
diagnosis system, X = x1, x2, ..., xn represents the set of all symptoms. An association rule, noted
as X ⇒ Y , indicates the disease Y is related to the symptoms X . Three metrics were proposed
to evaluate the significance of rules: support(X) = P (X) is the probability that the set appears in
the total item set; confidence(X ⇒ Y ) = support(X ∪ Y )/support(X) is a measure of reliability;
lift(X ⇒ Y ) = confidence(X ⇒ Y )/support(Y ) reflects the correlation between X and Y in the
association rules (Bayardo Jr & Agrawal, 1999). In each rule, X is antecedent and Y is the con-
sequent. The rules that satisfied the minimum support and confidence are called strong association
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rules. Strong association rules, can also be divided into effective strong association rules and invalid
strong association rules. How to extract strong association rules is an essential challenge. Apriori al-
gorithm explores candidate-generation-and-test to obtain strong association rules (Borgelt & Kruse,
2002). Han proposed an effective method, the FP-Growth algorithm, to efficiently identity frequent
patterns on large databases based on tree structures (Han et al., 2000). Yuan (2017) proposed an
improved method based on the inherent defects of the Apriori algorithm by using a new mapping
way and pruning frequent itemsets to improve efficiency. Association rules are interpretable mod-
els, whereas these methods always only consider extracting association rules based on connection
instead of causality, and they do not combine rules and machine learning. In a diagnosis system, as-
sociation rules are often inconsistent with the rules of doctors’ diagnosis. Therefore, how to extract
causal association rules that are consistent with doctors’ diagnostic rules has become an important
challenge.

2.3 CAUSAL INFERENCE

One key challenge in healthcare is the existence of both observed and unobserved confounders
under different environments (Cui & Athey, 2022). Therefore, causal inference methods become
popular for their natural fit to these problems. For example, causal inference methods with net-
work and hierarchy structure allow researchers to ascribe causal explanations to data (Pearl, 2018;
2009). A completely constructed causal graph among various features based on an unconfounded-
ness assumption that helps to reduce the influence of confounders (Ma et al., 2021). In addition, a
Differentiated Variable Decorrelation (DVD) algorithm is proposed to eliminate the correlations of
various variables in different environments (Shen et al., 2020). Moreover, Xu et al. (2021) prove the
effectiveness of stable learning and demonstrates the necessary of the stable prediction.

Stable Learning Given various environments e ∈ E within datasets De = (Xe, Y e), the task
is to train a predictive model under the environment ei which can achieve uniformly small error
under the another environment ej by learning the causality between features Xei and targets Y ei .
Researchers propose the Deep Global Balancing Regression (DGBR) algorithm and Decorrelated
Weighting Regression (DWR) algorithm for stable prediction across unknown environments. They
successively regard each variable as a treatment variable by using a balancing regularizer with the-
oretical guarantee (Kuang et al., 2018; 2020b; Cui & Athey, 2022).

In Equation 1, W is sample weight, X·,j is the jth variable in X, and X·,−j = X/{X·,j}. With the
global balancing regularizer in Equation 1, a Global Balancing Regression algorithm is proposed to
optimize global sample weights and causality for classification task.

min
∑n

i=1 Wi · log (1 + exp ((1− 2Yi) · (Xiβ)))

s.t.
∑p

j=1

∥∥∥∥xT
−j ·(W⊙X·,j)
WT ·X·,j

− XT
i−j(W⊙(1−X·,j))
WT ·(1−X·,j)

∥∥∥∥2
2

≤ λ1
(1)

However, the above methods have some defects, making it difficult to deploy them on real world
datasets. The regularizer of DGBR or DWR focuses on eliminating the linear confounding under
various linear environments. In addition, such methods that forcibly delete mutual connections
ignore information in the intersecting area. For example, as shown in Figure 1, forcibly eliminating
the correlation may leave only three areas: A,B,C and ignore the other areas, where A,B,C can
represent three kinds of features. In fact, the causal effect of the three features should be the union
of these areas, whereas DGBR may result in the loss of mutual information.

3 METHOD

To achieve stable learning and estimation with unbiased treatment effect, we make three assumptions
for our model:

(i) The set of strong causality rules is a subset of the set of rules with strong correlations;

(ii) There do not exist massive observed confounders that cause the diagnostic rules dependent
on another unobserved confounding; and

(iii) Causal rules tend to include smaller antecedents.
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Figure 1: Causality consists of intersecting regions and disjoint regions. Our model will extract
rules from the original datasets and feed them into decorrelation parts to calculate the causality with
mutual information.

The first and second assumptions imply that we can extract all the diagnostic rules with strong cor-
relation, and then assign weights to these rules based on the causal effect. The third assumption
implies that diagnosis rules with high confidence often result in overfitting due to redundant an-
tecedents. Therefore, we prefer to choose more robust rules with shorter antecedents. In this paper,
we propose an interpretable model based on association rules and causal inference for EHR datasets
to obtain the causality between features through a three-stage process:

A. Mining Association Rules and Transformation Rules: First, we adopt the Apriori algo-
rithm (Agrawal et al., 1994) to obtain association rules and construct a rule matrix for positive
and negative samples respectively to avoid asymmetrically distributed data. Rule representations
< Ai,Ci|θi > are then constructed, where Ai is the antecedent of the rule Ri, Ci is the consequent
of the rule and θi is the confidence of the rule, frequent function is to calculate the confidence of
each rule:

{R} = {∪iRi} = {∪ifrequent(Ai ∪ Ci)}

According to the rules generated, rule sets∪i{Xi :< Ai,Ci|θi >} are built for dataset D where each
rule is considered as a feature. Rule sets are then transformed into one-zero matrix X leveraging
one-hot encoding.

B. Selecting Rules: Massive rules could be generated during the mining process, causing redun-
dancy or even negative effects. To extract rules with strong correlations between features, we intro-
duce an integer programming objective function:

Min ∥W∥22 + ∥max(0, 1− Y h(x)∥22
h(x) = (WTX ⊙ rep(I(R > 0), n)θ + b)

s.t.
∑

i I(Ri > 0) ≤ λ1∑
i I(Ri > 0) ≥ λ2

{Ri} ∈ {0, 1}

(2)

where ⊙ refers to the Hadamard product and I(R > 0) is the indicator function converting R, a set
of rules, to a one-zero vector with 1 ∗ r dimension. The value of the indicator function equals to
one when the frequency of the rule is more than zero, otherwise it equals to zero. The estimated
parameters of rep(I(R > 0), n) function are W , and b is the estimated bias. The function is defined
to expand the vector I(R1∗r > 0) to a matrix with dimension n ∗ r where all rows are the same as
the first row. λ1 and λ2 represent the bonds for the number of the selected rules.

Since we only consider a binary-classification problem here, which is a common setting for most
healthcare diagnosis problems, we take the inverse of the confidence of the negative class rule as the
score. However, the number of rules mined by the association rule algorithm, e.g. Apriori, could
be large, resulting an extremely high dimension of R to be able to fit in Equation 2. Therefore, we
propose to delete one redundant rule at a time during each n-fold cross-validation run based on a
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feature ranking criteria w2
i . Details of rule selection can be found in Algorithm 1 in the Appendix

under RulesSelection.

Although redundant rules are removed accordingly, redundant items in rules could still impact the
performance of the model. In addition, redundant items in different rules could be easily replaced
with other rules. To solve this problem, we perform an iterative process to delete one item of each
rule at a time which brings an updated R with reduced dimension. Then we can reconstruct cross-
validation sets and feed data into SVM models to get an average accuracy. The item that improves
model’s average accuracy the most will be deleted at every iteration. This step is summarized in
Algorithm 1 in the Appendix under ItemReduce.

C. Computing Causality Relationship: To better handle real-world nonlinear relationships, we
model nonlinear relationships under Taylor expansion with a function F(x) as is shown in Equa-
tion 3. Each fixed point’s derivatives can be considered as parameters to be solved by converting
into a polynomial fitting problem due to the condition that two polynomials are equal only when
both their degree and coefficients are the same.

xp1
∼ F(xj) = fp1p2

(xp2
(0)) + f ′

p1p2
(xp2

(0))xp2
+

f ′′
p1p2

(xp2 (0))

2! x2
p2

+ . . .+
f(p)
p1p2

(xp2 (0))

p! xp
p2

+Rp(xp2
)

(3)

where xp1
(0) and xp2

(0) are two different features which are expanded at 0 by using Taylor expan-
sion. The elimination of the impact of intersecting areas is achieved by balancing the weight W
as is represented in Equation 4. If xp1 and xp2 are independent and nonlinearly uncorrelated, the
derivatives of their relation functions are all 0: ∥{Fp2→p1} / {fp1p2(xp2(0))}∥ = 0 where Fp2→p1

are the relationship function between xp1(0) and xp2(0) can be calculated using Equation 5

minFp2→p1
Rp(x)

2 ≡
∑

p1 ̸=p2

∑n
i=1 [wixip2 −F (wixip1)]

2

⇒Xp2 (wixp2)Fp2→p1 = Yp1

(4)

Xp2
=


n

∑n
i=1 wixip2

· · ·
∑n

i=1 w
k
i x

k
ip2∑n

i=1 wixip2

∑n
i=1 w

2
i x

2
ip2

· · ·
∑n

i=1 w
k+1
i xk+1

ip2

...
...

. . .
...∑n

i=1 w
k
i x

k
ip2

∑n
i=1 w

k+1
i xk+1

ip2
· · ·

∑n
i=1 w

2k
i x2k

ip2



Fp2→p1 =


fp1p2

(xp2
(0))

f ′
p1p2

(xp2
(0))

...
f
(p)
p1p2(xp2

(0))

 ,Yp1 =


∑n

i=1 yi∑n
j=1 xiyi

...∑n
i=1 x

k
i yi


Fp2→p1

=
(
X T

p2
Xp2

)−1
X T

p2
Yp1

(5)

where wi is the weight for each sample and n is the number of datasets. Combined with Figure 1,
physical meaning can be given to the above variables: f(θ) is the correlation between each feature
and target; C is the factor to expand the influence of the intersection area to get the real causality
comparing with W applied to eliminate the influence of the public area:

Min 1
2β

Tβ +
∑n

i=1(Wi + C)max
(
0, 1− yi

(
βTϕ (xi) + b

))
∥F (i)

p2→p1,i>0∥22 ≤ γ, ∥W∥22 ≤ λ1, (
∑n

k=1 Wk − 1)
2 ≤ λ2

(6)

When we have a smaller γ value, the difference between β and the true correlation coefficient
(disjoint region and the target) will become smaller, resulting greater mutual information loss.
Lemma 1. If the number of features in the datasets and the terms in the Taylor expansion are fixed,
when n→∞ there exists W ⪰ 0 such that

lim
n→∞

∥F (i)
p2→p1,i>0∥

2
2
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Figure 2: Figures (a)-(d) describe the distribution of the Pearson Coefficient values among various
relationships. Figure (a) reports the β errors of different models. Figure (f) is under a linear environ-
ment and other figures are under nonlinear environments. Our model is able to provide the greatest
reduction of both linear and nonlinear relationships.

4 EXPERIMENT

4.1 VALIDATION ON A SYNTHETIC DATASET

To examine the proposed constraints’ effect on eliminating linear and nonlinear connotation rela-
tionships, we follow previous work (Kuang et al., 2020b) to conduct evaluations on synthetically
generated datasets. The details of experiment settings and baseline methods can be found in the
Appendix ( A.2). Notice that a different objective function 7 is built for regression task, where Wi

is the sample weight and the variable ζ is slack variable. In this experiment, we only expand two
terms by the Taylor expansion.

minw,b,ζ,ζ∗
1
2w

Tw +
∑n

i=1(C +Wi) (ζi + ζ∗i )
subject to yi − wTϕ (xi)− b ≤ ε+ ζi

wTϕ (xi) + b− yi ≤ ε+ ζ∗i
ζi, ζ

∗
i ≥ 0, i = 1, . . . , n

∥F (i)
p2→p1,i>0∥22 ≤ γ

∥W∥22 ≤ λ1, (
∑n

k=1 Wk − 1)
2 ≤ λ2

(7)

4.1.1 RESULTS

To compare two kinds of regularizers, we apply Pearson Correlation to calculate the relationship
strength among features. Since Pearson Correlation can only describe linear relationship, we con-
struct nonlinear pairs WVi with (WV)2j , (WV)3j and exp(WVj) in addition to WVi with WVj.
The result can be found in Figure 2. Both DWR and the proposed regularizer can handle pure
linear relationships (experimental environment(A)) but some improvement is achieved from the
proposed regularizer. As we add nonlinear relationships to the linear experimental environment,
DWR start to have difficulty with the linear relationship part while the proposed method is still
able to reduce a large amount of the relationships. For nonlinear environments, compared with the
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Table 1: Results under varying sample size n and number of variables within nonlinear environ-
ments.

n=1000, m=5 n=1000, m=10 n=1000, m=15

βS Error βV Error β Error βS Error βV Error β Error βS Error βV Error β Error

OLS 3.357 0.430 1.894 3.605 0.729 2.167 3.823 0.866 2.345
Lasso 3.390 0.326 1.858 3.586 0.647 2.117 3.940 0.390 2.165
Ridge 3.357 0.430 1.893 3.604 0.729 2.166 3.822 0.866 2.344
SVM 2.067 0.240 1.153 2.273 0.375 1.324 2.366 0.410 1.388
DWR 2.279 0.249 1.264 2.566 0.658 1.612 3.258 1.182 2.220

DWR SVM 1.799 0.303 1.051 2.077 0.483 1.280 2.494 0.918 1.706
OUR 1.555 0.199 0.877 1.898 0.373 1.135 2.265 0.382 1.323

n=2000, m=5 n=2000, m=10 n=2000, m=15

βS Error βV Error β Error βS Error βV Error β Error βS Error βV Error β Error

OLS 3.253 0.444 1.849 3.521 0.630 2.075 4.071 0.561 2.316
Lasso 3.278 0.250 1.764 3.490 0.473 1.982 4.260 0.168 2.214
Ridge 3.253 0.444 1.848 3.520 0.630 2.075 4.071 0.561 2.316
DWR 2.147 0.231 1.189 2.244 0.493 1.369 2.749 0.974 1.861
SVM 2.020 0.271 1.145 2.158 0.315 1.237 2.453 0.349 1.401

DWR SVM 1.675 0.305 0.990 1.861 0.407 1.134 2.317 0.572 1.445
OUR 1.544 0.214 0.879 1.719 0.292 1.006 2.125 0.323 1.224

n=3000, m=5 n=3000, m=10 n=3000, m=15

βS Error βV Error β Error βS Error βV Error β Error βS Error βV Error β Error

OLS 3.297 0.335 1.816 3.593 0.579 2.086 3.736 0.611 2.173
Lasso 3.279 0.074 1.677 3.803 0.179 1.991 3.703 0.527 2.115
Ridge 3.297 0.335 1.816 3.593 0.579 2.086 3.735 0.611 2.173
DWR 2.178 0.150 1.164 1.970 0.415 1.192 2.610 0.547 1.578
SVM 2.066 0.217 1.141 2.046 0.338 1.192 2.261 0.329 1.295

DWR SVM 1.764 0.284 1.024 1.833 0.312 1.072 2.082 0.484 1.283
OUR 1.748 0.065 0.907 1.618 0.171 0.894 2.007 0.325 1.166

original unweighted dataset, DWR unexpectedly increases nonlinear relationships where there are
no existing nonlinear relationships (square, cubic and exponential). Instead, our model can deal
with nonlinear relationships and reduce nonlinear relationships. To test our algorithm perform the
best on various sample sizes and the number of features, we calcualte the βS and betaV errors:
error(β) =

∑
i |βtrue − β| , based on 9 kinds of datasets 1.

We conduct a series of ablative studies to evaluate the stability of our model. Table 2 summarizes the
results of the experiment with various values of C and Lagrange penalty operators γ, and λ. For each
sell, we fix the Lagrange penalty operators and increase C to calculate the β errors and RMSE errors.
The higher C indicates higher integrated mutual information is fed into the model and magnifies the
impact of confounding. Higher γ values will reduce more confounding effects and diminish mutual
information. Here we choose the best parameters (γ = 600, λ = 0.0005, C = 0.5) based on the
smallest RMSE also with a smaller β error comparing to (γ = 1000, λ = 0.0005, C = 0.5) which
has the same RMSE.

To further confirm that the coefficients estimated by our model are based on causality, we repeat
experiments 50 times to calculate

∑
∥β − β̂∥, where β and β̂ represent the true value and estimated

parameters, respectively. In Figure 2, we find that the difference between the estimated parameters
and the true values is smaller with our model, compared to other models in the nonlinear environ-
ment. Notice that our model achieves much smaller distribution variance as well as much smaller
average values of β errors comparing to baselines. Although the regularizer of DWR can solve the
stable problem in linear environments, it retains or expands nonlinear confounding in the nonlinear
environments. From the above results, we find that our model is able to reduce correlations among
all predictors and avoid being affected by nonlinear confounding, resulting a reduced estimation bias
in more general environments.

4.2 VALIDATION ON THREE REAL-WORLD DATASETS

To further validate the effectiveness of our model in real-world scenarios, we perform experiments
on three different EHR datasets. All data are prepossessed to ensure no sensitive information is
exposed.
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Table 2: Ablative study. γ and λ are Lagrange penalty operators.

γ = 600, λ = 0.0001 γ = 600, λ = 0.0005 γ = 600, λ = 0.001

C = 0 C = 0.5 C = 1 C = 0 C = 0.5 C = 1 C = 0 C = 0.5 C = 1

βS Error 1.956 1.919 1.996 1.769 1.926 2.003 1.956 2.026 2.073
βV Error 0.238 0.179 0.166 0.245 0.187 0.178 0.246 0.199 0.175

RMSE Error 4.943 4.732 4.680 4.854 4.726 4.675 4.951 4.856 4.808

γ = 800, λ = 0.0001 γ = 800, λ = 0.0005 γ = 800, λ = 0.001

C = 0 C = 0.5 C = 1 C = 0 C = 0.5 C = 1 C = 0 C = 0.5 C = 1

βS Error 1.954 2.022 2.070 1.784 2.025 2.068 1.960 2.019 2.009
βV Error 0.240 0.197 0.172 0.234 0.195 0.176 0.245 0.195 0.174

RMSE Error 4.945 4.859 4.825 4.849 4.860 4.793 4.961 4.858 4.674

γ = 1000, λ = 0.0001 γ = 1000, λ = 0.0005 γ = 1000, λ = 0.001

C = 0 C = 0.5 C = 1 C = 0 C = 0.5 C = 1 C = 0 C = 0.5 C = 1

βS Error 1.962 2.022 2.075 1.959 1.928 2.073 1.962 2.024 2.006
βV Error 0.242 0.196 0.173 0.250 0.187 0.178 0.244 0.189 0.169

RMSE Error 4.938 4.859 4.812 4.950 4.726 4.811 4.947 4.854 4.672

4.2.1 DATASETS AND SETTINGS

Heart Disease is retrieved from the repository of the University of California, Irvine (Asuncion &
Newman, 2007). We follow previous work to use 13 of 76 attributes: Age, Sex, cp, threstbps, chol,
fbs, restecg, thalach, exang, oldpeak, slope, cam and thal.

Esophageal Cancer consists of data from 261 patients who underwent esophagectomy for
esophageal cancer between 2009 and 2018. The collected characteristics include patient demograph-
ics, medical and surgical history, clinical tumor staging, adjuvant chemoradiotherapy, esophagec-
tomy procedure type, postoperative pathologic tumor staging, adjuvant chemoradiotherapy, postop-
erative complications, cancer recurrence, and mortality.

Cauda Equina Syndrome (CES) is extracted from the Statewide Planning and Research Coopera-
tive System (SPARCS) (of Health & Bureau, 1984), a comprehensive database of all payers for all
hospitalizations in New York State Joo et al. (2022).

Based on diagnostic and procedure codes, patients with CES who underwent surgery between 2000
and 2015 were selected. Patient demographics (age, gender, race, comorbidities, and insurance
status) and hospital characteristics (measured by hospital bed number quartiles).

Pre-Processing: We convert the continuous variables into categorical variables before feeding them
to the model. To handle missing data in the datasets, we adopted MICE (Multiple imputations
by chained equations) by transforming imputation problems into estimation problems where each
variable will be regressed on the other variables. This method provides promising flexibility since
every variable can be assigned a suitable distribution (Wulff & Jeppesen, 2017). Then we apply the
SMOTE algorithm (Fernández et al., 2018) to address the class imbalance issue in our datasets.

Feature Selection: Redundant information in EHR datasets may cause noise and irrelevant infor-
mation during feature extraction. A feature selection method (Guyon et al., 2002) is adopted. To
improve the robustness of the model, we divide the dataset randomly into five groups for cross-
validation. Each time we extract one group as the test set to analyze and measure the average
performance in the feature selection process. Due to the high complexity of our model, we apply
and compare the four baseline models: XGboost, SVM, Logistic Regression, and Random Forest
to extract important features in feature selection and input the set of the features with the highest
average AUROC scores into our model. In the end, we extract 13, 47, and 45 features for Heart
Disease, Esophageal Cancer, and Cauda Equina Syndrome, respectively.

Comparison to Baseline Models: After the feature selection process, we transform continuous
features into categorical variables before inputting data into our model and then applying one-hot
encoding to convert categorical attributes into numeric, since the association rule mining algorithm
in our paper cannot accept continuous features. However, the data set, filtered by feature selection,
is directly fed into baseline models since forcing the continuous features to be discretized may lead
to worse performance of the model. We assign 20% data into test datasets and compare our model
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Table 3: Prediction performances over various healthcare datasets.

Non Rule-based Rule-based

XGBoost RF SVM LR MLP XGBoost RF SVM LR MLP DWR Ours

Heart Disease

Accuracy 0.903 0.887 0.885 0.869 0.947 0.869 0.868 0.960 0.934 0.878 0.937 0.960
F1 0.880 0.863 0.899 0.882 0.952 0.882 0.879 0.963 0.940 0.892 0.943 0.964

Precision 0.880 0.846 0.886 0.882 0.941 0.857 0.864 0.972 0.939 0.850 0.931 0.966
Recall 0.880 0.880 0.912 0.882 0.963 0.909 0.897 0.956 0.945 0.940 0.958 0.964

Causality - - - - - 0.398 0.274 0.455 0.458 0.402 0.320 0.528
Esophageal Cancer

Accuracy 0.788 0.750 0.827 0.808 0.750 0.738 0.727 0.900 0.812 0.846 0.854 0.900
F1 0.776 0.683 0.809 0.800 0.735 0.708 0.697 0.888 0.783 0.824 0.825 0.885

Precision 0.704 0.737 0.827 0.808 0.720 0.723 0.692 0.867 0.804 0.843 0.842 0.874
Recall 0.864 0.636 0.792 0.833 0.750 0.699 0.713 0.913 0.771 0.812 0.811 0.900

Causality - - - - - 0.130 0.236 0.281 0.327 0.160 0.314 0.339
Cauda Equina Syndrome

Accuracy 0.788 0.75 0.827 0.808 0.750 0.883 0.779 0.887 0.886 0.891 0.891 0.893
F1 0.776 0.683 0.809 0.800 0.735 0.880 0.780 0.883 0.882 0.888 0.887 0.888

Precision 0.704 0.737 0.827 0.808 0.720 0.818 0.706 0.825 0.822 0.831 0.831 0.834
Recall 0.864 0.636 0.792 0.833 0.750 0.951 0.874 0.950 0.952 0.953 0.953 0.951

Causality - - - - - 0.231 0.298 0.279 0.132 0.262 0.308 0.477

with five baseline models: Logistic Regression, Random Forest, XGboost, SVM and MLP as shown
in Appendix A.3

4.2.2 RESULTS

To measure the performance of models, we calculate accuracy, precision, recall and F1 scores. The
result is shown in Appendix A.3, Table 3. In addition to calculating the metrics of the traditional
models, we input the filtered rules as one-zero matrix X into the baselines rather than the original
datasets. In Heart Disease and Esophageal Cancer datasets, rules do help XGBoost, Random Forest
and MLP to improve the performance, while in Cauda Equina Syndrome datasets rules can improve
the performance of all models. For SVM and Logistic Regression, the effect of the model can be
greatly improved after combining the rules. Our model generally performs the best on all three
datasets, similar to the SVM performance, while achieving high interpretability as discussed below.

Combining the experiments in the previous section, better performance is not equivalent to obtaining
the real rules. To compare the causality calculated by our model and baselines, we ask three groups
of doctors of the corresponding domains to score each rule. Three groups of doctors are from
Cardiology, ENT and Neurosurgery departments, and each group consists of three doctors. we apply
the models to calculate the importance of features to score each rule. To verify rating consistency
between our model and doctors leveraging Spearman Coefficients. Results can be found in Table 3.
As can be observed, causality rankings of the baseline models vary greatly, indicating unstable
performance. In these datasets, the causal value of our model is higher than other baselines, implying
that the scoring of our model is more consistent with the standard of doctors.

5 CONCLUSION

In this paper, we present a causal inference approach focusing on interpretability and nonlinear
environments for healthcare applications. The proposed method extracts association rules from the
raw features as new representations to be used by our model. A novel regularizer that is capable
for handling both linear and nonlinear confoundings is constructed to enable our model’s adaption
to real-world applications. The superior performances on a synthetic dataset and three real-world
EHR datasets from different domains compared to baseline methods validate both the effectiveness
and generalizability of the proposed method. Consistent ratings with healthcare professionals on the
extracted rules further validate the model’s interpretability, while not sacrificing accuracy.
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A APPENDIX

A.1 ALGORITHM

We combine algorithm 1 with object function 2 to select the robust rules and prune the redundant
items. In the RulesSelection function, we delete one rule each time with lowest ∥w∥22 and save the
rule sets with the highest accuracy. In the ItemReduce function, we apply cross-validation to train
SVM model and save the item sets with best accuracy.

Algorithm 1 Rules Selection and Item Reduction

Input: Rules{Xi} are the association rules obtained by Apriori algorithm with training datasets.
data is EHR datasets.

Output: Bestrules
1: function RULESSELECTION(Rules, data)
2: Bestrules← Rules
3: Objfunction is objective function
4: Select← Bestrules
5: Bestaccuracy ← Select
6: Lastrules← ∅
7: while Select ̸= Lastrules do
8: Lastrules← Select
9: w ← argminObjectfunction(Select, data)

10: Selected← argminw2
i

11: Temprules← {Bestrules}/{Selected}
12: Tempaccuracy ← Temprules
13: if Tempaccuracy > Bestaccuracy then
14: Bestaccuracy ← Tempaccuracy
15: Select← Temprules
16: end if
17: end while
18: return Bestrules
19: end function
20: function ITEMREDUCE(Bestrules, data)
21: Bestauc← SVM(Bestrules, data)
22: Lastrules← ∅
23: while Bestrules ̸= Lastrules do
24: Item← argmaxSVM({Bestrules}/{Item})
25: Accuracy ← SVM({Bestrules}/{Item})
26: if Accuracy ≥ Bestauc then
27: Bestauc← Accuracy
28: Bestrules← {Bestrules}/{Item}
29: end if
30: end while
31: return Bestrules
32: end function
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A.2 DATASETS AND SETTINGS

In addition to the linear settings, we propose to include nonlinear evaluations under a nonlinear
environment:

Linear Environment: For this setting, we construct features S that causes unstable V by auxil-
iary variables z with linear relationship among features only.

Z,1, · · · ,Z,p
iid∼ N (0, 1),X,1, · · · ,X,pv

iid∼ N (0, 1)
S,i = 0.8 ∗ Z,i + 0.2 ∗ Z,i+1, i = 1, 2, · · · , ps

V·,j = 0.8 ∗X·,j + 0.2 ∗X·,j+1 +N (0, 1)

Nonlinear Environment: In this setting, we combined square relationship and exponential re-
lationship to generate various environment including potential nonlinear confounding to test our
reweighted regularizer.

V·,j = X·,j + 0.4 ∗X·,j+1 + 0.4 ∗ exp(X·,j+1)

+ 0.4 ∗X2
·,j+1 + 0.1 ∗X3

·,j+1 +N (0, 1)

S·,j = Z·,j + 0.4 ∗ Z·,j+1 + 0.4 ∗ exp(Z·,j+1)

+ 0.4 ∗ Z2
·,j+1 + 0.1 ∗ Z3

·,j+1 +N (0, 1)

To further test the robustness of our algorithm, we assume that there are unobserved nonlinear
terms, and construct the label Y as shown in Equation 8. Combined with weighed SVM loss
function, we train our model to estimate the regression coefficient β. In this experiment, we set
βs =

{
1
3 ,−

2
3 , 1,−

1
3 ,

2
3 ,−1, · · ·

}
, βv =

−→
0 , and ε = N (0, 0.3). In the experiment, we will set

different dimension of β, hence if the dimension of βS is higher than 6, we will set the element of
which index is larger than 6 as the i%6-th of βV .

Ypoly = f(S) + ε = [S,V] · [βs, βv]
T
+ S·,1S·,2 + ε (8)

Baselines: We compare our model with five baseline methods:

• Ordinary Least Square (OLS) (Hutcheson, 2011):
min ∥Y −Xβ∥22

• Lasso (Tibshirani, 1996):
min ∥Y −Xβ∥22 + λ1∥β∥1

• Ridge (Hoerl & Kennard, 1970):
min ∥Y −Xβ∥22 + λ1∥β∥2

• Decorrelated Weighting Regression (DWR) (Kuang et al., 2020b):
minW,β

∑n
i=1 Wi · (Yi −Xi,β)

2

s.t
∑p

j=1

∥∥XT
,jΣWX,−j/n−XT

,jW/n ·XT
,−jW/n

∥∥2
2
< λ2

• Support Vector Machines (SVM) (Suykens & Vandewalle, 1999):

min
w,b,ζ,ζ∗

1

2
wTw +

n∑
i=1

(ζi + ζ∗i )

• SVM combined with DWR(DWR SVM):
minw,b,ζ,ζ∗

1
2w

Tw +
∑n

i=1 Wi (ζi + ζ∗i )

s.t
∑p

j=1

∥∥XT
,jΣWX,−j/n−XT

,jW/n ·XT
,−jW/n

∥∥2
2
< λ2

Generating Various Environments To test the stability of the algorithms, we generate a set
of environment e with a distinct distribution distribution PXY . Following the Kuang’s experi-
ment Kuang et al. (2020b), we generate different environments based on various P (S|V ). To
simplify the problem, we simulate P (Sb|V on a subset Sb ∈ S, where the dimension of Sb is
0.2 ∗ p. We applied the bias rate equation Pr =

∏
Si∈Sb

|r|−5∗Di to tune the P (Sb|V , where
Di = |f(S)− sign(r) ∗Vi| , r ∈ [−3,−1) ∪ (1, 3]. r > 1 indicates that Y and Sb have posi-
tive unstable relationships, while r < −1 corresponds to the negative unstable relationships. The
higher absolute value of r the stronger connection between Sb and Y , leading to generate different
environments. The result is shown in Figure 3.
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Figure 3: Figures describe the βS , βV and RMSE with various environments.

A.3 CAUSAL EXPERIMENT RESULTS AND EXPLANATION

We compare our model with five traditional methods:

• Logistic Regression We leverage the logistic regression classifier with L-BFGS solver
for classification (Bollapragada et al., 2018).

• Random Forest We apply standard Random Forest classifier to solve the classification
problem (Pal, 2005).

• XGboost We adopt XGBoost, an extreme gradient boosting methods, to compare with
other models (Chen & Guestrin, 2016).

• SVM We apply supervised learning models, SVM, with linear kernel to analyze data for
classification (Suykens & Vandewalle, 1999).

• MLP We use the traditional neural network multi-layer perceptron to solve this classifi-
cation task (Agatonovic-Kustrin & Beresford, 2000).

We sort the rules in descending order by calculating the importance and show the top five rules
compared with the doctor’s score 4. The details of the description for each feature in the rules are
shown in the Table 5. The scoring criteria are as follows:

• Score 4: Strongly agree that the rule contains causality.
• Score 3: Agree that the rule contains causality.
• Score 2: Disagree with this rule.
• Score 1: Strongly disagree with this rule.

Table 4: Rules filtered by algorithm are sorted in a descending order by our algorithm compared
with the scores given by doctors.

Association Rules Scores

Heart Disease
age middle, #major vessels0, fixed defect, pressure normal, ST-T wave abnormality⇒ heart disease 4
age middle, cholesterol edge, #major vessels0, lower than 120mg/ml⇒ heart disease 3
non-anginal pain, cholesterol high, no exercise induced angina⇒ heart disease 4
ST-T wave abnormality, downsloping⇒ heart disease 4
fixed defect, #major vessels0, cholesterol edge⇒ heart disease 4

Esophageal Cancer
Modified Ryan Score 2.0, Esophagectomy Procedure 4⇒ recurrence 2
tobacco use, Alcohol Use, Neoadjuvant Radiation, Histological Grade 2, Final Histology 1⇒ recurrence 4
Histological Grade 3, Neoadjuvant Radiation, Esophagectomy Procedure 4, Final Histology 1⇒ recurrence 4
clinical m Stage 1, Histological Grade 3, Neoadjuvant Radiation, Esophagectomy Procedure 4, Final Histology 1⇒ recurrence 4
esoph tumor location 4, Esophagectomy Procedure 5, Histological Grade 3⇒ recurrence 3

Cauda Equina Syndrome
elixsum, beds, procedure 03 09⇒ die360 4
Emergency, diagnosis 344 60, complication 240days⇒ die360 4
diagnosis 344 60, life threatening, complication 240days⇒ die360 4
if aa⇒ die360 4
or potentially disabling conditions, complication 240days⇒ die360 4
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A.4 INTRODUCTION FOR FEATURES

Table 5: Introduction of individual features on different datasets.

Features Explanation

Heart Disease
age middle Patients between the ages of 40 and 60
#major vessels0 The number of major vessels (0-3) colored by flourosopy is 0
fixed defect Thalium stress test result is fixed defect
pressure normal Blood pressure within the normal range
ST-T wave abnormality Resting electrocardiography result is ST-T wave abnormality
cholesterol edge Serum cholesterol is in range (200, 220] mg/dl
lower than 120mg/ml Fasting blood sugar is lower than 120mg/ml
non-anginal pain Chest pain type is non-angina
cholesterol high Serum cholesterol is higher than 220 mg/dl
no exercise induced angina not Exercise induced angina
downsloping Slope of peak exercise ST segment is downsloping
heart disease It refers to the presence of heart disease in the patient

Esophageal Cancer
Modified Ryan Score 2.0 (near complete response): single cells or rare small groups of cancer cells
Esophagectomy Procedure 4 Complete MIS/Robotic McKeown (Three-Hole) esophagectomy
tobacco use Use tobacco
Alcohol Use Use Alcohol
Neoadjuvant Radiation Patient underwent neoadjuvant radiation
Histological Grade 2 How differentiated the tumor is: Moderately Differentiated
Final Histology 1 History: Adenocarcinoma
Histological Grade 3 How differentiated the tumor is: Poorly Differentiated
clinical m Stage 1 Details any spread (metastasis) to other sites of the body: M0
esoph tumor location 4 Lower Thoracic, including GE junction
Esophagectomy Procedure 5 Hybrid (Laparoscopy + Thoracotomy) McKeown (Three-Hole) esophagectomy
recurrence Details whether the patient experience recurrence of their cancer

Cauda Equina Syndrome
elixsum Elixhauser comorbidity sum for that patient is high
beds Number of beds in the hospital is small
procedure 03 09 ICD-9-CM Procedure Codes: 03.09
Emergency The patient requires immediate medical intervention as a result of severe
diagnosis 344 60 ICD9 indicators
complication 240days Indicators for complication within 240 days of discharge
life threatening The patient’s condition is very dangerous
if aa The racial of the patient is African American
die360 Patient died within 360 days
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A.5 PROOF

Lemma 2. If the number of features in the datasets and the terms in the Taylor expansion are fixed,
when n→∞ there exists W ⪰ 0 such that

lim
n→∞

∥F (i)
p2→p1,i>0∥

2
2

Proof. Based on our regularizer, we know that
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(0))

...
f (p)

p1p2
(xp2

(0))

 =
1

n


∑

i yix̂ip2

∑
i yi

...∑
i x̂

k
ip2

∑
i yi





∑
i x̂

2
ip2∑

i x̂ip2
−
∑

i x̂ip2

∑
i x̂

3
p2∑

i x̂ip2
−
∑

i x̂
2
ip2

· · ·
∑

i x̂
k+1
ip2∑

i x̂ip2
−
∑

i x̂
k
ip2∑

i x̂
3
ip2∑

i x̂
2
ip2

2 −
∑

i x̂ip2

∑
i x̂

4
ip2∑

i x̂
2
ip2

−
∑

i x̂
2
ip2

· · ·
∑

i x̂
k+2
ip2∑

i x̂
2
ip2

−
∑

i x̂
k
ip2

...
...

. . .
...∑

i x̂
k+1
ip2∑

i x̂
k
ip2

−
∑

i x̂
k
ip2

∑
i x̂

k+2
ip2∑

i x̂
k
ip2

−
∑

i x̂
k
ip2

· · ·
∑

i x̂
2k
ip2∑

i x̂
k
ip2

−
∑

i x̂
k
ip2




fp1p2

(xp2
(0))

f ′′p1p2 (xp2
(0))

...
f
(p)
p1p2 (xp2

(0)

 = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i x̂

2
ip2∑

i x̂ip2
−
∑

i x̂ip2

∑
i x̂

3
ip2∑

i x̂ip2
−
∑

i x̂
2
ip2

· · ·
∑

i x̂
k+1
ip2∑

i x̂ip2
−
∑

i x̂
k
ip2∑

i x̂
3
ip2∑

i x̂
2
ip2

−
∑

i x̂ip2

∑
i x̂

4
ip2∑

i x̂
2
ip2

−
∑

i x̂
2
ip2

· · ·
∑

i x̂
k+2
ip2∑

i x̂
2
ip2

−
∑

i x̂
k
ip2

...
...

...∑
i x̂

k+1
ip2∑

i x̂
k
ip2

−
∑

i x̂
k
ip2

∑
i x̂

k+2
ip2∑

i x̂
k
ip2

−
∑

i x̂
k
ip2

· · ·
∑

i x̂
2k
ip2∑

i x̂
k
ip2

−
∑

i x̂
k
ip2

∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0

x̂2
ip2

is influenced by the wi which can be adjusted, and the determinant of matrix is not equal to 0,
hence the equation has only the trivial solution. We can get

f ′
p1p2

(xp2
(0)) = f ′′

p1p2
(xp2

(0)) = · · · = f (p)
p1p2

(xp2
(0)) = 0

If we can prove under our regularizer, we can prove our method can work:
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n→∞ : (x̂ip2
, yi) = cov

(
x̂2
ip2

, yi
)
= cov

(
x̂3
ip2

, yi
)
= · · · = cov

(
x̂k
ip2

, yi
)
= 0

We set
(
x̂ip2

, x̂2
ip2

, . . . , x̂k
ip2

)
is kernel density estimators: g(xip2 . We set the weight wi is:

wi =

∏
iq g
(
xq
ij

)
Ĝ (g (xi1) , g (xi2) , . . . , g (xip))

n→∞ : E
[
x̂q
p1

]
=

1

n

∑
i

xq
ip1

∏
iq g
(
xq
ij

)
Ĝ (g (xi1) , g (xi2) , . . . , g (xip))

=

∫
. . .

∫
xq
ij

∏
l

g (xq
il) dxi1dx

1
i1 . . . dx

q
ip + o(1) =

∫
xq1
il g (x

q1
il ) dx

q1
il + o(1)

n→∞ : E
[
x̂q
p1
, x̂p2

]
=

1

n

∑
i

xq
ip1

xip1

( ∏
iq g
(
xq
ij

)
Ĝ (g (xi1) , g (xi2) , . . . , g (xip))

)2

=

∫∫
xq1
il ximg (xq1

il ) g (xim) dxq1
il dxim + o(1)

=

∫
xq1
il g (x

q1
il ) dx

q1
il

∫
ximg (xim) dxim + o(1)

n→∞ : cov
(
x̂q
ip1

, x̂p1

)
= E

[
x̂q
p1

]
E [x̂p1 ]− E

[
x̂q
p1
, x̂p2

]
= 0

We can get:
f ′
p1p2

(xp2
(0)) = f ′′

p1p2
(xp2

(0)) = · · · = f (p)
p1p2

(xp2
(0)) = 0
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