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ABSTRACT

Goal-conditioned reinforcement learning (RL) can solve tasks in a wide range
of domains, including navigation and manipulation, but learning to reach distant
goals remains a central challenge to the field. Learning to reach such goals is par-
ticularly hard without any offline data, expert demonstrations, and reward shap-
ing. In this paper, we propose an algorithm to solve the distant goal-reaching
task by using search at training time to automatically generate a curriculum of
intermediate states. Our algorithm, Classifier-Planning (C-Planning), frames the
learning of the goal-conditioned policies as expectation maximization: the E-step
corresponds to planning an optimal sequence of waypoints using graph search,
while the M-step aims to learn a goal-conditioned policy to reach those waypoints.
Unlike prior methods that combine goal-conditioned RL with graph search, ours
performs search only during training and not testing, significantly decreasing the
compute costs of deploying the learned policy. Empirically, we demonstrate that
our method is more sample efficient that prior methods. Moreover, it is able to
solve very long horizons manipulation and navigation tasks, tasks that prior goal-
conditioned methods and methods based on graph search fail to solve.1

1 INTRODUCTION

Whereas typical RL methods maximize the accumulated reward, goal-conditioned RL methods learn
to reach any goal. Arguably, many tasks are more easily defined as goal-reaching problems than as
reward maximizing problems. While many goal-conditioned RL algorithms learn policies that can
reach nearby goals, learning to reach distant goals remains a challenging problem. Some prior
methods approach this problem by performing search or optimization over subgoals at test time.
However, these test-time planning methods either rely on graph search [7, 31], which scales poorly
with dimensionality [14], or continuous optimization over subgoals [26], which is expensive and can
result in model exploitation.

In this paper, we take a different tack and instead use search at training time to automatically gen-
erate a curriculum. When training the agent to reach one goal, our method first determines some
intermediate waypoints enroute to that goal. Then, it commands the agent to reach those waypoints
before navigating to the final destination. Collecting data in this manner improves the quality of
data, allowing the agent to learn to reach distant goals. Importantly, our method does not perform
planning at test time, decreasing the computational demands for deploying the learned agent.

Our curriculum does not require manual engineering or prior knowledge of the tasks. Rather, the cur-
riculum emerges automatically when we use expectation maximization (EM) to maximize a lower
bound on the probability of reaching the goal. The M-step corresponds to a prior method for goal-
conditioned RL, while the E-step corresponds to graph search. Thus, EM presents a marriage be-
tween previous goal-conditioned RL algorithms and graph-search methods.

∗Equal contribution.
1Code and videos of our results: https://ben-eysenbach.github.io/c-planning/
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Figure 1: C-Planning is an algorithm for goal-conditioned RL that uses an automatic curriculum of waypoints
to learn policies that can solve complex tasks. In this manipulation task, the goal requires moving the green
puck to the green dot and the red puck to the red dot. Our method learns to solve this task, manipulating
multiple objects in sequence, without requiring any reward functions, manual distance functions, or human
demonstrations.

The main contribution of this work is a goal-conditioned RL algorithm, C-Planning, that excels at
reaching distant goals. Our method uses an automatic curriculum of subgoals to accelerate train-
ing. We show that our curriculum emerges from applying variational inference to the goal-reaching
problem. Unlike prior work, our method does not require graph search or optimization at test-time.
Empirically, C-Planning not only matches but surpasses the performance of these prior search-based
methods, suggesting that it is not just amortizing the cost of graph search. We empirically evalu-
ate C-Planning on temporally-extended 2D navigation tasks and complex 18D robotic manipulation
tasks. C-Planning improves the sample efficiency of prior goal-conditioned RL algorithms and man-
ages to solve more difficult manipulations tasks such as rearranging multiple objects in sequence (see
Fig. 1.). To the best of our knowledge, no prior method has learned tasks of such difficulty without
requiring additional assumptions.

2 RELATED WORK

The problem of learning to achieve goals has a long history, both in the control community Lyapunov
[22] and the RL community [16]. Many prior papers approach goal-conditioned RL as a reward-
driven, multi-task learning problem, assuming access to a goal-conditioned reward function. One
unique feature of goal-conditioned RL, compared to other multi-task RL settings, is that it can also
be approached using reward-free methods, such as goal-conditioned behavior cloning [5, 12, 23, 31]
and RL methods that employ hindsight relabeling [8, 16, 21, 32]. While goal-conditioned behavior
cloning methods are simple to implement and have shown excellent results on a number of real-
world settings [24, 33], they are not guaranteed to recover the optimal policy without additional
assumptions (e.g., determinism, online data collection). While both methods excel at certain control
tasks, both often struggle to solve tasks with longer horizons.

To solve longer-horizon tasks, prior work has combined goal-conditioned RL with graph search,
noting that goal-conditioned value functions can be interpreted as dynamical distances [6, 15, 26,
31]. These prior methods typically proceed in two phases: the first phase learns a goal-conditioned
policy, and the second phase combines that policy with graph search. While these methods have
demonstrated excellent results on a number of challenging control tasks, including real-world robotic
navigation [24, 33], the stage-wise approach has a few limitations. First, the post-hoc use of graph
search means that graph search cannot improve the underlying goal-conditioned policy. It is well
known that the performance of RL algorithms is highly dependent on the quality of the collected
data [17, 18, 20]. By integrating search into the learning of the underlying goal-conditioned policy,
our method will improve the quality of the data used to train that policy. A second limitation of
these prior methods is the cost of deployment: choosing actions using graph search requires at
least O(|V|) queries to a neural network.2 In contrast, our method performs search at training time
rather than test time, so the cost of deployment is O(1). While this design decision does increase
the computational complexity of training, it significantly decreases the latency at deployment. Our
method is similar to RIS [3], which also performs search during training instead of deployment. Our
method differs from RIS in how search is used: whereas RIS modify the objective, our method uses
search to modify the data. This difference not only unifies the objectives for RL and graph search,
but also significantly improves the performance of the algorithm. , a subtle distinction that avoids
favoring the learned policy and unifies the objectives for RL and graph search. We demonstrate the
importance of this difference in our experiments.

2While computing all pairwise distances requires O(|V|2) time, only |V| edges change at each time step.
The cost of computing the remaining edges can be amortized across time.
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Effectively solving goal-conditioned RL problems requires performing good exploration. In the
goal-conditioned setting, the quality of exploration depends on how goals are sampled, a problem
studied in many prior methods [6, 10, 11, 27, 28, 30, 38, 39]. These methods craft objectives that
try to optimize for learning progress, and the resulting algorithms achieve good results across a
range of environments. Our method differs from these methods in that the method for optimizing
the goal-conditioned policy and the method for sampling waypoints are jointly optimized using the
same objective. We demonstrate the importance of this difference in our experiments.

Our method builds on the idea that reinforcement learning can be cast as inference problems [2, 19,
29, 35, 36, 40]. The observation that variational inference for certain problems corresponds to graph
search is closely related to Attias [2]. Our work extends this inferential perspective to hierarchical
models.

3 PRELIMINARIES

We introduce the goal-conditioned RL problem and a recent goal-conditioned RL algorithm, C-
learning, upon which our method builds.

Goal-Conditioned RL. We focus on controlled Markov processes defined by states st ∈ S
and actions at. The initial state is sampled s0 ∼ p0(s0) and subsequent states are sampled
st+1 ∼ p(st+1 | st,at). Our aim is to navigate to the goal states, sg ∈ S , which are sampled
from sg ∼ pg(sg). We define a policy π(at | st, sg) conditioned on both the current state and the
goal. The objective is to maximize the probability (density) of reaching the goal in the future.

To derive our method, or any other goal-conditioned RL algorithm, we must make a modeling
assumption about when we would like the agent to reach the goal. This modeling assumption is
only used to derive the algorithm, not for evaluation. Formally, let ∆ ∈ N+ be a random integer
indicating when we reach the goal. The user specifies a prior p(∆). Most prior work (implicitly)
uses the geometric distribution, p(∆) = GEOM(1− γ). The geometric distribution is ubiquitous
because it is easy to incorporate into temporal difference learning, not because it is a particularly
reasonable prior belief on when the agent will solve the task or when the episode will terminate.
Prior work has also considered non-geometric distributions [9]. In this paper, we use the negative
binomial distribution, p(∆) = NEGBINOM(p = 1− γ, n = 2). Given a prior p(∆), we define the
distribution over future states as

p
π(·|·,sg)

p(∆) (st+ = st+ | st,at) = Ep(∆)

[
p
π(·|·,sg)
∆ (st+∆ = st+ | st,at)

]
, (1)

where pπ∆(st+∆ | st,at) is the probability density of reaching state st+∆ exactly ∆ steps in the
future when sampling actions from π(at | st, sg). For example, the γ-discounted state occupancy
measure [13, 25] can be written as pπ(·|·,sg)GEOM(1−γ). Our objective for goal-reaching is to maximize the
probability of reaching the desired goal:

max
π

Epg(sg)

[
p
π(·|·,sg)

NEGBINOM(p=1−γ,n=2)(st+ = sg)
]
. (2)

C-Learning. Our method builds upon a prior method for goal-conditioned RL, C-Learning [8].
C-Learning learns a classifier for predicting whether a state st comes from a future state density
p
π(·|·,sg)

p(∆) (st+ = st+ | st,at) or a marginal state density:

p
π(·|·,sg)

p(∆) (st+ = st+) =

∫
p
π(·|·,sg)

p(∆) (st+ = st+ | st,at) p(st, at) dst dat.

The Bayes-optimal classifier can be written in terms of these two distributions:

Cθ(s, sg) =
p
π(·|·,sg)
GEOM (sg | s)

p
π(·|·,sg)
GEOM (sg | s) + p

π(·|·,sg)
GEOM (sg)

. (3)

In C-Learning, this classifier acts as a value function for training the policy. Our method will use
this classifier not only to update the policy, but also to sample waypoints.

4 C-PLANNING: GOAL-CONDITIONED RL WITH PLANNING
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Figure 2: Waypoint Sampling:
Our method samples waypoints
that are reachable from the initial
state, and from which the agent
can reach the goal.

We now present our method, C-Planning. The main idea behind
our method is to decompose the objective of Eq. 2 into a sequence
of easier goal-reaching problems. Intuitively, if we want a sub-
optimal agent to navigate from some initial state s0 to a distant goal
state sg , having the agent try to reach that state again and again
will likely prove futile. Instead, we can command a sequence of
goals, like a trail of breadcrumbs leading to the goal sg . To select
these waypoints, we will command the policy to reach those states it
would visit if it were successful at reaching sg . Sampling subgoals
in this way can ease the difficulty of training the agent (see Fig. 2.).

At a high-level algorithm summary, our method consists of two
steps: using waypoing sampling to collect experience and perform-
ing standard goal-conditioned RL using the collected experience.
The main challenge is the first step, as modeling the distribution
over waypoints is difficult. In Sec. 4.1, we derive the optimal way-
point distribution, and then propose a simple practical method to
sample from this distribution in Sec. 4.2.

4.1 PLANNING AND VARIATIONAL INFERENCE

To formally derive our method for waypoint sampling, we cast the problem of goal-reaching as a
latent variable problem. We assume that the agent starts at state s0 and ends at state sg , but the
intermediate states that the agent will visit are unknown latent variables. This problem resembles
standard latent variable modeling problems (e.g., VAE), where the intermediate state serves the role
of the inferred representation. We can thus derive an evidence lower bound on the likelihood of
reaching the desired goal:
Lemma 1. The objective L, defined below, is a lower bound on the goal-reaching objective (Eq. 2):

log p
π(·|·,sg)
NEGBINOM(st+ = sg | s0) ≥ Eq(sw|sg,s0)

[
log p

π(·|·,sg)
GEOM (st+ = sg | sw) + log p

π(·|·,sg)
GEOM (sw | s0)

− log q(sw | sg, s0)
]
≜ L(π, q(sw | sg, s0)).

See Appendix A.1 for the proof. The lower bound, L, depends on two quantities: the goal-
conditioned policy and an inferred distribution over waypoints, q(sw | s0, sg). This bound holds
for any choice of q(sw | s0, sg), and we can optimize this lower bound with respect to this waypoint
distribution. We will perform expectation maximization [4] to optimize the lower bound, alternating
between computing the optimal waypoint distribution and optimizing the goal-conditioned policy
using this waypoint distribution. We now describe these two steps in detail.

E-Step. The E-step estimates the waypoint distribution, q(sw | s0, sg). The three terms in the
lower bound indicate that the sampled waypoint should be reachable from the initial state, the goal
state should be reachable from the sampled waypoint, and that the waypoint distribution should have
high entropy. These first two terms resemble shortest-path planning, where distances are measured
using log probabilities. Importantly, reachability is defined in terms of the capabilities of the current
policy. We can analytically solve for the optimal waypoint distribution:
Lemma 2. The optimal choice for the waypoint distribution satisfies:

q∗(sw | sg, s0) =
p
π(·|·,sg)
GEOM (sg | sw)pπ(·|·,sw)

GEOM (sw | s0)∫
p
π(·|·,sg)
GEOM (sg | s′w)p

π(·|·,sw)
GEOM (s′w | s0)ds′w

.

See Appendix A.1 for a full derivation. We illustrate this waypoint distribution in Fig. 2. In general,
accurately estimating the optimal distribution, q∗, is challenging. However, in the next section, we
develop a simple algorithm that only requires learning a classifier instead of a generative model.

M-step. The M-step optimizes the lower bound with respect to the goal-conditioned policy. We
can ignore the − log q(sw | s0, sg) term, which does not depend on the policy. The remaining two
terms look like goal-conditioned RL objectives, with a subtle but important difference in how the
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trajectories are sampled. When collecting data, a standard goal-conditioned RL algorithm initially
samples a goal and then collects a trajectory where the policy attempts to reach that goal. Our
method collects data in a different manner. The agent samples a goal, then samples an intermediate
waypoint that should lead to that goal. The agent attempts to reach the waypoint before attempting
to reach the goal. After the trajectory has been collected, the policy updates are the same as a
standard goal-conditioned RL algorithm.

Two mental models. The algorithm sketch we have presented, which will be fleshed out in the
subsequent section, can be interpreted in two ways. One interpretation is that the method per-
forms a soft version of graph search during exploration, using a distance function of d(s1, s2) =

log p
π(·|·,s2)
GEOM (st+ = s2 | s1). From this perspective, the method is similar to prior work that per-

forms graph search during test-time [7, 31]. However, our method will perform search at training
time. Extensive ablations in Sec. 5 show that our method outperforms alternative approaches that
only perform search during test-time.

The second interpretation focuses on the task of reaching the goal from different initial states. The
choice of waypoint distribution, and the policy’s success at reaching those waypoints, determines
the initial state distribution for this task. Intuitively, the best initial state distribution is one that
sometimes starts the agent at the true initial state s0, sometimes starts the agent at the final state sg ,
and sometimes starts the agent in between. In fact, prior work has formally shown that the optimal
initial state distribution is the marginal state distribution of the optimal policy [17]. Under somewhat
strong assumptions,3 this is precisely what our waypoint sampling achieves. We refer the reader for
the discussion and experiments in Appendix. A.

4.2 A PRACTICAL IMPLEMENTATION

We now describe how we implement the policy updates (M-step) and waypoint sampling (E-step).
For the policy updates, we simply apply C-learning [8]. The main challenge is waypoint sam-
pling, which requires sampling a potentially high-dimensional waypoint distribution. While prior
work [11] has approached such problems by fitting high-capacity generative models, our approach
will avoid such generative models and instead use importance sampling.

Let b(·) be the background distribution, which we take to be the replay buffer. Our algorithm corre-
sponds to the following two-step procedure. First, we sample a batch of waypoints from the buffer.
Then, we sample one waypoint from within that batch using the normalized importance weights,
q(sw|sg,s0)

b(sw) . We can estimate these importance weights using the classifier learned by C-learning
(Eq. 3):

Lemma 3. We can write the importance weights in terms of this value function

q(sw | sg, s0)
b(sw)

=
Cθ(sw, sg)

1− Cθ(sw, sg)

Cθ(s0, sw)

1− Cθ(s0, sw)
Z(s0, sg), (4)

where Z(s0, sg) is a normalizing constant.

See Appendix A.3 for a full derivation. Since we will eventually normalize these importance weights
(over sw), we do not need to estimate Z(s0, sg). We call our complete algorithm C-Planning, and
summarize it in Alg. 1. Note that our algorithm requires changing only a single line of pseudocode:
during data collection, we command the agent to the intermediate waypoint sw instead of the final
goal sg . The sampling procedure in Alg. 2 is scalable and easy to implement.

The core idea of our method is to sample waypoints enroute to the goal. Of course, at some point we
must command the agent to directly reach the goal. We introduce a hyperparameter ng to indicate
how many times we resample the intermediate waypoint before commanding the agent to reach the
goal. This parameter is not the planning horizon, which is always set to 2.

3The assumptions are that (1) the policy always reaches the commanded waypoint, and that (2) that the
goal-reaching probabilities pπ(·|·,·)

GEOM reflect the probability that the optimal policy reach some state.
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Algorithm 1 C-Planning performs
planning in data collection, modifies C-
learning by L5→ L6−7. The update for
the policy and classifier (L9) is the same.

1: D ← ∅, Ng, ϵd
2: for 0 ≤ i ≤ N do
3: Set ng ← 0 if new episode
4: s0 ∼ p0(s0), sg ∼ pg(sg)

5: ((((((((
τ ∼ pπ(τ | s0, sg)

6: sw, ng ← CPLANNING(ng, C)

7:
τ ← (τ1 ∼ pπ(τ | s0, sw),

τ2 ∼ pπ(τ | s0, sw))
8: D ← D ∪ {τ}
9: π,C ← CLEARNING(D, π, C)

Algorithm 2 C-Planning samples the intermediate waypoints,
then command the agent to reach them.

1: ng: number of waypoints agent has reached in an episode
2: function CPLANNING(ng, C)
3: if (t = 0 or d(st, sw) ≤ ϵd) and ng ≤ Ng then
4: ng ← ng + 1

5: Sample M waypoints s(i)
w ∼ Buffer(sw)

6: Compute distances for each candidate waypoint:
d(i) ← log

C(F=1|sw,sg)

C(F=0|sw,sg)
+ log C(F=1|s0,sw)

C(F=0|s0,sw)

)
7: sw ∝ SOFTMAX(d(i))
8: else
9: Set sw ← sg

10: return sw, ng

5 EXPERIMENTS

Our experiments study whether C-Planning can compete with prior goal-conditioned RL methods
both on benchmark tasks and on tasks designed to pose a significant planning and exploration chal-
lenge. Our first experiments use these tasks to compare C-Planning to prior methods for goal-
conditioned RL. We then study the importance of a few design decisions through ablation exper-
iments. The benefits of C-Planning, compared with prior methods, are especially pronounced on
these challenging tasks. To provide more intuition for why C-Planning outperforms prior goal-
conditioned RL methods, we plot the gradient norm for the actor and critic functions, finding that
C-Planning enjoys larger norm gradients for the critic and smaller variance of the gradient for the
actor. Ablation experiments study the number of waypoints used in training. We finally measure the
inference time of choosing actions, finding that C-Planning is up to 4.7× faster than prior methods
that perform search at test time.

Figure 3: Environments: Visualization of the 2D nav-
igation maze environments (top row) and robotics ma-
nipulation tasks (bottom row).

Environments. We investigate environments
of various difficulty, some of which we visual-
ize in in Fig. 3. The first set of environments
is taken directly from the Metaworld bench-
mark suite [37], a common benchmark for goal-
conditioned RL. These tasks are challenging
because of the manipulation skills required to
push and reorient objects. While prior goal-
conditioned RL methods do solve some of these
tasks (e.g., Push and Reach), they stand at
the edge of the capabilities of current methods.
The second set of environments, 2D navigation
mazes, are designed to stress-test the planning
capabilities of different methods. Successfully
solving these tasks requires reasoning over long
horizons of up to 50 steps. These are challeng-
ing because, unlike many benchmarks, they re-
quire non-greedy exploration: greedy strategies
get stuck in local optima. Our final set of envi-
ronments combine the challenges of these envi-
ronments. We extend the tasks in Metaworld to involve sequential manipulation of multiple objects,
similar to the tasks in prior work [34]. For example, the Obstacle-Drawer-Close task require
the robotic arm to manipulate multiple objects in sequence, first pushing an object and then opening
a drawer. Solving these tasks are difficult because the agent is given no demonstrations, no reward
shaping, and no manually specified distance metrics.

Baselines. We will compare C-Planning to a number of baselines. C-Learning is a recent goal-
conditioned RL method that does not perform planning. C-Learning performs the same gradient
updates as C-Planning, and only differs in how experience is collected. Comparing to C-Learning
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Figure 4: Comparison of goal-conditioned RL methods: We compare C-Planning to prior goal-conditioned
RL algorithms on various tasks: (top) 2D maze navigation, (middle) benchmark manipulation tasks from Meta-
world, and (bottom) robot manipulation tasks that require long horizon planning. For each task, we record the
Euclidean distance to the goal, taking the minimum distance within an episode. All all but the easiest task
(Reach), C-Planning outperforms all prior methods, including those that perform planning. Only C-Planning
is able to solve the most challenging navigation and manipulation tasks.

will allow us to identify the marginal contribution of our curriculum of waypoints. The second
baseline is SoRB [7], a goal-conditioned RL method that performs search at test-time, rather than
training time. While SoRB was originally implemented using Q-learning, we find that a version
based on C-learning worked substantially better, so we use this stronger baseline in our experiments.
Comparing against SoRB will allow us to study the tradeoffs between performing search during
training versus testing. Because SoRB performs search at testing, it is considerably more expensive
to deploy in terms of computing. Thus, even matching the performance of SoRB, without incurring
the computational costs of deployment would be a useful result. The third baseline is an ablation
of our method designed to resemble RIS [3]. Like C-Planning, RIS performs search during training
and not testing, but the search is used differently from C-Planning. Whereas C-Planning uses search
to collect data, leaving the gradient updates unchanged, RIS modifies the RL objective to include an
additional term that resembles behavior cloning. Our comparison with RIS thus allows us to study
how our method for using the sampled waypoints compares to alternative methods to learn from
those same sampled waypoints.

5.1 COMPARISON WITH PRIOR GOAL-CONDITIONED RL METHODS

To compare C-Planning to prior goal-conditioned RL algorithms, we start with three tasks from the
MetaWorld suite: Reach, Push, Push-Wall. While C-Planning learns slightly slower than prior
methods on the easiest task (Reach), we see a noticeable improvement over prior methods on the
more challenging Push and Push-Wall tasks, tasks that require reasoning over longer horizons
to solve. This observation suggests that that the waypoint sampling performed by C-Planning might
be especially beneficial for solving tasks that require planning over long horizons.

To test the planning capabilities of C-Planning, we design a series of 2D navigation mazes. While the
underlying locomotion motions are simple, these tasks post challenges for planning and are designed
so that a greedy planning algorithm would fail. On all three mazes, C-Planning learns faster than
all baselines and achieves a lower asymptotic distance to the goal, as compared to the baselines. On
the most challenging maze, Maze-11x11, only our method is able to make any learning progress.
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Figure 5: Planning at Training Versus Testing: We ablate the number of intermediate waypoints used to
reach the goal, and compare against a variant of our method that performs planning during both training and
testing (“C-Planning + SoRB”). This variant does not improve performance, indicating that the feedforward
policy learned by C-Planning has already “internalized” these planning capabilities.

Of particular note is the comparison with SoRB, which uses the same underlying goal-conditioned
RL algorithm as C-Planning, but differs in that it performs search at testing, rather than training.
While SoRB performs better than C-learning, which does not perform planning, SoRB consistently
performs worse than C-Planning. This observation suggests that C-Planning is not just amortizing
the cost of performing search. Rather, these results suggest that incorporating search into training
can produce significantly larger gains than incorporating search into the deployed policy.

As the last set of experiments, study higher dimensional tasks that require long-range planning.
We design three environments: Obstacle-Drawer-Close, Obstacle-Drawer-Open and
Push-Two. These tasks have a fairly large dimension (15 to 18) and require sequential manipula-
tion of multiple objects. C-Planning outperforms all baselines on all three tasks. While C-learning
makes some learning progress, SoRB (which modifies C-learning with search at test time) does not
improve the results. RIS, which also samples waypoints during training but uses those waypoints
differently, does not make any learning progress on these tasks. Taken together, these results suggest
that waypoint sampling (as performed by C-Planning) can significantly aid in the solving of com-
plex manipulation tasks, but only if that waypoint sampling is performed during training. Moreover,
the comparison with RIS suggests that those waypoints should be used to collect new data, rather
than to augment the policy learning objective. To the best of our knowledge, C-Planning is the first
method to learn manipulation behavior of this complexity without additional assumptions (such as
dense rewards or demonstrations).

5.2 WHY DOES C-PLANNING WORK?

We ran many additional experiments to understand why C-Planning works so well. To start, we run
ablation experiments to answer two questions: (1) Although C-Planning only applies planning at
training time, does additionally performing planning at test time further improve performance? (2)
How many times should we resample the waypoint before directing the agent to the goal?

Fig 5 shows the results of ablation experiments. C-Planning performs the same at test-time with and
without SoRB-based planning, suggesting that our training-time planning procedure already makes
the policy sufficiently capable of reaching distant goals, such that it does not benefit from additional
test-time planning. Fig. 5 also shows that C-Planning is relatively robust to ng , the number of
waypoints used before directing the agent to the goal. For all choices of this hyperparameter, C-
Planning still manages to solve all the tasks.

Gradient analysis. We provide an empirical observation why C-Planning is better than vanilla
goal-conditioned RL methods. We hypothesize that, by introducing waypoints, C-Planning pro-
vides a better learning signal, increasing the gradient norm for training the critic and decreasing the
variance of the gradient for the policy. While prior work has theoretically analyzed the importance
of gradient norms for RL [1], we will provide some empirical evidence for the importance of con-
trolling gradient norms. In Fig. 7, we plot the norm of the gradient (mean and variance) of both
C-Planning and C-Learning using the Maze-11x11 environment, finding that our method increases
the norm of the critic norm and decreases the variance of the actor gradient norm.

Test-time latency. One important advantage of C-Planning is that it enables direct execution at
test time, does not require any online planning. At test time, we directly set the agent’s goal to the
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Figure 7: Gradient Analysis and Computation Cost: (Left) Mean and standard deviation of the gradient
norm for the actor and critic networks. C-Planning has a larger critic gradient norm than C-Learning. C-
Planning shows a smaller variance comparing to C-Learning. (Right) Computation cost in latency of C-Planning
and SoRB with various number of waypoints.

final goal state without commanding any intermediate states. This makes C-Planning considerably
different from previous planning methods, such as SoRB [7]. Not only does our method achieve
a higher return, but it does so with significantly less computing at deployment. We measure the
execution time at evaluation time for C-Planning and SoRB with a various number of waypoints in
Fig. 7. C-Planning is 1.74× faster than planning over four waypoints and 4.71× faster than planning
over 16 waypoints in Push-Wall environment.

Figure 6: Waypoint sampling: (Left) Early in
training, the agent samples waypoints closer to the
initial state. (Right) At convergence, waypoints
are evenly distributed along states visited by the
optimal policy, as predicted by our theory.

Visualizing the training dynamics. To fur-
ther gain intuition into the mechanics of our
method, we visualize how the distribution over
waypoints changes during training of the 2D
navigation of the four rooms environment.
Fig. 6 shows the sampled waypoints. The value
functions (i.e., future state classifiers) are ran-
domly initialized at the start of training, so the
waypoints sampled are roughly uniform over
the state space. As training progresses, the dis-
tribution over waypoints converges to the states
that an optimal policy would visit enroute to
the goal. While we have only shown one goal
here, our method trains the policy for reaching
all goals. This set of experiments provides intu-
ition of how C-Planning works as the distribu-
tion of waypoints shrinks from a uniform distri-
bution to the single path connecting start state
and goal state. This visualization is aligned
with our theory (Eq. 2), which says that the distribution of waypoints should resemble the states
visited by the optimal policy.

6 CONCLUSION

In this paper, we introduced C-Planning, a method for incorporating search into the training of goal-
conditioned agents. The method enables the automatic generation of a curriculum over intermediate
waypoints. Unlike prior methods, our approach avoids the computational complexity of performing
search at test time. C-Planning is simple to implement on top of existing goal-conditioned RL
algorithms and achieves state-of-the-art results on a range of navigation and manipulation tasks.

Our work suggests a few directions for future work. First, C-Planning samples waypoint that cor-
respond to the optimal state distribution, which is proovably optimal in some settings [17]. How
might similar ideas be applied to reward-driven tasks? Second, while this paper studied sought to
learn agents for reaching distant goals, we assumed that those distant goals were provided as part
of the task definition. Goal-conditioned algorithms that can propose their own distant goals, while
already studied in some prior work [11, 28], remains an important direction for future work.
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A PROOFS AND ADDITIONAL ANALYSIS

A.1 DERIVING THE LOWER BOUND (PROOF OF LEMMA 1)

We first formulate the sampling procedure on starting states s0, waypoints sw, goals sg and the cor-
responding time horizon variable t1 and t2. Then we derive a lower bound on the target log density
of Eq. 2. We then show that optimizing the lower bound through an EM procedure is equivalent to
breaking the goal-reaching task into a sequence of easier sub-problems. Finally, we wrapped up this
section with a practical algorithm.

Data Generation Process. The generative model for which inference corresponds to our planning
procedure can be formulated as follows. The episode starts by sampling an initial state s0 ∼ p0(s0).
Then it samples a geometric random variable t1 ∼ Geom(1− γ) and roll out the policy π(a | s, sg)
for exactly t1 steps, starting from state s0. We define sw to be the state where we end up (i.e.,
sw ≜ st1 ). Thus, sw is sampled sw ∼ p

π(·|·,sg)
GEOM (st+ | s0). We then sample another geometric

random variable t2 ∼ Geom(1− γ) and roll out the policy π(a | s, sg) for exactly t1 steps, starting
from state sw. We define sg to be the state where we end up (i.e., sg ≜ st1+t2 ). Thus, sg is sampled
sg ∼ p

π(·|·,sg)
Geom (st+ | sw). Note that the time index of the final state sg is a sample from a negative

binomial distribution: t1 + t2
d
= NB(p = 1− γ, n = 2). We can equivalently express the sampling

of sg as sg ∼ p
π(·|·,sg)
NegBinom(st+ | s0).

Inference process. Under the formulation of the data generation process above, we then aim to
answer the following question in the inference procedure: what intermediate states would a policy
visit if it eventually reached the goal state sg? Formally, we will estimate a distribution q(sw |
s0, sg) ≈ p(sw | s0, sg).
We learn q(sw | s0, sg) by optimizing a evidence lower bound on our main objective (Eq. 2).

log p
π(·|·,sg)
NEGBINOM(st+ = sg | s0) (5)

= log

∫
p
π(·|·,sg)
GEOM (st+ = sg | sw)p

π(·|·,sg)
GEOM (sw | s0)dsw (6)

= log

∫
p
π(·|·,sg)
GEOM (st+ = sg | sw)p

π(·|·,sg)
GEOM (sw | s0)

q(sw | sg, s0)
q(sw | sg, s0)

dsw (7)

≥
∫

q(sw | sg, s0)
(
log p

π(·|·,sg)
GEOM (st+ = sg | sw)+ (8)

log p
π(·|·,sg)
GEOM (sw | s0)− log q(sw | sg, s0)

)
dsw (9)

≜ L(π, q(sw | sg, s0)). (10)

Note that sg is conditionally independent of s0 given sw, so the pπ(st+ = sg | sw) terms on the
RHS need not be conditioned on s0. The evidence lower bound, L, depends on two quantities: the
goal-conditioned policy and the distribution over waypoints. The objective for the goal-conditioned
policy is to maximize the probabilities of reaching the waypoint and reaching the final state. The
objective for the waypoint distribution is to select waypoints sw that satisfy two important properties:
the current policy should have a high probability of successfully navigating from the initial state to
the waypoint and from the waypoint to the final goal. Note that the optimal choice for the waypoint
distribution automatically depends on the current capabilities of the goal-conditioned policy.

Before optimizing the lower bound, we introduce a subtle modification to the lower bound:

L2(π, q(sw | sg, s0)) ≜
∫

q(sw | sg, s0)
(
log p

π(·|·,sg)
GEOM (st+ = sg | sw)+ (11)

log p
π(·|·,sw)
GEOM (sw | s0)− log q(sw | sg, s0)

)
dsw. (12)

The difference, highlighted in orange, is that the probability of reaching the waypoint is computed
for a goal-conditioned policy that is commanded to reach that waypoint, rather than the final goal.
We show that this new objective is also an evidence lower bound on the same goal-reaching objective
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(Eq. 2), but modified such that the sequence of commanded goals is treated as an additional latent
variable.

A.2 THE OPTIMAL WAYPOINT DISTRIBUTION (PROOF OF LEMMA 2

This section proves Lemma 2.

Proof. Recall that our goal is to solve the following maximization problem:

max
q(sw|sg,s0)

Eq(sw|sg,s0)

[
log p

π(·|·,sg)
GEOM (st+ = sg | sw) + log p

π(·|·,sg)
GEOM (sw | s0)− log q(sw | sg, s0)

]
.

(13)

Note that the waypoint distribution must integrate to one. The Lagrangian can be written as

Eq(sw|sg,s0)

[
log p

π(·|·,sg)
GEOM (st+ = sg | sw) + log p

π(·|·,sg)
GEOM (sw | s0)− log q(sw | sg, s0)

]
+ (14)

λ

(∫
q(sw | s0, sg)dsw − 1

)
, (15)

where λ is a Lagrange multiplier. We then take the derivative with respect to q(sw | sg, s0):

d

dq(sw | s0, sg)
=

−q(sw | s0, sg)
q(sw | s0, sg)

+ log p
π(·|·,sg)
GEOM (st+ = sg | sw)+ (16)

log p
π(·|·,sg)
GEOM (sw | s0)− log q(sw | sg, s0) + λ (17)

= −1 + log p
π(·|·,sg)
GEOM (st+ = sg | sw) + log p

π(·|·,sg)
GEOM (sw | s0)− (18)

log q(sw | sg, s0) + λ. (19)

We then set this derivative equal to zero and solve for q(sw | sg, s0):

q(sw | sg, s0) = eλ−1p
π(·|·,sg)
GEOM (st+ = sg | sw)p

π(·|·,sg)
GEOM (sw | s0).

Finally, we determine the value of λ such that q(sw | s0, sg) integrates to one. We can then express
the optimal waypoint distribution as follows:

q∗(sw | sg, s0) =
p
π(·|·,sg)
GEOM (sg | sw)pπ(·|·,sw)

GEOM (sw | s0)∫
p
π(·|·,sg)
GEOM (sg | s′w)p

π(·|·,sw)
GEOM (s′w | s0)ds′w

.

A.3 ESTIMATING IMPORTANCE WEIGHTS (PROOF OF LEMMA 3)

This section proves Lemma 3.

Proof. Define the normalizing constant as follows

Z(s0, sg) =
b(sg)∫

p
π(·|·,sg)
GEOM (sg | s′w)p

π(·|·,sw)
GEOM (s′w | s0)ds′w

.
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Figure 8: Oracle experiment with the optimal generative model: Goal-conditioned RL learns the task much
faster if we can sample the waypoints from the expert policy’s marginal state distribution (C-Planning Optimal).
Compared to planning with optimal state density distribution, planning using a learned classifier (C-Planning)
shows comparable performance.

Substituting Z(s0, sg) into the RHS of Eq. 4 and simplifying the result, we show that it equals the
LHS of Eq. 4:

Cθ(sw, sg)

1− Cθ(sw, sg)

Cθ(s0, sw)

1− Cθ(s0, sw)
Z(s0, sg) (20)

=
Cθ(sw, sg)

1− Cθ(sw, sg)

Cθ(s0, sw)

1− Cθ(s0, sw)

b(sg)∫
p
π(·|·,sg)
GEOM (sg | s′w)p

π(·|·,sw)
GEOM (s′w | s0)ds′w

(21)

=
p
π(·|·,sg)
GEOM (st+ = sg | sw)

���b(sg)

p
π(·|·,sw)
GEOM (st+ = sw | s0)

b(sw)
���b(sg)∫

p
π(·|·,sg)
GEOM (sg | s′w)p

π(·|·,sw)
GEOM (s′w | s0)ds′w

(22)

=
p
π(·|·,sg)
GEOM (st+ = sg | sw)pπ(·|·,sw)

GEOM (st+ = sw | s0)∫
p
π(·|·,sg)
GEOM (sg | s′w)p

π(·|·,sw)
GEOM (s′w | s0)ds′w

1

b(sw)
(23)

=
q(sw | s0, sg)

b(sw)
. (24)

B ADDITIONAL EXPERIMENTS

B.1 AN ORACLE EXPERIMENT

We run an experiment to confirm the well-known result [17] that the optimal initial state distribution
for learning a task is the state distribution of that task’s optimal policy. Intuitively, if we could
sample exactly from the state distribution of the optimal policy, then an RL agent could learn to
reach goals more quickly. This is not surprising as it resembles behavioral cloning of the optimal
policy. In this oracle experiment, it is assumed we are given the access to an optimal policy. We
achieve this by following the sampling procedure from Algorithm. 1, but replace the classifier C
with that learned from the optimal policy C∗. We then perform RL to reach waypoints and then
the final goal. Results in Fig. 8 show that using the optimal policy as the initial state distribution
results in faster learning than using the original state distribution. We also visualize the state density
distribution of the optimal policy to provide more qualitative intuition on how the algorithm works.

In addition, we are also interested in measuring how well does planning through a learned model (C-
Planning) performs if we don’t have access to the optimal generative model. Results in Fig. 8 also
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show that C-Planning achieves performance comparable to planning via optimal generative model
in the Push and the Push-Wall environment.

B.2 VISUALIZATION OF STATE DENSITY MAP OF OPTIMAL POLICY

Wall

Goal Goal

Start Start
(a) Optimal state distributon for 
Push

(b) Optimal state distributon for 
PushWall

Figure 9: (Left)An agent must navigate from the
start state to the goal state. The heatmap vi-
sualizes the marginal state distribution of the op-
timal policy.

We conduct this experiment on a 2D navigation
task shown in Fig. 8 (left), where we have also
visualized the original initial state distribution,
the state distribution of an optimal policy, and
the goal state. To conduct this experiment, we
apply a state-of-the-art goal-conditioned RL al-
gorithm (C-learning) in the two settings with
different initial state distributions. For fair eval-
uation, we evaluate the policies learned in both
settings using the original initial state distribu-
tion. The results shown in Fig. 8 (right) show
that starting from the optimal initial state distri-
bution results in 2.4x faster learning.

C EXPERIMENTAL DETAILS

In this section, We provide the essential hyperparameters for reproducing our experiments in this
section. We also introduce the hyperparameters used in baselines and provide a detailed description
of environmental design.

C.1 IMPLEMENTATION DETAILS

We introduce the hyperparameters used in C-Planning. Note that in C-Learning, only a classifier on
(st, st+,at) is needed. In C-Planning, in order to sample waypoints from the distribution, an ad-
ditional classifier on (st, st+) is needed. We also introduce two hyperparameters: Maximum Steps
Reaching Goal (Ng in Alg.1) forces the agent to change the intermediate goal if the original goal
hasn’t been reached for some steps; Distance Threshold Reaching Goal (ϵd in Alg.1) for determing
whether a goal is reached or not. The rest are the standard hyperparameters for SAC algorithm and
we list here for reference.

Table 1: Hyperparameters used for C-Planning in all the environments in MetaWorld.

Hyperparameter Value

Actor lr 0.0003
Action-State Critic lr 0.0003
State Critic lr 0.00003
Actor Network Size (256, 256, 256)
Critic Network Size (256, 256, 256)
Maximum Steps Reaching Goal 20
Distance Threshold Reaching Goal 0.05
Actor Loss Weight 1.0
Critic Loss Weight 0.5
Discount 0.99
Target Update Tau 0.005
Target Update Period 1
Number Waypoints 5
Goal Relabel Next 0.3
Goal Relabel Future 0.2

Note that we use a slightly different hyperparameters for 2D maze environment and we list below,
all the other hyperparameters remains the same. Note that we follow the goal relabeling changes by
C-Learning [8].
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Table 2: Hyperparameters used for C-Planning in all the environments in 2D navigation maze.

Hyperparameter Value

Distance Threshold Reaching Goal 1.0
Number Waypoints 8
Goal Relabel Next 0.5
Goal Relabel Future 0.0

C.2 ENVIRONMENTS

We follow the envioronment design of [8] with only one noticeable difference: in the original envi-
ronments of C-Learning, for the ease of training, the author set the initial position of objects to be
relatively near the arm so the arm can easily push the object, getting a better learning signal. We
intentionally set the initial state of object to be far away from the arm. This significantly increase
the diffuculty of learning. We’ll release these environment with the code.

C.3 BASELINES

We also provide the hyperparameters associated with the baselines. The two baselines we care about:
C-Learning and RIS. We summarize their hyperparameters in the table:

Table 3: Hyperparameters used for C-Learning in all the environments in MetaWorld.

Hyperparameter Value

Actor lr 0.0003
Action-State Critic lr 0.0003
Actor Network Size (256, 256, 256)
Critic Network Size (256, 256, 256)
Actor Loss Weight 1.0
Critic Loss Weight 0.5
Discount 0.99
Target Update Tau 0.005
Target Update Period 1
Goal Relabel Next 0.3
Goal Relabel Future 0.2

Table 4: Hyperparameters used for RIS in all the environments in MetaWorld.

Hyperparameter Value

epsilon 0.0001
Replay Buffer Goals 0.5
Distance Threshold 0.05
Alpha 0.1
Lambda 0.1
H lr 0.0001
Q lr 0.001
Pi lr 0.0001
Encoder lr 0.0001

D VISUALIZATION OF THE LEARNED POLICY

In order to more intuitively visualize the behavior of the learned policy and emphasize the impor-
tance of the difficulty of the learning task, we plot the visualization of our learned policy for several
snap shots in an episode for environment of Push-Two and Obstacle-Drawer-Open. We see
that our method successfully guide the agent to learn the behavior of push the green object first, the
push the red object; And first open the drawer then push the object to the desired location. We would

16



Figure 10: Visualization of the trained policy for the Push-Two environment. Our method suc-
cessfully trains the agent to manipulate the two object in the sequential manner without any offline
data, expert demonstration and reward shaping. Prior baselines all fail to demonstrate such behavior.

Figure 11: Visualization of the trained policy for the Obstacle-Drawer-Open environment.
Our method successfully trains the agent to first close the drawer and then push the object to the
desired location. We emphasize that such behavior is hard to obtain and most of the prior methods
only manage to close the drawer.

like to emphasize that prior baselines all fail to demonstrate such behavior without any offline data,
expert demonstration and reward shaping. The successfully learning of such behavior enables the
robot to do more complex tasks without any human intervention.
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