
Under review as a conference paper at ICLR 2022

FIGHT FIRE WITH FIRE: COUNTERING BAD SHORTCUTS
IN IMITATION LEARNING WITH GOOD SHORTCUTS

Anonymous authors
Paper under double-blind review

ABSTRACT

When operating in partially observed settings, it is important for a control policy to
fuse information from a history of observations. However, a naive implementation
of this approach has been observed repeatedly to fail for imitation-learned policies,
often in surprising ways, and to the point of sometimes performing worse than
when using instantaneous observations alone. We observe that behavioral cloning
policies acting on single observations and observation histories each have their
strengths and drawbacks, and combining them optimally could achieve the best of
both worlds. Motivated by this, we propose a simple model combination approach
inspired by human decision making: we first compute a coarse action based on
the instantaneous observation, and then refine it into a final action using historical
information. Our experiments show that this outperforms all baselines on CARLA
autonomous driving from images and various MuJoCo continuous control tasks.
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Figure 1: Attention maps of baseline imitation methods and our method, depicted on the CARLA
driving task. Behavioral cloning from single observation (BC-SO) attends to the appropriate visual
cues in the scene (the traffic light and pedestrian), but performs suboptimally due to lack of informa-
tion. Behavioral cloning from observation history (BC-OH) has access to all required information,
but manifests the “copycat problem”; it relies excessively on extrapolating past actions, and fails
to attend to important visual cues. Our “coarse-to-fine” imitator combines the advantages of each
method, and outperforms both.

1 INTRODUCTION

Learning complex decision behaviors such as driving is a challenging task for machine learning
models. If given expert demonstrations, imitation learning reduces the complex policy learning to
supervised learning by mimicking the expert’s behavior, which is more sample efficient and has more
human-like behavior than the reinforcement learning methods. Many existing imitation learning
methods employ the behavioral cloning (BC) strategy to directly regress the mapping from the
observations to the expert actions. Comparing with other families of imitation learning such as
GAIL (Ho & Ermon, 2016; Zhang et al., 2020) and DAGGER (Ross et al., 2011; Spencer et al.,
2021), behavioral cloning does not have access to online interaction or queryable experts, resulting in
severe distributional shift due to the compounding errors during online testing.

We are interested in a specific type of distributional shift in the POMDP setting – copycat prob-
lem (Wen et al., 2020). Because of the partial observation, it is common to take the observation
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history along with the current observation as the input of the imitation policy to compensate for the
missing information. However, many previous works find that behavioral cloning from observation
history performs worse than expected (Muller et al., 2006; Wang et al., 2019; Bansal et al., 2019;
de Haan et al., 2019). Wen et al. (2020; 2021) notice that the imitator tends to cheat by simply copying
the previous actions rather than taking actions according to the observation and they call it copycat
problem. This phenomenon has been reported in several papers in different forms, such as past motion
cheating (Bansal et al., 2019), inertia problem (Codevilla et al., 2019), causal confusion (de Haan
et al., 2019) and etc. All of them are essentially the same: the deep neural networks tend to take the
incorrect shortcut from the previous action implied in the observation history, which is much simpler
than mining real decision logic from massive amounts of data.
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Figure 2: Our approach.

This problem is further illustrated in Figure 1. In this scenario,
behavioral cloning from single observation (BC-SO) correctly
attends to the traffic light and pedestrian. However, without
access to the current speed, it cannot take the accurate brake
value to slow down in time. In contrast, behavioral cloning
from observation history (BC-OH) pays much less attention
to the pedestrian and even ignores the traffic light. Instead, it
extrapolates the previous actions, which results in the running
red light and collision. In summary, BC-SO has a hard time
predicting accurate enough actions but is copycat-free, while
with access to more information, BC-OH is able to output more
fine-grained actions but suffers from the copycat problem.

Since both BC-SO and BC-OH have their strengths and drawbacks, it is natural to think about how
to combine them in an optimal way that achieves the best of both worlds. Motivated by human
decision-making, we propose a coarse-to-fine imitation learning approach, as shown in Figure 2.

We demonstrate our method in four environments, ranging from autonomous driving to robotics
control. Our method outperforms other methods (Bansal et al., 2019; Wen et al., 2020; 2021; Ross
et al., 2011). Furthermore, we conduct extensive ablation studies to verify our hypothesis for why our
approach works.

2 RELATED WORK

Imitation Learning. Imitation learning is a powerful technique to learn complex decision and control
behaviors from observed expert demonstrations. We mainly focus on the widely used behavioral
cloning paradigm which directly learns a mapping from observations to expert actions. Behavioral
cloning usually suffers from distributional shift because the small error between imitator and expert
trajectories will compound along the time and finally leads to encountering unfamiliar states not
covered by demonstrations. Several existing works have been proposed to resolve this issue, but
most of them either require environmental interactions (Ho & Ermon, 2016; Brantley et al., 2020;
Dadashi et al., 2020) or queriable online experts (Ross et al., 2011; Laskey et al., 2017b; Sun et al.,
2018; Spencer et al., 2021). Solving the distributional shift problem under the offline setting is still
appealing. In this paper, we focus on resolving a specific aspect of distributional shift – copycat
problem (Wen et al., 2020), caused by the nature of MDP that the actions are highly correlated along
the time. We will discuss the works related to copycat problem in Section 3.2.

Shortcut Learning. With the rapid development and widespread use of deep neural networks in
academia and industry, more and more limitations of DNN have come into focus. In computer vision
and NLP, etc., researchers have found that DNN usually tends to attend to some easy but incorrect
clues to make the prediction, such as object texture (Geirhos et al., 2019a), image background (Beery
et al., 2018) and word length (Niven & Kao, 2019; McCoy et al., 2019). Geirhos et al. (2020)
summarize this phenomenon as shortcut learning, i.e. the DNNs prefer to learn the easier solution
(shortcut) rather than taking more effort to learn the intended solution. We regard the copycat problem
as a specific instance of shortcut learning problem in imitation learning, and propose a simpler and
more desirable shortcut to alleviate the copycat shortcut.
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3 PRELIMINARIES

We study behavioral cloning algorithms in a partially observed Markov decision process (POMDP). In
POMDP, the environment provides an observation ot, which only partially represents the actual state
because of noise or sensor occlusion, and a reward rt. To deal with the missing or noisy information,
it is common to take the previous few observations (ot−H ,H = 1,2,⋯) into account (Murphy, 2000;
Bansal et al., 2019; Wen et al., 2020; 2021), which forms the observation history õt = [ot−H ,⋯, ot].
The final goal of policy learning is to train a model πθ which takes in õt and outputs the action at to
maximize the return, i.e. the sum of the rewards R = ∑t rt.

3.1 BEHAVIORAL CLONING

Behavioral cloning (BC) assumes that we are given offline demonstrationsD = {(õt, at)}Nt=1 collected
by an expert πe, and no reward values are provided. The best way to maximize the test return is to
just mimic the expert and behave as similar to the expert as possible during online testing. So the
behavioral cloning reduces policy learning to a simple supervised learning paradigm with a training
dataset D. Specifically, BC methods usually minimize the following behavioral cloning loss, where
L(⋅, ⋅) is usually mean square error (MSE) or negative log likelihood (NLL) loss:

θ∗ = argmin
θ
L(πθ(õt), at) (1)
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Figure 3: An example of the copycat problem in an autonomous driving scenario. The copycat policy
learns to cheat by extrapolating from the previous action. Therefore, when the traffic light turns green,
the copycat policy ignores the traffic light and copies the previous action, i.e. staying stationary. On
the contrary, the human driver gets the “startup” concept by observing the traffic light and takes the
accurate throttle according to the speed.

3.2 COPYCAT PROBLEM

In partially observable settings, it is a common practice in control theory (Ang et al., 2005; Welch
et al., 1995) and reinforcement learning (Mnih et al., 2015; Schulman et al., 2017) to use historical
observations to learn more accurate actions. Similarly, people would expect BC with observation
history õt (BC-OH) to perform better than the model trained from single observation ot alone (BC-
SO). In practice. however, BC-OH could fail unexpectedly. In particular, BC-OH could have lower
offline validation loss than BC-SO but performs worse during open-loop testing. As described in
Figure 3, Wen et al. (2020) coined the term “copycat problem” to describe this phenomenon: due to
the nature of the MDP, i.e. the expert actions are temporally correlated, it is common that the imitator
tends to take a shortcut and outputs decisions based on previous actions inferred from historical
observations. Many recent works (Wang et al., 2019; de Haan et al., 2019; Wen et al., 2020; Muller
et al., 2006; Bansal et al., 2019; Codevilla et al., 2019) report the same findings and try to address
this discrepancy in various ways. de Haan et al. (2019) purposes to learn a policy for each possible
causal graphs, then perform target interventions to search for the correct one. Bansal et al. (2019)
introduces a random dropout on the observation history, Codevilla et al. (2019) introduces a speed
prediction regularization module and Wen et al. (2021) treats it as a data imbalance problem and
up-weights the training loss of changepoints.
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4 METHODOLOGY

Previous works address this copycat problem either from a causality (de Haan et al., 2019) or data
distribution (Bansal et al., 2019; Codevilla et al., 2019; Wen et al., 2021) point-of-view. Instead we
take a much simpler view by analyzing the strengths and drawbacks of BC-SO and BC-OH. We
propose to utilize a model combination approach to get the best of both models. Motivated by human
decision making, we propose a simple but effective combination approach by predicting a coarse
action based on the instantaneous observation (BC-SO), and then refine it into a final action using
historical information (BC-OH).
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Figure 4: The comparison of BC-SO, BC-OH and our model. BC-SO and BC-OH learn the mapping
from the current observation ot and the observation history õt respectively to the expert action at.
Our model combines them together to train a coarse action model πφ from ot to at and a policy
model πθ from õt to at. We extract the coarse action ζt from πφ (we simply set the action output of
πφ as ζt) and then feed it into πθ by concatenating it with the intermediate feature of πθ.

4.1 COMPARISON BETWEEN BC-SO AND BC-OH

As shown in Figure 4(a) and Figure 4(b), BC-SO and BC-OH take input observations of different
time horizons. In a partially observed setting, BC-SO does not have access to historical observations
to infer its current action. Thus, it is often hard for BC-SO to output smooth actions. However, this
also makes BC-SO free from the copycat problem. As shown in Figure 1, BC-SO learns to focus on
the traffic light and pedestrian. Therefore, BC-SO excels at making coarse decisions during testing,
like starting the vehicle in front of traffic lights or avoiding the pedestrians. Its limitation is that with
only the current observation as input, it is hard for BC-SO to reason about its current speed. So it has
a hard time driving smoothly on the road, which leads to collisions due to high speed at times.

In contrast, BC-OH takes the observation history as input, so the output action is smoother than
BC-SO for most of the time. However, as shown in Figure 1, BC-OH fails to focus on the traffic light
or pedestrians during test time. The inclusion of historical information leads to the copycat problem
that in these critical scenarios, BC-OH fails to focus on important visual cues but predicts actions
solely by extrapolating the previous actions. We observe that, comparing with BC-SO, BC-OH can
easily infer its speed from observation history and adjust throttle when the speed is too high. But as
illustrated in Figure 3, BC-OH often fails to start the car because it infers the previous actions from
the historical observations and then simply copies it.

Both models have strengths and drawbacks and combining them optimally could take the best of
them and outperform either individual model alone. According to the model combination approaches
in machine learning (Wolpert, 1992; Breiman, 1996; Freund & Schapire, 1997), our solution is
motivated by how to combine BC-SO and BC-OH to predict the precise actions according to the
observation history while avoiding the copycat problem.

4.2 COARSE-TO-FINE IMITATION LEARNING

How might we combine BC-SO and BC-OH to enable relying on historical observations but still
avoid the copycat problem? Motivated by human decision making, we propose a coarse-to-fine
imitation learning approach, as shown in Figure 4(c). Previous researches have found that there
exists a coarse action (usually called option or decision in psychology literature) in human’s control
process (Klein et al., 1995; Johnson & Raab, 2003; Keller & Ho, 1988; Ward et al., 2011). This coarse
action is a representation that plays the implicit or explicit psychological role of a candidate for action.
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Furthermore, it is generated instantaneously from direct perception, without elaborate cognitive
processing (Raab & Johnson, 2007; Raab et al., 2009). Then, humans refine this coarse action into
final actions based on more deliberative cognitive processes involving memory and knowledge.

Inspired by this, we design a coarse-to-fine imitator, shown in Figure 4(c). At test time, our model
operates in two stages: analogous to BC-SO, our “coarse model” πφ computes a coarse action ζt based
on the instantaneous observation alone, i.e. ζt = πφ(ot). Then, a second “policy model” πθ refines ζt
into a final action at, using additional information from observation histories, i.e. at = πθ(õt, ζt).

How are these trained? We jointly train the coarse model πφ and policy model πθ end-to-end by BC
losses in Eq. 2.

φ∗ = argmin
φ
L(πφ(ot), at)

θ∗ = argmin
θ
L(πθ(õt, ζt), at)

(2)

In detail, we concatenate the ζt with the intermediate feature of πθ and feed them into the following
layers together. To avoid the historical information leaking into πφ, we isolate the two models with a
stop-gradient. The imitator will take advantage of the coarse action and focus on refining it, which
avoids taking completely wrong actions by extrapolating from the previous action. The coarse-to-fine
process is essentially mimicking the human control process. Recall the vehicle starting example in
Section 3.2. The coarse model πφ takes in the current observation where the traffic light turns green,
so it outputs a coarse action ζt representing that the vehicle should decide to start up, i.e. the throttle
value should be larger than 0. And then πθ gets the coarse action and takes an accurate throttle value
according to the current speed. With such architecture, our imitation policy will not be affected by
the copycat problem and the performance improves a lot, which will be shown in Section 5.

4.3 WHY SHOULD COARSE-TO-FINE IMITATION WORK?

Note that in the scheme described above, the coarse action ζt is inferred from the instantaneous
observation ot, which in turn is contained inside the observation history õt. Thus, by the data
processing inequality, ζt can not add any new information to the policy model πθ(⋅∣õt, ζt). Without
the ζt input, however, the policy model πθ reduces to a plain BC-OH policy. This begs the question:
why should coarse-to-fine imitation produce any better results than BC-OH? Yet, as we will show in
our experiments, it does so consistently across many environments, and often by dramatic margins!
We argue that this may be understood from the perspective of optimization difficulties, which lie at
the heart of the copycat problem (de Haan et al., 2019; Wen et al., 2020; 2021).

It has previously been shown that widely used neural network training algorithms prefer simple
solutions (Valle-Perez et al., 2019; Shah et al., 2020; Huh et al., 2021). While such simple solutions
are often preferable, simple solutions exploiting spurious correlations in training data can fail
catastrophically under distributional shift (Geirhos et al., 2020; 2019b; Beery et al., 2018). Copycat
BC-OH solutions are an example of such a shortcut: they tend to rely solely on information about
previous actions contained in the observation history, since this “simple” solution suffices to achieve
low behavioral cloning losses, due to temporal correlations in expert training data.

Previous solutions aim to counter this shortcut-learning tendency in the imitation network, such as by
upweighting changepoints to preferentially penalize copycats (Wen et al., 2021), or by adversarially
removing past action information in the observation history (Wen et al., 2020). We take a different
track. To compete with the copycat shortcut above, we provide a second viable “BC-SO shortcut”:
simply copy the action produced by BC-SO. Recall that BC-SO produces meaningful, but coarse
solutions that are responsive to environmental observations (unaffected by past actions), but crippled
by a lack of historical information. As such, directly copying the BC-SO solution suffices to produce
quite low BC losses. Further, the BC-SO shortcut is arguably even simpler than the copycat shortcut
which involves first recovering past action information from the observation history and then copying
it.

Finally, we argue that the BC-SO shortcut is also relatively desirable compared to the copycat shortcut.
First, since BC-SO does necessarily attend to important elements of the current observation, our final
policy πθ cannot easily ignore this information. Second, with training, πθ may learn to correctly use
the additional historical information in õt to improve further over the BC-SO shortcut when needed.
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5 EXPERIMENTS

In our experiments, we aim to first verify that our model can resolve the copycat problem and
improve over BC-OH as well as previously proposed solutions. Next we will verify the following
key hypotheses about why and how our approach works: H1 (simplicity of BC-SO shortcut): To
effectively counter the copycat shortcut, it is important to set up the BC-SO shortcut to be as “simple”
as possible; H2 (combination correctness): It is not sufficient to combine BC-SO and BC-OH in
other ways. Providing the BC-SO shortcut to BC-OH is important; H3 (causality correctness): After
training, the final coarse-to-fine imitator learns the correct causal relation and is able to effectively
switch between the BC-SO shortcut solution and utilizing historical information.

5.1 EXPERIMENT SETUP

We evaluate our method on driving simulator CARLA (Dosovitskiy et al., 2017), and three OpenAI
Gym MuJoCo (Todorov et al., 2012; Brockman et al., 2016) robotics control environments.

CARLA. CARLA is a photorealistic urban autonomous driving simulator (Dosovitskiy et al., 2017),
and is a commonly adopted testbed for imitation learning (Codevilla et al., 2018; 2019; Chen et al.,
2020; Wen et al., 2021; Prakash et al., 2021). We use the CARLA100 dataset (Codevilla et al., 2019)
to train all methods, containing 100 hours of driving demonstrations. We evaluate all methods in the
hardest CARLA benchmark, Nocrash-Dense, which has the most number of pedestrians and heaviest
traffic. As discussed in Wen et al. (2021), to construct a pure POMDP, we only use the sequential
frames as input without the current speed. We train all the methods three times from different random
initializations to account for the high variance (Codevilla et al., 2019). We report the mean and
standard deviation of four metrics: %success, %progress, #collision and #timeout. The %success
is the number of episodes that are fully completed out of 100 pre-designed evaluation routes. The
%progress refers to the fraction of the distance traveled by the agent towards a goal location. The
#collision counts the times that the agent crashes into other vehicles, pedestrians, and obstacles. And
the #timeout counts the times that the agent fails to reach the destination despite no collision within
the specified time, usually caused by unsuccessful starts, wrong routes or traffic jams.

We train all approaches with the CILRS (Codevilla et al., 2019) backbone. We set the length of
observation history to H = 7 and stack the sequential frames along the channel dimension as the
model input like what Bansal et al. (2019); Wen et al. (2021) do. For our method, the whole model
consists of two modules, a coarse network πφ with ot as input and one policy network πθ with õt as
input. And we use late-fusion by concatenating the output of πφ, i.e. the decision ζt, with the feature
of the penultimate fully-connection layer of πθ through a stop-gradient layer. We train both modules
end-to-end. See Supp for the architecture and training details.

Mujoco. We evaluate our method in three standard OpenAI Gym MuJoCo continuous control
environments: Hopper, Ant and HalfCheetah. We generate expert data from a PPO (Schulman
et al., 2017) policy (10k samples for Ant and Walker2D, and 20k for Hopper). To simulate partially
observations, We add Gaussian noise N(0, σ2) with σ = 0.2 to joint velocities. We stack H = 2
frames to form the observation history. We train all methods three times with different random
initializations and report the final evaluation rewards with their mean and standard deviation. See
Supp for network architecture and training details.

We extensively compare our method with baseline methods: BC-SO, BC-OH, Fighting-Copycat-
Agents (FCA) (Wen et al., 2020), KeyFrame (Wen et al., 2021), History-Dropout (Bansal et al.,
2019), Average-Ensemble and DAGGER (Ross et al., 2011). See Supp for the description and
implementation of each method.

5.2 IMITATION RESULTS

CARLA. The evaluation results on Nocrash-Dense benchmark are shown in Table 1. We can see that
according to %success, %progress and #collision, BC-OH performs significantly better than BC-SO
because BC-SO does not have access to the additional information provided by the observation
history. The most common failure case of BC-SO is that the car is accelerating when going straight
because it cannot infer the current speed from a single observation, contributing to an extremely high
#collision. This does not happen on BC-OH because it can easily adjust its speed according to the
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Table 1: CARLA Nocrash-Dense results.

METHOD %SUCCESS (↑) %PROGRESS (↑) #COLLISION (↓) #TIMEOUT (↓)

BC-SO 13.1 ± 1.8 40.8 ± 3.0 76.4 ± 3.5 11.1 ± 2.9
BC-OH 34.1 ± 7.5 62.2 ± 9.4 30.2 ± 7.9 36.1 ± 14.5
OURS 49.3 ± 3.6 75.0 ± 1.6 39.4 ± 5.0 12.0 ± 1.9

FCA 31.2 ± 5.2 66.5 ± 4.1 34.4 ± 8.1 35.3 ± 9.6
KEYFRAME 41.9 ± 6.2 70.2 ± 4.0 33.9 ± 6.6 24.8 ± 7.9

HISTORY-DROPOUT 35.6 ± 3.5 67.0 ± 2.7 45.3 ± 3.5 20.3 ± 5.6
AVERAGE-ENSEMBLE 41.7 ± 3.1 71.5 ± 3.2 43.7 ± 4.0 15.0 ± 0.8

DAGGER 150K 42.7 ± 5.7 71.3 ± 1.9 35.0 ± 3.6 23.0 ± 7.1

Table 2: MuJoCo rewards.

METHOD HOPPER ANT HALFCHEETAH

BC-SO 589 ± 94 4198 ± 433 489 ± 77
BC-OH 628 ± 99 2922 ± 1266 639 ± 121
OURS 1124 ± 135 4798 ± 304 1448 ± 74

FCA 831 ± 108 3727 ± 926 1148 ± 81
KEYFRAME 696 ± 28 2930 ± 1321 1062 ± 127

HISTORY-DROPOUT 539 ± 33 4069 ± 517 1215 ± 70
AVERAGE-ENSEMBLE 504 ± 47 4659 ± 396 729 ± 50

DAGGER 8K 2383 ± 294 4097± 418 1842 ± 10
PPO EXPERT 3445 5566 1941

dynamic information. However, the #timeout of BC-OH is the highest among all methods, which is
mainly caused by unsuccessful start: When the car is stationary, either stops in front of traffic light or
pedestrians, BC-OH often remains stationary until timeout, which is a typical copycat phenomenon.
In contrast, the #timeout of BC-SO is pretty low, most of which are caused by traffic jams and wrong
routes, indicating that BC-SO is free from the copycat problem.

Our method outperforms all the observation-history-based baselines on %success and %progress,
even including DAGGER which benefits from the 150K extra online expert data. Especially, our
method significantly reduces the #timeout to 12.0, very close to BC-SO. And very few of these
timeout cases are caused by copycat-related issues.

MuJoCo. The evaluation results on Hopper, Ant, and HalfCheetah are shown in Table 2. We can
see that although BC-OH has historical observations as input, it only performs slightly better than
BC-SO on Hopper and HalfCheetah, while performing worse than BC-SO on Ant, due to the copycat
problem. Our method easily beats all the naive behavioral cloning baselines. We also compare our
method with previous methods that intend to address the copycat problem. Our method outperforms
all three of them (FCA, KeyFrame and History-Dropout) in all environments. On both Hopper and
HalfCheetah, none of the above-mentioned offline methods beat DAGGER, which intends to be an
oracle method with access to online samples.

5.3 ABLATION STUDY

To evaluate the effect of each module, we conduct ablation study experiments on CARLA about 1)
different fusion stages: late-fusion (ours), middle-fusion or early-fusion (see Supp for the archi-
tecture details); 2) coarse action selections: use the final action of πφ or the intermediate features,
e.g. Restnet Layer2’s feature or Resnet output, as ζt; 3) ways to combine BC-SO and BC-OH: use
BC-SO as πφ and BC-OH as πθ (ours), BC-OH as πφ and BC-OH as πθ, or BC-OH as πφ and BC-SO
as πθ; 4) stop-gradient: with or without stop-gradient; 5) end-to-end vs. two-stage training: train
the πφ and πθ end-to-end or two-stage: first train πφ and use its checkpoint when training πθ. The
results are shown in Table 3 and we provide detailed analysis for each ablation respectively in the
following paragraphs.
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Table 3: CARLA ablation study results.

METHOD %SUCCESS (↑) %PROGRESS (↑) #COLLISION (↓) #TIMEOUT (↓)

OURS 49.3 ± 3.6 75.0 ± 1.6 39.4 ± 5.0 12.0 ± 1.9

EARLY-FUSION 51.4 ± 4.0 75.9 ± 2.1 37.4 ± 5.1 12.7 ± 2.6
MIDDLE-FUSION 49.6 ± 1.7 74.8 ± 1.9 37.3 ± 4.0 13.3 ± 3.0

RESNET LAYER2 AS ζt 39.8 ± 4.0 69.4 ± 1.5 32.6 ± 1.5 28.1 ± 4.4
RESNET OUTPUT AS ζt 44.8 ± 5.2 71.9 ± 4.7 40.0 ± 5.7 15.9 ± 3.4

BC-OH AS πφ , BC-OH AS πθ 37.1 ± 3.4 66.9 ± 2.8 34.1 ± 3.4 28.9 ± 6.0
BC-OH AS πφ , BC-SO AS πθ 31.7 ± 5.7 62.2 ± 6.1 28.3 ± 9.0 40.0 ± 14.7

W/O STOP-GRADIENT 44.4 ± 5.5 71.4 ± 3.0 39.2 ± 4.7 17.1 ± 2.1
W/O END-TO-END 47.3 ± 3.8 71.2 ± 1.2 43.4 ± 5.5 9.8 ± 3.1

We can see that given the coarse action ζt, it makes no difference where to inject it into πθ (%success
ranges from 49.3 to 51.4 and other metrics are similar too), indicating that ζt provides a simpler
shortcut than inferring and copying the previous action from the observation history. Wherever we
inject ζt, the neural network prefers to adopt it directly as the decision rather than expending greater
effort to take the copycat shortcut.

If we use the intermediate features (Resnet Layer2 and Resnet output) of the decision model as
opposed to the output action of πφ, then %success drops from 49.3 to 39.8 and 44.8 respectively.
Moreover, comparing the %success and #timeout, we find that the shallower the feature, the lower
%success and the higher #timeout, indicating that using shallower features as coarse action is more
likely to suffer from the copycat problem. Intuitively, it is harder for πθ to extract the coarse action
from shallower features than from later ones and thus πθ has less incentive to take the coarse action
shortcut compared with the original copycat shortcut. Combining with previous observation in
different fusion stages ablation, this experiment clarifies that ”simplicity” in H1 (simplicity of BC-
SO shortcut) focuses more on what is the input rather than where to input to the policy πθ and
indeed, the simpler the better.

If we use different combinations of BC-SO and BC-OH, such as BC-OH as πφ, BC-SO as πθ or BC-
OH as both πφ and πθ, the imitator performs similarly to BC-OH (%success ranges from 31 to 37),
indicating that introducing historical information into the coarse model will lead to copycat problem,
which verifies H2 (combination correctness), and also verifies that our method’s performance is not
due to higher model capacity.

Moreover, we find that the agent performs worse if we remove stop-gradient (%success drops from
49.3 to 44.4), which is mainly due to timeout (increasing from 12.0 to 17.1). The increasing #timeout
shows that our method without stop-gradient still suffers from the copycat problem due to historical
information leakage during back-propagation. Such a variant without stop-gradient also demonstrates
H2 (combination correctness).

And training πφ and πθ stage-by-stage, the performance also deteriorates (%success drops from
49.3 to 47.3). We can see that its #timeout is even fewer than ours but it gets a significantly higher
#collision (#collision increases from 39.4 to 43.4), indicating that the agent trained stage-by-stage
behaves more like BC-SO, i.e. suffering from less copycat but failing to brake in time. We hypothesize
that if we use a pretrained coarse model πφ at the beginning of πθ training, πθ will prefer to just copy
the ζt as its output rather than learn from scratch to take accurate actions according to both the coarse
action and observation history, which can also be viewed as overly relying on the ”simpler” solution,
i.e. shortcut learning and sheds light on the importance of H2 (combination correctness).

5.4 ANALYSIS THROUGH CAUSAL INTERVENTION

Because there are two inputs of policy network πθ, we utilize the intervention technique in causal
inference literature (Rubin, 1974; 1978; Pearl, 1995) to study the causal effect of the coarse action
and observation history, which is our core argument.

Intervention on the coarse action ζt. To study the causal effect of the coarse action in our model,
we conduct causal intervention experiments on ζt by setting its value manually and keeping all other

8



Under review as a conference paper at ICLR 2022

starting
𝝅𝜽 𝒅𝒐 𝜻𝒕 = 𝟎. 𝟎𝟎 = 𝟎. 𝟎𝟎
𝝅𝜽 𝒅𝒐 𝜻𝒕 = 𝟎. 𝟕𝟓 = 𝟎. 𝟕𝟑

avoiding pedestrian
𝝅𝜽 𝒅𝒐 𝜻𝒕 = 𝟎.𝟎𝟎 = −𝟎.𝟔𝟖
𝝅𝜽 𝒅𝒐 𝜻𝒕 = 𝟎.𝟕𝟓 = 			𝟎. 𝟒𝟏

traffic light
𝝅𝜽 𝒅𝒐 𝜻𝒕 = 𝟎.𝟎𝟎 = −𝟎.𝟒𝟔
𝝅𝜽 𝒅𝒐 𝜻𝒕 = 𝟎.𝟕𝟓 = 				𝟎. 𝟓𝟎

Figure 5: Examples of scenarios with high causal effects. The πθ(do(ζt) = 0.00/0.75) means that
we manually set the value of ζt to 0.00 and 0.75 respectively, fix the õt and then get the output of
the πθ. The larger the difference between πθ(do(ζt) = 0.00) and πθ(do(ζt) = 0.75), the stronger the
causal effect of ζt.

factors the same. For easier interpretability, we only intervene on the acceleration dimension, i.e.
setting throttle to 0 and 0.75 (the highest value in expert demonstrations), which can be denoted by do-
calculus do(ζt) = 0/0.75. The causal effect is defined byCE = ∣πθ(do(ζt) = 0)−πθ(do(ζt) = 0.75)∣,
where we omit another input variable õt for simplicity. Through studying the causal effect of ζt along
the trajectories, we find that ζt tends to have a very high causal effect at some critical moments such
as the examples in Figure 5, which verifies H3 (causality correctness). Especially, the causal effect
of ζt is high when the car is starting, but it decreases after the car is started because at this time it is
necessary to refine its actions according to observation history, which is what we expected.

Intervention on the observation history õt. Similarly, to study the causal effect of the observation
history õt, we intervene it by repeating the current frame H times, i.e. do(õt) = [ot, ot,⋯] which
creates counterfactual stationary cases, i.e. the previous action is 0 and we denote it as π(do(õ)) = 0).
Recall the example in Section 3.2, to investigate what factors the agents use to determine whether to
move forward or stop, we count the percentage of model outputs that change from accelerate to stop
after we intervene on the input sequence, i.e.

N(speed > 0, π(õt) > 0, π(do(õ)) = 0)
N(speed > 0, π(õt) > 0)

BCOH:  𝒐"𝒕: 0.75       𝒅𝒐(𝒐"𝒕): 0.05
Ours:  𝒐"𝒕: 0.7         𝒅𝒐 𝒐"𝒕 : 0.75

Figure 6: An example of inter-
vention on õt.

We count this metric for BC-OH and our model on the same dataset.
There are 66.43% samples changing from accelerate to stop in BC-
OH such as the example in Figure 6, even though there is no signal
to stop in the scene, e.g. vehicles, pedestrians, red lights or other
obstacles. This illustrates that surprisingly in more than half of the
cases, BC-OH is making decisions only according to the previous
action and ignores the current scene, which is causally incorrect. In
the meanwhile, there is only 27.89% in our model, indicating that
our model learns correct causal relation and significantly alleviates
the copycat issue, which also verifies H3 (causality correctness).

6 CONCLUSION

In this paper, we propose a simple but effective model combination approach to resolve the copycat
problem. Our method takes the best of BC-SO and BC-OH to predict the precise actions according to
observation history while avoiding the copycat problem. We verify our method on autonomous driving
and robotics control environments. Extensive carefully designed ablation and analysis experiments
verify that coarse-to-fine imitation works by providing an alternate more desirable shortcut to the
imitator during training, which supplants the problematic copycat shortcut. Our method outperforms
the existing methods and significantly alleviates the copycat problem.

7 REPRODUCIBILITY STATEMENT

All our experiments can be easily reproduced according to the implementation and training details
discussed in Section 5.1 and Section 8.2. The data collection process of CARLA is described in
Section 8.2 and Mujoco’s is in Section 8.3. Especially, the CARLA100 is a public dataset released by
Codevilla et al. (2019). We will release our code and dataset if our paper is accepted.
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8 APPENDIX

8.1 BASELINES

BC-SO&BC-OH. As introduced in Section 3.2, BC-SO and BC-OH are naive behavioral cloning
methods from single observation and observation history respectively.

Fighting-Copycat-Agents (FCA). Wen et al. (2020) proposed to remove the unique information
about the previous actions at−1∶t−H from the feature extracted from the observation history to prevent
the agent to copy the at−1∶t−H , based on adversarial learning.

KeyFrame. Wen et al. (2021) analyzed the copycat problem in terms of the imbalance data distribu-
tion and proposed a re-weighting method to up-weight the demonstration keyframes corresponding
to expert action changepoints.

History-Dropout. To address the copycat issue, Bansal et al. (2019) introduced a dropout on the
observation history to randomly erase the channels of historical frames. We implement it by applying
a Dropout layer (Srivastava et al., 2014) on the historical observations.

Average-Ensemble. Average-Ensemble is a commonly used model combination approach. We
implement it by averaging the outputs of BC-SO and BC-OH at test time.

DAGGER. DAGGER (Ross et al., 2011) is a widely used technique to address the distributional shift
issue in behavioral cloning and is thought of as the oracle of imitation learning through online query.

8.2 ADDITIONAL DETAILS ON CARLA EXPERIMENTS

In Section 5, we briefly introduce the experiment setup of CARLA. More details are introduced
below.

Data Collection. The CARLA100 dataset (Codevilla et al., 2019) is collected by a PID controller.
During collecting, 10% expert actions are perturbed by noise (Laskey et al., 2017a). We use
three cameras: a forward-facing one and two lateral cameras facing 30 degrees away towards left or
right (Bojarski et al., 2016). Both noise injection and multiple cameras are common data augmentation
techniques to alleviate distributional shift in autonomous driving.

Resnet34

speed prediction 
module

conditional 
module

perception 
module

predicted speed
𝑣!

action
𝑎"

command
𝑐

image input
BC-SO: 𝑜"
BC-OH: 𝑜%"

Figure 7: The conditional imitation learning architecture we used as our backbone. The input of
BC-SO is the current observation ot and the input of BC-OH is the observation history õt.

Architectures. We use the backbone in conditional imitation learning framework CILRS (Codevilla
et al., 2019) as our backbone. The only difference is that our model does not have the input speed
(to create a pure POMDP (Wen et al., 2021)). As shown in Figure 7, BC-SO and BC-OH use the
same architecture with different inputs, ot and õt. Illustrated in Figure 8, our method integrates them
together by concatenating the output of coarse model (BC-SO) with the features of the penultimate
FC layer of policy model (BC-OH). Moreover, the architectures of early fusion model and middle
fusion model mentioned in Section5.3 are shown in Figure 9. In particular, early fusion means we
concatenate the coarse action ζt with the input images, and middle fusion means that we concatenate
it with the output feature of Resnet.
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Resnet34
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module
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module

action
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Resnet34𝑜#!
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𝜁!

sg

Figure 8: The architecture of our method. For simplicity, we omit the speed prediction module and
the input command when drawing the figures, and sg means stop-gradient.
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(a) early fusion
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(b) middle fusion

Figure 9: The architectures of the early fusion model and middle fusion we study in Section 5.3.

Training Details. We use the L1 loss to train all the models. We use Adam optimizer, set the initial
learning rate to 2×10−4 and decay the learning rate by 0.1 whenever the loss value no longer decreases
for 5000 gradient steps. We set the minibatch size to 160 and train all the models until convergence
(the learning rate equal to 1 × 10−7). Furthermore, we apply several commonly used techniques to
our training process. We utilize the noise injection (Laskey et al., 2017a) and multi-camera data
augmentation (Bojarski et al., 2016; Giusti et al., 2015) to alleviate the distribution shift in offline
imitation learning. All the models use the speed regularization (Codevilla et al., 2019) to address the
copycat problem (also called inertia problem in their paper) to some extent. And we use ImageNet
pretrained ResNet34 (Deng et al., 2009; He et al., 2016) as the perception module to get a better
initialization (Codevilla et al., 2019) and the weighted control loss to balance the models’ attention to
each action dimension. Furthermore, different from the previous works (Codevilla et al., 2018; 2019;
Wen et al., 2021), we use two-dimensional action space a ∈ [−1,1]2 for steering and acceleration,
where the positive acceleration value means applying throttle and the negative one means braking.
We empirically find that using acceleration as output modality is better than predicting throttle and
brake separately among all baselines (except FCA) and our method.

8.3 ADDITIONAL DETAILS ON MUJOCO EXPERIMENTS

Data Collection. We first train a RL expert with PPO (Schulman et al., 2017) and use it to generate
expert demonstration by rolling out in the environment. Specifically, we collect 10k samples for Ant
and Walker2D, and 20k for Hopper based on imitation difficulty.

Architectures. We follow a simple design for network architectures, shown in Figure 10. For both the
coarse action and policy model, we use a three-layer MLP network. We concatenate the output action
from the coarse action model to the output of policy model, and input that to another fully-connected
layer for the final output action.

Training Details. We use MSE loss and Adam optimizer to train all models. We use a learning rate
of 1e-4 for both HalfCheetah and Ant, and 1e-5 for Hopper and use linear learning rate decay. For
each environment, we train it for 1000 epochs until convergence. We set the minibatch size to 64. We
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Figure 10: The architecture of our method for MuJoCo experiments, where sg means stop-gradient.

train each method for three times, and report the mean and standard deviation of evaluation rewards
for the last three evaluation steps.
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