Divide and Conquer: Harnessing Small Agents for Schema Extraction in
NL-to-SQL Generation

Anonymous ACL submission

Abstract

Large Language Models have shown
remarkable promise in various code generation
tasks, particularly in SQL generation. However,
much like other structured query generation
tasks, SQL generation presents the unique
challenge of extracting the correct schema
to achieve good performance. Despite being
a critical component of the process, the
problem of schema extraction has received
little attention, especially when it comes to
Small Language Models '. In this paper,
we propose LiteMARS: Lite Multi-Agent
Recall Oriented System, to the best of our
knowledge, the first multi-agent framework
to incorporate schema linking that leverages
question decomposition for the task of Natural
Language to SQL (NL-to-SQL). LiteMARS
operates as a multi-agent pipeline with
three key stages: natural language query
decomposition, schema linking, and SQL
generation. Notably, LiteMARS introduces
a novel critic-based one-step refinement
process, enhancing schema extraction and SQL
generation. In experiments, we found that
critic-based refinement significantly improved
column recall by 26.6% and execution accuracy
by 73.4% for NL-to-SQL generation. Further
analysis shows that our LiteMARS agent
achieves comparable performance to Large
Language Models like DeepSeek-Coder-33B.

1 Introduction

Many organizations and businesses today would
not exist without gathering and maintaining large
amounts of data. SQL is one of the most common
ways to query these data. However, manually
writing SQL to navigate the complexities of data
schemas is both time-consuming and error-prone,

making NL-to-SQL systems an attractive solution.

Towards this end, LLMs have recently shown

'In this work, we define language models with fewer than
10 billion parameters as Small Language Models (SLMs).

great success in a variety of translation and code
generation tasks, including the NL-to-SQL task
(Chen et al., 2021; Shi et al., 2020; Yu et al., 2018;
Liet al., 2023c; Zhong et al., 2017).

However, unlike typical translation and code
generation tasks, the task of generating SQL
brings a unique and important challenge that is
unaddressed by the current NL-to-SQL language
model agents. This challenge is schema linking
i.e., the process of identifying and extracting
relevant columns from the database schema given
the natural language prompt. In an NL-to-SQL task,
accurate schema linking is crucial to ensure that
the final SQL query is both relevant and executable
(Chen et al., 2020).

Although several related efforts and directions
exist, none address the question of schema linking
satisfactorily: (1) One candidate approach is to
provide the entire schema to the model’s prompt.
However, in most language models, especially the
smaller models, the context window size is limited.
As such, it is often infeasible to include the entire
schema within the model’s prompt. (2) Some
recent works (Maamari et al., 2024) have argued
that schema linking is unnecessary for models
with large context windows and advanced SQL
generation capabilities. However, this approach
is not applicable for smaller models with fewer
parameters (e.g., Llama-3.1-8B or Mistral-7B)
that lack the flexibility and size of proprietary
models such as GPT-4 and Gemini (Achiam et al.,
2023; Team et al.,, 2023). (3) Some works
have approached this problem tangentially by
performing question decomposition to break down
complex questions into manageable sub-questions
(Wang et al., 2024; Pourreza and Rafiei, 2024a).
They applied question decomposition during the
SQL generation stage rather than the schema
linking stage, and question decomposition alone
does not directly tackle the schema-linking
problem.

In this work, we propose LiteMARS agent, the
first multi-agent framework that leverages schema
linking for the NL-to-SQL task. LiteMARS consists
of a multi-agent pipeline consisting of (1) a natural
language query decomposition stage, (2) a schema
linking stage, and (3) a SQL generation stage.
Importantly, LiteMARS leverages two critics for
performing refinement within this pipeline. The
Schema Critic agent reviews the extracted schema
and refines the schema within the schema linking
stage. The SQL Critic agent reviews the generated
SQL to refine it within the SQL generation stage.
In experiments, we note that this critic-based
refinement produces significantly improved column
recall and execution accuracy for NL-to-SQL
generation, even for small open-source models with
limited parameters.

Our contributions are:

1. LiteMARS, the first agent that integrates
natural language query decomposition (QD), a
schema refinement module (Schema Refiner),
and a schema critiquing mechanism (Schema
Critic) at the Schema Linking stage.

2. Multi-agent framework that achieves an
improvement of 28.1% in execution accuracy
with Llama-3.1-8B, 73.4% with Mistral-7B,
and 62.1% with Granite-8B models over their
Vanilla counterpart (refer 4.3). For Mistral-7B,
this includes a 54.6% improvement from QD
+ Schema Critic alone.

3. Detection and correction of SQL errors
by our novel SQL Critic agent, based on
execution feedback in the SQL generation
phase, result in a 19.2% improvement in
execution accuracy for models with limited
SQL generation capabilities, providing a
robust solution.

2 Related Work

SLM for NL-to-SQL: Recent years have
witnessed a significant shift towards using large
language models (LLMs) for NL-to-SQL tasks,
with impressive results (Gao et al. (2023); Pourreza
and Rafiei (2024a); Dong et al. (2023); Sun et al.
(2023); Pourreza et al. (2024a)). However, the
computational costs and potential privacy concerns
associated with these models have motivated
research into more efficient alternatives. Li et al.
(2024a) introduced CodeS, a series of SLMs
specifically designed for SQL generation. Their

work demonstrated that SLMs, when properly
trained, can achieve competitive performance on
challenging benchmarks like Spider (Yu et al.,
2018) and BIRD (Li et al., 2024b). Similarly,
Pourreza and Rafiei (2024b) proposed DTS-SQL,
which employs supervised fine-tuning on smaller
models to narrow the performance gap with larger
models. With the latest SLM, which achieves
higher performance than the model double or triple
its size (Team (2024); Microsoft (2024)), we can
see a growing trend towards developing more
efficient and accessible NL-to-SQL solutions using
it, which aligns with our work’s objectives.

Schema Linking Techniques: Schema linking,
the task of mapping natural language elements
to database schema components, has long been
considered a critical step in NL-to-SQL pipelines
(Lewis (2019)). Traditional approaches often
relied on string matching or learned embeddings
to identify relevant schema elements (Guo et al.
(2019); Bogin et al. (2019); Wang et al. (2019); Li
et al. (2023b)). More recently, LLM-based methods
have shown promise in this area. Talaei et al.
(2024) and Pourreza and Rafiei (2024b) proposed
using LLMs for hierarchical retrieval of schema
components. However, Maamari et al. (2024)
challenged the conventional wisdom surrounding
schema linking, arguing that for state-of-the-art
LLMs, schema linking might be unnecessary or
even detrimental when the entire schema fits within
the model’s context window.

Query Decomposition: Query decomposition
has emerged as a powerful technique to improve
NL-to-SQL performance, especially for complex
queries. Pourreza and Rafiei (2024a) introduces
query classification and decomposition module that
decomposes based on the task complexity. Further,
Wang et al. (2024) proposes an agent-based
framework that decomposes complex questions
into simpler sub-questions before SQL generation.
While these works primarily focus on decomposing
the natural language query or the overall task,
our approach uniquely applies decomposition
techniques to the schema linking phase, offering a
novel perspective on this crucial step.

LLM-based Agents: The concept of
LLM-based agents, where language models
are employed as autonomous or semi-autonomous
entities capable of reasoning, planning, and
interacting with their environment, has gained
significant traction across various NLP tasks (Qian
et al. (2023); Zhou et al. (2023); Xu et al. (2023)).

Schema Linking by LiteMARS

Refined SQL

Column
Selector

Sub-Question
Generator

Schema
Refiner

Input Question [

SQL Generator

Schema

. Generated SQL
Critic

Predicted

Database ..
Schema

SQL Critic

Feedback

sSQL

Figure 1: Overview of our proposed LiteMARS Agent for NL-to-SQL Generation.

Initially, most agents were constructed using large,
proprietary models (Li et al. (2023a); Wu et al.
(2023); Zhou et al. (2024)) to facilitate complex
instruction following. More recently, however,
SLM-based agents (Liang et al. (2024); Zeng
et al. (2023); Chen et al. (2024)) have emerged
due to their competitiveness with closed models.
Nevertheless, the application of multi-agent
frameworks in the NL-to-SQL domain remains
relatively unexplored. While Wang et al. (2024)
introduced an early agent-based approach, it
did not fully exploit the potential benefits of
query decomposition techniques or incorporate
critique mechanisms for the schema linking phase.
Our work addresses this gap by incorporating
a sub-question generator and a schema critique
agent, enabling reflection (Shinn et al. (2023);
Madaan et al. (2024); Asai et al. (2023)) and
refinement of the schema extracted by the schema
refiner module.

3 Methodology

We propose LiteMARS agent into NL-to-SQL
generation pipeline consisting of six modules:
Natural Language Query Decomposition, Column
Selector, Schema Refiner, Schema Critic, SQL
Generator, and SQL Critic. We use Natural
Language Query Decomposition, Column Selector,
Schema Refiner, and Schema Critic to improve
schema linking. SQL Critic and SQL Generator
agents are used to improve NL-to-SQL generation.
In the figure 1, we show how different agents
interact in a collaborative way to improve
NL-to-SQL generation.

Before delving into the technical details of our
method, we first outline the Problem Statement:

Task: To convert a given Natural Language (NL)
Query to its corresponding SQL Query that can be
executed on a relational database.

Input: NL Query (¢) and a database (D).

Output: SQL Query (S) corresponding to the
NL Query.

3.1 Sub-Question Generator

Sub-question generator step involves breaking
down the original natural language question ¢ into
simpler sub-questions qi, g2, . . . , gn, allowing the
model to focus on retrieving the relevant schema
components for each sub-question. Formally, given
a natural language query ¢, we decompose it
into a set of sub-questions {¢;}7_,, where each
sub-question ¢; addresses a specific aspect of gq.
The decomposition can be expressed as:

QD(q) = {q1, 92, - - -

Here, QD represents the question decomposition
function. The key idea is to improve the column
recall rate (the proportion of relevant columns
selected from the total relevant columns) by
ensuring that each sub-question focuses on a
smaller portion of the aspects of the given question.

7Qn}

3.2 Column Selector

The Column Selector module retrieves a set of
relevant columns for each sub-question generated
in the previous stage. The goal is to maximize
the column recall rate, without overly penalizing
the selection of irrelevant columns with carefully
designed prompts (refer Figure 4, 5). Let C; denote
the set of columns selected for sub-question g;, and
let C represent the set of all columns in the database
schema. The selected schema can be represented
as:

where D is the selected schema.

Let S be the column selection function, which
retrieves all columns ¢ € C that are relevant to
the sub-question ¢;. Then according to the context

window size of different Language Models, the

column selection task can be defined as follows.
For small context windows: When working

with small models (e.g., Llama-3-8B), the context

window might not accommodate the entire schema.

In such cases, the model iterates over each table
T; € T, where T represents the set of all tables in
the database. The task of the model is then to select
relevant columns CY from table T for sub-question

qi:
¢! = S(qi, 1))
ci= |J ¢
j:TjGT

For large context windows: For models with
larger context windows (e.g., Llama-3.1-8B), it is

feasible to provide the entire schema to the model.

In this case, the module selects relevant columns
from the entire schema rather than table-specific
columns:

3.3 Schema Refiner

The Schema Refiner prunes the set of columns
selected by the Column Selector. Given the pruned
schema, the refiner removes columns that are not
essential for the final SQL generation thereby
aiding in increasing column precision rate. The
Schema Refiner takes as input the selected schema
D and the original question ¢, and outputs a refined
schema D’ where:

D' =R(D,q)

Here, R represents the refinement function that
removes unnecessary columns.

3.4 Schema Critic

The Schema Critic Agent reviews the extracted
schema and assesses the columns that were not
initially selected to determine if any relevant
columns were mistakenly omitted. This additional
step is aimed at improving the column recall,
ensuring that all necessary columns for SQL
generation are included. The process of critiquing
serves as a safeguard against potential omissions by
the Schema Refiner. The input to this agent is D’,
the schema produced by the Schema Refiner, and
the output is D, the further refined schema, defined
as:

b - Csch(Dla Q)

Where C,., represents the schema Critic
function based on the input schema D’ and the

query q.

3.5 SQL Generator

Using the refined schema D, the SQL Generator
produces the SQL query Syeq based on the original
question ¢. Formally, the SQL generation process
can be defined as:
ggen = g(Qv E)

where G is the SQL generation function. The
generated SQL Sge, is then executed against the
database, and any execution error e is recorded.

3.6 SQL Critic

To improve the performance further, we introduce a
SQL Critic agent which takes the original question
q, the refined schema ﬁ, the generated SQL
S’gen, and the execution error e (if any) as inputs,
and produces a corrected SQL S by identifying
potential mistakes in the SQL query:

‘SA’ = qul(Qa D, ggena 6)

where C,q is the SQL Critic function that
modifies S’gen to generate S, the final predicted
SQL.

It is important to note that our experiments
revealed higher scores when using the refined
queries generated by the SQL Critic agent, even
in cases where the SQL query produced by the
SQL Generator was free of execution errors.
Consequently, all the results presented in this work
are based on this setting.

The methodology described above mimics
human reasoning in complex tasks like NL-to-SQL
by incorporating Question Decomposition at the
Schema Linking stage. This approach increases
column recall and improves the overall execution
accuracy, especially for Small Language Models
with low SQL generation capabilities.

4 Experiments, Results and Analysis

4.1 Datasets

Our evaluation utilized two challenging and widely
recognized datasets: Spider and BIRD. Spider,
introduced by Yu et al. (2018), is a large-scale
cross-domain NL-to-SQL dataset comprising 8,650

training examples, 1,034 development examples,
and 2,147 holdout test examples. These span 200
databases across 138 domains. BIRD, developed
by Li et al. (2024b), is a more recent benchmark
dataset consisting of 9,428 training instances, 1,534
development instances, and 1,789 concealed test
instances. It covers 95 large databases totaling
33.4 GB and encompasses over 37 professional
domains, including blockchain, hockey, healthcare,
and education. Notably, BIRD features more
complex SQL queries compared to Spider. All our
evaluations were conducted on the development
sets of both Spider and BIRD datasets.

4.2 Metrics

We evaluated our pipeline’s performance using the
official metric of Execution Accuracy (EX) for both
Spider and BIRD evaluation datasets. EX compares
the execution output of the predicted SQL query
against that of the ground truth SQL query on
given database instances. This metric provides a
more precise estimate of model performance as
it accounts for the possibility of multiple valid
SQL queries for a given question. To assess the
performance of the schema-linking module, we
employ two additional metrics: Column Precision
and Column Recall. Column Precision measures
the accuracy of the retrieved columns, while
Column Recall evaluates the completeness of the
retrieval with respect to the golden oracle schema.

4.3 Baselines and Variations

In all the following experiments, we utilized the
Deepseek-coder-7b-instruct-v1.5 for both SQL
Generator and the SQL Critic Agent. The
following settings were compared to evaluate the
performance of our approach:

1. Vanilla: In this setting, we employ only
the Schema Linking without incorporating
Natural Language Query Decomposition or
any Critic agents (schema or SQL). This
serves as our baseline to understand the
performance of Schema Linking abilities of
the Small Language Models in isolation.

2. Vanilla + QD: In this setting, we incorporate
Natural Language Query Decomposition over
the Vanilla setting. This serves as our baseline
for understanding the importance of Schema
Critic in our pipeline (refer Appendix B).

3. LiteMARS w/o SQL Critic: In LiteMARS
agent, we employ the sub-question generator
for NL query decomposition alongside the
Schema Ceritic. This setting aims to
investigate the benefits of incorporating both
query decomposition and schema Critic on
execution accuracy.

4. LiteMARS: This is the complete agent in
which we integrate the SQL Critic agent.
This addition allows us to analyze the
combined effect of Query Decomposition,
Schema Critic, and SQL Critic on the overall
performance of the system. Here, as the
only difference from the previous setting is
in the addition of SQL Critic, the schema
linking related metrics (Column Precision and
Column Recall) remains the same.

Refer to Appendix C for hyperparameters and
implementation details. For comparisons with
SoTA refer Appendix D.

4.4 Results

The following section presents the results obtained
from experiments conducted on two datasets,
BIRD (Li et al.,, 2024b) and Spider 1.0 (Yu
et al., 2018), using multiple SLMs integrated
with Query Decomposer (QD) and Critic Agents.
We compared the performance of the models in
terms of Execution Accuracy, Column Precision,
and Column Recall across different configurations:
Vanilla (base model), LiteMARS without SQL
Critic (LiteMARS w/o SC), and LiteMARS (the full
pipeline). For SQL generation and SQL Critic, the
Deepseek-coder-7b-instruct-v1.5 model was used
across all experiments.

4.4.1 Comparison with the Oracle Baseline

As we previously stated, our primary focus is
on enhancing the schema linking capabilities
of open-source small language models. To
evaluate this, we compare LiteMARS with an oracle
baseline. In the oracle baseline, we supply the
ideal schema derived directly from the ground
truth SQL, providing an upper-bound estimate of
LiteMARS’s potential. Using this oracle schema
with Deepseek-coder-7b-instruct-v1.5 for SQL
generation achieves an Execution Accuracy (EX)
of 0.3906 on the BIRD dataset. As shown in Table
1, employing Llama-3.1-8B for schema linking
yields an EX of 0.3643, closely approaching
the oracle baseline. Similarly, Mistral-7B and

‘ Execution Accuracy ‘

Column Precision

‘ Column Recall

Models
. LiteMARS . . LiteMARS . . LiteMARS .
‘ Vanilla wio SC LiteMARS ‘ Vanilla wio SC LiteMARS ‘ Vanilla wio SC LiteMARS
Llama-3.1-8B 0.2501 0.2980 0.3206 0.7340 0.7231 0.7231 0.7926 0.8295 0.8295
Mistral-7B 0.1721 0.2661 0.2985 0.6743 0.7324 0.7324 0.6183 0.7832 0.7832
Granite-8B 0.1421 0.1933 0.2304 0.4244 0.6010 0.6010 0.6105 0.7015 0.7015

Table 1: Experiments on BIRD (Li et al., 2024b) Dataset with different SLMs with QD and Critic Agents. SC: SQL

Critic.
‘ Execution Accuracy ‘ Column Precision ‘ Column Recall
Models
. LiteMARS . . LiteMARS . . LiteMARS .
‘ Vanilla wio SC LiteMARS ‘ Vanilla wio SC LiteMARS ‘ Vanilla wio SC LiteMARS
Llama-3.1-8B 0.4528 0.4971 0.5386 0.5205 0.4501 0.4501 0.6468 0.7073 0.7073
Mistral-7B 0.2985 0.4314 0.4971 0.4424 0.4886 0.4886 0.4954 0.6414 0.6414
Granite-8B 0.3007 0.3600 0.4305 0.2894 0.3425 0.3425 0.4753 0.5319 0.5319

Table 2: Experiments on Spider 1.0 (Yu et al., 2018) Dataset with different SLMs with QD and Critic Agents. SC:

SQL Critic.

Granite-8B demonstrate comparable performance
highlighting our approach.

4.4.2 Impact of Query Decomposition and
Schema Critic

Table 1 presents the significant improvements
achieved by the LiteMARS pipeline when evaluated
on the BIRD dataset. Execution accuracy, a
critical metric indicative of the model’s capability
to generate correct SQL queries, demonstrated
consistent gains across all evaluated models with
the integration of Query Decomposition (QD)
and Schema Critic (SC) within the pipeline.
For example, in the case of Llama-3.1-8B,
execution accuracy increased from 0.2501 in the
Vanilla setup to 0.2980 in the LiteMARS w/o
SC configuration—an improvement exceeding
19.1%. Similarly, Mistral-7B exhibited a rise
from 0.1721 to 0.2661 (54.6%), while Granite-8B
improved from 0.1421 to 0.1933 (36.0%). Detailed
comparisons of the impact of QD alone are
provided in Appendix A.

In addition to execution accuracy, the LiteMARS
pipeline significantly enhanced column-related
metrics, which are crucial for accurately
identifying and linking relevant database columns
during SQL generation. It is important to note
that in LiteMARS, since the only addition to
the LiteMARS w/o SC configuration is the SQL
Critic (SC), the column-related metrics remain
unchanged. With the incorporation of Natural
Language Query Decomposition and Schema

Critic, Mistral-7B achieved a column recall of
0.7832, a substantial improvement over the Vanilla
configuration’s 0.6183 (54.6%). Comparable
trends were observed for Llama-3.1-8B (4.6%
increase) and Granite-8B (14.9% increase). These
results underscore the pipeline’s efficacy in
improving column recall, which is essential for
generating correct SQL queries.

However, in terms of column precision, which
measures the model’s tendency to select incorrect
or irrelevant columns, a slight decrease was
observed in some configurations. For instance,
in Llama-3.1-8B, column precision dropped from
0.7340 in the Vanilla setup to 0.7231 in the
LiteMARS w/o SC configuration. Despite this
reduction, the pipeline achieved higher execution
accuracy, highlighting the importance of column
recall rate.

4.4.3 Impact of SQL Critic

Table 2 corroborates these findings with results
from the Spider 1.0 dataset, demonstrating that
the LiteMARS pipeline is equally effective across
different datasets. On Spider, the Granite-8B model
achieved an execution accuracy of 0.4305 with the
full LiteMARS pipeline, a significant jump from
0.3600 in the LiteMARS w/o SC configuration
(19.5%). Similarly, Mistral-7B exhibited an
increase from 0.4314 to 0.4971 (15.2%), and
Llama-3.1-8B improved from 0.4971 to 0.5386
(8.3%) after the addition of SQL Ceritic.f

In summary, the results from both datasets

Models | Simple ‘ Moderate ‘ Challenging
. LiteMARS . . LiteMARS . . LiteMARS .
‘ Vanilla w/o SC LiteMARS ‘ Vanilla w/o SC LiteMARS ‘ Vanilla w/o SC LiteMARS
QD/SL: Llama-3.1-8B 0.3059 0.3113 0.3643 0.1831 0.1982 0.1724 0.1103 0.1586 0.1517
QD/SL: Mistral-7B 0.2194 0.2594 0.3135 0.1034 0.1250 0.1508 0.0896 0.1241 0.1103
QD/SL: Granite-8B 0.1772 0.2454 0.2875 0.0862 0.1185 0.1443 0.0965 0.1034 0.1448

Table 3: Impact of Query Decomposition (QD) and Critic Agent on Solving Complex Queries on Bird (Li et al.,

2024b) dataset. SC: SQL Ceritic.

clearly demonstrate that the full LiteMARS pipeline
is highly effective at improving execution accuracy,
column recall, and precision, establishing it
as a comprehensive solution for enhancing the
performance of small-scale models in NL-to-SQL
tasks. These gains are not only consistent across
different datasets but also significant enough to
illustrate the advantage of using a fully integrated
pipeline over baseline and partially optimized
configurations.

4.5 Impact of Query Decomposition and
Critic agents on Query Complexity

Table 3 shows the effects of Query Decomposition
(QD) and the Critic agent on addressing
queries of varying complexity—classified as
Simple, Moderate, and Challenging, utilizing
the same three Small Language Models (SLMs):
Llama-3.1-8B, Mistral-7B, and Granite-8B, on
the BIRD dataset. For simple queries, the
integration of QD followed by the Critic agent
yields notable enhancements across all models. For
instance, LLlama-3.1-8B demonstrates an increase
in performance from 0.3059 (Vanilla) to 0.3643
(LiteMARS), underscoring the effectiveness of both
decomposition and the Critic in refining simpler
queries. In the case of moderate queries, results
present a more varied picture. Llama-3.1-8B shows
a slight advantage without SQL Critic, LiteMARS
w/o SC (0.1982) compared to the LiteMARS
(0.1724), while Mistral-7B and Granite-8B exhibit
the most significant enhancements when SQL
Critic is applied. Mistral-7B’s performance, for
example, improves from 0.1034 (Vanilla) to 0.1508
(LiteMARS).

For challenging queries, both QD and the
Critic agent significantly enhance the performance
of models when Granite-8B is employed at the
schema linking stage. However, for Llama-3.1-8B
and Mistral-7B, a decrease in performance is
observed upon incorporating the SQL Critic agent
into the pipeline. This decline in performance

for challenging and moderate queries might have
been mitigated by utilizing the initial SQL query,
provided it had no execution errors. Nevertheless,
the refined SQL consistently delivered higher
overall execution accuracy.

Overall, this table emphasizes the
complementary role of both QD and the Critic in
managing queries of increasing complexity, with
more substantial gains observed in simpler and
moderately complex cases.

4.6 Impact of Using Small Agents vs. Larger
Models on NL-to-SQL

In our experiments, we observed that the
Llama-3.1-8B model, when integrated with our
LiteMARS framework, achieves an execution
accuracy comparable to that of the significantly
larger Deepseek-coder-33B model. This finding
highlights the efficiency and effectiveness of our
proposed approach, even when utilizing smaller
models with fewer parameters.

When providing the complete schema to
DeepSeek-Coder-33B, we achieve an execution
accuracy of 34.46%. In comparison, our
LiteMARS framework with Llama-3.1-8B achieves
a competitive execution accuracy of 32.06%. This
outcome is particularly significant as it highlights
that smaller models, when integrated with an
effective framework like LiteMARS, can approach
the performance levels of much larger models.
Notably, in this setup, the entire schema is directly
supplied to the model without schema linking, and
the prompt used for the SQL Generator is employed
to produce the SQL query.

4.7 Qualitative Analysis of the Effectiveness
of Schema Critic

The Schema Critic demonstrates significant
effectiveness in refining the Schema linking
process, particularly in handling complex queries
such as retrieving the lowest grade for the District
Special Education Consortia School with a specific

Natural Language Input: What is the lowest grade for the District Special Education Consortia School with National Center for Educational Statistics school district

identification number of 06133607.

Expected SQL: SELECT MIN(T1. Low Grade) FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.NCESDist = '0613360'

AND T2.EdOpsCode = 'SPECON'

Extracted Schema: Schools: NCESDist,
GSoffered

Sub-Question Generator: a) What are the account openings by year?What is the school district identification number for the
District Special Education Consortia School?, b) What is the name of the school district with the given school district

identification number?, c) What is the lowest grade for the school with the given name and school district?
Generated SQL: SELECT T1." GSoffered| = Extracted Schema after selecting columns based on sub-questions: a) Schools: NCESDist, b) Schools: district;

FROM schools AS T1 WHERE T1.°
CDSCode® = (SELECT T2.° CDSCode®
FROM schools AS T2 WHERE T2.
NCESDist™ = '0613360' AND T2."
EdOpsCode™ = 'SPECON');

Frpm: district_name, c) Frpm: Low Grade

Extracted Schema after Schema Refiner: Schools: NCESDist, CDSCode, Frpm: CDSCode, Low Grade

Extracted Schema after Schema Critic: Additional Columns added: EdOpsCode - Needed to identify the type of
school and filter the results; NCESDist - Required to join the schools and frpm tables based on the user's query.

Generated SQL: SELECT T2."Low Grade® FROM frpm AS T2 WHERE T2."CDSCode™ = (SELECT
T1."CDSCode® FROM schools AS T1 WHERE T1."NCESDist* = '0613360' AND T1."EdOpsCode’ = 'SPECON');

Generated SQL after SQL Critic: The generated SQL looks correct. No edits needed.

This is wrong! x

Vanilla NL-to-SQL with Schema
Extraction

This is correct! @

NL-to-SQL with LiteMARS Agent

Figure 2: An example showing how LiteMARS Agent improves Schema Linking for NL-to-SQL Generation

National Center for Educational Statistics (NCES)
school district identification number (refer to
Figure 2). By employing a series of sub-questions,
the model effectively breaks down the primary
query into manageable components. For instance,
the second sub-question identifies the relevant
school district identification number, while the
last establishes the connection between the district
and the school’s name. The final sub-question
also zeroes in on retrieving the minimum grade,
guiding the SQL Generator to accurately construct
the query:

SELECT T2.‘Low Grade* FROM
frpm AS T2 WHERE T2.‘CDSCode*
= (SELECT T1.‘*CDSCode‘ FROM
schools AS T1 WHERE T1.‘NCESDist*
=’0613360 AND T1.‘EdOpsCode* =
’SPECON”);

The role of the Schema Critic becomes
particularly evident when assessing the SQL
query’s accuracy and schema alignment. The Critic
not only confirms that the predicted SQL accurately
reflects the user’s intent but also verifies that it
adheres to the established schema by appropriately
referencing the necessary tables and columns.
For example, the inclusion of the ‘EdOpsCode*
column is justified as it is crucial for filtering
results specific to the type of school queried.
Additionally, the Critic evaluates the relationships
between the ‘schools‘ and ‘frpm° tables, ensuring
that the primary and foreign key constraints are
respected. By generating constructive feedback
and highlighting any potential improvements, such
as enhancing query readability with table aliases,

the Schema Ceritic reinforces the overall robustness
and clarity of the SQL generation process, leading
to higher execution accuracy and reliability in
complex querying scenarios.

5 Conclusion and Future Work

This paper presents an effective approach to
enhancing Natural Language to SQL (NL-to-SQL)
tasks through the integration of Question
Decomposition (QD) and a Critic agent within
a small language model framework. Our
experiments demonstrated that the Llama-3.1-8B
model, augmented by the LiteMARS framework,
achieves execution accuracies comparable to larger
models such as Deepseek-coder-33B, with our
model recording an execution accuracy of 32.06%
compared to 34.46% for the larger model. These
results highlight the potential of smaller models to
perform competitively in NL-to-SQL applications,
while also showcasing the effectiveness of
combining QD and Critic strategies to improve
query handling across various complexity levels.

As a future work, we will focus on enhancing
the performance of our approach. We aim
to incorporate additional contextual information
to improve accuracy in complex queries and
explore the integration of reinforcement learning
techniques to optimize the Critic agent’s feedback
mechanism. Additionally, we will evaluate
the generalizability of our model across diverse
datasets beyond the BIRD and Spider datasets.
This research advocates for a shift towards more
resource-efficient language models that do not
compromise performance.

Limitations

In this section we elaborate on the limitations
of our work. First and foremost, while the
BIRD and Spider datasets provide a robust
foundation, the model may struggle with rare query
patterns or domain-specific languages that are
underrepresented in these datasets. This limitation
suggests that the model’s effectiveness may not
generalize well to all real-world applications.
Additionally, = while integrating Query
Decomposition (QD) and the Critic agent has
shown to improve performance, the overhead (in
terms of latency) associated with these processes
might need to be optimized in scenarios requiring
real-time SQL generation. Future research should
explore optimizing these techniques to minimize
processing time while retaining accuracy. Lastly,
our experiments primarily focus on a few specific
small language models. While results indicate
competitive performance, further studies are
needed to evaluate the scalability of our approach
across a broader range of models and architectures,
ensuring its applicability in various contexts.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Ben Bogin, Matt Gardner, and Jonathan Berant.
2019. Global reasoning over database
structures for text-to-sql parsing. arXiv preprint
arXiv:1908.11214.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé, Jared Kaplan, Harrison
Edwards, Yura Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, David W. Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes,
Ariel Herbert-Voss, William H. Guss, Alex Nichol,
Igor Babuschkin, Suchir Balaji, Shantanu Jain,
Andrew Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew M.
Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam

McCandlish, Ilya Sutskever, and Wojciech Zaremba.
2021. Evaluating large language models trained on
code. ArXiv, abs/2107.03374.

Wenhu Chen, Xiang Lin, Yuwei Ma, Xinyi Li, Raymond
Mooney, and William Yang Wang. 2020. Language
models are few-shot table reasoners. In Proceedings
of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7485-7498.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024. Agent-flan: Designing data and
methods of effective agent tuning for large language
models. arXiv preprint arXiv:2403.12881.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou.
2023. Text-to-sql empowered by large language
models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. arXiv
preprint arXiv:1905.08205.

M Lewis. 2019. Bart: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. arXiv preprint
arXiv:1910.13461.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023a. Camel:
Communicative agents for” mind” exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023b. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 37, pages 13067—13075.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan,
Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. 2024a. Codes:
Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management
of Data, 2(3):1-28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Xinya Li, Hanjie Sun, Alexey Protasov, Yuan Shi,
and Lei Qiu. 2023c. Crescendo: Improving
text-to-sql semantic parsing via multi-granularity
schema linking. In Proceedings of the 6lst
Annual Meeting of the Association for Computational
Linguistics (ACL).

Xuechen Liang, Meiling Tao, Yinghui Xia, Tianyu
Shi, Jun Wang, and JingSong Yang. 2024. Cmat:
A multi-agent collaboration tuning framework for
enhancing small language models. arXiv preprint
arXiv:2404.01663.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,
and Amine Mhedhbi. 2024. The death of schema
linking? text-to-sql in the age of well-reasoned
language models. Preprint, arXiv:2408.07702.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information
Processing Systems, 36.

Microsoft. 2024. Discover the new multi-lingual,
high-quality phi 3.5 slms. Accessed: 2024-10-16.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan,
and Sercan O Arik. 2024a. Chase-sql:
Multi-path reasoning and preference optimized
candidate selection in text-to-sql. arXiv preprint
arXiv:2410.01943.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024b. Chase-sql: Multi-path
reasoning and preference optimized candidate
selection in text-to-sql. Preprint, arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2024a.
Din-sql: decomposed in-context learning of
text-to-sql with self-correction. In Proceedings of the
37th International Conference on Neural Information
Processing Systems, NIPS *23, Red Hook, NY, USA.
Curran Associates Inc.

Mohammadreza Pourreza and Davood Rafiei. 2024b.
Dts-sql: Decomposed text-to-sql with small large
language models. ArXiv, abs/2402.01117.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023. Communicative agents for software
development. arXiv preprint arXiv:2307.07924, 6:3.

Tao Shi, Xi Victoria Lin, Tatsunori Yeh, Huan Sun,
Chin-Yew Lee, and Xiang Ren. 2020. Learning
compositional representations for few-shot natural
language to sql task. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 487-498.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal
reinforcement learning.(2023). arXiv preprint
cs.Al/2303.11366.

Ruoxi Sun, Sercan O Arik, Alex Muzio, Lesly
Miculicich, Satya Gundabathula, Pengcheng Yin,
Hanjun Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng
Wang, et al. 2023. Sql-palm: Improved large
language model adaptation for text-to-sql (extended).
arXiv preprint arXiv:2306.00739.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql
synthesis. arXiv preprint arXiv:2405.16755.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2019. Rat-sql:
Relation-aware schema encoding and linking for
text-to-sql parsers. arXiv preprint arXiv:1911.04942.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen
Zhang, Di Yin, Xing Sun, and Zhoujun Li. 2024.
Mac-sql: A multi-agent collaborative framework for
text-to-sql. Preprint, arXiv:2312.11242.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran
Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023.
Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint
arXiv:2308.08155.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911-3921, Brussels, Belgium. Association for
Computational Linguistics.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://api.semanticscholar.org/CorpusID:267406644
https://api.semanticscholar.org/CorpusID:267406644
https://api.semanticscholar.org/CorpusID:267406644
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 744-755.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023. Language
agent tree search unifies reasoning acting and
planning in language models. arXiv preprint
arXiv:2310.04406.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, Denny
Zhou, Swaroop Mishra, and Huaixiu Steven Zheng.
2024. Self-discover: Large language models
self-compose reasoning structures. arXiv preprint
arXiv:2402.03620.

A Performance Comparison with and
without Query Decomposition

In Table 4, we compare the performance of several
models on the BIRD dataset, both with and without
Query Decomposition (QD). The results highlight
the effectiveness of the QD method, particularly in
improving execution accuracy and column recall.
Please note that w/o QD is the Vanilla setting
mentioned in the baselines section ??.

For instance, using Llama-3-70B, QD boosts
execution accuracy by 33.74%, demonstrating the
substantial impact of employing a decomposition
approach at the schema linking stage. This
method enhances the model’s ability to decompose
complex natural language questions and link them
to the appropriate data schema, resulting in more
accurate SQL generation.

One key observation from the results is the
importance of column recall in generating correct
SQL queries. Column recall measures the model’s
ability to correctly identify all relevant columns
required to form the SQL query. Missing even a
single column typically results in an incorrect SQL
query, and the tables confirm that higher column
recall generally correlates with better execution
accuracy.

Interestingly, we see that as model size increases,
the ability to recall the correct columns also
improves. Though Llama-3.1-8B achieves a
column recall score comparable to that of the
larger Llama-3-70B, its execution accuracy is lower.
This suggests that Llama-3.1-8B’s SQL generation
capabilities are limited despite its strong schema
linking, indicating a gap in reasoning Or query
construction. In contrast, the Llama-3.1-70B

11

model shows minimal improvement with QD,
likely because it already exhibits strong reasoning
abilities, requiring less decomposition to perform
well.

In some cases, precision without QD is higher,
indicating that while the model selected fewer
columns, they were more likely to be correct.
However, this also means that some important
columns were missed, explaining why the precision
score was not always accompanied by a higher
execution accuracy. This highlights the trade-off
between precision and recall in SQL generation
tasks.

B Performance Comparison with and
without Schema Critic

Table 5 demonstrates that incorporating the Schema
Critic improves performance across all models.
Granite-8B exhibits the most significant gains in
Execution Accuracy (EX) and Column Precision,
with improvements of 21.19% and 15.73%,
respectively. For Column Recall, Mistral benefits
the most, achieving a 24.52% improvement. In
contrast, the newer Llama-3.1-8B model shows
comparatively smaller gains. To make it clear the
w/o SchC is our Vanilla + QD setting that we have
mentioned in the section ?? and w/ SchC is the
LiteMARS w/o SC setting

C Implementation Details

The context length varied among the models:
Llama v3 models feature an 8k context length,
while Llama v3.1 models extend this to a
maximum of 128k. The Deepseek-coder language
models offer context lengths of 4k and 16k
for their Small and Large versions, respectively.
The ibm-granite-8b model supports an extensive
context length of 128k, and the mistral-7b
accommodates a 32k context limit.

All experiments were conducted using Nvidia
Tesla A100 GPUs with a batch size of 4. We
implemented the Fully Sharded Data Parallel
(FSDP) technique available in the HuggingFace
accelerator with default settings to optimize our
computational resources and enhance training
efficiency. We employed greedy decoding for
reproducibility, i.e., do sample parameter is set to
False.

Models Execution Accuracy | Column Precision | Column Recall
w/o QD w/ QD w/oQD w/ QD | woQD w/ QD
Llama-3-8B 0.1621 0.1738 0.7421 0.7674 | 0.6425 0.6697
Llama-3.1-8B | 0.2464 0.2626 0.7340 0.7221 | 0.7926 0.8206
Llama-3-70B 0.2924 0.3900 0.6310 0.5567 | 0.7692 0.8314
Llama-3.1-70B | 0.4970 0.5000 0.8700 0.8942 | 0.8470 0.8563

Table 4: Comparison of models with and without Question Decomposition (QD) on the BIRD dataset using the
Llama family of models. QD refers to Question Decomposition. In this experiment, the same model was used
across all modules. Notably, for Llama-3.1-8B, the scores for the w/o QD setup in this table differ from the Vanilla
scores in Table 1, as the latter utilized the DeepSeek-Coder-7B model for SQL generation.

Models Execution Accuracy Column Precision Column Recall
w/o SchC ~ w/ SchC | w/o SchC ~ w/ SchC | w/o SchC w/ SchC
Llama-3.1-8B 0.2626 0.2980 0.7221 0.7231 0.8206 0.8295
Mistral-7B 0.2449 0.2661 0.6919 0.7324 0.6590 0.8206
Granite-8B 0.1595 0.1933 0.5193 0.6010 0.6273 0.7015

Table 5: Comparison of models with and without Schema Critic on the BIRD dataset. SchC: Schema Critic. All

modules utilize the same model.

D Comparison of State-of-the-Art
Methods on the BIRD

From Table 6, it is evident that proprietary
models excel in SQL generation from natural
language queries and their corresponding databases.
Among these, CHASE-SQL (Pourreza et al.,
2024b), a Gemini-based model (Team et al., 2023),
achieves the highest execution accuracy of 74.46%,
significantly outperforming other GPT-4-based
models. This result aligns with expectations,
given the extensive number of parameters and the
large-scale data used for training such proprietary
systems. Notably, CHESS (Talaei et al., 2024)
employs a multi-agent framework similar to ours
but leverages much larger models like GPT-4 and
Llama-3-70B for its experiments. Meanwhile,
Distillery (Maamari et al., 2024), built on GPT-40,
highlights the limitations of schema linking in large
models, emphasizing its inefficiency in certain
scenarios.

Fine-tuned models demonstrate competitive
performance as well, owing to their task-specific
optimization for SQL generation. For instance,
DTS-SQL (Pourreza and Rafiei, 2024b), which
shares a decomposition-based approach similar
to ours, divides the NL-to-SQL generation task
into two key subtasks: Schema Linking and
SQL Generation. By fine-tuning these modules
independently, DTS-SQL achieves superior results
compared to general-purpose models. This
modular design reflects the advantages of tailoring

12

models for specific components of the SQL
generation pipeline.

While fine-tuned models and proprietary
systems dominate in terms of execution accuracy,
our approach aims to bridge this gap by improving
reasoning capabilities in smaller, open-source
models using their pretrained knowledge.

Category Model Execution Accuracy (EX)

SFT CodeS-15B (Li et al., 2024a) 58.47%
Fine-tuned Models DTS-SQL + DeepSeek 7B (Pourreza and Rafiei, 2024b) 55.80%
CHASE-SQL + Gemini (Pourreza et al., 2024b) 74.46 %
Proprietary-based Models CHESS + GPT-4 (Talaei et al., 2024) 68.31%
Distillery + GPT-40 (Maamari et al., 2024) 67.21%
Ours LiteMARS + Llama-3.1-8B 32.06%

Table 6: Comparison of State-of-the-Art Methods on the BIRD Dev Dataset based on Execution Accuracy (EX)
E Prompts Used for Various Modules

The following figures illustrate the prompts used
across different modules in our framework.

13

4)
[Task]: Given the following question, decompose it into minimal, linear,
and dependent sub-questions. Each sub-question should logically depend on
the previous one, and the entire sequence should be suitable for
generating an SQL query. The output should be in JSON format for easy

parsing.
[Example]
{example}

Now decompose the following question into the minimal number of linear
and dependent sub-questions, following the specified JSON output (start
with ~ " “json and end with ") format similarly:

Question: {question}
_

Figure 3: Sub-question Prompt

14

\

[Task]: From the provided JSON content of the database schema, extract
ALL the relevant columns from the tables that will be useful for
answering the questions. Use Hint for additional context which helps in
disambiguating the column names.

Questions: {sub questions}
Hint: {evidence}

Database Schema: {json schema}
Primary Keys: {primary keys}
Foreign Keys: {foreign keys}

[Output Format]:
1. Output only a JSON object with the relevant columns, in the following
format (start with " “Jjson and end with ~):

" Json

"first": "first sub question",
"relevant schema": {
"table name 1": ["relevant original column name 1",
"relevant original column name 2", ...],
"table name 2": ["relevant original column name 1",
"relevant original column name 2", ...],

}
bo
{
"second": "second sub-question",
"relevant schema": {
"table name 1": ["relevant original column name 1",
"relevant original column name 2", ...],
"table name 2": ["relevant original column name 1",
"relevant original column name 2", ...],

by

[Instructions]:

1. Use "column name", "column description", "value description", and
"sample values" to determine which columns are necessary.

2. Double check the generated JSON is syntactically correct.

3. Ensure the selected columns are consistent with the given table
content, i.e., make sure the selected columns exist in the table.

4. Ensure the columns names are exactly as sepcified in the schema.
Especially columns names which contains whitespaces and brackets.

5. Ensure that the necessary relationships between tables are maintained
using primary and foreign keys.

6. Do not include any additional text or information.

[Response] :

Figure 4: Column Selector Prompt

15

(tn I

[Task]: From the provided JSON content of the table, extract ALL the
relevant columns from the table that will be useful for answering the
questions. Use Hint for additional context which helps in disambiguating
the column names.

Questions: {sub questions}
Hint: {evidence}

Table Content: {json schema}
Primary Keys: {primary keys}

[Output Format]:
1. Output only a JSON object with the relevant columns, in the following

format (start with °~ “json and end with " 7):
" Json
[
{
"question": "first sub-question",
"relevant columns": ["relevant original column name 1",
"relevant original_coiumn_name 2%, saoly - -
"reasoning": "a single line reasoning for why the columns are
relevant."
}I
"question": "second sub-question",
"relevant columns": ["relevant original column name 1",
"relevant original column name 2", ...],
"reasoning": "a single line reasoning for why the columns are
relevant."
}I
]
2. If no columns are relevant return an empty list [] in

relevant columns.

[Instructions]:

1. Use "column name", "column description", "value description", and
"sample values" to determine which columns are necessary.

2. Double check the generated JSON is syntactically correct. Only add
commas (,) when you are required to separate data in JSON.

3. Ensure the selected columns are consistent with the given table
content, i.e., make sure the selected columns exist in the table.

4. Ensure the column names are exactly as specified in the schema,
especially those that contain whitespaces and brackets.

5. Strictly adhere to the above output format. Do not include any
additional text or information.

[Response] :

Figure 5: Column Selector Table Prompt

16

4 I

[Task] : Refine the schema to include only the necessary tables and
columns required to generate an SQL query for the given natural language
question.

Question: {question}

Hint: {evidence}

Database Schema: {json schema}
Primary Keys: {primary keys}
Foreign Keys: {foreign keys}

[Instructions]:

1. Identify Required Columns: Use "column description",

"value description", and "sample values" to determine which columns are
necessary.

2. Select Relevant Tables: Choose tables that contain the identified
columns. Ensure that the necessary relationships between tables are
maintained using primary and foreign keys.

3. Prune Unnecessary Elements: Remove tables and columns from the schema
that are not required for generating the SQL query.

4. Make sure the refined schema is consistent with the given schema,
i.e., make sure the columns exist in the provided schema.

5. Ensure the column names are exactly as specified in the schema.
Especially column names that contain whitespaces and brackets.

6. Ensure the generated JSON is syntactically correct. The property name
should be enclosed in double quotes.

[Output Format]:
Output the refined schema, ensuring only the required tables and columns

are included, in the following JSON format (start with °~° “json and end
with ~°7):
" “Jjson
{
"reasoning": "reasoning for why tables and/or columns were

removed in a single line.",
"relevant schema": {
"relevant table 1": ["relevant original column name 1",
"relevant original column name 2", ...],
"relevant table 2": ["relevant original column name 1",
"relevant original column name 2", ...],

[Response] :

- J

Figure 6: Schema Refiner Prompt

17

/?&ask]: Decompose the given Question into meaningful sub-questions and A\\
generate corresponding sub-SQL queries until the SQL corresponding to the
Question is generated. Generate the sglite query based on the given
question, hint, and database schema. Use primary and foreign keys to
ensure proper joins.

[Instructions]:

1. Use the question to determine the main objective of the query.

2. Use the hint to disambiguate column names and ensure the correct
columns are selected.

3. Identify the root verb, subject, object, named entities, and key
phrases and use that to construct the query conditions.

4. Use the primary and foreign keys to define the necessary joins between
tables.

5. Ensure that the column names and table names with whitespaces or
special characters are surrounded by backticks (). Example: “County
Name " .

6. Refer to the Schema Information for details regarding the tables and
column names.

7. Only include relevant tables and columns needed for generating the
query.

8. If you are doing a logical operation on a column, such as mathematical
operations and sorting, make sure to filter null values within those
columns.

9. Construct and output the SQL query.

10. Strictly adhere to the below output format. Do not include any
additional text or information.

[Output format]:

1. Output in the following JSON format (start with ° " “json and end with
Sy
" “json
{
"first": {
"question": <sub-question 1>,
"SQL": "sub-SQL 1 in a single line"
by
"second": {
"question": <sub-question 2>,
"SQL": "sub-SQL 2 in a single line"

by

2. Ensure the generated JSON is syntactically correct. The property name
should be enclosed in double quotes. Only add commas (,) when you are
required to separate data in JSON.

[Example] :
{example}

Now solve the following Question similarly:

Question: {question}
Hint: {evidence}
Database Schema:
{schema}

{?tput: ,/

Figure 7: SQL Generator Prompt

18

- ™

[Task] : Verify whether the predicted SQL query is appropriate for
answering the provided question. Conduct a thorough evaluation based on
the schema, hint, and key relationships.

[Inputs] :

- Question: {question}

- Schema: {pred schema}

- Hint (Evidence): {evidence}
- Predicted SQL: {pred sql}

- Sqlite3 Error: {pred error}

[Instructions]:

1. SQL Query Accuracy: Analyze the predicted SQL query to determine if it
correctly answers the question based on the given schema and question
context.
2. Schema Alignment: Verify that the SQL query properly references the
correct tables and columns from the schema. Ensure that the query covers
all necessary attributes, joins, and conditions.
3. Key Relationships: Check that the predicted SQL respects primary and
foreign key constraints, ensuring proper relationships between tables.
4. Hint Validation: Compare the predicted SQL to the provided hint and
ensure that the query reflects any key information or requirements
mentioned in the hint.
5. Feedback Generation: Provide thorough feedback covering:

- Correct elements in the SQL query.

- Any missing or incorrect components (e.g., tables, joins,
conditions) .

- Suggestions for improving the SQL to better match the question.

[Feedback] :

. J

Figure 8: SQL Critic Agent Prompt

19

Task: \\

Analyze the input and determine if any columns from the available schema
should be added to the filtered schema to improve SQL generation
accuracy. Provide a brief justification for each suggested addition.

Input:

1. Available schema: [List of columns not in the filtered schema]
2. Filtered schema: [List of columns already selected]

3. User question: [The natural language query]

4. Evidence: [Any relevant context or information]

5. Primary and foreign keys: [List of primary and foreign key

relationships]

Guidelines:

1. Focus on columns that are likely to be necessary for the SQL query
based on the user question and available information.

2. Consider relationships between tables when suggesting columns.

3. Provide concise justifications, typically one sentence per column.

Output format:
Return a JSON object with the following structure:
{
"additional columns": [
{
"column name": "string",
"justification": "string"

by

If no additional columns are needed, return an empty list for
"additional columns".

Example output:
{example}

Now, based on the input provided, suggest any additional columns that
should be included in the schema without generating any preamble.

Input:

Available schema: {available schema}
Filtered schema: {filtered schema}
Primary Keys:{primary keys}

Foreign Keys:{foreign keys}

User question: {gquestion}

Evidence: {evidence}

Output:

- /

Figure 9: Schema Critic Prompt

20

	Introduction
	Related Work
	Methodology
	Sub-Question Generator
	Column Selector
	Schema Refiner
	Schema Critic
	SQL Generator
	SQL Critic

	Experiments, Results and Analysis
	Datasets
	Metrics
	Baselines and Variations
	Results
	Comparison with the Oracle Baseline
	Impact of Query Decomposition and Schema Critic
	Impact of SQL Critic

	Impact of Query Decomposition and Critic agents on Query Complexity
	Impact of Using Small Agents vs. Larger Models on NL-to-SQL
	Qualitative Analysis of the Effectiveness of Schema Critic

	Conclusion and Future Work
	Performance Comparison with and without Query Decomposition
	Performance Comparison with and without Schema Critic
	Implementation Details
	Comparison of State-of-the-Art Methods on the BIRD
	Prompts Used for Various Modules

