
Divide and Conquer: Harnessing Small Agents for Schema Extraction in
NL-to-SQL Generation

Anonymous ACL submission

Abstract

Large Language Models have shown001
remarkable promise in various code generation002
tasks, particularly in SQL generation. However,003
much like other structured query generation004
tasks, SQL generation presents the unique005
challenge of extracting the correct schema006
to achieve good performance. Despite being007
a critical component of the process, the008
problem of schema extraction has received009
little attention, especially when it comes to010
Small Language Models 1. In this paper,011
we propose LiteMARS: Lite Multi-Agent012
Recall Oriented System, to the best of our013
knowledge, the first multi-agent framework014
to incorporate schema linking that leverages015
question decomposition for the task of Natural016
Language to SQL (NL-to-SQL). LiteMARS017
operates as a multi-agent pipeline with018
three key stages: natural language query019
decomposition, schema linking, and SQL020
generation. Notably, LiteMARS introduces021
a novel critic-based one-step refinement022
process, enhancing schema extraction and SQL023
generation. In experiments, we found that024
critic-based refinement significantly improved025
column recall by 26.6% and execution accuracy026
by 73.4% for NL-to-SQL generation. Further027
analysis shows that our LiteMARS agent028
achieves comparable performance to Large029
Language Models like DeepSeek-Coder-33B.030

1 Introduction031

Many organizations and businesses today would032

not exist without gathering and maintaining large033

amounts of data. SQL is one of the most common034

ways to query these data. However, manually035

writing SQL to navigate the complexities of data036

schemas is both time-consuming and error-prone,037

making NL-to-SQL systems an attractive solution.038

Towards this end, LLMs have recently shown039

1In this work, we define language models with fewer than
10 billion parameters as Small Language Models (SLMs).

great success in a variety of translation and code 040

generation tasks, including the NL-to-SQL task 041

(Chen et al., 2021; Shi et al., 2020; Yu et al., 2018; 042

Li et al., 2023c; Zhong et al., 2017). 043

However, unlike typical translation and code 044

generation tasks, the task of generating SQL 045

brings a unique and important challenge that is 046

unaddressed by the current NL-to-SQL language 047

model agents. This challenge is schema linking 048

i.e., the process of identifying and extracting 049

relevant columns from the database schema given 050

the natural language prompt. In an NL-to-SQL task, 051

accurate schema linking is crucial to ensure that 052

the final SQL query is both relevant and executable 053

(Chen et al., 2020). 054

Although several related efforts and directions 055

exist, none address the question of schema linking 056

satisfactorily: (1) One candidate approach is to 057

provide the entire schema to the model’s prompt. 058

However, in most language models, especially the 059

smaller models, the context window size is limited. 060

As such, it is often infeasible to include the entire 061

schema within the model’s prompt. (2) Some 062

recent works (Maamari et al., 2024) have argued 063

that schema linking is unnecessary for models 064

with large context windows and advanced SQL 065

generation capabilities. However, this approach 066

is not applicable for smaller models with fewer 067

parameters (e.g., Llama-3.1-8B or Mistral-7B) 068

that lack the flexibility and size of proprietary 069

models such as GPT-4 and Gemini (Achiam et al., 070

2023; Team et al., 2023). (3) Some works 071

have approached this problem tangentially by 072

performing question decomposition to break down 073

complex questions into manageable sub-questions 074

(Wang et al., 2024; Pourreza and Rafiei, 2024a). 075

They applied question decomposition during the 076

SQL generation stage rather than the schema 077

linking stage, and question decomposition alone 078

does not directly tackle the schema-linking 079

problem. 080

1

In this work, we propose LiteMARS agent, the081

first multi-agent framework that leverages schema082

linking for the NL-to-SQL task. LiteMARS consists083

of a multi-agent pipeline consisting of (1) a natural084

language query decomposition stage, (2) a schema085

linking stage, and (3) a SQL generation stage.086

Importantly, LiteMARS leverages two critics for087

performing refinement within this pipeline. The088

Schema Critic agent reviews the extracted schema089

and refines the schema within the schema linking090

stage. The SQL Critic agent reviews the generated091

SQL to refine it within the SQL generation stage.092

In experiments, we note that this critic-based093

refinement produces significantly improved column094

recall and execution accuracy for NL-to-SQL095

generation, even for small open-source models with096

limited parameters.097

Our contributions are:098

1. LiteMARS, the first agent that integrates099

natural language query decomposition (QD), a100

schema refinement module (Schema Refiner),101

and a schema critiquing mechanism (Schema102

Critic) at the Schema Linking stage.103

2. Multi-agent framework that achieves an104

improvement of 28.1% in execution accuracy105

with Llama-3.1-8B, 73.4% with Mistral-7B,106

and 62.1% with Granite-8B models over their107

Vanilla counterpart (refer 4.3). For Mistral-7B,108

this includes a 54.6% improvement from QD109

+ Schema Critic alone.110

3. Detection and correction of SQL errors111

by our novel SQL Critic agent, based on112

execution feedback in the SQL generation113

phase, result in a 19.2% improvement in114

execution accuracy for models with limited115

SQL generation capabilities, providing a116

robust solution.117

2 Related Work118

SLM for NL-to-SQL: Recent years have119

witnessed a significant shift towards using large120

language models (LLMs) for NL-to-SQL tasks,121

with impressive results (Gao et al. (2023); Pourreza122

and Rafiei (2024a); Dong et al. (2023); Sun et al.123

(2023); Pourreza et al. (2024a)). However, the124

computational costs and potential privacy concerns125

associated with these models have motivated126

research into more efficient alternatives. Li et al.127

(2024a) introduced CodeS, a series of SLMs128

specifically designed for SQL generation. Their129

work demonstrated that SLMs, when properly 130

trained, can achieve competitive performance on 131

challenging benchmarks like Spider (Yu et al., 132

2018) and BIRD (Li et al., 2024b). Similarly, 133

Pourreza and Rafiei (2024b) proposed DTS-SQL, 134

which employs supervised fine-tuning on smaller 135

models to narrow the performance gap with larger 136

models. With the latest SLM, which achieves 137

higher performance than the model double or triple 138

its size (Team (2024); Microsoft (2024)), we can 139

see a growing trend towards developing more 140

efficient and accessible NL-to-SQL solutions using 141

it, which aligns with our work’s objectives. 142

Schema Linking Techniques: Schema linking, 143

the task of mapping natural language elements 144

to database schema components, has long been 145

considered a critical step in NL-to-SQL pipelines 146

(Lewis (2019)). Traditional approaches often 147

relied on string matching or learned embeddings 148

to identify relevant schema elements (Guo et al. 149

(2019); Bogin et al. (2019); Wang et al. (2019); Li 150

et al. (2023b)). More recently, LLM-based methods 151

have shown promise in this area. Talaei et al. 152

(2024) and Pourreza and Rafiei (2024b) proposed 153

using LLMs for hierarchical retrieval of schema 154

components. However, Maamari et al. (2024) 155

challenged the conventional wisdom surrounding 156

schema linking, arguing that for state-of-the-art 157

LLMs, schema linking might be unnecessary or 158

even detrimental when the entire schema fits within 159

the model’s context window. 160

Query Decomposition: Query decomposition 161

has emerged as a powerful technique to improve 162

NL-to-SQL performance, especially for complex 163

queries. Pourreza and Rafiei (2024a) introduces 164

query classification and decomposition module that 165

decomposes based on the task complexity. Further, 166

Wang et al. (2024) proposes an agent-based 167

framework that decomposes complex questions 168

into simpler sub-questions before SQL generation. 169

While these works primarily focus on decomposing 170

the natural language query or the overall task, 171

our approach uniquely applies decomposition 172

techniques to the schema linking phase, offering a 173

novel perspective on this crucial step. 174

LLM-based Agents: The concept of 175

LLM-based agents, where language models 176

are employed as autonomous or semi-autonomous 177

entities capable of reasoning, planning, and 178

interacting with their environment, has gained 179

significant traction across various NLP tasks (Qian 180

et al. (2023); Zhou et al. (2023); Xu et al. (2023)). 181

2

Figure 1: Overview of our proposed LiteMARS Agent for NL-to-SQL Generation.

Initially, most agents were constructed using large,182

proprietary models (Li et al. (2023a); Wu et al.183

(2023); Zhou et al. (2024)) to facilitate complex184

instruction following. More recently, however,185

SLM-based agents (Liang et al. (2024); Zeng186

et al. (2023); Chen et al. (2024)) have emerged187

due to their competitiveness with closed models.188

Nevertheless, the application of multi-agent189

frameworks in the NL-to-SQL domain remains190

relatively unexplored. While Wang et al. (2024)191

introduced an early agent-based approach, it192

did not fully exploit the potential benefits of193

query decomposition techniques or incorporate194

critique mechanisms for the schema linking phase.195

Our work addresses this gap by incorporating196

a sub-question generator and a schema critique197

agent, enabling reflection (Shinn et al. (2023);198

Madaan et al. (2024); Asai et al. (2023)) and199

refinement of the schema extracted by the schema200

refiner module.201

3 Methodology202

We propose LiteMARS agent into NL-to-SQL203

generation pipeline consisting of six modules:204

Natural Language Query Decomposition, Column205

Selector, Schema Refiner, Schema Critic, SQL206

Generator, and SQL Critic. We use Natural207

Language Query Decomposition, Column Selector,208

Schema Refiner, and Schema Critic to improve209

schema linking. SQL Critic and SQL Generator210

agents are used to improve NL-to-SQL generation.211

In the figure 1, we show how different agents212

interact in a collaborative way to improve213

NL-to-SQL generation.214

Before delving into the technical details of our215

method, we first outline the Problem Statement:216

Task: To convert a given Natural Language (NL)217

Query to its corresponding SQL Query that can be218

executed on a relational database.219

Input: NL Query (q) and a database (D).220

Output: SQL Query (Ŝ) corresponding to the 221

NL Query. 222

3.1 Sub-Question Generator 223

Sub-question generator step involves breaking 224

down the original natural language question q into 225

simpler sub-questions q1, q2, . . . , qn, allowing the 226

model to focus on retrieving the relevant schema 227

components for each sub-question. Formally, given 228

a natural language query q, we decompose it 229

into a set of sub-questions {qi}ni=1, where each 230

sub-question qi addresses a specific aspect of q. 231

The decomposition can be expressed as: 232

QD(q) = {q1, q2, . . . , qn} 233

Here, QD represents the question decomposition 234

function. The key idea is to improve the column 235

recall rate (the proportion of relevant columns 236

selected from the total relevant columns) by 237

ensuring that each sub-question focuses on a 238

smaller portion of the aspects of the given question. 239

3.2 Column Selector 240

The Column Selector module retrieves a set of 241

relevant columns for each sub-question generated 242

in the previous stage. The goal is to maximize 243

the column recall rate, without overly penalizing 244

the selection of irrelevant columns with carefully 245

designed prompts (refer Figure 4, 5). Let Ci denote 246

the set of columns selected for sub-question qi, and 247

let C represent the set of all columns in the database 248

schema. The selected schema can be represented 249

as: 250

D =
n⋃

i=1

Ci 251

where D is the selected schema. 252

Let S be the column selection function, which 253

retrieves all columns c ∈ C that are relevant to 254

the sub-question qi. Then according to the context 255

3

window size of different Language Models, the256

column selection task can be defined as follows.257

For small context windows: When working258

with small models (e.g., Llama-3-8B), the context259

window might not accommodate the entire schema.260

In such cases, the model iterates over each table261

Tj ∈ T , where T represents the set of all tables in262

the database. The task of the model is then to select263

relevant columns Cj
i from table Tj for sub-question264

qi:265

Cj
i = S(qi, Tj)266

267

Ci =
⋃

j:Tj∈T
Cj
i268

For large context windows: For models with269

larger context windows (e.g., Llama-3.1-8B), it is270

feasible to provide the entire schema to the model.271

In this case, the module selects relevant columns272

from the entire schema rather than table-specific273

columns:274

Ci = S(qi, C)275

3.3 Schema Refiner276

The Schema Refiner prunes the set of columns277

selected by the Column Selector. Given the pruned278

schema, the refiner removes columns that are not279

essential for the final SQL generation thereby280

aiding in increasing column precision rate. The281

Schema Refiner takes as input the selected schema282

D and the original question q, and outputs a refined283

schema D′ where:284

D′ = R(D, q)285

Here, R represents the refinement function that286

removes unnecessary columns.287

3.4 Schema Critic288

The Schema Critic Agent reviews the extracted289

schema and assesses the columns that were not290

initially selected to determine if any relevant291

columns were mistakenly omitted. This additional292

step is aimed at improving the column recall,293

ensuring that all necessary columns for SQL294

generation are included. The process of critiquing295

serves as a safeguard against potential omissions by296

the Schema Refiner. The input to this agent is D′,297

the schema produced by the Schema Refiner, and298

the output is D̂, the further refined schema, defined299

as:300

D̂ = Csch(D′, q) 301

Where Csch represents the schema Critic 302

function based on the input schema D′ and the 303

query q. 304

3.5 SQL Generator 305

Using the refined schema D̂, the SQL Generator 306

produces the SQL query Ŝgen based on the original 307

question q. Formally, the SQL generation process 308

can be defined as: 309

Ŝgen = G(q, D̂) 310

where G is the SQL generation function. The 311

generated SQL Ŝgen is then executed against the 312

database, and any execution error e is recorded. 313

3.6 SQL Critic 314

To improve the performance further, we introduce a 315

SQL Critic agent which takes the original question 316

q, the refined schema D̂, the generated SQL 317

Ŝgen, and the execution error e (if any) as inputs, 318

and produces a corrected SQL Ŝ by identifying 319

potential mistakes in the SQL query: 320

Ŝ = Csql(q, D̂, Ŝgen, e) 321

where Csql is the SQL Critic function that 322

modifies Ŝgen to generate Ŝ, the final predicted 323

SQL. 324

It is important to note that our experiments 325

revealed higher scores when using the refined 326

queries generated by the SQL Critic agent, even 327

in cases where the SQL query produced by the 328

SQL Generator was free of execution errors. 329

Consequently, all the results presented in this work 330

are based on this setting. 331

The methodology described above mimics 332

human reasoning in complex tasks like NL-to-SQL 333

by incorporating Question Decomposition at the 334

Schema Linking stage. This approach increases 335

column recall and improves the overall execution 336

accuracy, especially for Small Language Models 337

with low SQL generation capabilities. 338

4 Experiments, Results and Analysis 339

4.1 Datasets 340

Our evaluation utilized two challenging and widely 341

recognized datasets: Spider and BIRD. Spider, 342

introduced by Yu et al. (2018), is a large-scale 343

cross-domain NL-to-SQL dataset comprising 8,650 344

4

training examples, 1,034 development examples,345

and 2,147 holdout test examples. These span 200346

databases across 138 domains. BIRD, developed347

by Li et al. (2024b), is a more recent benchmark348

dataset consisting of 9,428 training instances, 1,534349

development instances, and 1,789 concealed test350

instances. It covers 95 large databases totaling351

33.4 GB and encompasses over 37 professional352

domains, including blockchain, hockey, healthcare,353

and education. Notably, BIRD features more354

complex SQL queries compared to Spider. All our355

evaluations were conducted on the development356

sets of both Spider and BIRD datasets.357

4.2 Metrics358

We evaluated our pipeline’s performance using the359

official metric of Execution Accuracy (EX) for both360

Spider and BIRD evaluation datasets. EX compares361

the execution output of the predicted SQL query362

against that of the ground truth SQL query on363

given database instances. This metric provides a364

more precise estimate of model performance as365

it accounts for the possibility of multiple valid366

SQL queries for a given question. To assess the367

performance of the schema-linking module, we368

employ two additional metrics: Column Precision369

and Column Recall. Column Precision measures370

the accuracy of the retrieved columns, while371

Column Recall evaluates the completeness of the372

retrieval with respect to the golden oracle schema.373

4.3 Baselines and Variations374

In all the following experiments, we utilized the375

Deepseek-coder-7b-instruct-v1.5 for both SQL376

Generator and the SQL Critic Agent. The377

following settings were compared to evaluate the378

performance of our approach:379

1. Vanilla: In this setting, we employ only380

the Schema Linking without incorporating381

Natural Language Query Decomposition or382

any Critic agents (schema or SQL). This383

serves as our baseline to understand the384

performance of Schema Linking abilities of385

the Small Language Models in isolation.386

2. Vanilla + QD: In this setting, we incorporate387

Natural Language Query Decomposition over388

the Vanilla setting. This serves as our baseline389

for understanding the importance of Schema390

Critic in our pipeline (refer Appendix B).391

3. LiteMARS w/o SQL Critic: In LiteMARS 392

agent, we employ the sub-question generator 393

for NL query decomposition alongside the 394

Schema Critic. This setting aims to 395

investigate the benefits of incorporating both 396

query decomposition and schema Critic on 397

execution accuracy. 398

4. LiteMARS: This is the complete agent in 399

which we integrate the SQL Critic agent. 400

This addition allows us to analyze the 401

combined effect of Query Decomposition, 402

Schema Critic, and SQL Critic on the overall 403

performance of the system. Here, as the 404

only difference from the previous setting is 405

in the addition of SQL Critic, the schema 406

linking related metrics (Column Precision and 407

Column Recall) remains the same. 408

Refer to Appendix C for hyperparameters and 409

implementation details. For comparisons with 410

SoTA refer Appendix D. 411

4.4 Results 412

The following section presents the results obtained 413

from experiments conducted on two datasets, 414

BIRD (Li et al., 2024b) and Spider 1.0 (Yu 415

et al., 2018), using multiple SLMs integrated 416

with Query Decomposer (QD) and Critic Agents. 417

We compared the performance of the models in 418

terms of Execution Accuracy, Column Precision, 419

and Column Recall across different configurations: 420

Vanilla (base model), LiteMARS without SQL 421

Critic (LiteMARS w/o SC), and LiteMARS (the full 422

pipeline). For SQL generation and SQL Critic, the 423

Deepseek-coder-7b-instruct-v1.5 model was used 424

across all experiments. 425

4.4.1 Comparison with the Oracle Baseline 426

As we previously stated, our primary focus is 427

on enhancing the schema linking capabilities 428

of open-source small language models. To 429

evaluate this, we compare LiteMARS with an oracle 430

baseline. In the oracle baseline, we supply the 431

ideal schema derived directly from the ground 432

truth SQL, providing an upper-bound estimate of 433

LiteMARS’s potential. Using this oracle schema 434

with Deepseek-coder-7b-instruct-v1.5 for SQL 435

generation achieves an Execution Accuracy (EX) 436

of 0.3906 on the BIRD dataset. As shown in Table 437

1, employing Llama-3.1-8B for schema linking 438

yields an EX of 0.3643, closely approaching 439

the oracle baseline. Similarly, Mistral-7B and 440

5

Models Execution Accuracy Column Precision Column Recall

Vanilla LiteMARS
w/o SC LiteMARS Vanilla LiteMARS

w/o SC LiteMARS Vanilla LiteMARS
w/o SC LiteMARS

Llama-3.1-8B 0.2501 0.2980 0.3206 0.7340 0.7231 0.7231 0.7926 0.8295 0.8295
Mistral-7B 0.1721 0.2661 0.2985 0.6743 0.7324 0.7324 0.6183 0.7832 0.7832
Granite-8B 0.1421 0.1933 0.2304 0.4244 0.6010 0.6010 0.6105 0.7015 0.7015

Table 1: Experiments on BIRD (Li et al., 2024b) Dataset with different SLMs with QD and Critic Agents. SC: SQL
Critic.

Models Execution Accuracy Column Precision Column Recall

Vanilla LiteMARS
w/o SC LiteMARS Vanilla LiteMARS

w/o SC LiteMARS Vanilla LiteMARS
w/o SC LiteMARS

Llama-3.1-8B 0.4528 0.4971 0.5386 0.5205 0.4501 0.4501 0.6468 0.7073 0.7073
Mistral-7B 0.2985 0.4314 0.4971 0.4424 0.4886 0.4886 0.4954 0.6414 0.6414
Granite-8B 0.3007 0.3600 0.4305 0.2894 0.3425 0.3425 0.4753 0.5319 0.5319

Table 2: Experiments on Spider 1.0 (Yu et al., 2018) Dataset with different SLMs with QD and Critic Agents. SC:
SQL Critic.

Granite-8B demonstrate comparable performance441

highlighting our approach.442

4.4.2 Impact of Query Decomposition and443

Schema Critic444

Table 1 presents the significant improvements445

achieved by the LiteMARS pipeline when evaluated446

on the BIRD dataset. Execution accuracy, a447

critical metric indicative of the model’s capability448

to generate correct SQL queries, demonstrated449

consistent gains across all evaluated models with450

the integration of Query Decomposition (QD)451

and Schema Critic (SC) within the pipeline.452

For example, in the case of Llama-3.1-8B,453

execution accuracy increased from 0.2501 in the454

Vanilla setup to 0.2980 in the LiteMARS w/o455

SC configuration—an improvement exceeding456

19.1%. Similarly, Mistral-7B exhibited a rise457

from 0.1721 to 0.2661 (54.6%), while Granite-8B458

improved from 0.1421 to 0.1933 (36.0%). Detailed459

comparisons of the impact of QD alone are460

provided in Appendix A.461

In addition to execution accuracy, the LiteMARS462

pipeline significantly enhanced column-related463

metrics, which are crucial for accurately464

identifying and linking relevant database columns465

during SQL generation. It is important to note466

that in LiteMARS, since the only addition to467

the LiteMARS w/o SC configuration is the SQL468

Critic (SC), the column-related metrics remain469

unchanged. With the incorporation of Natural470

Language Query Decomposition and Schema471

Critic, Mistral-7B achieved a column recall of 472

0.7832, a substantial improvement over the Vanilla 473

configuration’s 0.6183 (54.6%). Comparable 474

trends were observed for Llama-3.1-8B (4.6% 475

increase) and Granite-8B (14.9% increase). These 476

results underscore the pipeline’s efficacy in 477

improving column recall, which is essential for 478

generating correct SQL queries. 479

However, in terms of column precision, which 480

measures the model’s tendency to select incorrect 481

or irrelevant columns, a slight decrease was 482

observed in some configurations. For instance, 483

in Llama-3.1-8B, column precision dropped from 484

0.7340 in the Vanilla setup to 0.7231 in the 485

LiteMARS w/o SC configuration. Despite this 486

reduction, the pipeline achieved higher execution 487

accuracy, highlighting the importance of column 488

recall rate. 489

4.4.3 Impact of SQL Critic 490

Table 2 corroborates these findings with results 491

from the Spider 1.0 dataset, demonstrating that 492

the LiteMARS pipeline is equally effective across 493

different datasets. On Spider, the Granite-8B model 494

achieved an execution accuracy of 0.4305 with the 495

full LiteMARS pipeline, a significant jump from 496

0.3600 in the LiteMARS w/o SC configuration 497

(19.5%). Similarly, Mistral-7B exhibited an 498

increase from 0.4314 to 0.4971 (15.2%), and 499

Llama-3.1-8B improved from 0.4971 to 0.5386 500

(8.3%) after the addition of SQL Critic.f 501

In summary, the results from both datasets 502

6

Models Simple Moderate Challenging

Vanilla LiteMARS
w/o SC LiteMARS Vanilla LiteMARS

w/o SC LiteMARS Vanilla LiteMARS
w/o SC LiteMARS

QD/SL: Llama-3.1-8B 0.3059 0.3113 0.3643 0.1831 0.1982 0.1724 0.1103 0.1586 0.1517
QD/SL: Mistral-7B 0.2194 0.2594 0.3135 0.1034 0.1250 0.1508 0.0896 0.1241 0.1103
QD/SL: Granite-8B 0.1772 0.2454 0.2875 0.0862 0.1185 0.1443 0.0965 0.1034 0.1448

Table 3: Impact of Query Decomposition (QD) and Critic Agent on Solving Complex Queries on Bird (Li et al.,
2024b) dataset. SC: SQL Critic.

clearly demonstrate that the full LiteMARS pipeline503

is highly effective at improving execution accuracy,504

column recall, and precision, establishing it505

as a comprehensive solution for enhancing the506

performance of small-scale models in NL-to-SQL507

tasks. These gains are not only consistent across508

different datasets but also significant enough to509

illustrate the advantage of using a fully integrated510

pipeline over baseline and partially optimized511

configurations.512

4.5 Impact of Query Decomposition and513

Critic agents on Query Complexity514

Table 3 shows the effects of Query Decomposition515

(QD) and the Critic agent on addressing516

queries of varying complexity—classified as517

Simple, Moderate, and Challenging, utilizing518

the same three Small Language Models (SLMs):519

Llama-3.1-8B, Mistral-7B, and Granite-8B, on520

the BIRD dataset. For simple queries, the521

integration of QD followed by the Critic agent522

yields notable enhancements across all models. For523

instance, Llama-3.1-8B demonstrates an increase524

in performance from 0.3059 (Vanilla) to 0.3643525

(LiteMARS), underscoring the effectiveness of both526

decomposition and the Critic in refining simpler527

queries. In the case of moderate queries, results528

present a more varied picture. Llama-3.1-8B shows529

a slight advantage without SQL Critic, LiteMARS530

w/o SC (0.1982) compared to the LiteMARS531

(0.1724), while Mistral-7B and Granite-8B exhibit532

the most significant enhancements when SQL533

Critic is applied. Mistral-7B’s performance, for534

example, improves from 0.1034 (Vanilla) to 0.1508535

(LiteMARS).536

For challenging queries, both QD and the537

Critic agent significantly enhance the performance538

of models when Granite-8B is employed at the539

schema linking stage. However, for Llama-3.1-8B540

and Mistral-7B, a decrease in performance is541

observed upon incorporating the SQL Critic agent542

into the pipeline. This decline in performance543

for challenging and moderate queries might have 544

been mitigated by utilizing the initial SQL query, 545

provided it had no execution errors. Nevertheless, 546

the refined SQL consistently delivered higher 547

overall execution accuracy. 548

Overall, this table emphasizes the 549

complementary role of both QD and the Critic in 550

managing queries of increasing complexity, with 551

more substantial gains observed in simpler and 552

moderately complex cases. 553

4.6 Impact of Using Small Agents vs. Larger 554

Models on NL-to-SQL 555

In our experiments, we observed that the 556

Llama-3.1-8B model, when integrated with our 557

LiteMARS framework, achieves an execution 558

accuracy comparable to that of the significantly 559

larger Deepseek-coder-33B model. This finding 560

highlights the efficiency and effectiveness of our 561

proposed approach, even when utilizing smaller 562

models with fewer parameters. 563

When providing the complete schema to 564

DeepSeek-Coder-33B, we achieve an execution 565

accuracy of 34.46%. In comparison, our 566

LiteMARS framework with Llama-3.1-8B achieves 567

a competitive execution accuracy of 32.06%. This 568

outcome is particularly significant as it highlights 569

that smaller models, when integrated with an 570

effective framework like LiteMARS, can approach 571

the performance levels of much larger models. 572

Notably, in this setup, the entire schema is directly 573

supplied to the model without schema linking, and 574

the prompt used for the SQL Generator is employed 575

to produce the SQL query. 576

4.7 Qualitative Analysis of the Effectiveness 577

of Schema Critic 578

The Schema Critic demonstrates significant 579

effectiveness in refining the Schema linking 580

process, particularly in handling complex queries 581

such as retrieving the lowest grade for the District 582

Special Education Consortia School with a specific 583

7

Figure 2: An example showing how LiteMARS Agent improves Schema Linking for NL-to-SQL Generation

National Center for Educational Statistics (NCES)584

school district identification number (refer to585

Figure 2). By employing a series of sub-questions,586

the model effectively breaks down the primary587

query into manageable components. For instance,588

the second sub-question identifies the relevant589

school district identification number, while the590

last establishes the connection between the district591

and the school’s name. The final sub-question592

also zeroes in on retrieving the minimum grade,593

guiding the SQL Generator to accurately construct594

the query:595

SELECT T2.‘Low Grade‘ FROM596

frpm AS T2 WHERE T2.‘CDSCode‘597

= (SELECT T1.‘CDSCode‘ FROM598

schools AS T1 WHERE T1.‘NCESDist‘599

= ’0613360’ AND T1.‘EdOpsCode‘ =600

’SPECON’);601

The role of the Schema Critic becomes602

particularly evident when assessing the SQL603

query’s accuracy and schema alignment. The Critic604

not only confirms that the predicted SQL accurately605

reflects the user’s intent but also verifies that it606

adheres to the established schema by appropriately607

referencing the necessary tables and columns.608

For example, the inclusion of the ‘EdOpsCode‘609

column is justified as it is crucial for filtering610

results specific to the type of school queried.611

Additionally, the Critic evaluates the relationships612

between the ‘schools‘ and ‘frpm‘ tables, ensuring613

that the primary and foreign key constraints are614

respected. By generating constructive feedback615

and highlighting any potential improvements, such616

as enhancing query readability with table aliases,617

the Schema Critic reinforces the overall robustness 618

and clarity of the SQL generation process, leading 619

to higher execution accuracy and reliability in 620

complex querying scenarios. 621

5 Conclusion and Future Work 622

This paper presents an effective approach to 623

enhancing Natural Language to SQL (NL-to-SQL) 624

tasks through the integration of Question 625

Decomposition (QD) and a Critic agent within 626

a small language model framework. Our 627

experiments demonstrated that the Llama-3.1-8B 628

model, augmented by the LiteMARS framework, 629

achieves execution accuracies comparable to larger 630

models such as Deepseek-coder-33B, with our 631

model recording an execution accuracy of 32.06% 632

compared to 34.46% for the larger model. These 633

results highlight the potential of smaller models to 634

perform competitively in NL-to-SQL applications, 635

while also showcasing the effectiveness of 636

combining QD and Critic strategies to improve 637

query handling across various complexity levels. 638

As a future work, we will focus on enhancing 639

the performance of our approach. We aim 640

to incorporate additional contextual information 641

to improve accuracy in complex queries and 642

explore the integration of reinforcement learning 643

techniques to optimize the Critic agent’s feedback 644

mechanism. Additionally, we will evaluate 645

the generalizability of our model across diverse 646

datasets beyond the BIRD and Spider datasets. 647

This research advocates for a shift towards more 648

resource-efficient language models that do not 649

compromise performance. 650

8

Limitations651

In this section we elaborate on the limitations652

of our work. First and foremost, while the653

BIRD and Spider datasets provide a robust654

foundation, the model may struggle with rare query655

patterns or domain-specific languages that are656

underrepresented in these datasets. This limitation657

suggests that the model’s effectiveness may not658

generalize well to all real-world applications.659

Additionally, while integrating Query660

Decomposition (QD) and the Critic agent has661

shown to improve performance, the overhead (in662

terms of latency) associated with these processes663

might need to be optimized in scenarios requiring664

real-time SQL generation. Future research should665

explore optimizing these techniques to minimize666

processing time while retaining accuracy. Lastly,667

our experiments primarily focus on a few specific668

small language models. While results indicate669

competitive performance, further studies are670

needed to evaluate the scalability of our approach671

across a broader range of models and architectures,672

ensuring its applicability in various contexts.673

References674

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama675
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,676
Diogo Almeida, Janko Altenschmidt, Sam Altman,677
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.678
arXiv preprint arXiv:2303.08774.679

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and680
Hannaneh Hajishirzi. 2023. Self-rag: Learning to681
retrieve, generate, and critique through self-reflection.682
arXiv preprint arXiv:2310.11511.683

Ben Bogin, Matt Gardner, and Jonathan Berant.684
2019. Global reasoning over database685
structures for text-to-sql parsing. arXiv preprint686
arXiv:1908.11214.687

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming688
Yuan, Henrique Pondé, Jared Kaplan, Harrison689
Edwards, Yura Burda, Nicholas Joseph, Greg690
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,691
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela692
Mishkin, Brooke Chan, Scott Gray, Nick Ryder,693
Mikhail Pavlov, Alethea Power, Lukasz Kaiser,694
Mohammad Bavarian, Clemens Winter, Philippe695
Tillet, Felipe Petroski Such, David W. Cummings,696
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes,697
Ariel Herbert-Voss, William H. Guss, Alex Nichol,698
Igor Babuschkin, Suchir Balaji, Shantanu Jain,699
Andrew Carr, Jan Leike, Joshua Achiam, Vedant700
Misra, Evan Morikawa, Alec Radford, Matthew M.701
Knight, Miles Brundage, Mira Murati, Katie Mayer,702
Peter Welinder, Bob McGrew, Dario Amodei, Sam703

McCandlish, Ilya Sutskever, and Wojciech Zaremba. 704
2021. Evaluating large language models trained on 705
code. ArXiv, abs/2107.03374. 706

Wenhu Chen, Xiang Lin, Yuwei Ma, Xinyi Li, Raymond 707
Mooney, and William Yang Wang. 2020. Language 708
models are few-shot table reasoners. In Proceedings 709
of the 2020 Conference on Empirical Methods 710
in Natural Language Processing (EMNLP), pages 711
7485–7498. 712

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei 713
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and 714
Feng Zhao. 2024. Agent-flan: Designing data and 715
methods of effective agent tuning for large language 716
models. arXiv preprint arXiv:2403.12881. 717

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, 718
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023. 719
C3: Zero-shot text-to-sql with chatgpt. arXiv 720
preprint arXiv:2307.07306. 721

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 722
Yichen Qian, Bolin Ding, and Jingren Zhou. 723
2023. Text-to-sql empowered by large language 724
models: A benchmark evaluation. arXiv preprint 725
arXiv:2308.15363. 726

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, 727
Jian-Guang Lou, Ting Liu, and Dongmei Zhang. 728
2019. Towards complex text-to-sql in cross-domain 729
database with intermediate representation. arXiv 730
preprint arXiv:1905.08205. 731

M Lewis. 2019. Bart: Denoising sequence-to-sequence 732
pre-training for natural language generation, 733
translation, and comprehension. arXiv preprint 734
arXiv:1910.13461. 735

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii 736
Khizbullin, and Bernard Ghanem. 2023a. Camel: 737
Communicative agents for” mind” exploration of 738
large language model society. Advances in Neural 739
Information Processing Systems, 36:51991–52008. 740

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 741
2023b. Resdsql: Decoupling schema linking and 742
skeleton parsing for text-to-sql. In Proceedings 743
of the AAAI Conference on Artificial Intelligence, 744
volume 37, pages 13067–13075. 745

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, 746
Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan 747
Pan, Cuiping Li, and Hong Chen. 2024a. Codes: 748
Towards building open-source language models for 749
text-to-sql. Proceedings of the ACM on Management 750
of Data, 2(3):1–28. 751

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua 752
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying 753
Geng, Nan Huo, et al. 2024b. Can llm already serve 754
as a database interface? a big bench for large-scale 755
database grounded text-to-sqls. Advances in Neural 756
Information Processing Systems, 36. 757

9

Xinya Li, Hanjie Sun, Alexey Protasov, Yuan Shi,758
and Lei Qiu. 2023c. Crescendo: Improving759
text-to-sql semantic parsing via multi-granularity760
schema linking. In Proceedings of the 61st761
Annual Meeting of the Association for Computational762
Linguistics (ACL).763

Xuechen Liang, Meiling Tao, Yinghui Xia, Tianyu764
Shi, Jun Wang, and JingSong Yang. 2024. Cmat:765
A multi-agent collaboration tuning framework for766
enhancing small language models. arXiv preprint767
arXiv:2404.01663.768

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,769
and Amine Mhedhbi. 2024. The death of schema770
linking? text-to-sql in the age of well-reasoned771
language models. Preprint, arXiv:2408.07702.772

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler773
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,774
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,775
et al. 2024. Self-refine: Iterative refinement with776
self-feedback. Advances in Neural Information777
Processing Systems, 36.778

Microsoft. 2024. Discover the new multi-lingual,779
high-quality phi 3.5 slms. Accessed: 2024-10-16.780

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,781
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok782
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan,783
and Sercan O Arik. 2024a. Chase-sql:784
Multi-path reasoning and preference optimized785
candidate selection in text-to-sql. arXiv preprint786
arXiv:2410.01943.787

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,788
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok789
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and790
Sercan O. Arik. 2024b. Chase-sql: Multi-path791
reasoning and preference optimized candidate792
selection in text-to-sql. Preprint, arXiv:2410.01943.793

Mohammadreza Pourreza and Davood Rafiei. 2024a.794
Din-sql: decomposed in-context learning of795
text-to-sql with self-correction. In Proceedings of the796
37th International Conference on Neural Information797
Processing Systems, NIPS ’23, Red Hook, NY, USA.798
Curran Associates Inc.799

Mohammadreza Pourreza and Davood Rafiei. 2024b.800
Dts-sql: Decomposed text-to-sql with small large801
language models. ArXiv, abs/2402.01117.802

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,803
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong804
Sun. 2023. Communicative agents for software805
development. arXiv preprint arXiv:2307.07924, 6:3.806

Tao Shi, Xi Victoria Lin, Tatsunori Yeh, Huan Sun,807
Chin-Yew Lee, and Xiang Ren. 2020. Learning808
compositional representations for few-shot natural809
language to sql task. In Proceedings of the810
2020 Conference on Empirical Methods in Natural811
Language Processing (EMNLP), pages 487–498.812

Noah Shinn, Federico Cassano, Beck Labash, Ashwin 813
Gopinath, Karthik Narasimhan, and Shunyu Yao. 814
2023. Reflexion: Language agents with verbal 815
reinforcement learning.(2023). arXiv preprint 816
cs.AI/2303.11366. 817

Ruoxi Sun, Sercan Ö Arik, Alex Muzio, Lesly 818
Miculicich, Satya Gundabathula, Pengcheng Yin, 819
Hanjun Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng 820
Wang, et al. 2023. Sql-palm: Improved large 821
language model adaptation for text-to-sql (extended). 822
arXiv preprint arXiv:2306.00739. 823

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen 824
Chang, Azalia Mirhoseini, and Amin Saberi. 2024. 825
Chess: Contextual harnessing for efficient sql 826
synthesis. arXiv preprint arXiv:2405.16755. 827

Gemini Team, Rohan Anil, Sebastian Borgeaud, 828
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 829
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 830
Anja Hauth, et al. 2023. Gemini: a family of 831
highly capable multimodal models. arXiv preprint 832
arXiv:2312.11805. 833

Qwen Team. 2024. Qwen2.5: A party of foundation 834
models. 835

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr 836
Polozov, and Matthew Richardson. 2019. Rat-sql: 837
Relation-aware schema encoding and linking for 838
text-to-sql parsers. arXiv preprint arXiv:1911.04942. 839

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, 840
Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen 841
Zhang, Di Yin, Xing Sun, and Zhoujun Li. 2024. 842
Mac-sql: A multi-agent collaborative framework for 843
text-to-sql. Preprint, arXiv:2312.11242. 844

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran 845
Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, 846
Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. 847
Autogen: Enabling next-gen llm applications via 848
multi-agent conversation framework. arXiv preprint 849
arXiv:2308.08155. 850

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata 851
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023. 852
Rewoo: Decoupling reasoning from observations for 853
efficient augmented language models. arXiv preprint 854
arXiv:2305.18323. 855

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 856
Dongxu Wang, Zifan Li, James Ma, Irene Li, 857
Qingning Yao, Shanelle Roman, Zilin Zhang, and 858
Dragomir Radev. 2018. Spider: A large-scale 859
human-labeled dataset for complex and cross-domain 860
semantic parsing and text-to-SQL task. In 861
Proceedings of the 2018 Conference on Empirical 862
Methods in Natural Language Processing, pages 863
3911–3921, Brussels, Belgium. Association for 864
Computational Linguistics. 865

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao 866
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning: 867
Enabling generalized agent abilities for llms. arXiv 868
preprint arXiv:2310.12823. 869

10

https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://api.semanticscholar.org/CorpusID:267406644
https://api.semanticscholar.org/CorpusID:267406644
https://api.semanticscholar.org/CorpusID:267406644
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

Victor Zhong, Caiming Xiong, and Richard Socher.870
2017. Seq2sql: Generating structured queries from871
natural language using reinforcement learning. In872
Proceedings of the 2017 Conference on Empirical873
Methods in Natural Language Processing (EMNLP),874
pages 744–755.875

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,876
Haohan Wang, and Yu-Xiong Wang. 2023. Language877
agent tree search unifies reasoning acting and878
planning in language models. arXiv preprint879
arXiv:2310.04406.880

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen,881
Heng-Tze Cheng, Quoc V Le, Ed H Chi, Denny882
Zhou, Swaroop Mishra, and Huaixiu Steven Zheng.883
2024. Self-discover: Large language models884
self-compose reasoning structures. arXiv preprint885
arXiv:2402.03620.886

A Performance Comparison with and887

without Query Decomposition888

In Table 4, we compare the performance of several889

models on the BIRD dataset, both with and without890

Query Decomposition (QD). The results highlight891

the effectiveness of the QD method, particularly in892

improving execution accuracy and column recall.893

Please note that w/o QD is the Vanilla setting894

mentioned in the baselines section ??.895

For instance, using Llama-3-70B, QD boosts896

execution accuracy by 33.74%, demonstrating the897

substantial impact of employing a decomposition898

approach at the schema linking stage. This899

method enhances the model’s ability to decompose900

complex natural language questions and link them901

to the appropriate data schema, resulting in more902

accurate SQL generation.903

One key observation from the results is the904

importance of column recall in generating correct905

SQL queries. Column recall measures the model’s906

ability to correctly identify all relevant columns907

required to form the SQL query. Missing even a908

single column typically results in an incorrect SQL909

query, and the tables confirm that higher column910

recall generally correlates with better execution911

accuracy.912

Interestingly, we see that as model size increases,913

the ability to recall the correct columns also914

improves. Though Llama-3.1-8B achieves a915

column recall score comparable to that of the916

larger Llama-3-70B, its execution accuracy is lower.917

This suggests that Llama-3.1-8B’s SQL generation918

capabilities are limited despite its strong schema919

linking, indicating a gap in reasoning or query920

construction. In contrast, the Llama-3.1-70B921

model shows minimal improvement with QD, 922

likely because it already exhibits strong reasoning 923

abilities, requiring less decomposition to perform 924

well. 925

In some cases, precision without QD is higher, 926

indicating that while the model selected fewer 927

columns, they were more likely to be correct. 928

However, this also means that some important 929

columns were missed, explaining why the precision 930

score was not always accompanied by a higher 931

execution accuracy. This highlights the trade-off 932

between precision and recall in SQL generation 933

tasks. 934

B Performance Comparison with and 935

without Schema Critic 936

Table 5 demonstrates that incorporating the Schema 937

Critic improves performance across all models. 938

Granite-8B exhibits the most significant gains in 939

Execution Accuracy (EX) and Column Precision, 940

with improvements of 21.19% and 15.73%, 941

respectively. For Column Recall, Mistral benefits 942

the most, achieving a 24.52% improvement. In 943

contrast, the newer Llama-3.1-8B model shows 944

comparatively smaller gains. To make it clear the 945

w/o SchC is our Vanilla + QD setting that we have 946

mentioned in the section ?? and w/ SchC is the 947

LiteMARS w/o SC setting 948

C Implementation Details 949

The context length varied among the models: 950

Llama v3 models feature an 8k context length, 951

while Llama v3.1 models extend this to a 952

maximum of 128k. The Deepseek-coder language 953

models offer context lengths of 4k and 16k 954

for their Small and Large versions, respectively. 955

The ibm-granite-8b model supports an extensive 956

context length of 128k, and the mistral-7b 957

accommodates a 32k context limit. 958

All experiments were conducted using Nvidia 959

Tesla A100 GPUs with a batch size of 4. We 960

implemented the Fully Sharded Data Parallel 961

(FSDP) technique available in the HuggingFace 962

accelerator with default settings to optimize our 963

computational resources and enhance training 964

efficiency. We employed greedy decoding for 965

reproducibility, i.e., do sample parameter is set to 966

False. 967

11

Models Execution Accuracy Column Precision Column Recall
w/o QD w/ QD w/o QD w/ QD w/o QD w/ QD

Llama-3-8B 0.1621 0.1738 0.7421 0.7674 0.6425 0.6697
Llama-3.1-8B 0.2464 0.2626 0.7340 0.7221 0.7926 0.8206
Llama-3-70B 0.2924 0.3900 0.6310 0.5567 0.7692 0.8314

Llama-3.1-70B 0.4970 0.5000 0.8700 0.8942 0.8470 0.8563

Table 4: Comparison of models with and without Question Decomposition (QD) on the BIRD dataset using the
Llama family of models. QD refers to Question Decomposition. In this experiment, the same model was used
across all modules. Notably, for Llama-3.1-8B, the scores for the w/o QD setup in this table differ from the Vanilla
scores in Table 1, as the latter utilized the DeepSeek-Coder-7B model for SQL generation.

Models Execution Accuracy Column Precision Column Recall
w/o SchC w/ SchC w/o SchC w/ SchC w/o SchC w/ SchC

Llama-3.1-8B 0.2626 0.2980 0.7221 0.7231 0.8206 0.8295
Mistral-7B 0.2449 0.2661 0.6919 0.7324 0.6590 0.8206
Granite-8B 0.1595 0.1933 0.5193 0.6010 0.6273 0.7015

Table 5: Comparison of models with and without Schema Critic on the BIRD dataset. SchC: Schema Critic. All
modules utilize the same model.

D Comparison of State-of-the-Art968

Methods on the BIRD969

From Table 6, it is evident that proprietary970

models excel in SQL generation from natural971

language queries and their corresponding databases.972

Among these, CHASE-SQL (Pourreza et al.,973

2024b), a Gemini-based model (Team et al., 2023),974

achieves the highest execution accuracy of 74.46%,975

significantly outperforming other GPT-4-based976

models. This result aligns with expectations,977

given the extensive number of parameters and the978

large-scale data used for training such proprietary979

systems. Notably, CHESS (Talaei et al., 2024)980

employs a multi-agent framework similar to ours981

but leverages much larger models like GPT-4 and982

Llama-3-70B for its experiments. Meanwhile,983

Distillery (Maamari et al., 2024), built on GPT-4o,984

highlights the limitations of schema linking in large985

models, emphasizing its inefficiency in certain986

scenarios.987

Fine-tuned models demonstrate competitive988

performance as well, owing to their task-specific989

optimization for SQL generation. For instance,990

DTS-SQL (Pourreza and Rafiei, 2024b), which991

shares a decomposition-based approach similar992

to ours, divides the NL-to-SQL generation task993

into two key subtasks: Schema Linking and994

SQL Generation. By fine-tuning these modules995

independently, DTS-SQL achieves superior results996

compared to general-purpose models. This997

modular design reflects the advantages of tailoring998

models for specific components of the SQL 999

generation pipeline. 1000

While fine-tuned models and proprietary 1001

systems dominate in terms of execution accuracy, 1002

our approach aims to bridge this gap by improving 1003

reasoning capabilities in smaller, open-source 1004

models using their pretrained knowledge. 1005

12

Category Model Execution Accuracy (EX)

Fine-tuned Models

SFT CodeS-15B (Li et al., 2024a) 58.47%

DTS-SQL + DeepSeek 7B (Pourreza and Rafiei, 2024b) 55.80%

Proprietary-based Models

CHASE-SQL + Gemini (Pourreza et al., 2024b) 74.46%
CHESS + GPT-4 (Talaei et al., 2024) 68.31%

Distillery + GPT-4o (Maamari et al., 2024) 67.21%

Ours LiteMARS + Llama-3.1-8B 32.06%

Table 6: Comparison of State-of-the-Art Methods on the BIRD Dev Dataset based on Execution Accuracy (EX)

E Prompts Used for Various Modules1006

The following figures illustrate the prompts used1007

across different modules in our framework.1008

13

[Task]: Given the following question, decompose it into minimal, linear,
and dependent sub-questions. Each sub-question should logically depend on
the previous one, and the entire sequence should be suitable for
generating an SQL query. The output should be in JSON format for easy
parsing.

[Example]

{example}

Now decompose the following question into the minimal number of linear
and dependent sub-questions, following the specified JSON output (start
with ```json and end with ```) format similarly:

Question: {question}

Figure 3: Sub-question Prompt

14

[Task]: From the provided JSON content of the database schema, extract
ALL the relevant columns from the tables that will be useful for
answering the questions. Use Hint for additional context which helps in
disambiguating the column names.

Questions: {sub_questions}
Hint: {evidence}
Database Schema: {json_schema}
Primary Keys: {primary_keys}
Foreign Keys: {foreign_keys}

[Output Format]:
1. Output only a JSON object with the relevant columns, in the following
format (start with ```json and end with ```):
    ```json
    [
        {
            "first": "first sub question",
            "relevant_schema": {
                "table_name_1": ["relevant original_column_name 1",
"relevant original_column_name 2", ...],
                "table_name_2": ["relevant original_column_name 1",
"relevant original_column_name 2", ...],
                ...
            }
        },
        {
            "second": "second sub-question",
            "relevant_schema": {
                "table_name_1": ["relevant original_column_name 1",
"relevant original_column_name 2", ...],
                "table_name_2": ["relevant original_column_name 1",
"relevant original_column_name 2", ...],
                ...
            }
        },
        ...
    ]
    ```

[Instructions]:
1. Use "column_name", "column_description", "value_description", and
"sample_values" to determine which columns are necessary.
2. Double check the generated JSON is syntactically correct.
3. Ensure the selected columns are consistent with the given table
content, i.e., make sure the selected columns exist in the table.
4. Ensure the columns names are exactly as sepcified in the schema.
Especially columns names which contains whitespaces and brackets.
5. Ensure that the necessary relationships between tables are maintained
using primary and foreign keys.
6. Do not include any additional text or information.

[Response]:

Figure 4: Column Selector Prompt

15

[Task]: From the provided JSON content of the table, extract ALL the
relevant columns from the table that will be useful for answering the
questions. Use Hint for additional context which helps in disambiguating
the column names.

Questions: {sub_questions}
Hint: {evidence}
Table Content: {json_schema}
Primary Keys: {primary_keys}

[Output Format]:
1. Output only a JSON object with the relevant columns, in the following
format (start with ```json and end with ```):
    ```json
    [
        {
            "question": "first sub-question",
            "relevant_columns": ["relevant original_column_name 1",
"relevant original_column_name 2", ...],
            "reasoning": "a single line reasoning for why the columns are
relevant."
        },
        {
            "question": "second sub-question",
            "relevant_columns": ["relevant original_column_name 1",
"relevant original_column_name 2", ...],
            "reasoning": "a single line reasoning for why the columns are
relevant."
        },
        ...
    ]
    ```
2. If no columns are relevant return an empty list [] in
relevant_columns.

[Instructions]:
1. Use "column_name", "column_description", "value_description", and
"sample_values" to determine which columns are necessary.
2. Double check the generated JSON is syntactically correct. Only add
commas (,) when you are required to separate data in JSON.
3. Ensure the selected columns are consistent with the given table
content, i.e., make sure the selected columns exist in the table.
4. Ensure the column names are exactly as specified in the schema,
especially those that contain whitespaces and brackets.
5. Strictly adhere to the above output format. Do not include any
additional text or information.

[Response]:

Figure 5: Column Selector Table Prompt

16

[Task]: Refine the schema to include only the necessary tables and
columns required to generate an SQL query for the given natural language
question.

Question: {question}
Hint: {evidence}
Database Schema: {json_schema}
Primary Keys: {primary_keys}
Foreign Keys: {foreign_keys}

[Instructions]:

1. Identify Required Columns: Use "column_description",
"value_description", and "sample_values" to determine which columns are
necessary.
2. Select Relevant Tables: Choose tables that contain the identified
columns. Ensure that the necessary relationships between tables are
maintained using primary and foreign keys.
3. Prune Unnecessary Elements: Remove tables and columns from the schema
that are not required for generating the SQL query.
4. Make sure the refined schema is consistent with the given schema,
i.e., make sure the columns exist in the provided schema.
5. Ensure the column names are exactly as specified in the schema.
Especially column names that contain whitespaces and brackets.
6. Ensure the generated JSON is syntactically correct. The property name
should be enclosed in double quotes.

[Output Format]:
Output the refined schema, ensuring only the required tables and columns
are included, in the following JSON format (start with ```json and end
with ```):
    ```json
    {
        "reasoning": "reasoning for why tables and/or columns were
removed in a single line.",
        "relevant_schema":{
            "relevant_table_1": ["relevant original_column_name_1",
"relevant original_column_name_2", ...],
            "relevant_table_2": ["relevant original_column_name_1",
"relevant original_column_name_2", ...],
            ...
        }
    }
    ```

[Response]:

Figure 6: Schema Refiner Prompt

17

[Task]: Decompose the given Question into meaningful sub-questions and
generate corresponding sub-SQL queries until the SQL corresponding to the
Question is generated. Generate the sqlite query based on the given
question, hint, and database schema. Use primary and foreign keys to
ensure proper joins.

[Instructions]:
1. Use the question to determine the main objective of the query.
2. Use the hint to disambiguate column names and ensure the correct
columns are selected.
3. Identify the root verb, subject, object, named entities, and key
phrases and use that to construct the query conditions.
4. Use the primary and foreign keys to define the necessary joins between
tables.
5. Ensure that the column names and table names with whitespaces or
special characters are surrounded by backticks (`). Example: `County
Name`.
6. Refer to the Schema Information for details regarding the tables and
column names.
7. Only include relevant tables and columns needed for generating the
query.
8. If you are doing a logical operation on a column, such as mathematical
operations and sorting, make sure to filter null values within those
columns.
9. Construct and output the SQL query.
10. Strictly adhere to the below output format. Do not include any
additional text or information.

[Output format]:
1. Output in the following JSON format (start with ```json and end with
```):
    ```json
 {
 "first": {
 "question": <sub-question 1>,
 "SQL": "sub-SQL 1 in a single line"
 },
 "second": {
 "question": <sub-question 2>,
 "SQL": "sub-SQL 2 in a single line"
 },
 ...
 }
    ```
2. Ensure the generated JSON is syntactically correct. The property name
should be enclosed in double quotes. Only add commas (,) when you are
required to separate data in JSON.

[Example]:
{example}

Now solve the following Question similarly:

Question: {question}
Hint: {evidence}
Database Schema: 
{schema}

Output:

Figure 7: SQL Generator Prompt

18



[Task]: Verify whether the predicted SQL query is appropriate for
answering the provided question. Conduct a thorough evaluation based on
the schema, hint, and key relationships.

[Inputs]:

- Question: {question}
- Schema: {pred_schema}
- Hint (Evidence): {evidence}
- Predicted SQL: {pred_sql}
- Sqlite3 Error: {pred_error}

[Instructions]:

1. SQL Query Accuracy: Analyze the predicted SQL query to determine if it
correctly answers the question based on the given schema and question
context.
2. Schema Alignment: Verify that the SQL query properly references the
correct tables and columns from the schema. Ensure that the query covers
all necessary attributes, joins, and conditions.
3. Key Relationships: Check that the predicted SQL respects primary and
foreign key constraints, ensuring proper relationships between tables.
4. Hint Validation: Compare the predicted SQL to the provided hint and
ensure that the query reflects any key information or requirements
mentioned in the hint.
5. Feedback Generation: Provide thorough feedback covering:
   - Correct elements in the SQL query.
   - Any missing or incorrect components (e.g., tables, joins,
conditions).
   - Suggestions for improving the SQL to better match the question.

[Feedback]:

Figure 8: SQL Critic Agent Prompt

19



Task:
Analyze the input and determine if any columns from the available schema
should be added to the filtered schema to improve SQL generation
accuracy. Provide a brief justification for each suggested addition.

Input:
1. Available schema: [List of columns not in the filtered schema]
2. Filtered schema: [List of columns already selected]
3. User question: [The natural language query]
4. Evidence: [Any relevant context or information]
5. Primary and foreign keys: [List of primary and foreign key
relationships]

Guidelines:
1. Focus on columns that are likely to be necessary for the SQL query
based on the user question and available information.
2. Consider relationships between tables when suggesting columns.
3. Provide concise justifications, typically one sentence per column.

Output format:
Return a JSON object with the following structure:
{
  "additional_columns": [
    {
      "column_name": "string",
      "justification": "string"
    },
    ...
  ]
}

If no additional columns are needed, return an empty list for
"additional_columns".

Example output:
{example}

Now, based on the input provided, suggest any additional columns that
should be included in the schema without generating any preamble.

Input:
Available schema: {available_schema}
Filtered schema: {filtered_schema}
Primary Keys:{primary_keys}
Foreign Keys:{foreign_keys}
User question: {question}
Evidence: {evidence}
Output:

Figure 9: Schema Critic Prompt

20


	Introduction
	Related Work
	Methodology
	Sub-Question Generator
	Column Selector
	Schema Refiner
	Schema Critic
	SQL Generator
	SQL Critic

	Experiments, Results and Analysis
	Datasets
	Metrics
	Baselines and Variations
	Results
	Comparison with the Oracle Baseline
	Impact of Query Decomposition and Schema Critic
	Impact of SQL Critic

	Impact of Query Decomposition and Critic agents on Query Complexity
	Impact of Using Small Agents vs. Larger Models on NL-to-SQL
	Qualitative Analysis of the Effectiveness of Schema Critic

	Conclusion and Future Work
	Performance Comparison with and without Query Decomposition
	Performance Comparison with and without Schema Critic
	Implementation Details
	Comparison of State-of-the-Art Methods on the BIRD
	Prompts Used for Various Modules

