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Abstract
Blood pressure (BP) estimation is one of the most popular and long-standing topics in 
health-care monitoring area. The utilization of machine learning (ML) and deep learning 
(DL) for BP prediction has made remarkable progress recently along with the development 
of ML and especially DL technologies, and the release of large-scale available datasets. In 
this survey, we present a comprehensive, systematic review about the recent advance of 
ML and DL for BP prediction. To start with, we systematically sort out the current pro-
gress from four perspectives. Then, we summarized commonly-used datasets, evaluation 
metrics as well as evaluation procedures (especially the usually ignored splitting strategy 
operation), which is followed by a critical analysis about the reported results. Next, we 
discussed several practical issues as well as newly-emerging techniques appeared in the 
research community of BP prediction. Also, we introduced the potential application of sev-
eral advanced ML technologies in BP estimation. Last, we discussed the question of what 
a good BP estimator should look like?, and then a general proposal for an objective evalua-
tion of model performance is given from the perspective of an ML researcher. Through this 
survey, we wish to provide a comprehensive, systematic, up-to-date (to Feb, 2022) review 
of related research on BP prediction using ML & DL methods, which may be helpful to 
researchers in this area. We also appeal an objective view of the progress reported in the 
relevant literatures in a more systematic manner. The experimental data & code and other 
useful resources are available at https:// github. com/ v3551G/ BP- predi ction- survey.

Keywords Blood pressure prediction · Machine learning · Deep learning · Multi-view 
taxonomy system · Physiological signal

1 Introduction

Background Blood pressure (BP) is an important dynamic physiological index reflecting 
personal health status, which is often used for health monitoring and disease prevention 
(MacMahon et al. 1990; Singla et al. 2019). Systolic BP (SBP) and diastolic BP (DBP) are 
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two crucial indicators of BP. BP monitoring is an extensively studied topic in healthcare 
monitoring area. In fact, the study of BP prediction can be traced back to over 100 years 
ago (Buchanan et al. 2011). From the earliest mercury sphygmomanometers to the latter 
oscillometric method and auscultation method, etc., these methods are all physical methods 
based on pressure and can not be used for continuous BP monitoring. Pulse transit time 
(PTT) methods (Mukkamala et al. 2015; Peter et al. 2014; Sola et al. 2013) can be used for 
continuous BP monitoring. It is, however, an ideal (linear) model, and the frequent calibra-
tion over time has to be performed on an individual basis in order to ensure accuracy (Ding 
et al. 2017; Samartkit et al. 2022).

Thanks to the advances of machine learning (ML) and deep learning (DL) technology 
and the release of several large databases that are freely accessibly, ML and DL has come 
into the spotlight as a very useful, non-invasive approach for BP prediction by using bio-
sensors. This is clearly reflected in the corresponding growth of relevant publications, as 
Fig. 1a illustrates. This type of methods are inherently data-driven where prediction model 
is trained using ML and DL with the aid of large amount of training data, which actually 
leverages the powerful capabilities of DL in feature learning, expression and modeling of 
complex relationships (LeCun et al. 2015).

Motivation Although there have been several high-quality surveys about BP estima-
tion (Maqsood et al. 2022; Mukkamala et al. 2021; Picone et al. 2017; Drawz et al. 2012; 
Hosanee et al. 2020; Chao et al. 2021; El-Hajj and Kyriacou 2020b; Martinez-Ríos et al. 
2021; Forouzanfar et al. 2015; Tamura 2021; Steinman et al. 2021), they mainly focus on 
traditional methods (refer Table 19). ML methods, especially DL methods, are rarely or 
not adequately covered, because the application of DL in physiological signals is relatively 
lagging behind, and most of them are mainly published during and before the outbreak 
of DL. Therefore, it is necessary to systematically sort out the latest progress in this area. 
Second, in the era of DL, there are some new emerging issues (such as the comparison 
between hand-crafted features and machine-learned features, etc.) and techniques (such as 
data augmentation, signal combination scheme, etc.) related to BP estimation worth dis-
cussing. Moreover, based on our review of over 200 papers on BP prediction that have 
been published in various journals and conferences (as Fig. 1b depicts), we found some 
key but neglected factors related to the problem of reproducibility as well as the objective 
evaluation of model’s performance, from the perspective of an ML researcher. Therefore, 

(a) (b) 

Fig. 1  The publication trend and distributions of publication sources of the literatures for blood pressure 
estimation mainly from 2011 to 2022. a the publication trend of papers based on machine learning, espe-
cially deep learning, and review papers on blood pressure prediction; b the distribution of publication 
sources (including a total of about 100 journals or conferences)
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we plan to conduct a thorough review and analysis of the latest progress in all aspects of 
data-driven BP estimation.

Differences from existing surveys The main differences between our study and the exist-
ing ones are summarized as follows: (1) systematic, comprehensive review. Without being 
limited to a specific signal source, measurement method and measurement scene, we pro-
vide a review of blood pressure prediction community that has the following character-
istics, (i) systematic: current progresses are sort out based on the proposed multi-aspects 
taxonomy (as illustrated in Fig. 2), (ii) comprehensive: all elements of the construction of 
blood pressure prediction pipeline are involved. (2) more recently published works. The 
publications in the last four years (2018–2021) are much more than all those published 
before 2018 (as illustrated in Fig. 1a). In the light of the evolution of ML and DL technolo-
gies and its widely application in BP prediction area in the past few years, this survey cov-
ers extensively the recent published studies. Therefore, we provide the up-to-date reviews 
of the newly presented methods. (3) critical thinking and a general proposal. We critically 
thought the unfairness of system comparisons from a machine learning perspective, and 
analyzed the factors that lead to the unreliability of results reported in related studies from 
multiple aspects, so as to propose a general proposal towards objective assessment of mod-
el’s performance, and put forward suggestions for the future research directions.

Specifically, there are several surveys (Hosanee et  al. 2020; El-Hajj and Kyriacou 
2020b; Martinez-Ríos et al. 2021) about BP prediction, most of which, however, only 
focus on traditional methods such as pulse transit time (PTT), pulse wave velocity 
(PWV), pulse arrival time (PAT), pulse wave analysis (PWA), and traditional feature-
based ML methods, especially DL methods are not or rarely covered. Besides, another 
set of surveys only focused on certain aspects (e.g the limitations of conventional evalu-
ation standards and analyzing tools (Mukkamala et al. 2021), the accuracy of cuff-based 
BP (Picone et al. 2017), the cuffless BP monitor standards and approval for medical use 
(Tamura 2021) and the usage scenario (Drawz et  al. 2012) of BP prediction pipeline. 
In addition, certain surveys are limited to specific signal source such as Photoplethys-
mography (PPG) signal (Hosanee et  al. 2020; El-Hajj and Kyriacou 2020b; Maqsood 
et  al. 2022), oscillometric waveform (Forouzanfar et  al. 2015) or facial video (Stein-
man et al. 2021). The only two surveys that DL methods are covered is written by Chao 
et  al. (2021), and Maqsood et  al. (2022), respectively. In these surveys, related work 
are grouped into traditional feature-based ML methods and DL methods according to 
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Fig. 2  The schematic diagram of a multi-view classification system for work related to blood pressure pre-
diction
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whether there is explicit feature extraction. However, the classification of DL methods is 
not comprehensive enough and the granularity is too coarse. Moreover, a considerable 
number of newly emerging studies were not included.

Instead of limited to specific signal source or specific measurement method, this sur-
vey focuses on systematically and comprehensively categorizing and reviewing the lat-
est progress of ML and DL for BP prediction. Specifically, we reviewed the current 
progress (to Feb, 2022) of BP prediction from a total of four aspects, especially those 
DL methods. In addition, several practical issues/technologies involved in the whole 
research pipeline are discussed/summarized in detail, as well as the potential applica-
tion of several advanced ML topics in this field.

Concepts We found that some basic concepts were overlooked or confused in rele-
vant studies. Therefore, the definition of these concepts are firstly announced in Table 1 
to avoid ambiguity. In addition, suppose each individual/subject contains only a record 
of data, and therefore ’Record’, ’Individual’, and ’Subject’ have similar meanings, pro-
vided that there is no ambiguity. Besides, for ease of reading, all abbreviations appear-
ing in the paper are summarized in Table 23.

Contributions Summarily, the main contributions of this survey include:

• We reviewed all the elements required for the construction of BP prediction’s pipeline: 
datasets and processing tools, data preparation (includes signal denoising, data clean-
ing, feature engineering, and feature selection/reduction), training algorithms, evalua-
tion metrics, and evaluation strategies, etc (Sects. 3, 4).

• We provide a comprehensive survey of the utilization of machine learning and deep 
learning for blood pressure prediction. Specifically, we build a multi-aspect taxonomy 
to present elaborated categorizations of current advances of blood pressure research, in 
an attempt to make the readers understand them in a systematic way (Sect. 3).

• We systematically reviewed some critical while practical issues/techniques (such as 
imbalance phenomenon, sample duration, data augmentation, individual difference, 
signal combination schemes, etc.) in blood pressure estimation area and introduced sev-
eral potential, advanced machine learning topics (such as Auto ML, transfer learning, 
meta learning, federated learning, etc.) (Sects. 5, 6).

Table 1  Some basic notations

Concept Explanation

Record A record is a collection of an individual’s physiological signal (ABP signal 
included) over a period of time

Segment Sampling point sequence. For example, a segment of T seconds of a signal 
with sampling frequency of fs contains T ⋅ fs sampling points.

Sample The basic unit of a dataset in machine learning. A sample includes an input 
vector (a signal segment or a feature vector extracted from the signal seg-
ment) and the ground-truth target (BP value or ABP segment)

Dataset A collection of samples. A standard dataset usually includes training set, 
validation set (optional), and test set, which is used for model training, 
model choice/validation, and model test, respectively

I.I.D assumption (Bishop and 
Nasrabadi 2006)

Independent-identical-distribution (I.I.D), i.e all samples are sampled 
independently from an ’unknown’ distribution, and the distribution of 
training data and test data should be the same, which is an assumption in 
conventional machine learning realm
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• We analyzed the unfairness of systematic comparison that widely used in this area and 
disclosed the factors leading to unreliability of the results reported in related studies 
from multiple aspects (data preparation, feature selection, normalization, evaluation 
metrics, evaluation strategies, etc.), which results in a final proposal towards the objec-
tive evaluation of blood pressure prediction model (Sects. 4, 7).

Organization The rest of this survey is organized as follows. Section  2 provides a brief 
review of the explicit analytical models and data-driven BP predictions, respectively. Sec-
tion 3 systematically reviews the current progress of BP prediction from four dimensions. 
Section 4 introduced some widely used datasets, evaluation strategies in this area, and our 
critical analysis of the current progress in data-driven BP estimation. Section  5 investi-
gates some practical issues as well as newly-emerging techniques in this area. Section 6 
discussed the application of some advanced machine learning topics in this area. Finally, 
Sect. 7 gives our general discussion of the BP prediction problem as well as conclusions 
and future research directions. A more detailed overall schematic diagram of this survey is 
presented in Fig. 3.

2  From explicit analytical model to data‑driven BP prediction

Explicit analytical model The most well-known analytical method for non-invasive BP 
estimation is PTT/PAT/PWV. The basic physics behind such methods is arterial wall mech-
anisms and wave propagation in the arteries (Mukkamala et al. 2015), where the former 
builds the relationship between BP and arterial elasticity through Hughes equation, and 
the latter establishes the relationship between arterial elasticity and PTT or PWV through 
Moens-Korteweg (MK) equation or Bramwell-Hill (BH) equation (Samartkit et al. 2022; 
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Chen et al. 2000). Finally, the relation between BP and PTT or PWV is established. The 
MK equation is established on the assumption that the artery wall can be modeled as a thin 
shell, and the thickness and radius of the artery remain fixed as the BP changes (Ma et al. 
2018). These assumptions, however, may not hold for human arteries. Ding et al. (2015, 
2017) extends the classical PTT method by introducing a new arterial diameter change 
indicator-PIR (Ding and Zhang 2015) to capture the low-frequency components of BP 
which originates from peripheral resistance. In order to consider the neglected non-New-
tonian fluid properties of blood, Thambiraj et  al. (2019) further extends Ding’s work by 
introducing a viscous flow indicator-Womersley number. Recently, Ma et al. (2018) pro-
posed a new analytical model that correlates BP with PWV without the above assumptions 
mentioned and empirical Hughes equation. In addition, Matsumura et al. (2018) directly 
correlates BP with cardiac output and total peripheral resistance, which were estimated 
with heart rate and modifed normalized pulse volume, respectively. Table 2 summarizes 
the analytical models of the above-mentioned work for intuitive comparison.

In general, despite having intuitive and easily interpretable mathematical expressions, 
the models as mentioned above with limited expressive power that dependents on only a 
few factors are based on certain ideal assumptions that may not hold in practice. Besides, 
there are several challenges for implementing PTT-based BP monitoring. First, the biggest 
challenge is the need for calibration (Mukkamala et al. 2015). Due to individual differences 
and dynamic cardiovascular changes over time, the parameters involved are all subject-spe-
cific and has to be calibrated over time on an individual basis (Ding et al. 2017; Samartkit 
et al. 2022). Therefore, PTT method is usually employed for individualized BP estimation. 
Second, a practical issue is the convenient measurement of at least two waveforms at dif-
ferent sites for robust estimation of PTT/PWV. Therefore, the configuration complexity and 
power load of the sensor, the convenience and stability when wearing and the quality of the 
collected signal must be considered (Samartkit et al. 2022; Mukkamala et al. 2015; Ding 
et al. 2017). Third, the need for determination of SBP, DBP, and mean BP (MBP), inde-
pendently (Sharifi et al. 2019; Mukkamala et al. 2015), since these three BP measurements 
are of clinical importance. However, due to the existence of isolated systolic hypertension 
that usually occurs in the elderly, conventional PTT correlates less well with SBP.

Data-driven BP prediction Different from conventional pressure-based physical meth-
ods or explicit analytical/mathematical methods (such as PTT) inspired by physiological 
mechanism or basic physics, the goal of data-driven BP prediction is to learn the unknown 
non-linear relationship (Monte-Moreno 2011) between input signal and BP using ML or 
DL technologies with the help of a large number of training data, in a supervised learn-
ing mode. Of course, the premise that the learned relationship is meaningful is that the 
two are strongly correlated. Data-driven methods actually provide a possible way to real-
ize a general BP prediction model-only all relevant factors affecting BP need to be taken 
as inputs, thus avoiding frequent calibration. In data-driven approaches, data plays an 
extremely important role, and each link of data flow (including data collection, data clean-
ing, data labeling, data strategy of monitoring model, etc.) will affect the credibility of the 
final training model (Liang et al. 2022). Depending on the specific use scenario, there are 
many signal sources available for BP prediction, signal sources used for non-invasive, data-
driven BP prediction include physiological signal, health behavior data, trajectory data, 
and facial video, which all carry important information related to BP changes. Table  3 
summarizes several representative BP prediction methods using each type of data source.

For physiological signal, PPG and electrocardiograpshy (ECG) signal are the most popular 
signals used for BP prediction (Maqsood et al. 2022). Generally, PPG signal depicts the hemo-
dynamics in the peripheral vasculature of the individual, which reflects the total peripheral 
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vascular resistance (TPR) and cardiac output (CO) that are closely related to BP. Monte-Moreno 
(2011) first succeeded in building a machine learning system for BP prediction using extensive 
features derived from PPG signal inspired by the strong relation between physiological factors 
and BP. Lin et al. (2020) investigated the physiological mechanism of PPG for BP prediction 
based on feature analysis, and finds that each examined feature was TPR and/or CO correlated. 
ECG signal represents the electrical activity during heart function, and also contains BP-related 
information (Wu et al. 2016). Attia et al. (2019) found that ECG signals can be used to assess 
the cardiac contractility, which is one of the critical factors leading to the changes of BP.

Health behavior data (e.g. exercise, sleep, smoking, alcohol use, etc.) has been widely 
acknowledged as closely related to human health condition (Chiang and Dey 2018), and also 
further related to BP since BP is one of the most significant indicators of human condition. 
For example, Cornelissen and Smart (2013) has confirmed that exercise is statistically cor-
related with BP. Phillips et al. (2022) confirmed the direct nature of the association of alcohol 
use with BP. These factors actually act as mediators to influence BP, which in turn can be used 
to regulate BP in an active intervention circumstance.

For trajectory data, individual’s daily routine inferred from trajectory to a certain extent 
reflects the regularity of routine, working pattern, and stress level, etc., all of which are closely 
related to BP level (Pickering et al. 1982).

For facial video, in every cardiac cycle, due to cardiac ejection, the collected facial video 
contains information of hemoglobin concentration changes over time. Blood flow pulsation 
in the cardiovascular can therefore be detected by capitalizing on subtle changes in skin color 
from the difference in re-emitted light between hemoglobin and melanin chromophores (Luo 
et al. 2019), based on computer vision (CV) technologies. The blood flow pulsation informa-
tion can be further used to build BP prediction models.

3  Multi aspects taxonomy of BP prediction methods

As an application field of ML/DL, BP estimation usually includes the estimation of SBP, 
DBP and MBP. Blood pressure prediction is not limited to a single learning scheme, and 
all kinds of ML/DL technologies has been applied to BP prediction in related studies. At 

Table 3  Summary of 
representative methods using 
each data source for blood 
pressure estimation

Data source Representative methods

Physiological signal Kachuee et al. (2016), Monte-Moreno 
(2011), Chowdhury et al. (2020), Fan et al. 
(2019),Simjanoska et al. (2020), Miao 
et al. (2019), Miao et al. (2017), Slapničar 
et al. (2019), Leitner et al. (2021),Haddad 
et al. (2021), Baek et al. (2019), Su et al. 
(2018), Schlesinger et al. (2020), Ji et al. 
(2022)

Health behavior data Chiang and Dey (2018) and Chiang et al. 
(2021)

Trajectory data Xiang et al. (2021)
Facial video Takahashi et al. (2020), Zhou et al. (2019), 

Luo et al. (2019), Djeldjli et al. (2021), 
Rong and Li (2021b),Schrumpf et al. 
(2021a)
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the same time, there are many signal sources for BP estimation. Based on the above con-
siderations, we try to sort out the relevant work from the following four perspectives: 

(1) Taxonomy 1-how to model the question of BP prediction from the perspective of 
machine learning? From this perspective, related work can be divided into five catego-
ries, please refer Sect. 3.1;

(2) Taxonomy 2-whether feature extraction and predictive model building are performed 
simultaneously? From this perspective, related work can be divided into two categories, 
please refer Sect. 3.2;

(3) Taxonomy 3-whether the relationship among different tasks is modeled? From this 
perspective, related work can be divided into two categories, please refer Sect. 3.3;

(4) Taxonomy 4-the signal source used for building predictive model. From this perspec-
tive, related work can be divided into four categories, please refer Sect. 3.4.

3.1  Taxonomy 1: question formulation

Preliminaries In classical ML settings, the I.I.D assumption is followed and the entire 
training data is required to be made available prior to the learning task. Theoretically, a 
predictive model is determined by minimizing the expected risk as follows,

where L(,  ) denotes loss function, D denotes the unknown genuine distribution that gen-
erating sample (x, y), F denotes the assumption space, f ∈ F is parameterized by � . How-
ever, since the distribution D is usually unknown, in practice, a model is determined by m
inimizing the empirical risk (ERM). In addition, to overcome overfitting issues, an addi-
tional regularization term is used to control the model complexity, Therefore, in practice, a 
model is determined offline by minimizing structural risk (SRM) as follows,

where on the right side of the Eq. (2), the first term represents empirical risk, the second 
term represents structural risk and is weighted by parameter � for trade-off between the two 
terms.

However, the I.I.D assumption is too strict. In real life, the collected data usually 
shows obvious temporal dependency and the I.I.D assumption may no longer be tenable, 
i.e p(yt|xt, xt−1,… , xt−n) ≠ p(yt|xt) . In this settings, additional mechanisms are needed to 
model this temporal dependency, although the model is still trained offline.

In addition, in many actual scenes, data arrives in a sequence manner, often accom-
panied by concept drift, which is ubiquitous in streaming environment (He et  al. 2011). 
It is obvious that the I.I.D assumption is severely violated. In this settings, learning and 
decision-making are carried out alternately. In general, after T rounds are passed, the goal 
of an online learner (Hoi et al. 2021) is to minimize the regret-RT of the learner’s predic-
tions against the best fixed learner, which is defined as,

(1)f ∗ = argmin
f∈F

E(x,y)∼DL(f (x;�), y),

(2)f ∗ = argmin
f∈F

N∑

i=1

L(f (xi;�), yi) + �J(�),

(3)RT =

T∑

t=1

L(f (xt;�), yt) −min
�

T∑

t=1

L(f (xt;�), yt),
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In this subsection, we focus on how to formulate BP prediction question from a machine 
learning perspective. We summarized a total of five learning scenarios widely used in the 
existing literatures for BP estimation, namely classification question, regression question, 
signal conversion, sequence prediction, and online/incremental learning. Figure 4 visually 
depicts the five paradigms of BP estimation, the main features of which are summarized 
in Table 4. The former three scenarios follow Eqs. (1) and (2). The fourth scenario still 
follows an optimization problem of similar form to Eq. (1), except that in addition to the 
current input, f is also conditioned on the previous input. The fifth scenario follows Eq. (3).

3.1.1  Classification question

In classification scenarios, the total BP range is divided into several disjoint intervals 
according to BP stages, each of which represents an independent category. Then BP moni-
toring is formulated as a two classes or multi-classes classification question, and a model 
is trained to predict the belonging category given input. In this paradigm, L(,  ) usually 
means zero-one loss, logistic loss, softmax loss, etc. y denotes the index of classes. A few 
works are based on this paradigm. For example, Riaz et al. (2019) built an autoregressive-
based ensemble model for identifying whether patients’ BP is normal. El Attaoui et  al. 
(2020) develops an embedded system combined with a wireless medical sensor network to 
detect the status of BP (normal or abnormal) in real time. Tjahjadi et al. (2020) developed 

Table 4  Comparison of different 
learning paradigms for blood 
pressure prediction

Learning paradigm Online/offline Temporal 
correlation

Output

Classification Offline No BP category
Regression Offline No BP value
Signal conversion Offline No BP waveform
Sequence prediction Offline Yes BP value
Online/incremental
learning

Online Yes BP value

Fig. 4  Five formulations for blood pressure prediction. a classification question; b regression question; c 
signal conversion; d sequence prediction; e online/incremental learning
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a bidirectional long short-term memory (Bi-LSTM) model for predicting the category of 
BP (normotension, prehypertension, and hypertension). Lee and Chang (2019) built a deep 
Boltzmann machine with Dempster-Shafer fusion to classify and estimate BP (10 catego-
ries) using oscillometric waveform.

Apparently, this type of modeling methods can only be used to diagnose the BP status 
(such as hypertension, hypotensive, normal, etc.) or predict the rough BP interval of an 
individual. In addition, the order of BP values is missing, which may lead to extremely 
abnormal results of the predictive model output.

3.1.2  Regression question

In regression scenarios, a model is directly trained to predict BP. In this paradigm, L(,  ) 
usually means absolute loss or squared loss, y denotes ground-truth BP value. Almost 
all studies in this area are based on this paradigm owning to the continuous nature of BP 
value. In practice, due to the large range of possible BP values, normalize target technique 
is commonly used in DL-based methods (Song et al. 2021; Zhang et al. 2020b; Abrar et al. 
2020; Athaya and Choi 2021; Aguirre et al. 2021; Song et al. 2019; Panwar et al. 2020; 
Mahmud et al. 2022; Tazarv and Levorato 2021) to boost gradient-based training.

3.1.3  Signal conversion

Recently, a few researchers have tried to predict BP indirectly by reconstructing ABP sig-
nal. Since BP value is parameter of ABP waveform, BP value can be acquired once high-
quality ABP waveform is reconstructed. Signal conversion can be viewed as a generalized 
regression question. In this paradigm, L(, ) usually means absolute loss or squared loss, x 
and y denote the input signal and the target (i.e. ABP) signal fragment, respectively. As 
far as we know, Landry et al. (2019) firstly investigated the feasibility of generating ABP 
waveform using ECG signal. Ibtehaz and Rahman (2020) firstly attempted to translate PPG 
signal into ABP waveform using a deep learning model-U-Net. Athaya and Choi (2021) did 
similar thing as Ibtehaz and Rahman (2020). Sadrawi et al. (2020) built a deep convolution 
autoencoder model based on LetNet-5 and U-Net for PPG-to-ABP conversion. Cheng et al. 
(2021) built a U-Net based model for reconstructing ABP signal using PPG signal and its 
derivatives, and the maximum absolute loss is introduced in addition to squared loss to 
enforce the consistency of local characteristics between the predicted and the genuine ABP 
signal. Li and He (2021) built a generalized regression neural network model for single-
period PPG-to-ABP conversion. Aguirre et al. (2021) built a Seq2Seq with attention model 
for PPG-to-ABP conversion. Harfiya et al. (2021) built an LSTM-based autoencoder model 
for PPG-to-ABP conversion. Qin et al. (2021) developed a convolution-based autoencoder 
model for PPG-to-ABP conversion, and domain adversarial training is introduced to con-
quer individual differences. There are also certain studies (Brophy et al. 2021; Mehrabadi 
et al. 2022) where the well-known CycleGAN was employed to learn the bijection between 
PPG signal and ABP waveform.

In addition to the above DL-based methods, Dash et al. (2020) proposed a subject-specific 
mathematical model based on the linear transfer function (LTF) technique for PPG-to-ABP 
conversion. Magbool et al. (2021) proposed a hybrid method that combine machine learning 
with the cross-relation blind estimation approach for reconstructing beat-by-beat ABP signal.
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3.1.4  Sequence prediction

Different from the first three paradigms based on I.I.D hypothesis, sequence prediction ena-
bles modeling the underlying dependency between adjacent samples. Specifically, the current 
output yt is related not only to the current input xt , but also to historical data xt′ , t′ < t . In this 
paradigm, both input x and output y are sequence. Models used for sequence prediction in this 
area includes recursive neural networks (e.g. Elman) (Wang et al. 2017) , recurrent neural net-
works (RNNs) (Senturk et al. 2020; Li et al. 2017; Tanveer and Hasan 2019; Su et al. 2018), 
nonlinear autoregressive model with exogenous input (NARX) (Senturk et al. 2020; Landry 
et al. 2019) and neural network output-error (NNOE) (Paviglianiti et al. 2020a, b), etc.

Popular RNNs used include the standard RNN and its variants such as LSTM, Bi-LSTM, 
GRU, etc. As Fig. 5a illustrates, in addition to the input xt at current time step t, the current 
output also dependents on the hidden state of the previous time step. For RNNs, suppose 
XT = [x1, x2,… , xT ] the input sequence, YT = [y1, y2,… , yT ] the target BP sequence. The 
conditional distribution P(YT |XT ) is factorized as:

where hidden state ht models the BP dynamics, ht is generated from current input xt and 
previous hidden state ht−1 as follows:

NARX is a kind of nonlinear autoregressive model with exogenous inputs. As Fig.  5c 
illustrates, NARX use previous genuine target value and exogenous inputs (e.g. PPG, 
ECG, etc.) to predict the next target value. Formally, the shape of the regression vector is 
expressed as:

where n is the y-predicted lag, m is the input lag and d the delay to obtain the prediction. 
The prediction vector is formulated as:

where function f is implemented by neural network. Note that the previous genuine target y 
in the regression vector is replaced with predicted value ŷ in the test phase.

NNOE (Norgaard et  al. 2000) is a kind of neural network that models nonlinear 
dynamic system in stochastic environment. As Fig.  5b illustrates, NNOE is similar to 

(4)P(YT |XT ) =

T∏

t=1

p(yt|ht),

(5)ht = f (xt, ht−1).

(6)
h(t) = [y(t − 1|�),… , y(t − n|�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

autoregressive

, x(t − d),… , x(t − d − m)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

exogenous input

],

(7)ŷ(t|𝜃) = f (h(t), 𝜃),

Recurrent

module

Recurrent

module

Recurrent

module

FFNN

......

......
delay

FFNN

FFNN

FFNN FFNN

(a) (b) (d)

FFNN

......

......
delay

(c)

Fig. 5  Several classical model architectures for sequence prediction. a RNNs; b NNOE; c NARX; d Elman 
NN
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NARX except that the genuine target value y in the regression vector is replaced with 
previous prediction value ŷ . Related work includes (Paviglianiti et al. 2020a, b), etc.

Elman is a kind of neural network model with local feedback, as Fig. 5d illustrates. 
Specifically, the addition contextual layer can remember the output of the hidden 
layer before the current time step, which enables Elman the ability of modeling time-
related features. Formally, the hidden layer output is computed as ht = f (hc

t
, xt) , where 

hc
t
= � ⋅ hc

t−1
+ hc , and the final output is computed as yt = g(ht) . Related work includes 

(Wang et al. 2017), etc.
In addition, Sharifi et al. (2019) proposed a dynamic method based on the reconstruc-

tion of the state space of the cardiopulmonary system for BP prediction, where both 
current state and the past dynamical state based on state space reconstruction are jointly 
used for prediction. Formally,

where functions f1 and f2 are learned by the multi-adaptive regression spline (MARS) 
method.

3.1.5  Online/Incremental learning

Unlike the above four mentioned scenarios that the entire training data has to be made 
available in advance and the model training is performed in an offline manner, incre-
mental/online learning (Hoi et al. 2021; He et al. 2011) is new learning technique that 
learn models incrementally from data in a streaming manner. Intuitively, in online learn-
ing, current model firstly tries to make decision when a new sample arrives, and then 
the sample is used to update the model in a supervised mode. In other words, the predic-
tion and model update are performed alternatively.

Chiang and Dey (2019) firstly proposed a random forest with feature selection 
(RFFS) model coupled with online weighted resampling (OWR) technique to perform 
personalized BP prediction in an online manner. The Bootstrap-based OWR technique 
is devised to provide a dynamic resampling mechanism of historical samples to conquer 
possible concept drift and anomaly points by assigning different weights. Specifically, 
based on the prediction error of the incoming sample ( et ) and all historical samples ( ̄et ) 
, OWR employ three types of strategies for tuning sample weights as follows: 

(1) Anomaly adaption: if the prediction error of xt is significantly larger than the mean 
prediction error of historical samples, its weight will be reduced: 

 where 𝜀 > 1 , 𝛼 < 1.
(2) Concept drift adaption: the weight of samples before the warning period tw will be 

reduced when concept drift if confirmed: 

(8)

⎧
⎪
⎨
⎪
⎩

yDBP(n) = f1(PIRn) + f2(PIRn−� , PIRn−2� ,… , PIRn−m� ),

PPn = f1(PTTn) + f2(PTTn−� , PTTn−2� ,… , PTTn−m� ),

ySBP(n) = yDBP(n) + PPn,

yMBP(n) = yDBP(n) + 0.01 ⋅ exp(4.14 −
40.74

HR
) ⋅ PPn,

(9)wt =

{
𝛼 if et > 𝜀ēt
1 else

,
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 where 𝛽 < 1 , tW , tD denote the warning time and drift confirmed time, with LW and 
LD the corresponding threshold error values, tW < tD , LW < LD.

(3) Forgetting mechanism: the weight of all historical samples is scaled down whenever a 
new sample xt arrivals: 

 Through OWR, the samples reflecting current environment/concept will be more 
likely appear in bootstrap dataset for model update.

3.2  Taxonomy 2: traditional machine learning methods vs. Deep learning methods

According to whether feature extraction and model building are performed jointly, related 
work can be divided into two folds, namely traditional featured-based ML methods, and 
DL methods. Figure 6 presents a generalized pipeline for data-driven BP prediction. In ML 
methods, tedious feature engineering (including feature construction & extraction, and fea-
ture selection/transformation) has to be performed ahead of model training to define and 
screen out the most informative features that related to prediction task. Therefore, related 
works are mainly focused on signal processing, multi-sensor fusion, feature exploration, 
and feature screen, etc. In DL methods, feature engineering is no longer necessary due to 
the powerful capability of DL in learning complex representations as well as relationships 
directly from raw data, which enables end-to-end training. Therefore, related work mainly 
focuses on adapting classical model from other domains such as computer vision, etc., or 
designing specific models to improve prediction performance.

3.2.1  Machine learning‑based methods

The current reviews mainly introduce relevant articles one by one in an exhaustive manner. 
Herein, according to the BP prediction pipeline illustrated in Fig. 6, we will decouple and 
summarize relevant work in turn from the following aspects, namely signal denoising, seg-
mentation, data cleaning, peak detection, feature extraction, normalization, feature selec-
tion/reduction, training algorithms, and hyper-parameter optimization and model selction.

Signal denoising The signals collected from sensors are usually disturbed by all kinds of 
noises. Denoising signals is a pre-step for feature point positioning and feature extraction. 
Specifically, ECG signal is disturbed by power line interference (PLI), baseline wandering 
(BW), motion artifacts (MA), muscle contractions/artifacts, instrumental and electrosur-
gical noise (Butt et al. 2015; Joshi et al. 2013). Similarly, PPG signal contains PLI, BW, 
MA, low amplitude PPG signal, etc (Mishra and Nirala 2020). We group signal denoising 

(10)wt�∶t�<tW
=

{
𝛽 ⋅ wt� if wtW

> LW and wtD
≥ LD

1 else
,

(11)wt� = 𝛾 ⋅ wt� , t
� < t.

Training set

Validation set

Test set

Preprocess
Data

cleaning

Feature

extraction

(optional)

Normali-

zation

Feature

selection/

reduction

(optional)

Training set

Test set

Validation set

ML/DL

algorithm

Predictive

model

fitting
normalizer

build
mapping

Evaluation

Training & Validation

Hyper-parameter

optimization (optional)
Signals,

Video

......

Data source

Segmentation

Fig. 6  A general pipeline for blood pressure prediction
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methods into four types of time domain based, frequency domain based, time-frequency 
domain based, and DL based. A simple comparison of the popular signal denoising meth-
ods is presented in Table 5. Abderahman et al. (2017) proposed a novel method based on 
EMD to suppress transit MA and MA randomness in Oscillometric waveform signal.

Segmentation The preprocessed raw signals are segmented (refer Sect. 5.1.3) into dis-
joint segments, each segment corresponds to a sample, which is the basic unit for training 
and validation. Note that input signal (e.g PPG, ECG, etc.) and the corresponding ABP 
signal are performed synchronously.

Data cleaning Data cleaning is an indispensable step to improve the quality of data used 
for training model, especially in intensive care unit (ICU) patient’s data, since the database 
contains signals disturbed by all kinds of noises and even irregular waveform influenced by 
sensor position movement or change. Currently, the popular methods used for data clean-
ing are rule-based. Specifically, several metrics are used as indicator to evaluate the signal 
quality, and the signal segments with value out of the reasonable range of these metrics 
are identified as invalid signal. Usually used metrics include Skewness (Liang et al. 2018; 
Qin et al. 2021), BP range limitations (Baek et al. 2019; Xing and Sun 2016; Schrumpf 
et al. 2021b; Schlesinger et al. 2020; Zhang et al. 2021a; Harfiya et al. 2021; Zhang et al. 
2021a), periodicity check (Leitner et al. 2021), sanity checks and consistency check of sig-
nal segments (Baker et  al. 2021; Baek et  al. 2019; Xing and Sun 2016), etc. Besides, a 
few authors tried to identify invalid signal with the aid of classifier. For example, Monte-
Moreno (2011) additionally trained a linear classifier to distinguish the “no signal” (cor-
ruption/loss of signal, background noise) from normal signal. This, however, increases the 
cost of labeling samples.

Peak detection Peak detection is a crucial prerequisite step to accurate physiological fea-
ture extraction. Specifically, a standard PPG cycle contains five key points, namely onset, 
systolic peak, valley, dicrotic peak, and offset. A standard ECG cycle contains five key 
points, marked as G, Q, R, S, and T, where R peak is the most important and the most rec-
ognizable peak. Table 6 summarized several popular peak detection algorithms of signal.

Feature extraction Feature extraction is critically important step of conventional fea-
ture-based methods for BP prediction. Note that the concept of whole-based features that 
appeared in several literatures (Kachuee et  al. 2016; Mousavi et  al. 2019b) means time 
domain signal in a specific interval. In other words, there is no feature extraction actually.

Since both PPG features and ECG features responsible for BP prediction have been 
extensively explored and confirmed in several representative literatures (Chowdhury et al. 
2020; Monte-Moreno 2011; Miao et  al. 2019; Yang et  al. 2020a; Kachuee et  al. 2016; 
Thambiraj et  al. 2020; El-Hajj and Kyriacou 2021b; Lin et  al. 2021a; Ding et  al. 2019; 
Maqsood et al. 2022), we will not detail these features trivially. Summarily, according to 
Miao et al. (2019), these feature can be grouped into two types of physiological features 
and informative features. Physiological features are defined based on feature points of raw 
signals with physiological meanings, while informative features are the representation of 
the whole signal reflecting some properties of the signal. In addition, demographic fea-
tures are usually used as supplement to extracted feature to improve the prediction accu-
racy of the model. A summary of these types of features is presented in Table 7. Besides, 
the exploration of new features has never stopped, and Table 8 summarized several novel 
features proposed in related literatures recently.

As mentioned before, the utilization of physiological features for BP prediction has been 
thoroughly investigated. However, the extraction of physiological features rely on precise 
positioning of feature points, which may be very difficult in ICU patient’s data or high BP 
patients with diversified even deteriorated PPG morphology and disturbed by all kinds of 
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noise (Mousavi et al. 2019b; Haddad et al. 2021). Therefore, some authors try to achieve 
BP prediction using informative features only or other implicit feature extraction tech-
niques such as K-SVD (Aharon et al. 2006), etc. A summary of these studies in presented 
in Table 9.

Normalization Normalization is a technique to eliminate dimensional differences 
between different features. Common normalization techniques include Z-Score standardi-
zation, min-max scaling, etc. However, there are two new minor changes when it is applied 
to DL-based BP prediction. First, for DL methods with raw signal as input, normalization 
is performed at segment level instead of feature level to eliminate the difference of sig-
nals among different individuals (Fan et  al. 2019; Slapničar et  al. 2019; Schrumpf et  al. 
2021a; Fan et  al. 2021). Second, normalization is also performed on target variable (we 
call normalize target) for better gradient-based update in addition to input. This technique 
is widely used, especially in those studies of trying to reconstruct ABP waveform (Mah-
mud et al. 2022; Aguirre et al. 2021; Athaya and Choi 2021; Cheng et al. 2021; Qin et al. 
2021). Especially note that when normalize target is used for model training, the scaled 
prediction of the model has to be inversely normalized again in the test stage.

Feature selection/reduction To reduce the number of features and filter out effective fea-
tures required for model training, there are two solutions. The first is feature selection. Spe-
cifically, it can be divided into filter methods, wrapper methods, and embedded methods 
(Yang et al. 2020a; Chandrashekar and Sahin 2014). For filter methods, variable selection 
is performed using variable ranking techniques. For wrapper methods, the predictor’s per-
formance is served as objective function to evaluate variable feature subset. For embedded 
methods, feature selection is performed during model training. The second is feature reduc-
tion, which represents a class of unsupervised methods that based on some transformation 
such as principal components analysis (PCA), etc. Table 10 summarizes widely used fea-
ture selection/reduction techniques in the relevant literatures.

Besides, Miao et al. (2019) proposed a novel spectral analysis-based weakly supervised 
feature selection (WSFS) method specific to oscillometric method. Hassani and Foruzan 
(2019) firstly use ANN module to map the hand-crafted feature set to acquire the so-called 
latent features, before model training. Herein, ANN actually plays the role of feature reduc-
tion. In several studies, partial least square (PLS) model is usually employed to eliminate 
the multicollinearity issues between variables (Fujita et al. 2019; Singla et al. 2020b).

Training algorithms Different from traditional explicit analytical models such as PTT 
methods and other haemodynamic-based methods (Liu et al. 2020a; Yamakoshi et al. 2021; 
Thambiraj et  al. 2019; Matsumura et  al. 2018; Ebrahim et  al. 2019; Hassani and Foru-
zan 2019; Ganti et al. 2021) where the relationship between explanatory variables and BP 
is pre-determined. In feature-based ML methods, each algorithm actually determines a 
hypothesis space, and the algorithm is employed to learn the best mapping between varia-
bles and BP from the hypothesis space using training data. Therefore, ML methods enables 
the model with stronger nonlinear expression ability.

Currently, almost all kinds of classical ML algorithms have been employed to train pre-
diction models. The usage of different algorithms is summarized in Table 11. LR is widely 
used in this area owning to its strong interpretability and ease-of-use. It is noted that PTT 
methods (Mukkamala et al. 2015; Peter et al. 2014; Sola et al. 2013) and its variants (Chan-
drasekhar et al. 2020; Esmaili et al. 2017; Shao et al. 2020; Hsieh et al. 2016; Das et al. 
2020) can be seen as a special application of LR algorithm where PTT-related features are 
served as explanatory variable and linear/quasi linear relationship between these features 
and BP is assumed. Since different algorithms have different hypothesis spaces, and it is 
impossible to know which algorithm will derive the best predictor given specific datatset. 
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Therefore, a common practice (Yang et al. 2020a; Miao et al. 2017; Kachuee et al. 2016; 
Monte-Moreno 2011; Esmaelpoor et al. 2021a; Hasanzadeh et al. 2019; Thambiraj et al. 
2020; Chowdhury et al. 2020; Chen et al. 2019) is that a prediction model is trained using 
each algorithm on the given dataset, respectively, and then the prediction model with the 
best performance is selected as the final model for further test. It is observed that SVR, 
AdaBoost and RF has gained the most popularity due to their excellent performance in 
most cases (Zhang et al. 2021a).

Hyper-Parameter optimization and model selection During the construction of predic-
tion model, there are two type of parameters that need to be determined, namely model 
parameters and hyper-parameters. For example, SVM algorithm contains model param-
eters (i.e weights and bias) and hyper-parameters such as penalty coefficient C and coef-
ficient of kernel function � , etc. Model parameters are tuned iteratively based on training 
set during training. Hyper-parameters are determined using hyper-parameter optimization 
(HPO) techniques, based on validation set. Currently used HPO techniques include grid 
search, random search, genetic algorithm (GA), particle swarm optimization (PSO), Bayes-
ian optimization (BO), etc. All of them are black-box optimization methods, and a sum-
mary of these HPO methods is presented in Table 12.

3.2.2  Deep learning‑based methods

Deep learning based methods for BP prediction are mainly characterized in neural net-
work architecture exploration. Generally speaking, there are two directions are available 
for consideration, (1) the first direction is to utilize classic models from other fields such as 
computer visions (CV), etc. However, CV model is usually designed based on 2D-convolu-
tion, while physiological signal is one-dimensional. In practice, there are two ways to over-
come this problem. The first way is to convert 1D signal in some way to a 2D format, and 
then CV models can be used directly. The second way is to modify 2D-convolution-based 
CV models to its corresponding 1D-convolution-based format. (2) the second direction is 
to design domain-specific models. Next, we will review related work based on the model 
architecture used. Relevant studies can be coarsely divided into two parts, i.e basic DL 
models for BP prediction, and hybrid DL models for BP prediction.

3.2.3  Part 1‑Basic DL models for BP prediction

As shown in Fig. 7, we summarized five basic model structures for BP prediction, namely 
FFNN, RNNs, CNN, BNN, and Siamese architectrue, of which the first three are widely 
used and the latter two are rarely used.

FFNN Feed-forward neural network (FFNN), also known as artificial neural network 
(ANN), multilayer perceptron (MLP) or back-propagation network, is one of the easiest-to-
understand neural networks that has been widely used, especially in earlier studies (Jeong 
et al. 2019; Attarpour et al. 2019; Maher et al. 2021; Yin et al. 2021; Xing and Sun 2016; 
Wang et al. 2018a; Zhang and Wang 2017; Wang and Zhang 2017; Sadrawi et al. 2016; 
Wang et al. 2018b; Tan et al. 2018; Wu et al. 2016; Mahmud et al. 2022; Lin et al. 2021b). 
A classical FFNN usually contains three layers of input layer, hidden layer and output layer, 
and any two neuron nodes of adjacent layers are connected with each other. For example, 
Wang et al. (2021) built a stacked autoencoder for the estimation of BP under blood loss, 
the network is firstly perform unsupervised layer-by-layer greedy pre-training, and then is 
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further trained as a whole through supervised learning. Zhang and Wang (2017) built a 
BP network for BP estimation, where genetic algorithm is firstly used to initialize model 
parameters, and then the model is trained by back-propagation.

Recently, Huang et al. (2022) develops a BP prediction model based on the novel MLP-
Mixer architecture. As Fig.  8 illustrates, the multi-filter to multi-channel (MFMC) tech-
nique is firstly used to extend the channel dimension of the raw input signal, and then the 
embedded representation is fed into the MLP-Mixer module which iteratively performs 
channel-mixing and temporal-mixing based solely on MLP module. Inspired by biological 
neurons, Ji et  al. (2022) proposed a novel dendritic neural model (DNM), a single neu-
ral model with a plastic dendritic structure, for BP prediction. Experiments show that this 

Table 7  Summary of different types of features

Type Detail Description

Physi-
ological 
features

Pulse 
transit 
time

Time duration between R-peak of ECG and different feature points of synchronous 
PPG signal

Time 
dura-
tion

Time difference between different feature points of signal

Ampli-
tude 
feature

Amplitude of/between different feature points of signal

Pulse 
width

Pulse width at different level of signal amplitude

Area Area between different feature points under signal curve
Com-

bined 
features

Defined based on ratio and difference operations, such as K-value Miao et al. 
(2019), etc.

Informa-
tive 
features

Statistical 
features

Mean, standard deviation, Skewness Liang et al. (2018), Kurtosis Miao et al. 
(2019), signal mobility and signal complexity Simjanoska et al. (2018, 2020), etc.

Fre-
quency 
domain 
based 
features

Amplitude of specific frequency component of signals, spectral entropy Monte-
Moreno (2011)

Wavelet 
domain 
based 
features

Qualify the complexity of signals, include wavelet energy entropy Miao et al. 
(2019)

Entropy 
based 
features

Describe the confusion degree of signals, include sample entrope and approximate 
entropy Miao et al. (2019)

Whole-
based 
features

– Signal segment in a specific interval

Demo-
graphi-
cal 
features

– Age, sex, height, BMI Li et al. (2017), etc.
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special model has achieved competitive results both on static BP estimation and long-term 
BP estimation.

RNNs Considering the temporal order and dynamic nature of physiological signals, 
standard recurrent neural networks (RNNs) and its variants such as GRU (Chung et  al. 
2014), LSTM (Hochreiter and Schmidhuber 1997), and Bi-LSTM (Liwicki et  al. 2007), 
etc., have been widely used for BP prediction due to their strong ability to model temporal 
dependencies (El-Hajj and Kyriacou 2020a; Liu et al. 2018; Koshimizu et al. 2020; Li et al. 
2017, 2020a; Lee et  al. 2021; Paviglianiti et  al. 2020b; Lo et  al. 2017). Li et  al. (2017) 
proposed a LSTM model with contextual layer (named LSTM-CL) to better predict indi-
vidual’s BP using both clinical data and contextual data. Su et al. (2018) proposed a deep 
LSTM model for long term BP prediction. Similar to Su et al. (2018), Li et al. (2020a) pro-
posed a deep LSTM model with residual connection for BP prediction, and investigated the 
best model configuration in terms of both network depth and residual connection. Results 
indicate that the average prediction accuracy decreases with the increase of network depth, 
which is unexpectedly opposite with the conclusion in study (Su et al. 2018). Furtherly, El-
Hajj and Kyriacou (2021a, b) proposed a deep LSTM-based network with attention mecha-
nism to predict BP. Specifically, the attention module attached is employed to focus on the 
more important hidden states in each time step automatically.

CNN Generally, 1D convolution network is utilized to learn temporal features/patterns 
from raw signal (Esmaelpoor et al. 2021b; Baek et al. 2019, 2020; Athaya and Choi 2021; 
Sadrawi et  al. 2020; Cheng et  al. 2021; Ibtehaz and Rahman 2020). For example, Baek 
et  al. (2019) built a fully-convolution network based on the proposed extraction-concen-
tration block (EC_block) for BP prediction. As Fig. 9 illustrates, the network comprising 

Table 9  Implicit feature extraction approaches appeared in related studies

FFT fast Fourier transform, DCT discrete cosine transform, DWT discrete wavelet transform, MSE multi-
scale entropy, SCSA semi-classical signal analysis

Name Description

FFT based Xing and Sun (2016) Amplitude and phase features are extracted from PPG 
cycle based on FFT transform

DCT based Wang and Zhang (2017) The first 15 points of the DCT transform sequence of raw 
PPG signal is used as input feature

DWT based Gao et al. (2016) DWT coefficients of raw PPG segments is used as input 
feature

MSE Sadrawi et al. (2016) 75 scale of MSE of raw PPG segments is used as input 
feature

SCSA Li and Laleg-Kirati (2021) SCSA features are derived by decomposing PPG segments 
into two partial sums

K-SVD based Bose and Kandaswamy (2018) Feature extraction is modeled as a dictionary learning 
problem, the sparse features of PPG cycle generated 
based on K-SVD is used as input feature

McSharry dynamic model fitting based 
Mousavi et al. (2019a)

Feature extraction is modeled as a signal fitting problem, 
the parameter values in McSharry equations by fitting 
ECG signal based on McSharry Dynamic model is used 
as input feature

Autoencoder based Shimazaki et al. (2018), 
Mahmud et al. (2022)

The outputs of autoencoder which is trained by recon-
structing input signal or converting input signal to target 
signal, are used as input feature
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two branches for learning time domain and frequency domain information of raw signal, 
respectively. The idea behind EC_block is that multiple dilated convolution are performed 
to learn various relationships between different neighboring pixels and the concatenated 
output is reduced to its initial dimension through 1 × 1 convolution, then strided convolution 
is performed to increase the depth of the features and halve the temporal length. Besides, 
a few authors (Sasso et al. 2020; Wang et al. 2020) directly use classical 2D convolution-
based CV networks for BP estimation by converting PPG segment to 2D format in some 
way. Qiu et al. (2021) built a composite 2D-CNN based model for BP prediction, where 
raw signals (PPG &ECG) are firstly processed through CNN-Sequential-Adapt layer to 
generate appropriate output for ResNet-25 with channel attention. Malayeri and Khoda-
bakhshi (2022) built a two stream compound CNN model for BP prediction using PPG sig-
nal. As Fig. 10 illustrates, the 1D CNN module learns morphological information directly 
from raw PPG segment, and the 2D CNN module learns information from the 2D image 
converted from the raw PPG segment based on fuzzy recurrent plot (FRP), then the infor-
mation from the two streams are fused for BP prediction. In addition, considering the dura-
tion of sample and network complexity, sampling techniques (Qiu et al. 2021; Baek et al. 
2019; Panwar et al. 2020) are usually used to down sample the raw signals before it is fed 
into the network.

BNN Boosting neural network (BNN) (Schwenk and Bengio 2000) is the product of 
the combination of the general Boosting algorithm and neural networks. As Fig. 7d illus-
trates, BNN is a class of networks with cascade structure, and the usually used decision 
tree serving as base learner in Boosting algorithm is replaced with neural network. Song 
et  al. (2019, 2021) proposed a stacked DNN model for BP prediction using both PPG 
&ECG signals and demographical features. As Fig. 11 illustrates, a shallow FFNN mod-
ule is trained using the total features for BP prediction in the first stage, and then a second 
FFNN is trained using the total features and the estimated BP value of the last model as 
input. In other words, the second model is trained by fitting the residual between the last 

Table 11  Representative machine learning algorithms used for BP prediction

Algorithm References

LR Natarajan et al. (2021), Haddad et al. (2021), Dey et al. (2018), Esmaelpoor et al. (2021a)
Chowdhury et al. (2020), Yousefian et al. (2020), Zhang et al. (2021a),Zheng and Yu 
(2021), Lazazzera et al. (2019), Singla et al. (2020a), Khalid et al. (2018),Marzorati et al. 
(2020)

PLS Zhang et al. (2021b), Fujita et al. (2019), Singla et al. (202b0)
GPR Zheng and Yu (2021), Huttunen et al. (2019), Chowdhury et al. (2020), Chen et al. 

(2022),Esmaelpoor et al. (2021a)
SVR Fong et al. (2019), Khalid et al. (2018), Zheng and Yu (2021), Esmaelpoor et al. 

(2021a),Chowdhury et al. (2020), Hassani and Foruzan (2019), Kachuee et al. (2015), Chen 
et al. (2019),Zhang et al. (2017, 2019b, 2021a), Dagamseh et al. (2021)

AdaBoost Hasanzadeh et al. (2019), Ibrahim and Jafari (2019), Kachuee et al. (2016), Wang and Zhang 
(2017),Mousavi et al. (2019b, 2020), Zhang et al. (2021a)

RF Kachuee et al. (2016), Simjanoska et al. (2018, 2020), Chen et al. (2021), Fati et al. (2021)
Huang et al. (2019), Thambiraj et al. (2020), Xing et al. (2019), Monte-Moreno (2011),Bose 
and Kandaswamy (2018), Zhang et al. (2021a), He et al. (2016a)

CART Golino et al. (2014), Zhang et al. (2018), Chiang Chiang et al. (2021), Esmaelpoor et al. 
(2021a)

DT Slapničar et al. (2018), Khalid et al. (2018), Chowdhury et al. (2020)
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model’s output and the genuine BP value. The so-called stacked DNN is actually a BNN, 
although it is not explicitly stated in the paper.

Siamese architecture Siamese network (Bromley et  al. 1993; Chopra et  al. 2005) is a 
novel architecture that is closely related to contrastive learning and representation learning, 
and has been widely used in various computer vision tasks. Generally, Siamese is com-
posed of two identical networks and one cost module. The network accepts a pair of sam-
ples as input, and the outputs of the two sub-networks are passed to the cost module to 
compute similarity. Schlesinger et  al. (2020a, b) firstly proposed a novel Siamese-based 
model for BP prediction. Specifically, as Fig. 7e illustrates, they made two modifications, 
(i) it is a regression network: the final layer of the network is fully-connected layer with lin-
ear activation, which outputs BP difference; (ii) instead of metrics with positives value used 
in cost module, the two resulting feature vectors are directly subtracted. In other words, the 
model learn the difference vector of current input with respect to reference input, which is 
utilized to estimate BP difference. The final BP is acquired by plus the estimated BP differ-
ence with the reference BP.

3.2.4  Part 2‑Hybrid DL models for BP prediction

The combination of multiple basic model architectures is also widely used in related stud-
ies for BP prediction. As shown in Fig. 15, we summarized a total of three combination 
modes of designing hybrid architectures that are widely used in related studies.

In mode-1 (Fig. 15a), CNN module is followed by RNN module, which is just oppo-
site to mode-1. Baker et al. (2021) built a hybrid model where temporal CNN module is 
firstly used to identify important features and patterns, which is followed by Bi-LSTM 
module for modeling temporal dependency. Panwar et al. (2020) use the similar network 
as in Baker et al. (2021) for estimating BP and heart rate simultaneously. Esmaelpoor et al. 
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Fig. 7  Several representative network architectures for blood pressure prediction. a feedforward neural net-
works (FFNN); b convolutional neural networks (CNN); c recurrent neural networks (RNN); d boosting 
neural networks (BNN); e siamese architecture
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(2020) proposes a novel two-stage hybrid model for BP prediction where both temporal 
dependency in each task and correlations between SBP and DBP prediction are mod-
eled. As Fig.  12 illustrates, in the first stage, two separate sequential CNN modules are 
trained for SBP and DBP prediction, respectively. In the second stage, for each prediction 
task, in addition to the resulting feature vector of the first stage, both the estimated BP in 
the first and the second stages from another task is used to train a LSTM model. Leitner 
et al. (2021) proposed a transfer learning framework for BP prediction based on the hybrid 
CRNN model. As Fig. 13 illustrates, a pretrained/generalized model is firstly trained using 
source patient’s data and is then fine-tuned using partial target patient’s data to obtain per-
sonalized model. Experimental results indicate that the best performance is obtained when 
retraining only the last fully-connected layer and the last convolutional layer. Eom et  al. 
(2020) proposed a CNN-RNN model with attention mechanism to predict BP. Specifically, 
a VGGNet-like CNN module is modified to automatically extract features from raw sig-
nals, which is followed by a Bi-GRU module to encode temporal information between the 
learned features. Finally, the estimated BP is computed based the attention module to focus 
on the different importance of hidden states in each time step. Chuang et al. (2021) pro-
posed a hybrid model similar to Eom et al. (2020) except that the CNN module extracts 
features from both temporal domain and frequency domain of the input signal.

Different from the above-mentioned literatures (Baker et al. 2021; Panwar et al. 2020; 
Esmaelpoor et al. 2020; Leitner et al. 2021) where RNN module is used to model tempo-
ral dependency within sample (i.e. the output of convolution module), in Jeong and Lim 
(2021) work, RNN module is utilized to model temporal dependency between samples 
since the CNN module is time-distributed.

In mode-2 (Fig. 15b), CNN and RNN modules are used to capture different feature in 
parallel, and then these features are further fused through FFNN module. For example, 
Miao et al. (2020) proposed a hybrid model consisting of ResNet-50 and LSTM models 
to capture morphological and rhythmic features that relates to BP variation, respectively, 
which is followed by several fully-connected layers for fusion of the two types of features. 
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Rong and Li (2021a) proposed a hybrid model composed of two CNN modules and one 
Bi-LSTM module to extract morphological, frequency spectrum and temporal features 
of PPG signal, respectively. Unlike the above-mentioned studies (Miao et al. 2020; Rong 
and Li 2021a) that only consider learning from time domain signals, as Fig. 14 illustrates, 
Slapničar et al. (2019) proposed a hybrid network that learning both in time domain and 
time-frequency domain of PPG signal and its derivatives for BP estimation.

In mode-3 (Fig. 15c), time-distributed ANN is followed by RNN module. Tanveer and 
Hasan (2019) proposed an ANN-LSTM model for BP prediction where a time-distributed 
ANN module is used to extract morphological features from multiple segments of raw 
PPG and ECG signals in parallel, which is followed by a LSTM module to learn the time 
domain variation of the extracted features.

In addition, Yang et al. (2020a) proposed a novel framework for BP prediction based 
on the hypothesis that estimation performance may be improved by separating BP and 
feature variations into low frequency components (LFC) and high frequency components 
(HFC), and modeling each separately. As Fig.  16 illustrates, both BP sequence and fea-
ture sequences are separated into LFC and HFC using a first-order low-pass Butterworth 
digital filter, and then a regression model is trained using feature-BP pair in each frequency 
component. In the test phase, the sum of the two model’s outputs plus the mean BP of test 
subject constitutes the final BP. Note that although the model uses a multi-branch structure, 
while with purpose different from previous studies (Miao et al. 2020; Rong and Li 2021a).

Remark There is no one-size-fits-all model that work well on all problems and datasets. 
For example, Paviglianiti et  al. (2020b) finds that the selection of model architecture is 
dependent on the type of input signal. Xiang et  al. (2021) finds that LSTM works best 
when there is a high temporal dependency between trajectory data, otherwise RF model 
works best. Currently, model designing and configuration follows certain principles (quali-
tative) and relies on extensive trial and error. Generally, for models of sequential struc-
ture, CNN or FFNN module is usually served as feature learner to extract and fuse fea-
tures, RNNs module is usually utilized to model temporal dependencies. FFNN is usually 
used with hand-crafted features (Wu et al. 2016; Tan et al. 2018; Zhang and Wang 2017; 
Attarpour et al. 2019; Maher et al. 2021; Yin et al. 2021; Wang et al. 2018a, b) or implicit 
features derived from some transformations (Xing and Sun 2016; Wang and Zhang 2017) 
or sparse representation (Bose and Kandaswamy 2018) of raw signal as input. Since a sin-
gle RNNs module has no capability of feature extraction, it is usually used in combina-
tion with other modules such as CNN or FFNN, etc. (e.g., Baker et al. 2021; Panwar et al. 
2020; Esmaelpoor et al. 2020; Leitner et al. 2021), or directly feed with extracted features 
(e.g., El-Hajj and Kyriacou 2021b). For models composed of multiple parallel structures, 
features learned from different streams of network are further fused based on FFNN mod-
ule for BP prediction. The features to be fused may come from different signal sources 
(e.g., Baek et al. 2020), different modalities of specific signal (e.g., Rong and Li 2021a; 

FFNN

PPG &
ECG

Feature
extraction

Demographical features
(age, sex, Hight, etc.)

FFNN...
...

Fig. 11  Boosting neural network for blood pressure prediction proposed in study Song et al. (2019)
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Slapničar et al. 2019), or even outputs of different network with the same input (e.g., Miao 
et al. 2020).

3.2.5  Discussion

In this subsection, we make a general comparison of traditional feature-based ML methods 
and DL methods for BP estimation from the following four aspects.

Performance Due to the powerful ability of deep learning to extract, represent, and fit 
complex relationships, it is reasonable to believe that given a sufficiently large dataset, a 
well-designed, sufficiently complex, and optimized deep neural network model can achieve 
superior performance over feature-based ML methods. Several studies (Slapničar et  al. 
2019; Fan et al. 2019, 2021) with empirical evaluation have confirmed this.

End-to-end training property As Fig. 6 illustrates, for feature-based ML methods, fea-
ture engineering is an extremely important pre-step for training ML model. However, for 
DL methods, a predictive model can be obtained by training directly with raw data (only 
simple preprocess in required) directly in an end-to-end fashion. In other words, automatic 
feature extraction/learning and model training are performed simultaneously by minimiz-
ing the prediction loss at each iteration.

Scalability Generally, for traditional feature-based ML methods, a model is trained 
using the whole dataset in each iteration, and the model has to be trained from scratch if 
new data arrives. However, for DL methods, due to the modularity architecture of neural 
network models with fully parameterized characteristics, DL model is scalable to data 
size and can be easily used for incremental update. The practice of using pre-trained 
models for transfer learning actually takes advantage of this characteristic of DL model. 
Besides, the modularity characteristics of neural network enables the popularity of deep 
multi-task learning for BP estimation (refer Sect. 3.3.2).

CNN LSTM

CNN LSTM

PPG series

Stage 1 Stage 2

SBP Est.

DBP Est.

DBP Est.

SBP Est.

Systolic  feature vector

Systolic  feature vector

Fig. 12  Model architecture proposed in study Esmaelpoor et al. (2020)
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Fig. 13  Transfer learning framework proposed in study Leitner et al. (2021)
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Interpretability Lack of interpretability is a common issue in ML, especially in DL. 
For traditional feature-based ML methods, hand-crafted features are usually designed 
with inspiration from physiological explanation or by capturing some characteristics of 
input data. Although DL method seems to have higher performance than traditional fea-
ture-based ML methods, it remains unclear whether DL models learn effective and uni-
versal features, and what is the difference and relationship between these features and 
hand-crafted features. Qin et al. (2021) has visualized the feature representation of the 
trained convolution-based Autoencoder model for converting PPG signal to ABP wave-
form, and finds that the encoder learns a sparse, hierarchical abstract of signal segments.

3.3  Taxonomy 3: single‑task learning vs. multi‑task learning

BP prediction is naturally a multi-task learning question where three prediction tasks 
of SBP, DBP and MBP share the same input. Figure 17 visually shows the difference 
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CNN module

CNN module

GRU module

GRU module

GRU module
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Fig. 14  Model architecture proposed in study (Slapničar et al. 2019)
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Fig. 15  Several representative hybrid network architectures for blood pressure prediction. a mode 1; b 
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Fig. 16  Model framework for blood pressure prediction proposed in study Yang et al. (2020a)
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between single-task learning (STL) and multi-task learning (MTL) for BP prediction. In 
STL, a prediction model has to be trained independently for each task. In MTL, while, 
only one model with multiple outputs is need to be trained for estimating SBP, DBP and 
MBP in parallel. However, nothing is available for free. Specifically, there are two issues 
need to be solved in MTL for BP prediction, which will be detailed in the following.

3.3.1  Single‑task learning

Almost all of traditional ML-based methods follow the STL mode. Specifically, a model 
is trained independently for each prediction task, feature selection and model build-
ing need to be performed on a task-by-task basis, which is cumbersome and increases 
memory costs in practical application. Besides, there are several interesting finds as 
follows by reviewing ML-based methods with explicit feature extraction (El-Hajj and 
Kyriacou 2021b; Liu et al. 2021; Miao et al. 2017, 2019; Yang et al. 2020a; Ibrahim and 
Jafari 2019; Song et al. 2019; Yang et al. 2021; Chen et al. 2019). First, there is a large 
amount of intersection between the feature sets selected for different tasks, and a few 
features are task-specific. Second, the importance of each feature is varied for different 
prediction tasks. Third, the prediction error of SBP is significantly larger than DBP. 
These findings propose new challenges to the designing of accurate MTL model for BP 
prediction.

3.3.2  Multi‑task learning

Currently, studies with respect to multitask learning (MTL) for BP prediction (Tanveer and 
Hasan 2019; Baek et al. 2019; Eom et al. 2020; Su et al. 2018; Slapničar et al. 2019; Fan 
et al. 2021, 2019; Esmaelpoor et al. 2020; Zhang et al. 2020b) are all in neuro models own-
ing to the modularity architecture of neural network. In the context of Ruder (2017), almost 
all of the mentioned studies above except study (Esmaelpoor et al. 2020) follow the hard 
parameter sharing mode, i.e. several layers are shared among all tasks for learning informa-
tive representations, which is followed by multiple independent task networks, with each 
corresponding to a prediction task. A simplest case is that the number of neurons in the last 
fully-connected layer equals the number of prediction tasks. What’s embarrassing is that a 
large number of studies such as Slapničar et al. (2019) utilize this simplest MTL network 
for BP prediction. Surprisingly, there are still a substantial part of DL-based studies (Yang 
et  al. 2021; Baker et  al. 2021; Attarpour et  al. 2019; Jeong et  al. 2019; Wu et  al. 2016) 
where the STL mode is utilized.

Zhang et al. (2020b) proposed a multitask network with adversarial training to predict 
BP. As Fig. 18 illustrates, additional domain classifier module is introduced to train the fea-
ture learner module adversarial to make the learned intermediate features informative (for 

Multi-task model

? feature differences
? task loss scale 

differences

Fig. 17  Single task learning vs. multi-task learning for blood pressure prediction. Left: single-task learning; 
Right: multi-task learning
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the BP prediction task) as well as cross-individual, allowing for faster knowledge trans-
fer for personalized model. Formally, the feature learner parameterized with �f  is updated 
based on gradient as follows,

where Lr and Ld denote the losses of BP prediction and domain classifier, respectively. The 
minus sign with red color means feature learner is updated by minimizing prediction loss 
and maximizing classification loss, trade-off by parameter �.

However, in comparison with traditional ML-based STL for BP prediction, there are 
two import issues that we think is critical for achieving successful BP prediction with 
MTL, under the hard parameter sharing mode. The first question is that how to conquer 
the significant loss scale difference among different prediction tasks that may hinder multi-
task joint training? the second question is that how to cope with the difference in the most 
informative features accounting for different prediction tasks?

For the first problem, the multi-task loss can be expressed as 
∑

i wi ⋅ Li, i ∈ {s, d,m} , 
where Li denotes the loss of task i. The basic idea is to adjust the loss weight w adaptively 
during training to balance the contribution of each task to the total loss. Up to date, we have 
found that there are only two articles (Fan et al. 2019, 2021) where there is explicit mecha-
nism to deal with this problem. Fan et al. (2019) proposed a MTL network for BP predic-
tion using ECG signal. As Fig. 19 illustrates, the training process includes two stages: in 
first pre-training stage, the model is updated based on naive loss-weighting. In the second 
phase, both model parameters and loss weights are updated alternatively, loss weights is 
updated heuristically based on PSO optimization. However, the model is complex and the 
amount of computation is large. Therefore, Fan et al. (2021) further proposed a lightweight 
version where an adaptive weight learning-based method via the estimation loss trend on 
validation set is proposed. Specifically, based on the assumption that the trend of task loss 
variation is positively correlated with the optimization space of the task, the weight of each 
task loss is defined to be the product of the trend, mean value, and standard deviation of the 
loss as follows,

(12)�f ← �f − �

(
�Lr

��f
−�

�Ld

��f

)
,

(13)wi = Tmean
i

⋅ Tstd
i

∗ (Lmean
i

+ Lstd
i
),

LSTM module SBP module

DBP module

Domain classifier
module

Fig. 18  MTL framework proposed in study Zhang et al. (2020b) for blood pressure prediction
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where Lmean
i

 and Lstd
i

 denote the mean value and the standard value of losses on all batches, 
respectively. Tmean

i
 and Tstd

i
 denote the trend of mean value and standard value of losses, 

which are defined as,

where L.
i
(k) denotes the corresponding statistic value of the k-th epoch. Finally, w is nor-

malized as wi = wi∕
∑

i wi.
For the second question, almost no relevant research work has been seen. Fan et  al. 

(2019) argue that each BP estimation task has its own characteristics, and developed an 
attention-based multi-task Bi-LSTM network to automatically select temporal information 
for SBP, DBP and MBP estimation, respectively. However, no any ablation experiments are 
performed to validate the effectiveness of the so-called “automatic information selection”.

3.4  Taxonomy 4: signal source

Signal source used for BP prediction includes physiological signal, behavior data, trajec-
tory data, and facial video, etc.

3.4.1  Physiological signal based

Most studies with respect to BP prediction are based on physiological signals. As Table 13 
presents, signals commonly used include PPG signal, ECG signal, piezoelectric signal, 
oscillometric wave signals, and auscultatory waveform, etc.

PPG signal-based Unlike that ECG signals are measured at the wrist chest with multi-
ple electrode attached, PPG signal can be easily measured from finger using a single PPG 
sensor. Therefore, PPG signal has been widely used for BP estimation due to its simplicity 
and easy-to-use as well as cheapness. Besides, PPG’s derivatives contains much informa-
tion helpful to BP estimation, and this technique has been widely used in related studies 

(14)

⎧
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⎨
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⎩
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=
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i
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Fig. 19  MTL framework proposed in study Fan et al. (2019) for blood pressure prediction
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(Yang et al. 2020a; Baek et al. 2019; Slapničar et al. 2019; Cheng et al. 2021; Harfiya et al. 
2021; Wang and Zhang 2017; Liu et al. 2021; Attarpour et al. 2019; El-Hajj and Kyriacou 
2021b; Lin et al. 2021a; Shimazaki et al. 2018; Baek et al. 2020; Xing et al. 2019; Atomi 
et al. 2017). Specifically, the first-order differential PPG signal, also known as velocity ple-
thysmography (VPG), contains slope information related to BP. The second-order differ-
ential PPG signal, also known as accelerated plethysmograph (APG), contains dominating 
information about the dichroic notch and diastolic point (Cheng et al. 2021).

There are two other variants of PPG technique in addition to single site PPG. The first 
is multi-wave PPG signals (MWPPG) which is acquired based on different colors of light. 
For example, Baek et al. (2020) measured single multi-wave PPG signals using a smart-
phone for BP prediction, and finds that the best performance is achieved when a green PPG 
signal is used in conjunction with an instantaneous frequency signal. Liu et al. (2020a) pro-
posed a PCA-based MWPPG algorithm for BP prediction using only a single sensing node, 
where MWPPG decodes the compounded multi-wave PPG signals into arterial pulse and 
capillary pulse, and the phase lag between them is used further to compute PTT. The sec-
ond is multi-channel PPG signals (MCPPG) which is acquired at different sites (Attarpour 
et al. 2019; Fong et al. 2019; Lazazzera et al. 2019). For example, Fong et al. (2019) pro-
posed a SVR-based ensemble method for BP prediction using MCPPG signals collected 
from multiple arterial segments of an individual’s left arm, where each SVR in the ensem-
ble is trained on a comprehensive feature set that is derived from a distinct PPG signal.

ECG signal-based ECG signal-based BP estimation has attracted some attention 
recently since ECG signals are easy to collect using wearable devices. Based on literature 
search, we find that current studies related are all based on a single lead ECG signal (Fan 
et al. 2019, 2021; Landry et al. 2019; Wu et al. 2016; Miao et al. 2020; Haddad et al. 2021; 
Mousavi et  al. 2020; Simjanoska et  al. 2020; Wu et  al. 2016). The fusion of multi-lead 
ECG signals for BP estimation may be a potential research direction.

Piezoelectric signal-based Piezoelectric (PZT) sensor can sense pressure changes and 
convert them into electrical signal. Therefore, it is suitable for arterial distension sens-
ing during the cardiac cycle (Samartkit et al. 2022; Yi et al. 2022b). PZT sensor is usu-
ally attached on the subject’s wrist through a wrist strap and can work without an exter-
nal power source, making it superior to other high-power sensors while providing safety 
insurance (Park et al. 2017; Samartkit et al. 2022). Wang and Lin (2020) proposed to use 
PZT signal for beat-by-beat BP monitoring, where the pressure change is converted from 
the voltage change by the pressure sensitivity of the sensor. However, the relation between 
PZT signal and BP waveform remains unclear. Recently, Yi et al. (2022a) elucidated the 
first derivative correlation between PZT signal and BP waveform for the first time based on 
theoretical analysis and experimental simulation, which lays foundations for BP monitor-
ing using a single PZT signal.

OMW-based Oscillometric waveform (OMW) signal represents a class of oscillography. 
In traditional oscillography methods, SBP and DBP that usually obtained by mapping the 
position at predetermined ratio of the envelope of the maximum amplitude of the OMW 
signal to the deflation curve are very sensitive to the ratio. Therefore, several researchers 
treat OMW as regular signal source for BP estimation under regression scenario where ML 
and DL methods are adopted to solve the nonlinear relationship between time domain fea-
tures extracted from OMW signal and the reference BP (Lee et al. 2018; Lee and Lee 2020; 
Lee and Chang 2016, 2017a, b, 2019; Forouzanfar et  al. 2011; Lee et  al. 2019a, 2020). 
Besides, Argha et al. (2019); Argha and Celler (2019) firstly model OMW-based BP pre-
diction as a sequence-to-sequence classification question. Specifically, each OMW beat is 
labeled with one of three classes, namely pre-systolic (PS), between systolic and diastolic 
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(BSD) and after diastolic (AD). Then, SBP and DBP points are determined based on the 
beat at which the model output sequence switches from PS to BSD and from BSD to AD, 
respectively.

AW-based Auscultatory waveform (AW) represents a class of auscultation methods. Tra-
ditional auscultation methods require the participation of experts. Recently, some research-
ers are committed to using advanced machine learning technology to realize automatic BP 
estimation based on AWs (Celler et  al. 2019a; Argha et  al. 2020; Pan et  al. 2019). For 
example, Celler et  al. (2019a) proposed a Gaussian mixture Models and hidden Markov 
model (GMM-HMM) method to automatically discover and learn the latent structure in 
the AW sequence, and then SBP and DBP points are determined as the cuff pressures at 
which the AW sequence changes its structure. Similar to previous studies (Argha et  al. 
2019; Argha and Celler 2019), Argha et al. (2020) models AW-based BP estimation as a 
sequence-to-sequence classification question.

Multi-sensor signal-based Multi-sensor signal fusion (Khaleghi et al. 2013) technolo-
gies have been widely used in BP prediction area. Specifically, for traditional explicit-
feature-extraction-based methods, the features extracted from multiple synchronized sig-
nals are concatenated together to form the final feature vector, which is usually followed 
by feature selection/reduction methods to reduce dimension before it is used for training. 
While, for DL methods with raw signal as input, multiple signals are combined in some 
form (refer Sect. 5.2.2) and then are fed into neural network for model training.

Since the amount of information about BP collected by a single sensor is often limited, 
and the signals collected by different sensors (usually worn it on different sites of the body, 
with different working principle) have certain complementarity, modeling all kinds of 
influence factors about BP through the fusion of multi-sensor signals is promising. A large 
number of studies have confirmed that the BP prediction accuracy of the method based on 
multi-sensor signal fusion is better than that of any method based on a single sensor signal 
(Lee et al. 2021; Paviglianiti et al. 2020a; Esmaelpoor et al. 2021b; Thambiraj et al. 2020; 
Huang et  al. 2022; Baek et  al. 2019). ECG signal contains important information about 
BP, which can effectively improve the prediction accuracy as a supplement to PPG signal 
(Esmaelpoor et al. 2021a). It is observed that PPG and ECG signals are the most popular 
combination used for BP prediction. Due to its simple configuration and portability, PZT 
may be a promising alternative to ECG for calculating pulse transit time together with PPG 
in conventional PTT methods (Samartkit et al. 2022). Besides, other signals such as PCG, 
BCG and ICG are used in conjunction with PPG and/or ECG signals for better BP predic-
tion (Samartkit et  al. 2022). In short, BP prediction based on multi-sensor signal fusion 
has potential applications prospects in wearable devices. However, this inevitably increases 
the difficulty of configuration and proposed new challenges for storage and response time 
when deployed on hardware.

3.4.2  Health Behavior data based

One of the advantages of health behavior data-based BP monitoring is that the convenience 
to explore the primary factors affecting individual’s BP, which provides an opportunity 
for health behavior recommendations. Chiang and Dey (2018) investigated the relation-
ship between several health behavior such as sleep and exercise and daily BP based on 
the proposed random forest with feature selection (RFFS). Experimental results show that 
the healthy behavior recommendation function of RFFS can in turn be used to regulate 
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individual’s blood pressure. Chiang et al. (2021) further proposed a method called RFSV 
for BP prediction and personalized recommendation. Specifically, the best ARIMA mod-
el’s parameter is used to extend the original feature set, and then a general random forest 
(RF) model is trained using the whole feature set. Next, RF with shapley value (RFSV) 
technique is utilized to select important features to train model for final prediction and 
recommendation.

3.4.3  Trajectory data based

Trajectory data based BP monitoring is a potential way for unobtrusive BP monitoring, 
since no wearable device is needed, and trajectory data can be easily acquired from mobile 
devices. Currently, there are few relevant studies. Xiang et  al. (2021) firstly proposed a 
framework for BP prediction using individual’s daily trajectory data in conjunction with 
demographical characteristics. As Fig. 20 illustrates, through grid-based clustering algo-
rithm, the trajectory data is firstly converted to region-of-interest (ROI) label sequences, 
which is followed by Bayesian topic model comprising the LDA for acquiring the prob-
ability of daily routine pattern distribution. Finally, the acquired daily routine topic distri-
bution, historical BP and demographical features are used as input to train a LSTM model 
for prediction.

3.4.4  Facial video based

Facial video based methods are a class of contactless, cuffless methods that only use 
facial video for BP estimation, which overcome the drawback that PPG-based methods 
are sensitive to contact pressure (Chandrasekhar et al. 2020) and have a very wide range 
of potential application values.

For video-based methods, an important technique is how to obtain the PPG compo-
nent (aka iPPG signal) from video. Based on Lambert-Beer law and light scattering the-
ory, a general method in firstly determine ROI from video, and then PPG component is 
extracted from ROI of the video based on spatial averaging operation (Tasli et al. 2014; 
Sugita et  al. 2015; Jeong and Finkelstein 2016; Secerbegovic et  al. 2016; Fan et  al. 
2018; Takahashi et al. 2020; Djeldjli et al. 2021; Zhou et al. 2019; Luo et al. 2019).

The development of video-based BP measurement has experienced a process similar 
to that of physiological signal-based BP measurement. Specifically, facial video-based 
BP prediction methods can be generally grouped into three categories, namely (i) math-
ematical/optical methods, (ii) video-based ML methods, (iii) video-based DL methods, 
etc.

Clustering
Trajectory data:

LDA

Home/work

inference

ATM

Demographical data: 

LSTM

Dense

Dense

Model

Home/work

time

Daily routine

 pattern distr.

ROI label

sequences

Main daily 

routine patterns

{sex, age,height,weight}

Fig. 20  Model framework proposed in study (Xiang et al. 2021)
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Mathematical/optical methods includes image-based PTT (iPTT) methods, etc. Image-
based PTT (iPTT) methods (Sugita et al. 2015; Jeong and Finkelstein 2016; Secerbegovic 
et al. 2016; Fan et al. 2018) is similar to traditional PTT methods. In iPTT methods, the 
pulse transient time or instantaneous phase difference is firstly calculated between two or 
multiple pulse waves obtained from different parts (such as face and palm) of an individ-
ual’s body captured by a video camera. However, subjects are often required to maintain 
a fixed posture, which is unrealistic in real-life scenarios. Hence, Takahashi et al. (2020) 
examined the feasibility of acquire PTT based on a single part of the body, and the strong 
correlation between PTT acquired from the forehead and the chin of a face and BP is con-
firmed. In addition, Zhou et al. (2019) proposed a multiple channel averaging-based meth-
ods for BP estimation using RGB camera. Specifically, the facial video is firstly converted 
from RGB space to YCrCb space for face detection. Spacial averaging is then performed 
for each channel of the ROI image, and the obtained average is used as input to the JADE 
algorithm for blind source separation. Based on radial resonance theory, the peaks and val-
leys of the resulting time series signal are related to pressure waves.

For video-based ML methods (Djeldjli et al. 2021; Luo et al. 2019; Rong and Li 2021b; 
Gonzalez Viejo et al. 2018), after PPG component is extracted from video, relevant fea-
tures are extracted from the PPG component, which is further used for training BP predic-
tion model. For example, Djeldjli et al. (2021) proposed a single channel averaging-based 
methods to acquire iPPG signal. Specifically, after ROI is detected, the green channel of 
the ROI image is selected and averaged to acquire iPPG signal, which is further used for 
the extraction of BP-related features. Rong and Li (2021b) acquired three iPPG signals 
from the ROI of the channels of videos, and a total of 26 features are extracted from these 
signals, Then, four algorithms including LR, SVR, RF and MLP are employed to train BP 
prediction model based on these features, respectively. In the well-known transdermal opti-
cal imaging (TOI) method (Luo et al. 2019), subtle changes in facial image is captured to 
to detect blood pulsation in cardiovascular system, which is further used for BP estimation. 
Specifically, 17 ROIs of facial image with robust hemoglobin fluctuations are selected. 
Then averaging operation in performed in each ROI, resulting in 17 hemoglobin signals. 
Next, features are extracted from these signals to train a MLP model for BP prediction.

For video-based DL methods, although we have not found any ready-made literature, 
please note that video-based technologies for other related tasks such as heart rate moni-
toring have achieved some progress (Yu et al. 2019). In addition, Yu et al. (2019) firstly 
use a deep spatio-temporal network for reconstructing precise remote PPG (rPPG) signal 
from facial videos. We believe that video-based DL methods will also usher a new period 
of vigorous development as in physiological signal-based methods in the near future.

4  Datasets and evaluation

In this section, we plan to summarize the widely used public datasets and processing tools, 
followed by an overview and commentary on the widely used evaluation metrics, evaluation 
procedure, and splitting strategies. Finally, we made a critical analysis of the reported results.

4.1  Dataset and processing toolbox

Since the publication of the first Multiparameter Intelligent Monitoring in Intensive Care 
(MIMIC) dataset in 1996 by Moody and Mark (1996), there have been several freely 
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accessible databases supporting BP estimation. In this subsection, we summarized several 
representative datasets in this field and the relevant supporting tools for data processing.

Table 14 summarized several popular datasets used in related studies. It can be seen that 
several datasets such as MIMIC xxx and PPGBP are constantly expanding, producing sever 
different versions. The specific version of the dataset used should be declared when using 
a dataset. Especially note that datasets such as MIMIC xxx, etc., are heterogeneous dataset 
collected from ICU. The collected signals are accompanied with various noise interfer-
ence and measurement error, etc., it can not be directly used for experiment. Therefore, 
Kachuee et al. (2015) published a pre-processed version of the MIMIC II dataset named 
UCI-BP, this version of the dataset has been widely used in this field due to its ease-of-use. 
However, note that the sampling rate of ECG signal is reduced from 500 to 125 Hz to keep 
synchronization with PPG signal, which may lead to time jitter of about 8 ms in the extrac-
tion of PTT-related features (in the worst case). This small problem has been neglected in 
most of the studies, and Sharifi et al. (2019) proposed to tackle this problem by averaging 
PTT based on cubic splines.

Besides, several researchers use virtual database for experiments. For example, Hut-
tunen et  al. (2019) used a database of virtual subjects generated based on 1D haemody-
namic model where model parameters are varied to reflect variations between different 
subjects. Magbool et al. (2021) used two publicly available, virtual pre-validated databases 
of simulated pulse waves for experiments.

Table  15 presents several widely used toolboxes for processing and analyzing physi-
ological signals.

4.2  Evaluation metrics

The metrics used in classification scenario include accuracy, precision, recall, and F1 
Score, etc. The metrics used in other learning scenarios include mean absolute error 
(MAE), mean absolute percentage error (MAPE), mean square error (MSE), mean 
error (ME), standard error (STD), and R2 (Monte-Moreno 2011), etc. Herein, we focus 
mainly on the latter, and a summary of these metrics is in Table 16. Especially, MAE is 
related to the BHS standard (O’Brien et al. 1993), ME and STD are related to the AAMI 
standard. Therefore, these three metrics are widely used for performance comparison 
in related studies. However, as Fig. 21 illustrates, a single metric MAE is insufficient to 
objectively evaluate the performance of an algorithm on a dataset with skewed distribu-
tion. This is inspired by the fact that the generalization ability of a model may be very 
poor even if the Accuracy value is high in the class-imbalance scenario. That is why 
the existence of metrics such as F1 Score, etc. Naturally, is there such a metric like F1 
Score in regression scenario? 

Based on the above considerations, we introduced a new evaluation metric named bin-
balanced MAE ( b2MAE ), and propose the MAE of prediction for each bin corresponding 
to different BP levels should also be reported, in addition to the global MAE. The defini-
tion of b2MAE is as follows.

(15)b2MAE =
1

Nbin

Nbin∑

i=1

1

|{yj ∈ bini}|
∑

yj∈bini

|yj − ŷj|,
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Table 15  Toolboxes for processing and analyzing physiological signals

Toolbox Description

Neurokit2 (Makowski et al. 
(2021)

A user-friendly Python package for simulating and processing various 
neurophysiological signals such as PPG, ECG, RSP, EDA, and EMG, 
etc.

Scipy Virtanen et al. (2020) A well-known Python package including modules for statistical, opti-
mization, integration, Fourier transform, etc. Its sub-module Scipy.
signal implements various filters and peak detection, interpolation and 
transformation algorithms for signal

WFDB Vijayarangan et al. (2020) A well-known, source software available for all popular platforms, 
which supports signal processing, automatic analysis, visualization, 
annotation and interactive analysis of waveform

wfdb-python Vilalta and Drissi 
(2002)

A Python package for reading, writing and processing WFDB signals 
(e.g ECG ) and annotations. This package provides a python interface 
to access MIMIC series databases

Peak detection Virtanen et al. 
(2020)

A Python package including peak detection algorithm

Vayu Mahajan (2021) A open-source, cross-platform sensor data analysis toolbox, including 
data con- version, interpolation, aggregation and prediction

Table 16  Summary of metrics used in the evaluation of BP estimation

Metric Calculation formula Description

MAE 1

N

∑N

i=1
�yi − ŷi� Calculate the MAE of prediction over all samples

MAPE 1

N

∑N

i=1

�yi−ŷi�
yi

Calculate the MAPE of prediction over all samples

MSE 1

N

∑N

i=1
(yi − ŷi)

2 Calculate the MSE of prediction overall sample, sensitive to 
abnormal predictions

ME 1

N

∑N

i=1
(yi − ŷi)

Calculate the ME of prediction over all samples

STD
√

1

N
(yi − ŷi)

2 Calculate the STD of prediction over all samples, the square 
of metric MSE

R
2

1 −
∑N

i=1
(yi−ŷi)

2

∑N

i=1
(yi−ȳ)

2

Measure the fitting effect of the model, the closer its value is 
to 1, the better

TP

TN

FN

FP

Binary

classification

0

1

1 0

Regression

Large! Small!

Small!

Does it really mean strong

generalization ability? 

Test dataset Model (biased) MetricsTask

Fig. 21  In class imbalance scenario, a single metric-Accuracy can not objectively evaluate the performance 
of classifier. Similarly, a single metric-MAE is insufficient to evaluate the performance of a model in imbal-
anced regression scenario
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where Nbin refers the number of bins with equal length s included in the total BP range 
[ bp, bp ], i.e. Nbin = ⌈(bp − bp)∕s⌉ , parameter s controls the granularity. The i-th bin 
bini = (bp + (i − 1)s, bp + i ⋅ s].

It is intuitive that the ’Mean’ operation is performed within each bin to offset the imbal-
anced distribution. Similarly, bin-balanced version of other conventional metrics can also 
be easily derived.

4.3  Evaluation procedure and splitting strategy

The selection of evaluation procedure is dependent on the learning scenario. Specifically, 
for online/incremental learning scenario, the usually used evaluation procedure is prequen-
tial evaluation (Gama et al. 2009), i.e each sample in the data stream is firstly served as test 
sample for prediction, and then is used as training sample to update prediction model. For 
sequence prediction scenario, the usually used evaluation procedure is sequential test, i.e 
the former part of the sequence data is used to train model and the latter part of which is 
used for test. For other learning scenarios, the usually used evaluation procedures include: 
(1) cross evaluation, i.e the whole dataset is split into multiple equal portions (e.g. 10 por-
tions, which is called 10-fold cross-validation). In each iteration, a portion of data is used 
to test the model trained on the remaining portions of data, and the loop does not terminate 
until each portion of data has been used as test set; (2) random splitting, i.e the whole 
dataset is randomly split into training, validation, and test set according to a certain ratio, 
the experiment is repeated by changing random seed to obtain multiple different divisions. 
However, the splitting operation in the above two evaluation procedures itself is a critical 
factor that affect the final division, which is usually ignored in most of the literature.

Specifically, as Fig. 22a and b illustrates, the splitting can be performed at the record 
level or sample level. For splitting strategy (a), all samples of each record appears only in 
training, validation or test set. Whereas, this strategy may leads to large differences of BP 
distribution among training, validation and test set, especially when the total number of 
records is small. Therefore, careful check is required to ensure the BP distribution among 
the three sets is consistent (Schrumpf et al. 2021a, b). However, there are only a few studies 
where the consistency check is performed and disclosed (Schrumpf et al. 2021a, b; Song 
et al. 2019; Yang et al. 2020a; Atomi et al. 2017; Bose and Kandaswamy 2018). For exam-
ple, Bose et al. confirmed the consistency between training and test sets in terms of several 
characteristics such as SBP, DBP, Body mass index (BMI), etc. Besides, we noticed that 
in several studies (Qin et al. 2021), all BP records are firstly divided into several disjoint 
subsets based on BP category, each subset is then split into training, validation and test 
records, the final splitted dataset is acquired by merging the records with same kind from 
different subsets.

For splitting strategy (b), the final aggregated samples are randomly divided to form 
training, validation and test sets. In other words, samples of a record may appears simul-
taneously in training, validation and test sets. However, physiological signal of an indi-
vidual is highly regular and will not change significantly in a short time, especially, signals 
are usually collected from individuals in an enclosed environment (we means participants’ 
range of activity, status and posture when measuring data), leading to insufficient BP var-
iations. Therefore, this splitting strategy is at the risk of data leakage, although there is 
no intersection among training, validation and test sets(Eom et al. 2020; Schrumpf et al. 
2021a, b; Hasanzadeh et al. 2019).
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In addition, there are other experimental procedures such as Leave-one-subject/record-
out (LOSO) (Yu et al. 2019), and individual test (Yan et al. 2019; Liu et al. 2020b; Lin 
et al. 2021b), etc. LOSO can be regarded as a special case of cross-validation with record 
level splitting strategy, in which only one record data is used as the test set in each itera-
tion. Since BP changes vary greatly among different individuals (Zhang et al. 2021c), the 
test results on different individuals often vary widely. In individual test (as illustrated in 
Fig. 22c), the experiment is performed individual-by-individual. Specifically, for each indi-
vidual, part of the individual’s data is used to train a personalized prediction model, and the 
remaining data is used to further test the model. Since the limited individual BP dynamics 
and the small amount of data, the trained model is subject-specific and its generalization 
ability is very limited, although experimental results usually seems well.

4.3.1  Quantitative comparison

To quantitatively analyze the effect of different splitting strategies-① &③ &④ &⑤ (refer 
Fig. 22. Note that splitting strategies-② &⑥ &⑦ were excluded considering the too small 
number of samples included or unbearable computational cost) on experimental results, we 
utilize the classical ResNet (He et al. 2016b) and MIMIC III database for our experiments. 
Concretely, ResNet was modified for BP prediction (2D convolution was replaced by 1D 
convolution, and the last classification layer was replaced by regression layer consisting of 
two neurons). For dataset, we used the version published by Schrumpf et al. (2021a) and 
randomly select 750 records (i.e v 1 version) for experiments. The statistics of several data-
sets finally used are summarized in Table 17 and a graphical illustration of the BP distribu-
tion and individual BP dynamics is attached in Appendix 2. It can be seen that both SBP 
and DBP cover an extensively large range in terms of overall population BP and individual 
BP dynamics.

Table  18 presents the global numerical results. Moreover, considering the severely 
skewed BP distribution both in training set and validation set, the corresponding test 

Training set

Validation set

Test set

Training set

Validation set

Test set

Training set

Validation set

Test set

Training set

Validation set

Test set

Subject record 1

Subject record 2

Subject record 3

r1

r2

r3

r1

Inter record split

r2

r3

r1

r2

r3

r1

r2

r3

Train Val. Test

Train Val. Test

Record level 

splitting strategy

r1

r2

r3

Training set

Validation set

Test set

Inter record split

Random sampling

Merge Random split

Intra split Merge

Intra random split Merge

Sample level 

splitting strategies

1

3

4

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2

3

6

4 5

8 9

7

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1

2

3

4

5

6

7

8

9

1 2 3

4 5 6

7 8 9

1 3 2

5 4 6

9 7 8

1

3

2

5

4

6

9

7

8

5

2

1 2 3

4 5 6

7 8 9

1

5

7

1

5

7

Fig. 22  Several splitting strategies used for evaluation. Splitting strategy—(a) ensures all samples of a 
record appear only in training, validation or test set, refer rows ① ∼ ② for details. Nevertheless, for splitting 
strategy—(b), samples of a record may distributed among training, validation and test set, refer rows ③ ∼ ⑤ 
for details. c denotes a special experimental protocal that sample level splitting strategy is used for experi-
ment, and experiments are performed individual-by-individual, refer ⑥ ∼ ⑦ for details
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performance of different models on each bin of test range is visualized in Appendix 3 
(Figs. 28, 29). We can find several interesting observations as follows,

(1) The test result of ResNet model based on sample level splitting strategies-③ &④ &⑤ is 
significantly better than that based on record level splitting strategy-①. However, note 
that this does not necessarily ensures the former with stronger generalization ability, 
since data of an individual appears simultaneously in training set and validation set;

(2) No matter which splitting strategy is adopted, the trained model prefer to make predic-
tions towards central BP region. In other words, skewed data sets lead to biased model. 
As illustrated in Figs. 28 and 29, the corresponding MAE of the model increase gradu-
ally as the test bin is farther away from the central region of the possible BP range, 
which is inversely proportional to the BP distribution of training set. This circumstance 
is even more serious when the record level splitting strategy is used. One may question 
whether this phenomenon is caused by too few training samples away from the central 
area. Our experimental results on more large datasets such as v 4 (4x larger that v 1 ) 
indicate that this phenomenon is still occurred.

(3) No matter which splitting strategy is adopted, although the BP distribution among train-
ing, validation and test set is confirmed to be consistent, the performance of the model 
on validation set and test set is lower than that on training set by a large margin, which 
is even more obvious when record level splitting strategy is used. We confirm that no 
over-fitting phenomenon is occurred during training, and believe that this is mainly 
caused by individual differences, which challenges the training of general models with 
robustness, and strong generalization ability.

In addition, Friedman test (Demšar 2006) is employed to judge whether the performance 
of ResNet models based on different splitting strategies is comparable. Specifically, the 
mean rank of each method over five experiments is calculated and the resulting p-value 
is 3.57e−3 (0.05) for both SBP and DBP prediction. Therefore, the null hypothesis is 
rejected at � = 0.05 , i.e splitting strategy has a significant effect on the trained model’s 
performance for both SBP and DBP prediction. Furtherly, post-hoc Nimenyi test (Nemenyi 

Table 17  Statistics with respect to total BP as well as individual BP dynamics, of the final used datasets 
derived from MIMIC III

v0⊂v1⊂v2⊂v3⊂v4

Dataset Type #Data Total population Individual dynamics

Range Mean Std Range Mean Std

v0 SBP 375 records, totally 
7.5e5 samples

50–199 122.23 24.62 58–145 104.70 15.27
DBP 40–119 61.75 12.60 32–78 58.01 11.65

v1, 
(default)

SBP 750 records, totally 
1.5e6 samples

50–200 122.59 24.22 58–145 104.80 15.22
DBP 40–119 61.68 12.41 25–78 58.22 11.45

v2 SBP 1500 records, totally 
3e6 samples

44–200 122.44 24.33 58–147 105.27 14.74
DBP 40–119 62.03 12.65 25–78 58.92 11.49

v3 SBP 2250 records, totally 
4.5e6 samples

40–200 122.40 24.23 58–147 105.62 14.51
DBP 40–119 61.96 12.52 25–79 59.02 11.50

v4 SBP 3000 records, totally 
6e6 samples

40–200 122.26 24.33 58–153 105.67 14.85
DBP 40–119 61.83 12.48 25–79 58.91 11.70
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1963) is applied for pairwise performance comparison. Specifically, a critical difference 
at 95% confidence interval is 2.0976, and the results are visualized in Fig. 23. It can be 
seen that ResNet model based on record level splitting strategy-① achieves the worst rank-
ing among models based on other splitting strategies, and ResNet model based on sample 
level splitting strategy-③ achieves the best ranking among models based on other splitting 
strategies. The p-value for ResNet models based on splitting strategies-① &③ is 1.363e−3 
for both SBP and DBP prediction. Therefore, the null hypothesis is rejected at � = 0.05 , 
and we conclude splitting strategy is statistically significantly factor relating to model’s test 
result. Moreover, we find that only models based on splitting strategies-③ &④ are statisti-
cally comparable when the number of experiments exceeds twelve since the rank of models 
in each experiment is relatively stable.

4.4  Analysis of reported results

Instead of simply comparing the results as in other studies, in Table 22, we conducted a 
comprehensive comparison of the latest/representative literature on BP prediction based on 
twelve metrics. We can find several basic facts as follows, 

(1) The prediction results reported in different articles vary greatly, even for those that 
using the same data source and similar methods. This naturally brings people some 
confusion when comparing the results of related articles: First, what makes the results 
reported in different articles so different? Second, for those papers reporting good 
results, where does the performance improvement come from? data cleaning, feature 
engineering, algorithm improvement or hyper-parameter optimization?

(2) The performance of models trained on different datasets using the same method varies 
greatly.

(3) The prediction accuracy reported in some studies is obviously unrealistic (note that we 
are not questioning the authenticity of the experiment, but the procedural irrationality).

(a) 

(b) 

Fig. 23  Visualization of post-hoc Nimenyi test (Nemenyi 1963) (in terms of MAE) of ResNet models based 
on different splitting strategies, for a SBP prediction, b DBP prediction
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(4) The accuracy reported in those studies based on ICU patients’ data is generally lower 
than that based on data collected from healthy or ordinary individuals.

(5) Those studies with fewer records/subjects included for experiment are more likely to 
produce better results. Since the experimental settings vary from studies to studies, a 
more rigorous experiment (refer Appendix 5) by us more fully confirmed this point.

(6) The inclusion of demographic characteristics for building model can improve prediction 
accuracy.

(7) Calibration/fine-tuning techniques can help to significantly improve the prediction 
accuracy of the model.

(8) The reported accuracy in those studies based on individual test or experiments with 
sample level splitting strategy is usually significantly higher than those based on experi-
ments with record/subject level splitting strategy.

We would like to state a basic view-a single good result does not necessarily ensure the 
model with strong generalization ability. For example, due to the limited and stable varia-
tion of individual BP, the personalized model usually performs very well under individual 
test protocal. However, the performance of the model will be significantly degraded when 
it is not calibrated for a long time or the physiological activity of the individual changes, 
let alone on other individuals that have never been seen during training. That is why intra-
individual BP variation is so important for the evaluation of individualized estimation 
methods with individual-by-individual calibration (Liu et al. 2020a). In fact, Mukkamala 
et al. (2021) has disclosed that the conclusions of an increasing number of publications are 
potentially misleading. Herein, we summarized possible reasons for unfairness in compari-
sons and some of the possible reasons for unreliable results, mainly from the perspective of 
an ML researchers.

Possible reasons for unfairness in comparison. Unlike other ML/DL application areas 
such as computer vision where there are plenty of baseline methods and out-of-the-box 
public datasets. In the BP estimation community, due to the lack of baseline methods and 
ready-to-use datasets (note that although several public datasets have been summarized in 
Sect. 4.1, there are still many processing procedures to be done before it can be used in 
experiments, such as data cleaning, signal denoising, segmentation, data splitting, etc.), the 
direct comparison method (i.e comparing a system) is widely used for comparison. How-
ever, this method of comparison is unfair due to the following reasons, 

(1) Even if the same data source is used, the final processed data sets used in the experi-
ment may vary greatly, since the sample duration, the signal preprocessing method and 
the data cleaning procedures vary from studies to studies (Schrumpf et al. 2021a, b; 
Slapničar et al. 2019; Tazarv and Levorato 2021; Mousavi et al. 2019b).

(2) The splitting ratio used for the generation of training, validation, and test sets varies 
from studies to studies.

(3) The experiment procedure as well as splitting strategy used vary from studies to studies, 
which is one of the main reasons for significant differences between the results reported 
in different studies.

Possible reasons for the unreliability of some reported results. We summarized several fac-
tors accounting for the unreliability of some results from an ML researcher’s perspective, 
as follows, 
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 (1) A large proportion of papers are based on private data that is non-accessible. In addi-
tion, for those literatures based on public data, the final processed dataset is rarely 
made public and usually can not be exactly regenerated due to missing or inadequate 
description of the details such as parameter configuration.

 (2) The data set used in some studies contains too few records with narrow BP range and 
insufficient/sparse BP variations, which means the conclusions itself has great limita-
tions. In fact, He et al. (2016a) has experimentally confirmed that the performance of 
predictor degrades significantly when it is applied to individuals with dramatically 
fluctuating BP values. More seriously, the BP range of test set is narrower than that 
of training set in some studies, which is problematic.

 (3) Some articles did not even disclose the details (the number of records/samples, sta-
tistics on the range of BP and its distribution, in the final processed dataset) of the 
data used.

 (4) The data leakage issue both in the process of normalization and feature selection/
reduction, test set should not be included in the above two processes.

 (5) There are few studies where the consistency check of the BP distribution between 
training set and test set (the characteristic of I.I.D) is performed and reported, which 
is an critically important procedure for the objective assessment of ML models.

 (6) The widely used splitting strategy at the final sample level is at the risk of data leak-
age, resulting in some unrealistic results, which further leads to overestimation of 
the performance of model, although there is no sample overlap between training, 
validation and test set.

 (7) There are some studies where a single metric is used to evaluate the performance of 
the model.

 (8) There are a few literatures where the normalize target operation was used during 
training, and the reported evaluation results were computed based on the normalized 
predictions.

 (9) Due to the severely skewed BP distribution in the data set, metric values such as MAE 
that evaluated on the whole data set are not sufficient to explain the performance of 
the model.

 (10) The currently used evaluation standards for traditional BP measurement methods 
seems no longer necessarily suitable to ML/DL based methods (Mukkamala et al. 
2021).

It is observed that the factors leading to unreliable results involve almost all links of the 
blood pressure prediction pipeline, many of which are more or less related to the data itself. 
It is worth mentioning that, in addition to contributing to the unreliability of the results, 
some of the above-mentioned factors also bring about a reproducibility crisis to a certain 
extent. Besides, in this area, there are few authors publish code along with their papers 
(Slapničar et al. 2019). Here, we list all the open-source implementations we can find for 
BP prediction in Table 20 (Appendix 4).

5  Some critical issues and techniques

In this section, we will discuss and summary several key issues as well as newly-emerging 
techniques in the BP prediction community in the form of special topics.
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5.1  Critical issues

On the basis of a large number of literature analysis, we condensed six issues to be dis-
cussed, which are imbalanced phenomenon, interpretability issue, sample duration, indi-
vidual difference, large difference between SBP and DBP prediction accuracy, and hand-
crafted features versus machine-learned features.

5.1.1  Imbalanced phenomenon

In a large number of related studies (Kachuee et  al. 2016; Radha et  al. 2019; Schrumpf 
et al. 2021a; Jeong et al. 2019; Dagamseh et al. 2021; Esmaelpoor et al. 2020; Schrumpf 
et al. 2020; Schlesinger et al. 2020; Sagirova et al. 2021), when analyzing the distribution 
of MAE for different SBP and DBP values, there is a similar expression such as “for the 
bins far from the central area within the total BP range, the larger the corresponding MAE”. 
Actually, considering the scatter plot, as shown in Fig. 24, the slope of the fitted line from 
the (ground-truth, prediction) pairs is always smaller that 1 (ideally, the slope should be 
equal to 1). In other words, the BP of samples in the area with relatively low BP is overesti-
mated, and the BP of samples in the area with relatively high BP is underestimated.

Herein, we formally declare that this is the effect of imbalance phenomenon. From a 
statistical point of view, the usually used MSE loss in regression modeling is equivalent 
to the negative log likelihood loss of a noisy prediction distribution-p(y|x;�) , of which the 
mean is the model’s prediction (Bishop and Nasrabadi 2006). We further assume the label-
conditional distribution-p(x|y) is the same in both training and test set, then by Bayes’s 
rule, it is easily derived,

Equation (16) indicates that the ratio between ptrain(y|x) and ptest(y|x) is proportional to 
ptrain(y) , which is lower when a BP value rarely appears in the training set. Summarily, the 
BP dataset with skew/imbalanced distribution leads the trained model to make prediction 
biased towards central BP region.

Generally speaking, imbalanced regression is a novel and challenging topic in the whole 
machine learning community(Krawczyk 2016). Currently, the imbalance issue in BP pre-
diction has hardly been paid attention to in related studies. So far, we have found several 
tricks appeared in a few studies (Radha et al. 2019; Tjahjadi et al. 2020; Wang et al. 2022) 

(16)
ptrain(y|x)
ptest(y|x)

∝
ptrain(y)

ptest(y)
,

Fig. 24  A demo interpreting a 
general case of scatter plot of 
blood pressure prediction results 
reported in related studies
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which actually serve to mitigate the imbalance issue, although this is not explicitly stated 
in the text. Radha et al. (2019) believe that there will be a problem when the commonly 
used mean square loss that favours minimizing samples with large errors is used for the BP 
prediction task in which the genuine BP presents a normal distribution. Therefore, a strat-
egy that amplifying the loss of samples by the absolute difference of the corresponding BP 
from the mean BP is proposed, which is similar to cost sensitive learning in classification 
scenarios. Tjahjadi et  al. (2020) used up-sampling technique to overcome the imbalance 
issue between different BP groups. Wang et al. (2022) proposed a modified loss function 
based on quantile, in which the loss of the samples whose genuine BP is lower that quartile 
1 of the overall BP in the population or higher than quartile 3 of the overall ground-truth 
BP in the population is magnified.

5.1.2  Interpretability issue

The lack of interpretability and poor robustness are two important, common issues of arti-
ficial intelligence technologies when applying it into specific application fields. Specifi-
cally, predictive models/systems should be explainable to understand how they work and 
the predictions should be realistic and consistent with basic principles, which is crucial for 
adopters to be confident when using them to aid decision making (Sethi et al. 2020; Moss 
et al. 2022). This issue has been mentioned in Sect. 3.2.3. Generally, the higher the model 
complexity, the lower the interpretability. However, the complexity of healthcare decisions 
often requires the use of complex models. Therefore, for a specific task, there is a trade-
off between model performance and model interpretability (Moss et al. 2022; Sethi et al. 
2020). Here, we plan to conduct a more in-depth analysis in conjunction with relevant lat-
est research.

Currently, there are little related work focuses on the interpretability of AI models for 
BP prediction. For studies applying traditional feature-based ML methods, in addition to 
using interpretable ML algorithms such as decision tree and gradient-boosting tree (Zhang 
et al. 2019a) to ensure interpretability, the focus is on eliciting interpretable features such 
as PIR (Ding et  al. 2017; Ding and Zhang 2015), Womersley number (Thambiraj et  al. 
2020, 2019) and contact pressure (Chandrasekhar et al. 2020), which can be used to both 
clinically justify an non-invasive BP estimation and inspire new research on physiologi-
cal correlates of BP. Since current AI is intrinsically data-driven (Zhang et al. 2020a), for 
those studies applying DL models, how to combine it with related prior knowledge/correla-
tions (such as those discussed in Sect. 2) to infer more biologically and physically realistic 
models for robust estimation is a challenging while meaning topic. For example, Kissas 
et al. (2020) proposed a physics-informed neural network for BP estimation where data-
driven DL models was seamlessly synthesized with one-dimensional blood flow model 
derived from first physical principles for the first time, and the final model can return phys-
ically consistent predictions. Besides, there are many post hoc methods (Moss et al. 2022) 
to achieve model interpretability, such as Shapley values (SHAP), Locally interpretable 
model-agnotic explanations (LIME), etc. These methods are model-agnostic, and therefore 
can be applied to various models.

5.1.3  Sample duration

For signal data, to acquire a dataset available for training, raw signal has to be divided 
into disjoint signal segments, each of which corresponds to a sample. There are two 
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types of segmentation methods: i) segment based on fixed time duration; ii) non-uniform 
segmentation.

The commonly used method is segment based on fixed time duration. Time duration is 
usually set to 5 s(Slapničar et al. 2019), 7 s (El-Hajj and Kyriacou 2021a), 10 s (Fan et al. 
2021), 15 s (Mousavi et  al. 2019b), 30 s (Schlesinger et  al. 2020), 60 s (Monte-Moreno 
2011) in related studies. Time duration, as a hyperparameter, affects experimental results, 
and its effect has been investigated in a few studies (Schrumpf et al. 2021a, b; Simjanoska 
et al. 2020). Schrumpf et al. (2021a, b) experimentally finds that different time duration (1, 
2, 5, 7, 9, 11, 13, 15, 17, 20 s) resulted in an almost equal prediction error, and the maxi-
mum time duration of 20 s is recommended for experiment. Simjanoska et al. (2020) per-
formed experiments using ECG signals with different time duration (10, 20, 30 s), filtered 
with different cut-off frequencies (0.05∼0.5 Hz), and confirmed that for the final sample 
level splitting strategy, time duration of 30 s filtered with cut-off frequency of 0.35 Hz 
leads to the best result. While, for the record level splitting strategy, time interval of 10 
s filtered with cut-off frequency of 0.30 Hz produces the best result. Sasso et  al. (2020) 
performed experiments using different sample duration (15, 30, 45 s) both in the stress test 
data and 24-h data, and finds that sample duration of 30 s leads to relatively better results 
in average.

However, this segment approach will cause an interruption of PPG cycles at the begin-
ning and the end of each segment. Moreover, the resulting varying number of cycles in 
each segment will induces bias in the extracted features towards subjects with higher heart 
rate (Tanveer and Hasan 2019).

Non-uniform segmentation is proposed to overcome the above mentioned issues by 
dividing according to fixed number of cycles. In this context, the so-called beat-by-beat 
BP prediction (Miao et al. 2020; Esmaelpoor et al. 2020; Xing and Sun 2016; Bose and 
Kandaswamy 2018; Singla et al. 2020a) can be viewed as a special case of non-uniform 
segmentation where each beat/cycle of signal segment corresponding to a sample. How-
ever, please note that since deep learning model with raw signal as input accepts only the 
input of fixed length, the non-uniform segments have to be resampled (e.g. zero-padding 
or signal interpolation (Yang et al. 2020a; Li et al. 2021; Dey et al. 2018), etc.) to make its 
length the same.

For example, Tanveer and Hasan (2019) proposed a non-uniform waveform segmenta-
tion method where PPG segment with a length of three consecutive systolic peaks as well 
as ECG segment with a length of three R-peaks are extracted from raw signals, then the 
normalized two segments are resampled to fixed length and then are concatenated to form 
the final waveform-based feature vector. Schrumpf et al. (2021a, b) divided both PPG and 
ABP signals into segments containing distinct fixed number of cycles, and then these seg-
ments were resampled to have equal length. Experimental results indicate that the predic-
tion errors based on non-uniform segmentation are lower compared to that based on fixed 
time duration.

5.1.4  Individual difference

The existence of individual differences is a significant characteristic of physiological signal 
data, which increased the difficulty of learning tasks. Taking BP prediction as an example, 
the relationship between input signal and BP may vary from individual to individual, since 
each person had unique and subtly different cardiovascular dynamics (Zhang et al. 2021a). 
A more extreme example is that the same PPG cycle shapes do not always guarantee the 
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same BP values (Slapničar et al. 2018). There are a total of three strategies to overcome 
individual difference in this area.

The first is based on divide and conquer strategy. Khalid et al. (2018) experimentally 
confirmed the significant prediction error differences among normotensive, hypertensive 
and hypotensive groups, and suggests that the future BP prediction model should be more 
specific for different BP categories. Generally, the total population is divided into several 
disjoint groups based on one or more characteristics, such as age and BP category, etc., and 
then each group of data is used to train a distinctive prediction model. In the test phase, an 
additionally trained classifier is firstly used to predict the belonging group, and then the 
corresponding model is called for prediction. Actually, individual test (Miao et al. 2019) 
can be seen as a special case where each individual is treated as a distinct group. There are 
several studies following this schema (Yamanaka et  al. 2021; Maher et  al. 2021; Khalid 
et al. 2020; Chen et al. 2022). For example, Dey et al. (2018) proposed an ensemble of six 
Lasso regression models for BP prediciton where each model is trained on a distinct group 
of data determined based on the value of age, gender, and BMI.

Instead of training multiple models, Simjanoska et al. (2018) directly use the predicted 
group of the classifier to extends the feature set which is further used for training prediction 
model. Further, Simjanoska et al. (2020) proposed an ensemble of the three multi-target 
regression models trained on each BP group for BP prediction where the ensemble weights 
are determined by the output probabilities of the additional classifier.

The second is the inclusion of demographical features (aka personal information), since 
demographical features such as age and BMI are critical influencing factors related to indi-
vidual BP state (Yang et al. 2020b). This technique has been widely used in related studies 
to improve BP prediction accuracy. Concretely, for traditional feature-based methods (Song 
et al. 2021; Monte-Moreno 2011; Attarpour et al. 2019; Yin et al. 2021; Atomi et al. 2017; 
Shimazaki et al. 2018; Dey et al. 2018; Datta et al. 2016; Yamanaka et al. 2021; Zhang 
et al. 2019a; Liu et al. 2021; Simjanoska et al. 2018; Chowdhury et al. 2020), demographi-
cal features are directly used to extends the feature set. For deep learning methods with raw 
signal as input (Liu et al. 2018; Xiang et al. 2021; Koshimizu et al. 2020; Yang et al. 2021; 
Lee et al. 2021), demographical features are usually embedded to the last layers of the neu-
ral network model via a fully-connected layer.

The third is the utilization of domain adversarial training technology, which is usually 
in conjunction with with deep learning. Specifically, in addition to the learning task, an 
additional classifier is introduced to enforce the model to learn cross-individual features by 
adversarial training. In this scenario, the optimization target can formulated as,

where Lr , Ld denote the main task loss and classifier loss. �f  , �g and �d denote the param-
eters of feature learner, task network, classifier module, respectively. Experimental results 
indicate that domain adversarial training technique can boost model training, enables the 
predictive model with better generalization ability to other individuals, allowing less target 
domain samples for training accurate personalized model (Zhang et al. 2020b; Qin et al. 
2021).

In addition, individual-by-individual BP centralization (aka zero meanization) technique 
is used in several studies (Yang et al. 2020a; Miao et al. 2020; Haddad et al. 2021). In other 
words, model is trained to prediction BP variation instead of genuine BP. Specifically, BP 
data of each individual in the training set is subtracted by its mean value during training, 

(17)max
�d

min
�g,�f

Lr(f (g(x;�g), �f ), y) − �Ld(d(g(x;�g), �d), lx),



Machine learning and deep learning for blood pressure prediction:…

1 3

and in the test phase, for each individual, the final predicted BP is the sum of the model’s 
prediction and its mean BP, which can be seen as one-time calibration.

5.1.5  Large difference between SBP and DBP prediction accuracy

Based on extensive literature analysis, we find an interesting phenomenon-the prediction 
accuracy of SBP reported is significantly lower than that of DBP (Jeong et al. 2019; Miao 
et al. 2020; Das et al. 2020; Haddad et al. 2021; Esmaelpoor et al. 2021b; Mousavi et al. 
2019b; Attarpour et al. 2019; Thambiraj et al. 2020; Rong and Li 2021a; Wang et al. 2021; 
Qiu et al. 2021; El-Hajj and Kyriacou 2021b; Yin et al. 2021; Huang et al. 2022; Lin et al. 
2021a; Xing and Sun 2016; Bose and Kandaswamy 2018; Bose and Kandaswamy 2017; 
Zhang et  al. 2019b; Baker et  al. 2021; Fong et  al. 2019; Esmaelpoor et  al. 2020; Wang 
et al. 2020; Zhang and Wang 2017; Wang and Zhang 2017; Singla et al. 2019; Baek et al. 
2020; El Hajj and Kyriacou 2020a; Chiang and Dey 2018; Datta et al. 2016; Kachuee et al. 
2015; Dastjerdi et al. 2017; Liu et al. 2018; Schlesinger et al. 2020; Schrumpf et al. 2021a, 
b; Yamanaka et al. 2021; Liu et al. 2020b; Baek et al. 2019; Zhang et al. 2019a; Chiang 
and Dey 2019; Yousefian et  al. 2020; Liu et  al. 2021; Li and Laleg-Kirati 2021; Zhang 
et al. 2021c; Chen et al. 2021; Miao et al. 2019; Yang et al. 2020a; Liu et al. 2020a; Leitner 
et al. 2021; Chiang et al. 2021; Hasanzadeh et al. 2019; Ibrahim and Jafari 2019; Kachuee 
et al. 2016; Fan et al. 2019; Esmaili et al. 2017; Slapničar et al. 2018; Simjanoska et al. 
2020; Wang et al. 2018b; Zhang et al. 2020b; Yang et al. 2021; Radha et al. 2019; Tham-
biraj et  al. 2019; Simjanoska et  al. 2018; Chen et  al. 2019; Slapničar et  al. 2019; Eom 
et al. 2020; Chowdhury et al. 2020; Li et al. 2020a; Lee et al. 2021; Fati et al. 2021; Li 
et al. 2021). This phenomenon is consistent with physiological explanations. Concretely, 
the relation of DBP and its variability with aortic stiffness are generally weaker than those 
of SBP and its variability, and the popular datasets in this area (refer Sect. 4.1) are mainly 
collected from ICU patients, surgery patients and outpatients suffering from a variety of 
cardiovascular diseases. However, there are a few literatures (Simjanoska et al. 2018; Khan 
Mamun and Alouani 2022) where the reported SBP prediction accuracy is unexpectedly 
higher than that of DBP. We argue this abnormal phenomenon is originates from the spe-
cial statistical characteristics (we refer to the BP range and BP distribution) of the collected 
dataset.

Musini and Wright (2009) confirmed that the coefficient of variation of SBP was sig-
nificantly greater than the coefficient of variation of DBP. In fact, based on the statisti-
cal description about the data used in related studies and in our study (refer Table 17 and 
Fig.  27), the range and standard deviation of SBP in the population are usually signifi-
cantly larger than those of DBP in the population, which undoubtedly increases the dif-
ficulty of SBP prediction. This is no problem in traditional STL scenario. As mentioned in 
Sect. 3.3.2, however, this is an important issue to consider when designing MTL model for 
BP prediction.

5.1.6  Hand‑crafted features versus machine‑learned features

It is generally assumed that hand-crafted features are limited since it can not adequately 
express the information in the input signals related to BP variations. On the other hand, 
DL enables automatic feature learning from raw signals, making it more and more popular 
in cuffless BP estimation community. However, it is unclear whether there is a difference 
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between these two types of features and which type is better. Currently, few articles pay 
attention to this problem.

Mahmud et al. (2022) proposed a novel MLP model for BP prediction, in which a pre-
trained U-Net model is used as feature learner. Experiments show that a U-Net model 
trained by mapping PPG to ABP instead of PPG signal can help the MLP model achieve 
the best performance. Its high predictive accuracy is impressive. Shimazaki et al. (2018) 
found in the experiment that the combination of hand-crafted features and learned features 
based on auto-encoder enables the predictive model to obtain better performance than the 
model based on any single type of features. Esmaelpoor et al. (2021a) compares the effects 
of physiological parameter and learned feature based on CNN network in BP prediction, 
and they fond that the learned features are superior over physiological parameters, and 
the combination of these two types of features does not improve prediction performance. 
What’s embarrassing is that the conclusions in the two articles are exactly the opposite. It 
should be noted that the conclusion in study (Esmaelpoor et al. 2021a) is limited since the 
extracted features are relatively few, and the learned features are based solely on CNN net-
work which is trained by predicting BP. We recommend other types of network can be tried 
and the network used for outputting learned features can be trained with diverse purposes 
(such as reconstructing input signal, predicting BP, etc.)

5.2  Techniques

The techniques to be discussed include data augmentation, and different signal combina-
tion schemes.

5.2.1  Data augmentation

Data augmentation is an important technology to solve the problem of insufficient data in 
training complex models, especially deep neural networks. We noticed that, in computer 
vision area, there are many popular data augmentation techniques (Shorten and Khosh-
goftaar 2019; Hussain et al. 2017) are available for image data. However, it is unclear what 
data augmentation techniques are applicable to signal data, and there is no relevant system-
atic review, which is what we are going to discuss here. We summarized three types of data 
augmentation techniques for signal data used in BP prediction research.

The first is cropping-based data augmentation technique. Esmaelpoor et al. (2020) used 
cropping technique for enhancing the training set. Specifically, for each PPG segment, 
additional ten sub-segments are cropped for better describing the time-domain possible 
relationships.

The second is filter-based technique. Huang et al. (2022) proposed a novel multi-filter 
to multi-channel (MFMC) technique to generate multi-channel signal to adapt the input 
format of the MLP-mixer architecture. The so-called MFMC technique is that the multi-
channel signals are derived by applying multiple distinct filters and filtering parameters to 
the original signal. Simjanoska et al. (2020) tried to generate multiple datasets/configura-
tions for final ensemble learning by setting different cut-off frequency and sample dura-
tion. Specifically, by setting sample duration of 10, 20, 30 s and cut-off frequencies starting 
from 0.05 Hz up to 0.50 Hz by step of 0.05 Hz, a total of 3 × 10 datasets are generated.

The third is parametric Bootstrap method (Lee and Chang 2016, 2017a; Lee et al. 2018, 
2019a, 2020). In parametric Bootstrap method, mean and standard deviation are firstly esti-
mated using limited training set based on Normal distribution assumption (note that this 
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process is performed feature by feature), then the bootstrap samples based on the estimated 
distribution were calculated using the Monte Carlo method. Furtherly, Song et al. (2021) 
proposed a similar parametric Bootstrap method based on multivariate Gaussian distribu-
tion (MGD) where the relationship between the features is incorporated in a multi-dimen-
sional feature vector.

5.2.2  Different signal combination schemes

In BP estimation area, techniques such as fusion of multiple different signals (e.g PPG 
and ECG signals, etc. (Kachuee et al. 2016; Miao et al. 2017; Baek et al. 2019; Miao et al. 
2019; Yang et al. 2020a; Song et al. 2019; Baker et al. 2021)), multi-channel homogene-
ous signal (e.g multi-channel PPG signals, etc. Attarpour et  al. 2019; Fong et  al. 2019; 
Lazazzera et al. 2019), multi-wave signals (Baek et al. 2020; Liu et al. 2020a), different 
modalities of homogeneous signal (generated based on multi-order difference and time 
domain/time-frequency domain transformation Baek et al. 2019; Slapničar et al. 2019; El-
Hajj and Kyriacou 2021b; Rong and Li 2021a; Harfiya et  al. 2021) are usually used to 
improve BP estimation accuracy. Naturally, a practical issue in how to effectively combine 
these input signals for deep learning methods with raw signal as input?

Currently, there are three signal combination schemes. The first is to directly concat-
enate different signal segments in temporal direction (Shimazaki et al. 2018; Tanveer and 
Hasan 2019). For example, Tanveer and Hasan (2019) directly concatenate PPG and ECG 
segments in temporal direction, which is fed into an ANN-LSTM network for training. 
What we want to emphasize is that this combination scheme is limited to specific network, 
which may be problematic when it is used in convolutional network, since different signals 
have different varying patterns and temporal dynamics.

The second is to concatenate different signal segments in channel direction. This is 
reasonable since the feature map of each channel in a tensor represents distinct patterns 
extracted from the input. The network, correspondingly, is built based on 1D convolution, 
which is widely used in related studies (Baek et al. 2019; Cheng et al. 2021), since different 
signals are synchronous signal.

The third is to consider different signals through multi-branch structure (Slapničar et al. 
2019; Rong and Li 2021a; Baek et al. 2019, 2020). Intuitively, different signals are pro-
cessed using independent network module separately, and then the outputs of which are 
further fused based on FFNN module.

In addition, Qiu et al. (2021) proposed a 2D-convolution-based network for BP predic-
tion where two PPG and ECG segments are stacked and treated as a picture for process-
ing. However, although the two signals are intrinsically related, signals collected from 
multi-modal sensors have modality-specific characteristics. Shared weights for whole 
input signals may lead to interference between features, which originates from capturing 
modality-specific features of different signals. Ha and Choi (2016) proposed to extracts 
modality-specific features and common features for human activity recognition task based 
on partial-weight sharing and full weight sharing strategy, which may inspire us to devise 
more effective network models with multi-modality signals as input, for BP prediction.
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6  Some related machine learning topics

In this section, we introduce several advanced ML technologies for potential applications 
in BP estimation.

6.1  Auto ML/AI

Although there has made much progress in the application of ML and DL for BP predic-
tion, humans are heavily involved in almost all aspects (such as feature engineering, the 
selection of feature selection method, model selection, etc.) of constructing ML predic-
tion models. In fact, Chowdhury et al. (2020) has investigated the best combination of fea-
ture selection methods and training algorithms manually in order to improve BP prediction 
accuracy, but it is very cumbersome.

AutoML (Waring et al. 2020; He et al. 2021) is a new-emerging technology for auto-
matically building a specialized system without human assistance. Although AutoML has 
made significant progress, it is rarely mentioned in the field of healthcare monitoring such 
as BP estimation (Waring et al. 2020). Fati et al. (2021) firstly proposed a BP prediction 
model based on the tree-based pipeline optimization tool (TPOT), which automatically 
selects the best combination of training algorithm and feature selection method from the 
library for SBP and DBP estimation, separately.

In addition to TPOT, there are also other AutoML pipelines, such as H2O (LeDell and 
Poirier 2020), Auto-sklearn (Feurer et  al. 2019) and FLAML [304]. Especially, for DL 
methods, there is neural architecture search (NAS) (Elsken et  al. 2019) which automat-
ically finds the best neural network architecture configuration for any given dataset and 
learning task.

6.2  Transfer learning

Transfer learning (Pan and Yang 2009) is novel framework aiming at improve the learning 
of target domain using related source domain. Taking BP prediction into account, a single 
individual contains relatively little data, which is insufficient (consider data amount and 
BP variations) to train a robust model with strong generalization ability. Therefore, is it 
possible to consider leveraging other individual’s data in some way to facilitate training? 
On the other hand, there are plenty of freely released pretrained deep learning models espe-
cially in CV areas, is it possible to leverage these models for BP estimation? Following the 
above two questions, related works were categorized into two folds, as Fig. 25 illustrates.

Leitner et al. (2021) formally proposed a transfer learning framework for BP prediction 
based on convolutional-recurrent neural network (CRNN) for the first time. Ablation stud-
ies indicate that the best performance is acquired when finetune the specific layers (the last 
Conv. and FC layers) of CRNN during knowledge transfer. Final experiments demonstrated 
that the performance of the finetuned model is superior over the general model (i.e no cali-
bration) and the model trained from scratch (i.e using only limited target data). Nevertheless, 
we would like to emphasize that transfer learning is not a novel topic in BP estimation area, 
although it is not explicitly mentioned in the relevant literature. Actually, there have been 
a large count of studies where both record/subject level splitting strategy and calibration 
technique have been used for experiment (Leitner et al. 2021; Kachuee et al. 2016; Slapničar 
et al. 2019; Schrumpf et al. 2021a, b; Song et al. 2019; Qin et al. 2021; Zhang et al. 2020b; 
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Bose and Kandaswamy 2018; Kachuee et al. 2015). Since the existence of individual differ-
ence, the transferred model usually performs poor on the test individual, and calibration pro-
cedure is employed to calibrate the model to adapt to the test individual using limited data 
from test individual. From this point of view, subject/record level experiment + calibration 
⊆ transfer learning. Besides, there are a few authors first train a pretrained model using 
PPG-BP dataset, then a personalized model is fine-tuned from the pretrained model using 
rPPG-BP dataset (Schrumpf et al. 2020, 2021a, b). In the above studies, all of the source 
domain individuals are used to train a general model for further knowledge transfer. How-
ever, since different individuals have different BP levels and BP dynamics, more intelligent 
selection of source individuals suitable for target individual for knowledge transfer may help 
to improve prediction accuracy (Zhang et al. 2020b; Leitner et al. 2021).

When employing pretrained CV models for knowledge transfer, the input signal has to 
be processed to adapt to the input format of the model, and the model needs to be modi-
fied to perform BP estimation. Sasso et al. (2020) proposed a method by fine-tuning the 
pretrained ResNet-18 model on ImageNet using HYPE dataset. Specifically, the time-
domain PPG segments are firstly converted to image representations (spectograms and 
scalograms), which are then fed into ResNet-18 for model fine-tuning. Wang et al. (2020) 
proposed a method by fine-tuning the pretrained Inception V3 model on ImageNet using 
MIMIC II database. Specifically, the last FC layer with softmax activation is replaced with 
FC layer contains two neurons and with linear activation. Next, time-domain PPG segment 
is firstly converted to image based on the visibility graph technique and then the self-repli-
cated images are fed into Inception V3, and only the FC layer is updated for BP prediction 
during fine-tuning.

6.3  Meta learning

Meta learning (Vilalta and Drissi 2002; Vanschoren 2018) is a novel learning framework that 
learn meta-knowledge from a variety of tasks, such that it can generalize well on new task 
when using only limited data from the new task. Taking BP estimation into account, with 
similar motivation to transfer learning, meta learning attempts to learn how to learn from 
other individual’s data and then quickly generalize to test individual by fine-tuning using 
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Fig. 25  Two representative transfer learning scenarios for blood pressure prediction. a other patients data 
is served as source domain for knowledge transfer; b pretrained models from other areas such as computer 
vision are directly used for knowledge transfer
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limited test data. Intuitively, the experimental protocol is under subject/record level experi-
ment + calibration. Currently, there are few studies in this area. Cheng et al. (2021) proposed 
a convolutional network with U-Net architecture for ABP waveform reconstruction where the 
well-known model-agnostic meta-learning (MAML) algorithm is utilized for model training. 
Specifically, each record is treated as a learning task, the model is firstly initialized using 
the pre-training set. Next, a learning task is randomly selected in each iteration, support set 
and query set are acquired from the corresponding record, support set is used to update task 
parameters and generate the task model. Query set is then used to evaluate the personalized 
model and update the global model. Finally, for any test individual, the global model is fine-
tuned using limited data from the individual, and the remaining data is used for test.

6.4  Federated learning

Federated learning (Li et al. 2020b) is new-emerging technology that tackles data sharing 
and privacy issues by training a global model over remote devices, such as mobile phones, 
while keeping data localized. Considering the importance of user privacy protection and 
data security, this technology has great development potential in healthcare area (Hakak 
et al. 2020). For example, Brophy et al. (2021) proposed a CycleGAN-based model for gen-
erating ABP waveform from PPG sigal under the federated learning framework. Specifically, 
to simulate the decentralized environment, the whole dataset is split into multiple disjoint 
parts, each of which represents a terminal. A localized model is trained on each terminal, 
and then these models are send to a global model for aggregation. Next, the aggregated 
model can be used to perform downstream task or used to update each localized model.

6.5  On‑device machine learning

On-device ML (Dhar et al. 2021) is a technology that running (including model training, 
model inference) machine learning on edge devices, which propose new challenges to the 
requirements for model size and time delay, due to the limited resources such as memory and 
computing power. Currently, a variety of smartphone-based health applications are emerg-
ing, due to the widespread popularity of smartphones with high-resolution cameras and 
built-in sensors such as accelerometers, orientation sensors. We noticed that there are sev-
eral smartphone-based BP monitoring literatures (Matsumura et al. 2018; Chandrasekaran 
et al. 2012; Dey et al. 2018; Visvanathan et al. 2014; Luo et al. 2019; Sagirova et al. 2021) 
where the models used are either explicit analytical models based on hemodynamics, or tra-
ditional ML models such as LR, SVM, MLP, etc. Although DL for BP prediction has been 
extensively studied at the academic level, as far as we know, there is no application that has 
been successfully deployed on devices such as smartphones and has been certified by rel-
evant institutions. We think this is a potential and meaningful research direction.

7  Discussions and conclusions

In this section, we discuss the challenges in BP prediction, and the question of what a good 
BP estimator should look like?, which is followed by a general proposal towards the objec-
tive evaluation of model’s performance. Finally, we end this survey with conclusions and 
several potential research directions.
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7.1  Challenges

Non-invasive BP prediction is a meaningful while challenging issue in healthcare monitor-
ing area. Specifically, the challenges include the follow three aspects, 

(1) Complexity of problem/data itself. Firstly, as mentioned in Sect. 3.2.1, the signal data 
collected by the sensor is seriously disturbed by all kinds of noise, which seriously 
affects the quality of the data. Secondly, during data collection, the health status of 
the participants may be different (such as diabetes, obesity and other cardiovascular 
diseases), and the measurement status may be various (rest or exercise, standard or sit, 
alcohol/drug intake, mood, etc.), all these factors more or less affect the collected data 
and indirectly affect the prediction accuracy of the model, which undoubtedly increases 
the difficulty of the problem. Since these factors have different characteristics from the 
measured data (Li et al. 2017), it is worthwhile to further investigate how to effectively 
take these factors into account when training the model and how to quantitatively assess 
the impact of these factors on the model. Thirdly, the existence of individual differ-
ences is a significant characteristic of physiological signal dataset, which means the 
underlying relationship between input and BP may vary from individual to individual. 
Even, there may be situations where two individuals have similar input signals but the 
measured BP differs significantly (Slapničar et al. 2018). Resultly, there may be some 
other types of ’mismatch’ between training set and test set in addition to the overall 
BP range and BP distribution.

(2) The severely skewed/imbalanced distribution of BP in dataset (we call target imbal-
ance, which is similar to class imbalance in classification scenario, but is more chal-
lenging). As noted in Sect. 5.1.1, imbalanced regression is a challenging and neglected 
problem in the ML community and almost all related application fields including BP 
prediction, although this phenomenon has been done and mentioned several times in 
related studies. Moreover, target imbalance is usually intertwined with other imbalance 
factors such as imbalance between the number of samples among different individuals 
(we call record/subject imbalance) (Khalid et al. 2018; Schrumpf et al. 2021a), etc. 
For record/subject imbalance, a common practice is to control the number of samples 
from different individuals to a specified number (Schrumpf et al. 2021a, b).

(3) How to objectively evaluate the performance of BP prediction algorithms is an opening 
and challenging questions in this area. As mentioned in Sects. 4.3 and 4.2, we have 
disclosed some critical factors responsible for the objective evaluation of BP prediction 
model from multi-aspects such as data itself, evaluation strategy, evaluation metrics, 
etc.

7.2  A BP estimator with good generalization ability

The current progress of BP prediction in summarized in Table 22. The experimental results 
reported in different papers vary greatly, even for the same data source. We further dis-
closed several factors that lead to this phenomenon and some unreasonable practices across 
through the experiments in Sect. 4.3.1. It seems that a single result does not necessarily 
reflect the generalization ability of the model. Herein, we discuss the question of what a 
BP estimator with good generalization ability should look like?
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(1) Good performance over different BP intervals The results (e.g MAE, etc.) reported 
in almost all related studies are average results across the total BP range bounded by 
the BP of test set. However, as detailed in Sect. 4.2 , this is insufficient because the 
poor performance of the biased model on the regions far from the central BP range is 
covered up by the severely skewed distribution of BP data set. However, overestimating 
the BP of individuals with hypotension, especially underestimating the BP of individu-
als with hypertension, will seriously mislead doctors’ decision-making and may cause 
irreparable losses. Therefore, a good BP estimator should perform well in different BP 
intervals within the possible BP range.

(2) Good performance over different individuals It seems that significant results have 
been achieved in BP prediction, especially those studies based on sample level split-
ting strategies or individual test schemes. However, please note that the goal is to train 
a general BP estimator by using the data of limited individuals to make it generalize 
well on "unseen" individuals. A good BP estimator should perform well on different 
individuals, especially those individuals never appeared during training and validation 
processes.

(3) Good performance over different databases. A good BP estimator should perform 
well on different BP data sets. However, currently, there are only a few studies (Miao 
et al. 2020; Xing and Sun 2016; Yang et al. 2020a; Huang et al. 2022) where external 
validation is performed.

7.3  A general proposal‑towards objective evaluation of model’s performance

Mukkamala et  al. (2021) argue that the increasing number of papers on BP prediction 
that pass traditional evaluation criteria are methodologically inadequate and misleading, 
and further revealed the capabilities and limitations of these methods based on several 
solid experiments. It seems that passing conventional evaluation standards (such as BHS 
O’Brien et  al. 1993, AAMI Zhang et  al. 2020b, etc.) and analysis tools (such as Bland-
Altman plot, etc.) may not necessarily guarantee good performance.

Corresponding to Sects. 4.4 and 7.2, we give an overall proposal by examining the 
entire pipeline shown in Fig. 6 in order to objectively evaluate the performance of predic-
tive models. 

(1) Both the training set and the test set should contain enough BP variations as well as 
diversity in terms of age, etc., which is necessary to train a general model and for objec-
tive evaluation. Commonly used means of changing BP include exercise (such as rope 
skipping, running, etc.), cold stimuli and brain activity (e.g mental arithmetic), etc (Lin 
et al. 2020; Esmaili et al. 2017; Miao et al. 2017; Block et al. 2020; Ding et al. 2017; 
Ibrahim and Jafari 2019; Ganti et al. 2021). Moreover, necessary check must be made 
to ensure that the BP distribution between the training set and the test set is consistent, 
which is the characteristic of I.I.D assumption (w.r.t dataset building).

(2) In addition to the average results calculated over the entire BP range, the prediction 
results on each BP interval should also be reported, especially those areas of hypoten-
sion and hypertension (w.r.t evaluation metrics).

(3) In additional to BP, the test set should be diverse with respect to age, height, sex, etc. 
Especially, for video based methods, the test set should cover a large range of BP and 
lighting conditions (Steinman et al. 2021; Rong and Li 2021b) (w.r.t test set).
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(4) Strict separation of training set and test set should be ensured in order to simulate the 
real environment, and the strategy of splitting at record/subject level is strongly recom-
mended for experiments (w.r.t splitting strategy).

(5) The selection of the optimal feature subsets should be performed using only training 
set during feature selection/reduction process (w.r.t feature selection).

(6) Only the training set should be used to solve the normalizer during the data normaliza-
tion process (w.r.t normalization).

(7) In addition to the conventional evaluation standards (BHS, AAMI, etc.) and analyzing 
tools (scatter plot, Bland-Altman plot, etc.), the analyzing tools proposed by Muk-
kamala et al. (2021) is strongly recommended for further evaluation (w.r.t evaluation 
standards).

(8) External evaluation is recommended to further evaluate the performance of model on 
other databases (w.r.t external evaluation).

7.4  Conclusions and future work

Future work There are many open issues worth studying. 

(1) The imbalance regression is a key issue in BP estimation. However, as mentioned in 
Sect. 5.1.1, it has not received enough attention at present. Recall that our objective 
is to train an unbiased BP estimator from the severely skewed training data, similar to 
class-imbalanced issue, there should have data-level methods (such as under-sampling, 
over-sampling, etc.) and algorithm-level methods (cost-sensitive learning, etc.), which 
is left for further exploration.

(2) It makes sense to solve the problems of data privacy and model deployment through 
some cutting-edge ML technologies, such as federated learning and On-device 
ML, etc., both from the academic and practical point of view. Although there have 
been plenty of studies utilizing ML and DL technologies for BP estimation, and 
some promising results have been made, they fall within the scope of proof of 
concept. There are at least two issues that need to be considered before it can be 
put into practical application. Firstly, compared to experimental environment, the 
limited memory and weak computing capability of local computing node propose 
new requirements to time delay, model size and model complexity. Secondly, user 
privacy protection is becoming more and more important. How to collect data for 
model training & update without violating user’s privacy is a problem that can not 
be ignored.

(3) It is time and necessary to explore relevant evaluation standards as well as clinical 
approval criterion that suitable to cuffless BP estimator, especially to those estimators 
based on ML and DL methods. By examining the whole process of establishing BP 
prediction pipeline, we revealed potential factors leading to the unreliability of results 
related to traditional assessment criteria such as the AAMI and the BHS standards. 
Besides, Mukkamala et al. (2021) has revealed the potentially misleading facts of some 
reported conclusions by presentating the limitations of widely-used, conventional BP 
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evaluation standards such as AAMI, etc., and related analyzing tools such as Regres-
sion plot and Bland-Altman plot.

(4) Long-term BP prediction (Su et al. 2018) is a challenging while meaningful direction 
in BP research community. Due to the time varying nature of physiological signal 
originating from the complex regulation mechanism of human body and the effect of 
abnormal event/reaction, individual’s BP pattern may change over time. Therefore, the 
mainstream methods that under static environment may no longer be suitable. Sequence 
prediction and online/incremental learning scenarios may be promising solutions to 
long-term BP prediction.

(5) All kinds of ML algorithms and a variety of dazzling neural networks have been 
developed for BP prediction, and some promising results have been made. How-
ever, these approaches, especially DL methods, act as a black-box, and we still 
lack a clear understanding of the nature of the relationship between the input 
(signal) and BP. Besides, there is no further clinical validation and interpretation 
for the predictions. We believe that solving this problem requires the cooperation 
of experts from different disciplines, including machine learning, artificial intel-
ligence, medicine and physiology. In fact, exploration of the physical principles 
and related models of hemodynamics help to find the most relevant factor respon-
sible for BP change, which in further helps to identify suitable inputs and even to 
guide the design of informative features account for BP estimation. For example, 
PIR (Ding and Zhang 2015), which reflects the arterial diameter change, was ini-
tially proposed to overcome the limitation in classical PTT methods that arterial 
geometries keep unchanged during cardiac cycle. Womersley number (Thambiraj 
et al. 2019) was proposed to model the viscous flow properties of blood. Both 
PIR and Womersley number have been validated as significant factors in improv-
ing BP estimation accuracy (Thambiraj et al. 2019, 2020). In addition, how to 
combine the explicit analytical model with the deep learning model so that the 
latter can make more physically consistent predictions is a promising exploratory 
point.

Conclusions In this survey, we made a systematic review of current progress in the 
application of ML and DL for BP estimation, from a total of four perspectives. Espe-
cially, the content covers the whole BP prediction pipeline including dataset, signal 
denoising, data cleaning, feature engineering, feature selection, training algorithms, 
hyper-parameter optimization, evaluation procedures and evaluation metrics, etc. In 
addition, we discussed several critical issues and summarized several practical tech-
niques emerging in the BP estimation community. Moreover, we introduced the poten-
tial application of several advanced ML topics in BP estimation.

Based on the significant difference about the BP prediction results reported in a 
large count of studies, we analyzed the factors that led to the unreliability of the results 
reported in some literatures by checking the whole BP prediction pipeline, from the per-
spective of an ML researcher. Finally, we proposed an overall proposal for an objective 
evaluation of different prediction methods. We accept that the proposal is not complete 
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and should be viewed as suggestions for further discussion by the community. Besides, 
how to describe the results accurately for further objective comparison is a problem 
worth of attention. It is certain that the previous practice of focusing mainly on the 
results while ignoring the data itself (data complexity, data scale in terms of the num-
ber of subjects/records/samples included, BP range, BP distribution, and the differences 
between training set and test set) is obviously problematic for data-driven methods. On 
this point, our view is consistent with the latest published review article (Liang et  al. 
2022) on trustworthy artificial intelligence. As shown in Table 22, we made a compre-
hensive comparison of relevant studies based on thirteen indicators, which provides a 
helpful reference for solving this problem.

In conclusion, we hope this survey can provide researchers with a systematic, compre-
hensive understanding of this field, including the latest advances as well as some common 
issues and newly-emerging techniques, and shed some light on the future directions. Mean-
while, we believe that training a general BP predictor with genuine strong generalization 
ability is still challenging, instead of the overly optimistic conclusions claimed in some 
literatures. In fact, the latest evaluation of smartphone-based BP estimator in a large clini-
cal settings indicates that no commercialization has been made yet (Dörr et al. 2021). We 
appeal an objective view and deeper thinking on the reported results in a more systematic 
way.

Appendix 1: Summary of representative surveys of blood pressure 
prediction

We summarized several representative surveys on blood pressure measurement in Table 19.
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Appendix 2: Graphical illustration of the final processed dataset

Figure 26 presents the total BP distribution of the final processed dataset. Figure 27 illus-
trates the individual BP dynamics.

Fig. 26  Blood pressure distribution of training, validation and test set using sample level splitting strat-
egy-③

Fig. 27  Individual BP dynamics. a individual SBP dynamics. SBP distribution of each record is illustrated 
with ’Boxplot’, and records are sorted in the ascending order of ’max(SBP)–min (SBP)’. The distribution 
of SBP dynamics of all individuals illustrated based on “Histplot” is shown in the right figure; b individual 
DBP dynamics
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Appendix 3: Prediction performance of the model using different 
splitting strategies on different BP intervals

Figures 28 and 29 illustrates the prediction performance of the model using different split-
ting strategies on different BP intervals.

Training set  Valida�on set Test set 

(a) 

(b) 

(c) 

(d) 

Fig. 28  Performance of ResNet model for SBP prediction on different BP intervals, based on different split-
ting strategies. a based on splitting strategy-①; b based on splitting strategy-③; c based on splitting strat-
egy-④; d based on splitting strategy-⑤
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Appendix 4: Open‑source implementations

Table 20 summarizes the open-source implementation of all the papers we found for BP 
estimation.

Test set Valida�on set  Training set  

(d)

(c) 

(b) 

(a) 

Fig. 29  Performance of ResNet model for DBP prediction on different BP intervals, based on different 
splitting strategies. a based on splitting strategy-①; b based on splitting strategy-③; c based on splitting 
strategy-④; d based on splitting strategy-⑤
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Appendix 5: The effect of the size of dataset on final performance

To quantitatively evaluate the effect of the size of dataset used on the experimental results, 
we created five versions of datasets namely v 0 , v 1 , v 2 , v 3 , and v 4 , where the number of 
records included in v � is � times of v 1 . The corresponding statistical information of these 
datasets is summarized in Table  17. All experiments were performed under the same 
experimental settings, except that Batchsize is set to 64, 128, 256, 384, 512 for the fives 
versions of datasets, respectively. Inspired by Goyal et al. (2017), the corresponding initial 
learning rate is set to lr = lr0 ⋅ BatchSize∕128 , lr0 equals 0.001. The maximum number of 
epochs is set to 50, and model is trained using Adam optimizer. Experimental code was 
implemented using Python 3.8 with TensorFlow 2.4.0 framework, and all the experiments 
were performed on Ubuntu 20.04 server equipped with two RTX 3090 GPUs.

Table 21 presents the numerical results. It is observed that the test performance drops 
gradually with the increase of the size (in terms of the number of records) of the dataset 
used, although the overall BP range and BP distribution of different versions of data sets 
are basically similar (refer Table 17). We attribute this to individual differences. The more 
records contained in the data set, the more complex and diverse individual physiological 
dynamics, which undoubtedly increases the difficulty of training more general models. The 
mean rank of each model over five experiments is calculated and the resulting p-value is 
6.98e-3 ( < 0.05 ), 2.85e-3 ( < 0.05 ) for SBP and DBP prediction, respectively. Therefore, 
the null hypothesis is rejected at � = 0.05 , i.e the size of dataset has a significant effect on 
the trained model’s performance for both SBP and DBP prediction.

Appendix 6: Comprehensive comparison of studies related to BP 
prediction

A comprehensive comparison of related studies for BP prediction is presented in Table 22.

Table 21  Comparison of the test performance of ResNet models on MIMIC III dataset of different size, 
based on record level splitting strategy-①

Method Dataset Task Metrics

MAE MAPE MSE ME STD R2

ResNet v0:375 records, 
75e4 samples

SBP 11.76 0.100 315.164 − 0.430 17.741 0.447
DBP 6.493 0.107 92.356 0.050 9.606 0.357

v1:750 records, 
15e5 samples

SBP 12.288 0.103 330.257 − 0.280 18.170 0.456
DBP 6.571 0.107 91.823 0.070 9.579 0.396

v2:1500 records, 
3e6 samples

SBP 12.783 0.108 341.866 0.161 18.484 0.421
DBP 7.080 0.115 100.765 0.575 10.037 0.357

v3:2250 records, 
4.5e6 samples

SBP 14.810 0.126 397.920 − 0.183 19.946 0.331
DBP 8.068 0.132 116.863 − 0.236 10.808 0.258

v4:3000 records, 
6e6 samples

SBP 14.696 0.125 399.584 − 0.099 19.986 0.332
DBP 7.955 0.130 114.348 − 0.149 10.692 0.247
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Appendix 7: Abbreviations

All acronyms appearing in the paper are summarized in Table 23.

Table 23  Abbreviation table

Acronyms Full name

AAMI The Association for the Advancement of Medical Instrumenta-
tion

ABP Arterial blood pressure
AD After diastolic
AI Artificial intelligence
AMPD Automatic multi-scale-based peak detection
ANN Artificial neural network
APG Accelerated plethysmograph
ARIMA Autoregressive integrated moving average model
AW Auscultatory waveform
BCG Ballistocardiogram
Bi-LSTM Bidirectional long short-term memory
BH Bramwell-Hill
BHS British Hypertension Society
BMI Body mass index
BO Bayesian optimization
BRA Bayesian regularization algorithm
BW Baseline wandering
BNN Boosting neural networks
BP Blood pressure
BSD Between systolic and diastolic
CART Classification and regression tree
CNN Convolutional neural networks
CO Cardiac output
CRNN Convolutional-recurrent neural network
CV Computer vision
CWT Continuous wavelet transform
DBP Diastolic blood pressure
DCT Discrete cosine transform
DL Deep learning
DNM Dendritic neural model
DNN Deep neural network
DPI Dynamic plosion index
DT Decision tree
DWT Discrete wavelet transform
ECG Electrocardiograpshy
EDA Electrodermal activity
ELM Extreme learning machine
EMD Empirical mode decomposition
EMG Electromyogram
ERM Empirical risk minimization
FC Fully-connected
FFNN Feedforward neural network
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Table 23  (continued)

Acronyms Full name

FFT Fast Fourier transform
FRP Fuzzy recurrent plot
GA Genetic algorithm
GAN Generative adversarial network
GMM-HMM Gaussian mixture models and hidden markov model
GPR Gaussian process regression
GRNN Generalized regression neural network
GRU Gate recurrent unit
HFC High frequency components
HPO Hyper-parameter optimization
ICG Impedance-cardiogram
ICU Intensive care unit
I.I.D Independent-identical-distribution
iPTT Image-based PTT
iPPG Image-based PPG
JADE Joint approximate diagonalization of eigenmatrices
K-SVD K-singular value decomposition
LCFs Level-crossing features
LDA Latent dirichlet allocation
LFC Low frequency components
LIME Locally interpretable model-agnotic explanations
LOSO Leave one subject out
LR Linear regression
LSTM Long short-term memory
LTF Linear transfer function
ML Machine learning
MA Motion artifacts
MAE Mean absolute error
MAML Model-agnostic meta-learning
MAPE Mean absolute percentage error
MARS Multi-adaptive regression spline
ME Mean error
MGD Multivariate Gaussian distribution
MIMIC Multiparameter Intelligent Monitoring in Intensive Care
MIR Multi-instance regression
MK Moens-Korteweg
MLR Multiple linear regression
MSE Mean square error
MTL Multi-task learning
MWPPG Multi wavelength PPG
MCPPG Multi channel PPG
MFMC Multi-filter to multi-channel
MLP Multilayer perceptron
NARX Nonlinear autoregressive model with exogenous input
NAS Neural architecture search
NNOE Neural network output-error
OWR Online weighted resampling
OMW Oscillometric waveform
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Data availability The experiments involved are based on a publicly available database MIMIC III, the script 
to download the dataset and the related experimental code are released on the Github repository: https:// 
github. com/ v3551G/ BP- predi ction- survey.
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Table 23  (continued)

Acronyms Full name

PCG Phonocardiogram
PS Pre-systolic
PTT Pulse transit time
PWV Pulse wave velocity
PAT Pulse arrival time
PCA Principal components analysis
PI Pressure index
PIR Photoplethysmogram intensity ratio
PLS Partial least square
PLI Power line interference
PWA Pulse wave analysis
PPG Photoplethysmography
PSO Particle swarm optimization
PZT Piezoelectric
RF Random forest
RFE Recursive feature elimination
RFFS Random forest with feature selection
RFSV Random forest with shapley value
RNN Recurrent neural networks
ROI Region-of-interest
rPPG Remote photoplethysmography
RSP Respiratory
SBP Systolic blood pressure
SCG Seismocardiogram
SCSA Semi-classical signal analysis
SHAP Shapley values
SRM Structural risk minimization
STD Standard error
STL Single-task learning
SVM Support vector machine
SVR Support vector regression
TOI Transdermal optical imaging
TPOT Tree-based pipeline optimization tool
TPR Total peripheral vascular resistance
UCI University of California Irvine
VPG Velocity plethysmography
WFDB Waveform database
WSFS Weakly supervised feature selection

https://github.com/v3551G/BP-prediction-survey
https://github.com/v3551G/BP-prediction-survey
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