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Abstract

Blood pressure (BP) estimation is one of the most popular and long-standing topics in
health-care monitoring area. The utilization of machine learning (ML) and deep learning
(DL) for BP prediction has made remarkable progress recently along with the development
of ML and especially DL technologies, and the release of large-scale available datasets. In
this survey, we present a comprehensive, systematic review about the recent advance of
ML and DL for BP prediction. To start with, we systematically sort out the current pro-
gress from four perspectives. Then, we summarized commonly-used datasets, evaluation
metrics as well as evaluation procedures (especially the usually ignored splitting strategy
operation), which is followed by a critical analysis about the reported results. Next, we
discussed several practical issues as well as newly-emerging techniques appeared in the
research community of BP prediction. Also, we introduced the potential application of sev-
eral advanced ML technologies in BP estimation. Last, we discussed the question of what
a good BP estimator should look like?, and then a general proposal for an objective evalua-
tion of model performance is given from the perspective of an ML researcher. Through this
survey, we wish to provide a comprehensive, systematic, up-to-date (to Feb, 2022) review
of related research on BP prediction using ML & DL methods, which may be helpful to
researchers in this area. We also appeal an objective view of the progress reported in the
relevant literatures in a more systematic manner. The experimental data & code and other
useful resources are available at https://github.com/v3551G/BP-prediction-survey.

Keywords Blood pressure prediction - Machine learning - Deep learning - Multi-view
taxonomy system - Physiological signal

1 Introduction

Background Blood pressure (BP) is an important dynamic physiological index reflecting

personal health status, which is often used for health monitoring and disease prevention
(MacMahon et al. 1990; Singla et al. 2019). Systolic BP (SBP) and diastolic BP (DBP) are
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two crucial indicators of BP. BP monitoring is an extensively studied topic in healthcare
monitoring area. In fact, the study of BP prediction can be traced back to over 100 years
ago (Buchanan et al. 2011). From the earliest mercury sphygmomanometers to the latter
oscillometric method and auscultation method, etc., these methods are all physical methods
based on pressure and can not be used for continuous BP monitoring. Pulse transit time
(PTT) methods (Mukkamala et al. 2015; Peter et al. 2014; Sola et al. 2013) can be used for
continuous BP monitoring. It is, however, an ideal (linear) model, and the frequent calibra-
tion over time has to be performed on an individual basis in order to ensure accuracy (Ding
et al. 2017; Samartkit et al. 2022).

Thanks to the advances of machine learning (ML) and deep learning (DL) technology
and the release of several large databases that are freely accessibly, ML and DL has come
into the spotlight as a very useful, non-invasive approach for BP prediction by using bio-
sensors. This is clearly reflected in the corresponding growth of relevant publications, as
Fig. 1a illustrates. This type of methods are inherently data-driven where prediction model
is trained using ML and DL with the aid of large amount of training data, which actually
leverages the powerful capabilities of DL in feature learning, expression and modeling of
complex relationships (LeCun et al. 2015).

Motivation Although there have been several high-quality surveys about BP estima-
tion (Magsood et al. 2022; Mukkamala et al. 2021; Picone et al. 2017; Drawz et al. 2012;
Hosanee et al. 2020; Chao et al. 2021; El-Hajj and Kyriacou 2020b; Martinez-Rios et al.
2021; Forouzanfar et al. 2015; Tamura 2021; Steinman et al. 2021), they mainly focus on
traditional methods (refer Table 19). ML methods, especially DL methods, are rarely or
not adequately covered, because the application of DL in physiological signals is relatively
lagging behind, and most of them are mainly published during and before the outbreak
of DL. Therefore, it is necessary to systematically sort out the latest progress in this area.
Second, in the era of DL, there are some new emerging issues (such as the comparison
between hand-crafted features and machine-learned features, etc.) and techniques (such as
data augmentation, signal combination scheme, etc.) related to BP estimation worth dis-
cussing. Moreover, based on our review of over 200 papers on BP prediction that have
been published in various journals and conferences (as Fig. 1b depicts), we found some
key but neglected factors related to the problem of reproducibility as well as the objective
evaluation of model’s performance, from the perspective of an ML researcher. Therefore,
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Fig.1 The publication trend and distributions of publication sources of the literatures for blood pressure
estimation mainly from 2011 to 2022. a the publication trend of papers based on machine learning, espe-
cially deep learning, and review papers on blood pressure prediction; b the distribution of publication
sources (including a total of about 100 journals or conferences)

@ Springer



Machine learning and deep learning for blood pressure prediction:...

we plan to conduct a thorough review and analysis of the latest progress in all aspects of
data-driven BP estimation.

Differences from existing surveys The main differences between our study and the exist-
ing ones are summarized as follows: (1) systematic, comprehensive review. Without being
limited to a specific signal source, measurement method and measurement scene, we pro-
vide a review of blood pressure prediction community that has the following character-
istics, (i) systematic: current progresses are sort out based on the proposed multi-aspects
taxonomy (as illustrated in Fig. 2), (ii) comprehensive: all elements of the construction of
blood pressure prediction pipeline are involved. (2) more recently published works. The
publications in the last four years (2018-2021) are much more than all those published
before 2018 (as illustrated in Fig. 1a). In the light of the evolution of ML and DL technolo-
gies and its widely application in BP prediction area in the past few years, this survey cov-
ers extensively the recent published studies. Therefore, we provide the up-to-date reviews
of the newly presented methods. (3) critical thinking and a general proposal. We critically
thought the unfairness of system comparisons from a machine learning perspective, and
analyzed the factors that lead to the unreliability of results reported in related studies from
multiple aspects, so as to propose a general proposal towards objective assessment of mod-
el’s performance, and put forward suggestions for the future research directions.

Specifically, there are several surveys (Hosanee et al. 2020; El-Hajj and Kyriacou
2020b; Martinez-Rios et al. 2021) about BP prediction, most of which, however, only
focus on traditional methods such as pulse transit time (PTT), pulse wave velocity
(PWYV), pulse arrival time (PAT), pulse wave analysis (PWA), and traditional feature-
based ML methods, especially DL methods are not or rarely covered. Besides, another
set of surveys only focused on certain aspects (e.g the limitations of conventional evalu-
ation standards and analyzing tools (Mukkamala et al. 2021), the accuracy of cuff-based
BP (Picone et al. 2017), the cuffless BP monitor standards and approval for medical use
(Tamura 2021) and the usage scenario (Drawz et al. 2012) of BP prediction pipeline.
In addition, certain surveys are limited to specific signal source such as Photoplethys-
mography (PPG) signal (Hosanee et al. 2020; El-Hajj and Kyriacou 2020b; Maqgsood
et al. 2022), oscillometric waveform (Forouzanfar et al. 2015) or facial video (Stein-
man et al. 2021). The only two surveys that DL. methods are covered is written by Chao
et al. (2021), and Magsood et al. (2022), respectively. In these surveys, related work
are grouped into traditional feature-based ML methods and DL methods according to
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whether there is explicit feature extraction. However, the classification of DL methods is
not comprehensive enough and the granularity is too coarse. Moreover, a considerable
number of newly emerging studies were not included.

Instead of limited to specific signal source or specific measurement method, this sur-
vey focuses on systematically and comprehensively categorizing and reviewing the lat-
est progress of ML and DL for BP prediction. Specifically, we reviewed the current
progress (to Feb, 2022) of BP prediction from a total of four aspects, especially those
DL methods. In addition, several practical issues/technologies involved in the whole
research pipeline are discussed/summarized in detail, as well as the potential applica-
tion of several advanced ML topics in this field.

Concepts We found that some basic concepts were overlooked or confused in rele-
vant studies. Therefore, the definition of these concepts are firstly announced in Table 1
to avoid ambiguity. In addition, suppose each individual/subject contains only a record
of data, and therefore 'Record’, ’Individual’, and ’Subject’ have similar meanings, pro-
vided that there is no ambiguity. Besides, for ease of reading, all abbreviations appear-
ing in the paper are summarized in Table 23.

Contributions Summarily, the main contributions of this survey include:

e We reviewed all the elements required for the construction of BP prediction’s pipeline:
datasets and processing tools, data preparation (includes signal denoising, data clean-
ing, feature engineering, and feature selection/reduction), training algorithms, evalua-
tion metrics, and evaluation strategies, etc (Sects. 3, 4).

e We provide a comprehensive survey of the utilization of machine learning and deep
learning for blood pressure prediction. Specifically, we build a multi-aspect taxonomy
to present elaborated categorizations of current advances of blood pressure research, in
an attempt to make the readers understand them in a systematic way (Sect. 3).

e We systematically reviewed some critical while practical issues/techniques (such as
imbalance phenomenon, sample duration, data augmentation, individual difference,
signal combination schemes, etc.) in blood pressure estimation area and introduced sev-
eral potential, advanced machine learning topics (such as Auto ML, transfer learning,
meta learning, federated learning, etc.) (Sects. 5, 6).

Table 1 Some basic notations

Concept Explanation

Record A record is a collection of an individual’s physiological signal (ABP signal
included) over a period of time

Segment Sampling point sequence. For example, a segment of 7 seconds of a signal
with sampling frequency of fs contains 7 - fs sampling points.

Sample The basic unit of a dataset in machine learning. A sample includes an input
vector (a signal segment or a feature vector extracted from the signal seg-
ment) and the ground-truth target (BP value or ABP segment)

Dataset A collection of samples. A standard dataset usually includes training set,
validation set (optional), and test set, which is used for model training,
model choice/validation, and model test, respectively

L.I.D assumption (Bishop and Independent-identical-distribution (I.I.D), i.e all samples are sampled
Nasrabadi 2006) independently from an 'unknown’ distribution, and the distribution of
training data and test data should be the same, which is an assumption in
conventional machine learning realm
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e We analyzed the unfairness of systematic comparison that widely used in this area and
disclosed the factors leading to unreliability of the results reported in related studies
from multiple aspects (data preparation, feature selection, normalization, evaluation
metrics, evaluation strategies, etc.), which results in a final proposal towards the objec-
tive evaluation of blood pressure prediction model (Sects. 4, 7).

Organization The rest of this survey is organized as follows. Section 2 provides a brief
review of the explicit analytical models and data-driven BP predictions, respectively. Sec-
tion 3 systematically reviews the current progress of BP prediction from four dimensions.
Section 4 introduced some widely used datasets, evaluation strategies in this area, and our
critical analysis of the current progress in data-driven BP estimation. Section 5 investi-
gates some practical issues as well as newly-emerging techniques in this area. Section 6
discussed the application of some advanced machine learning topics in this area. Finally,
Sect. 7 gives our general discussion of the BP prediction problem as well as conclusions
and future research directions. A more detailed overall schematic diagram of this survey is
presented in Fig. 3.

2 From explicit analytical model to data-driven BP prediction

Explicit analytical model The most well-known analytical method for non-invasive BP
estimation is PTT/PAT/PWYV. The basic physics behind such methods is arterial wall mech-
anisms and wave propagation in the arteries (Mukkamala et al. 2015), where the former
builds the relationship between BP and arterial elasticity through Hughes equation, and
the latter establishes the relationship between arterial elasticity and PTT or PWV through
Moens-Korteweg (MK) equation or Bramwell-Hill (BH) equation (Samartkit et al. 2022;
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tents that provide detailed reviewing of related work from four perspectives

@ Springer



K.Qin et al.

Chen et al. 2000). Finally, the relation between BP and PTT or PWYV is established. The
MK equation is established on the assumption that the artery wall can be modeled as a thin
shell, and the thickness and radius of the artery remain fixed as the BP changes (Ma et al.
2018). These assumptions, however, may not hold for human arteries. Ding et al. (2015,
2017) extends the classical PTT method by introducing a new arterial diameter change
indicator-PIR (Ding and Zhang 2015) to capture the low-frequency components of BP
which originates from peripheral resistance. In order to consider the neglected non-New-
tonian fluid properties of blood, Thambiraj et al. (2019) further extends Ding’s work by
introducing a viscous flow indicator-Womersley number. Recently, Ma et al. (2018) pro-
posed a new analytical model that correlates BP with PWV without the above assumptions
mentioned and empirical Hughes equation. In addition, Matsumura et al. (2018) directly
correlates BP with cardiac output and total peripheral resistance, which were estimated
with heart rate and modifed normalized pulse volume, respectively. Table 2 summarizes
the analytical models of the above-mentioned work for intuitive comparison.

In general, despite having intuitive and easily interpretable mathematical expressions,
the models as mentioned above with limited expressive power that dependents on only a
few factors are based on certain ideal assumptions that may not hold in practice. Besides,
there are several challenges for implementing PTT-based BP monitoring. First, the biggest
challenge is the need for calibration (Mukkamala et al. 2015). Due to individual differences
and dynamic cardiovascular changes over time, the parameters involved are all subject-spe-
cific and has to be calibrated over time on an individual basis (Ding et al. 2017; Samartkit
et al. 2022). Therefore, PTT method is usually employed for individualized BP estimation.
Second, a practical issue is the convenient measurement of at least two waveforms at dif-
ferent sites for robust estimation of PTT/PWV. Therefore, the configuration complexity and
power load of the sensor, the convenience and stability when wearing and the quality of the
collected signal must be considered (Samartkit et al. 2022; Mukkamala et al. 2015; Ding
et al. 2017). Third, the need for determination of SBP, DBP, and mean BP (MBP), inde-
pendently (Sharifi et al. 2019; Mukkamala et al. 2015), since these three BP measurements
are of clinical importance. However, due to the existence of isolated systolic hypertension
that usually occurs in the elderly, conventional PTT correlates less well with SBP.

Data-driven BP prediction Different from conventional pressure-based physical meth-
ods or explicit analytical/mathematical methods (such as PTT) inspired by physiological
mechanism or basic physics, the goal of data-driven BP prediction is to learn the unknown
non-linear relationship (Monte-Moreno 2011) between input signal and BP using ML or
DL technologies with the help of a large number of training data, in a supervised learn-
ing mode. Of course, the premise that the learned relationship is meaningful is that the
two are strongly correlated. Data-driven methods actually provide a possible way to real-
ize a general BP prediction model-only all relevant factors affecting BP need to be taken
as inputs, thus avoiding frequent calibration. In data-driven approaches, data plays an
extremely important role, and each link of data flow (including data collection, data clean-
ing, data labeling, data strategy of monitoring model, etc.) will affect the credibility of the
final training model (Liang et al. 2022). Depending on the specific use scenario, there are
many signal sources available for BP prediction, signal sources used for non-invasive, data-
driven BP prediction include physiological signal, health behavior data, trajectory data,
and facial video, which all carry important information related to BP changes. Table 3
summarizes several representative BP prediction methods using each type of data source.

For physiological signal, PPG and electrocardiograpshy (ECG) signal are the most popular
signals used for BP prediction (Magsood et al. 2022). Generally, PPG signal depicts the hemo-
dynamics in the peripheral vasculature of the individual, which reflects the total peripheral
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Table 3 Summary of
representative methods using
each data source for blood

Data source Representative methods

L Physiological signal Kachuee et al. (2016), Monte-Moreno
pressure estimation (2011), Chowdhury et al. (2020), Fan et al.
(2019),Simjanoska et al. (2020), Miao

et al. (2019), Miao et al. (2017), Slapnicar
et al. (2019), Leitner et al. (2021),Haddad
et al. (2021), Baek et al. (2019), Su et al.
(2018), Schlesinger et al. (2020), Ji et al.

(2022)

Health behavior data Chiang and Dey (2018) and Chiang et al.
(2021)

Trajectory data Xiang et al. (2021)

Facial video Takahashi et al. (2020), Zhou et al. (2019),

Luo et al. (2019), Djeldjli et al. (2021),
Rong and Li (2021b),Schrumpf et al.
(2021a)

vascular resistance (TPR) and cardiac output (CO) that are closely related to BP. Monte-Moreno
(2011) first succeeded in building a machine learning system for BP prediction using extensive
features derived from PPG signal inspired by the strong relation between physiological factors
and BP. Lin et al. (2020) investigated the physiological mechanism of PPG for BP prediction
based on feature analysis, and finds that each examined feature was TPR and/or CO correlated.
ECG signal represents the electrical activity during heart function, and also contains BP-related
information (Wu et al. 2016). Attia et al. (2019) found that ECG signals can be used to assess
the cardiac contractility, which is one of the critical factors leading to the changes of BP.

Health behavior data (e.g. exercise, sleep, smoking, alcohol use, etc.) has been widely
acknowledged as closely related to human health condition (Chiang and Dey 2018), and also
further related to BP since BP is one of the most significant indicators of human condition.
For example, Cornelissen and Smart (2013) has confirmed that exercise is statistically cor-
related with BP. Phillips et al. (2022) confirmed the direct nature of the association of alcohol
use with BP. These factors actually act as mediators to influence BP, which in turn can be used
to regulate BP in an active intervention circumstance.

For trajectory data, individual’s daily routine inferred from trajectory to a certain extent
reflects the regularity of routine, working pattern, and stress level, etc., all of which are closely
related to BP level (Pickering et al. 1982).

For facial video, in every cardiac cycle, due to cardiac ejection, the collected facial video
contains information of hemoglobin concentration changes over time. Blood flow pulsation
in the cardiovascular can therefore be detected by capitalizing on subtle changes in skin color
from the difference in re-emitted light between hemoglobin and melanin chromophores (Luo
et al. 2019), based on computer vision (CV) technologies. The blood flow pulsation informa-
tion can be further used to build BP prediction models.

3 Multi aspects taxonomy of BP prediction methods
As an application field of ML/DL, BP estimation usually includes the estimation of SBP,

DBP and MBP. Blood pressure prediction is not limited to a single learning scheme, and
all kinds of ML/DL technologies has been applied to BP prediction in related studies. At
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the same time, there are many signal sources for BP estimation. Based on the above con-
siderations, we try to sort out the relevant work from the following four perspectives:

(1) Taxonomy 1-how to model the question of BP prediction from the perspective of
machine learning? From this perspective, related work can be divided into five catego-
ries, please refer Sect. 3.1;

(2) Taxonomy 2-whether feature extraction and predictive model building are performed
simultaneously? From this perspective, related work can be divided into two categories,
please refer Sect. 3.2;

(3) Taxonomy 3-whether the relationship among different tasks is modeled? From this
perspective, related work can be divided into two categories, please refer Sect. 3.3;

(4) Taxonomy 4-the signal source used for building predictive model. From this perspec-
tive, related work can be divided into four categories, please refer Sect. 3.4.

3.1 Taxonomy 1: question formulation

Preliminaries In classical ML settings, the I.I.D assumption is followed and the entire
training data is required to be made available prior to the learning task. Theoretically, a
predictive model is determined by minimizing the expected risk as follows,

f*=arg ;)peigE(x,y)NDL(f(x;H),y), €))

where L(, ) denotes loss function, D denotes the unknown genuine distribution that gen-
erating sample (x, y), F denotes the assumption space, f € F is parameterized by 6. How-
ever, since the distribution D is usually unknown, in practice, a model is determined by m
inimizing the empirical risk (ERM). In addition, to overcome overfitting issues, an addi-
tional regularization term is used to control the model complexity, Therefore, in practice, a
model is determined offline by minimizing structural risk (SRM) as follows,

N
f* = arg min ; L(f(x;:0).y,) + AJ(0), 2)

where on the right side of the Eq. (2), the first term represents empirical risk, the second
term represents structural risk and is weighted by parameter A for trade-off between the two
terms.

However, the I.I.D assumption is too strict. In real life, the collected data usually
shows obvious temporal dependency and the I.LI.D assumption may no longer be tenable,
ie plx,x,_1s ... x,_,) # pO,lx,). In this settings, additional mechanisms are needed to
model this temporal dependency, although the model is still trained offline.

In addition, in many actual scenes, data arrives in a sequence manner, often accom-
panied by concept drift, which is ubiquitous in streaming environment (He et al. 2011).
It is obvious that the L.I.D assumption is severely violated. In this settings, learning and
decision-making are carried out alternately. In general, after T rounds are passed, the goal
of an online learner (Hoi et al. 2021) is to minimize the regret-R; of the learner’s predic-
tions against the best fixed learner, which is defined as,

T T
Ry = ; L(f(x;30),y,) — ngin ; L(f(x,;30),y,), (3)

@ Springer



K.Qin et al.

Table 4 Comparison of different

learning paradigms for blood Learning paradigm Online/offline ~ Temporal Output

pressure prediction correlation
Classification Offline No BP category
Regression Offline No BP value
Signal conversion Offline No BP waveform
Sequence prediction  Offline Yes BP value
Online/incremental Online Yes BP value

learning

Train | Test

(@) Model |« - : > Time
/"9, / Hypertensive/Normal/hypotension

Model; ) Trained model after using the 7 -th sample

/@y Input feature vector of the i -th sample

AN Ground-truth reference values of the i -th sample

; Input feature vector of the 7-i-th history sample

Tpiq Tii Input feature vector of the #+i-th future sample

()
[@; 7 Predicted value of the #-th sample

(e)

(@ Train/Update

Fig.4 Five formulations for blood pressure prediction. a classification question; b regression question; ¢
signal conversion; d sequence prediction; e online/incremental learning

In this subsection, we focus on how to formulate BP prediction question from a machine
learning perspective. We summarized a total of five learning scenarios widely used in the
existing literatures for BP estimation, namely classification question, regression question,
signal conversion, sequence prediction, and online/incremental learning. Figure 4 visually
depicts the five paradigms of BP estimation, the main features of which are summarized
in Table 4. The former three scenarios follow Eqgs. (1) and (2). The fourth scenario still
follows an optimization problem of similar form to Eq. (1), except that in addition to the
current input, fis also conditioned on the previous input. The fifth scenario follows Eq. (3).

3.1.1 Classification question

In classification scenarios, the total BP range is divided into several disjoint intervals
according to BP stages, each of which represents an independent category. Then BP moni-
toring is formulated as a two classes or multi-classes classification question, and a model
is trained to predict the belonging category given input. In this paradigm, L(, ) usually
means zero-one loss, logistic loss, softmax loss, etc. y denotes the index of classes. A few
works are based on this paradigm. For example, Riaz et al. (2019) built an autoregressive-
based ensemble model for identifying whether patients’ BP is normal. El Attaoui et al.
(2020) develops an embedded system combined with a wireless medical sensor network to
detect the status of BP (normal or abnormal) in real time. Tjahjadi et al. (2020) developed
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a bidirectional long short-term memory (Bi-LSTM) model for predicting the category of
BP (normotension, prehypertension, and hypertension). Lee and Chang (2019) built a deep
Boltzmann machine with Dempster-Shafer fusion to classify and estimate BP (10 catego-
ries) using oscillometric waveform.

Apparently, this type of modeling methods can only be used to diagnose the BP status
(such as hypertension, hypotensive, normal, etc.) or predict the rough BP interval of an
individual. In addition, the order of BP values is missing, which may lead to extremely
abnormal results of the predictive model output.

3.1.2 Regression question

In regression scenarios, a model is directly trained to predict BP. In this paradigm, L(, )
usually means absolute loss or squared loss, y denotes ground-truth BP value. Almost
all studies in this area are based on this paradigm owning to the continuous nature of BP
value. In practice, due to the large range of possible BP values, normalize target technique
is commonly used in DL-based methods (Song et al. 2021; Zhang et al. 2020b; Abrar et al.
2020; Athaya and Choi 2021; Aguirre et al. 2021; Song et al. 2019; Panwar et al. 2020;
Mahmud et al. 2022; Tazarv and Levorato 2021) to boost gradient-based training.

3.1.3 Signal conversion

Recently, a few researchers have tried to predict BP indirectly by reconstructing ABP sig-
nal. Since BP value is parameter of ABP waveform, BP value can be acquired once high-
quality ABP waveform is reconstructed. Signal conversion can be viewed as a generalized
regression question. In this paradigm, L(, ) usually means absolute loss or squared loss, x
and y denote the input signal and the target (i.e. ABP) signal fragment, respectively. As
far as we know, Landry et al. (2019) firstly investigated the feasibility of generating ABP
waveform using ECG signal. Ibtehaz and Rahman (2020) firstly attempted to translate PPG
signal into ABP waveform using a deep learning model-U-Net. Athaya and Choi (2021) did
similar thing as Ibtehaz and Rahman (2020). Sadrawi et al. (2020) built a deep convolution
autoencoder model based on LetNet-5 and U-Net for PPG-to-ABP conversion. Cheng et al.
(2021) built a U-Net based model for reconstructing ABP signal using PPG signal and its
derivatives, and the maximum absolute loss is introduced in addition to squared loss to
enforce the consistency of local characteristics between the predicted and the genuine ABP
signal. Li and He (2021) built a generalized regression neural network model for single-
period PPG-to-ABP conversion. Aguirre et al. (2021) built a Seq2Seq with attention model
for PPG-to-ABP conversion. Harfiya et al. (2021) built an LSTM-based autoencoder model
for PPG-to-ABP conversion. Qin et al. (2021) developed a convolution-based autoencoder
model for PPG-to-ABP conversion, and domain adversarial training is introduced to con-
quer individual differences. There are also certain studies (Brophy et al. 2021; Mehrabadi
et al. 2022) where the well-known CycleGAN was employed to learn the bijection between
PPG signal and ABP waveform.

In addition to the above DL-based methods, Dash et al. (2020) proposed a subject-specific
mathematical model based on the linear transfer function (LTF) technique for PPG-to-ABP
conversion. Magbool et al. (2021) proposed a hybrid method that combine machine learning
with the cross-relation blind estimation approach for reconstructing beat-by-beat ABP signal.
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3.1.4 Sequence prediction

Different from the first three paradigms based on L.I.D hypothesis, sequence prediction ena-
bles modeling the underlying dependency between adjacent samples. Specifically, the current
output y, is related not only to the current input x,, but also to historical data x,, ¢ < ¢. In this
paradigm, both input x and output y are sequence. Models used for sequence prediction in this
area includes recursive neural networks (e.g. Elman) (Wang et al. 2017) , recurrent neural net-
works (RNNs) (Senturk et al. 2020; Li et al. 2017; Tanveer and Hasan 2019; Su et al. 2018),
nonlinear autoregressive model with exogenous input (NARX) (Senturk et al. 2020; Landry
et al. 2019) and neural network output-error (NNOE) (Paviglianiti et al. 2020a, b), etc.

Popular RNNs used include the standard RNN and its variants such as LSTM, Bi-LSTM,
GRU, etc. As Fig. 5a illustrates, in addition to the input x, at current time step ¢, the current
output also dependents on the hidden state of the previous time step. For RNNs, suppose
X = [x,%,,...,x7] the input sequence, Y, = [y,,¥,, ... ,yr] the target BP sequence. The
conditional distribution P(Y;|X;) is factorized as:

T
P(Y1Xp) = [ ] p0ilio), 4)
t=1

where hidden state 7, models the BP dynamics, A, is generated from current input x, and
previous hidden state #,_; as follows:

b, =f(x,h,_)). (5)

NARX is a kind of nonlinear autoregressive model with exogenous inputs. As Fig. 5c
illustrates, NARX use previous genuine target value and exogenous inputs (e.g. PPG,
ECQG, etc.) to predict the next target value. Formally, the shape of the regression vector is
expressed as:

) = [yt —110), ...,y — n|8),x(t — d), ..., x(t — d — m)],
autoregressive exogenous input

where n is the y-predicted lag, m is the input lag and d the delay to obtain the prediction.
The prediction vector is formulated as:

3(210) = f(h(2), 0), (7

where function fis implemented by neural network. Note that the previous genuine target y
in the regression vector is replaced with predicted value y in the test phase.

NNOE (Norgaard et al. 2000) is a kind of neural network that models nonlinear
dynamic system in stochastic environment. As Fig. 5b illustrates, NNOE is similar to

. FFNN P
Yt
FFNN FENN 7> FENN 4t

elay|

Recurrent o
o module e
module
A4 .
itk Recurrent Yok
@ module (b)

Fig.5 Several classical model architectures for sequence prediction. a RNNs; b NNOE; ¢ NARX; d Elman
NN

T+—FFNN
(d)
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NARX except that the genuine target value y in the regression vector is replaced with
previous prediction value y. Related work includes (Paviglianiti et al. 2020a, b), etc.

Elman is a kind of neural network model with local feedback, as Fig. 5d illustrates.
Specifically, the addition contextual layer can remember the output of the hidden
layer before the current time step, which enables Elman the ability of modeling time-
related features. Formally, the hidden layer output is computed as h, = f(h¢, x,), where
h{ = a-h{_| + h., and the final output is computed as y, = g(h,). Related work includes
(Wang et al. 2017), etc.

In addition, Sharifi et al. (2019) proposed a dynamic method based on the reconstruc-
tion of the state space of the cardiopulmonary system for BP prediction, where both
current state and the past dynamical state based on state space reconstruction are jointly
used for prediction. Formally,

ypep(®) = fi(PIR,) +f,(PIR,_,PIR, ,_,...,PIR,_,..),
PP, = f,(PTT,) + f,(PTT,_,,PTT, ,.,...,PTT,_, ),

Yspp() = ypgp(n) + PP, (®)
Ynpp(1) = ¥pp(n) +0.01 - exp(4.14 — =2 . PP,

where functions f; and f, are learned by the multi-adaptive regression spline (MARS)
method.

3.1.5 Online/Incremental learning

Unlike the above four mentioned scenarios that the entire training data has to be made
available in advance and the model training is performed in an offline manner, incre-
mental/online learning (Hoi et al. 2021; He et al. 2011) is new learning technique that
learn models incrementally from data in a streaming manner. Intuitively, in online learn-
ing, current model firstly tries to make decision when a new sample arrives, and then
the sample is used to update the model in a supervised mode. In other words, the predic-
tion and model update are performed alternatively.

Chiang and Dey (2019) firstly proposed a random forest with feature selection
(RFFS) model coupled with online weighted resampling (OWR) technique to perform
personalized BP prediction in an online manner. The Bootstrap-based OWR technique
is devised to provide a dynamic resampling mechanism of historical samples to conquer
possible concept drift and anomaly points by assigning different weights. Specifically,
based on the prediction error of the incoming sample (e,) and all historical samples (¢,)
, OWR employ three types of strategies for tuning sample weights as follows:

(1) Anomaly adaption: if the prediction error of x, is significantly larger than the mean
prediction error of historical samples, its weight will be reduced:

_J aif e, > e,
T 1 else ’ ©)

wheree > 1, a < 1.
(2) Concept drift adaption: the weight of samples before the warning period ¢,, will be
reduced when concept drift if confirmed:
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1 else ’ (10)

_Jp-wpif w >Ly and w, >L,
Wy iv<ty,
where f < 1, ty, 1, denote the warning time and drift confirmed time, with Ly, and
L, the corresponding threshold error values, ty, < 1, Ly, < Lp,.
(3) Forgetting mechanism: the weight of all historical samples is scaled down whenever a
new sample x, arrivals:

Wy =y -wut <t (11)

Through OWR, the samples reflecting current environment/concept will be more
likely appear in bootstrap dataset for model update.

3.2 Taxonomy 2: traditional machine learning methods vs. Deep learning methods

According to whether feature extraction and model building are performed jointly, related
work can be divided into two folds, namely traditional featured-based ML methods, and
DL methods. Figure 6 presents a generalized pipeline for data-driven BP prediction. In ML
methods, tedious feature engineering (including feature construction & extraction, and fea-
ture selection/transformation) has to be performed ahead of model training to define and
screen out the most informative features that related to prediction task. Therefore, related
works are mainly focused on signal processing, multi-sensor fusion, feature exploration,
and feature screen, etc. In DL methods, feature engineering is no longer necessary due to
the powerful capability of DL in learning complex representations as well as relationships
directly from raw data, which enables end-to-end training. Therefore, related work mainly
focuses on adapting classical model from other domains such as computer vision, etc., or
designing specific models to improve prediction performance.

3.2.1 Machine learning-based methods

The current reviews mainly introduce relevant articles one by one in an exhaustive manner.
Herein, according to the BP prediction pipeline illustrated in Fig. 6, we will decouple and
summarize relevant work in turn from the following aspects, namely signal denoising, seg-
mentation, data cleaning, peak detection, feature extraction, normalization, feature selec-
tion/reduction, training algorithms, and hyper-parameter optimization and model selction.
Signal denoising The signals collected from sensors are usually disturbed by all kinds of
noises. Denoising signals is a pre-step for feature point positioning and feature extraction.
Specifically, ECG signal is disturbed by power line interference (PLI), baseline wandering
(BW), motion artifacts (MA), muscle contractions/artifacts, instrumental and electrosur-
gical noise (Butt et al. 2015; Joshi et al. 2013). Similarly, PPG signal contains PLI, BW,
MA, low amplitude PPG signal, etc (Mishra and Nirala 2020). We group signal denoising

[Traiiing & Validation:

N S— LU Y G LCHR Training scl/LN ML/DL
o i lalgorithm

Feat | Feature | | I _SE———
eature 3 ! — i

- + ction/{-|— yper-paramef
(optional)

optional
D R, (ion i 4

Training set,“— {----------- - -

Signals, Validation set“— {-5--------- ISaamiantafion -t

zation

Test set

Fig.6 A general pipeline for blood pressure prediction
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methods into four types of time domain based, frequency domain based, time-frequency
domain based, and DL based. A simple comparison of the popular signal denoising meth-
ods is presented in Table 5. Abderahman et al. (2017) proposed a novel method based on
EMD to suppress transit MA and MA randomness in Oscillometric waveform signal.

Segmentation The preprocessed raw signals are segmented (refer Sect. 5.1.3) into dis-
joint segments, each segment corresponds to a sample, which is the basic unit for training
and validation. Note that input signal (e.g PPG, ECG, etc.) and the corresponding ABP
signal are performed synchronously.

Data cleaning Data cleaning is an indispensable step to improve the quality of data used
for training model, especially in intensive care unit (ICU) patient’s data, since the database
contains signals disturbed by all kinds of noises and even irregular waveform influenced by
sensor position movement or change. Currently, the popular methods used for data clean-
ing are rule-based. Specifically, several metrics are used as indicator to evaluate the signal
quality, and the signal segments with value out of the reasonable range of these metrics
are identified as invalid signal. Usually used metrics include Skewness (Liang et al. 2018;
Qin et al. 2021), BP range limitations (Baek et al. 2019; Xing and Sun 2016; Schrumpf
et al. 2021b; Schlesinger et al. 2020; Zhang et al. 2021a; Harfiya et al. 2021; Zhang et al.
2021a), periodicity check (Leitner et al. 2021), sanity checks and consistency check of sig-
nal segments (Baker et al. 2021; Baek et al. 2019; Xing and Sun 2016), etc. Besides, a
few authors tried to identify invalid signal with the aid of classifier. For example, Monte-
Moreno (2011) additionally trained a linear classifier to distinguish the “no signal” (cor-
ruption/loss of signal, background noise) from normal signal. This, however, increases the
cost of labeling samples.

Peak detection Peak detection is a crucial prerequisite step to accurate physiological fea-
ture extraction. Specifically, a standard PPG cycle contains five key points, namely onset,
systolic peak, valley, dicrotic peak, and offset. A standard ECG cycle contains five key
points, marked as G, Q, R, S, and T, where R peak is the most important and the most rec-
ognizable peak. Table 6 summarized several popular peak detection algorithms of signal.

Feature extraction Feature extraction is critically important step of conventional fea-
ture-based methods for BP prediction. Note that the concept of whole-based features that
appeared in several literatures (Kachuee et al. 2016; Mousavi et al. 2019b) means time
domain signal in a specific interval. In other words, there is no feature extraction actually.

Since both PPG features and ECG features responsible for BP prediction have been
extensively explored and confirmed in several representative literatures (Chowdhury et al.
2020; Monte-Moreno 2011; Miao et al. 2019; Yang et al. 2020a; Kachuee et al. 2016;
Thambiraj et al. 2020; El-Hajj and Kyriacou 2021b; Lin et al. 2021a; Ding et al. 2019;
Magsood et al. 2022), we will not detail these features trivially. Summarily, according to
Miao et al. (2019), these feature can be grouped into two types of physiological features
and informative features. Physiological features are defined based on feature points of raw
signals with physiological meanings, while informative features are the representation of
the whole signal reflecting some properties of the signal. In addition, demographic fea-
tures are usually used as supplement to extracted feature to improve the prediction accu-
racy of the model. A summary of these types of features is presented in Table 7. Besides,
the exploration of new features has never stopped, and Table 8 summarized several novel
features proposed in related literatures recently.

As mentioned before, the utilization of physiological features for BP prediction has been
thoroughly investigated. However, the extraction of physiological features rely on precise
positioning of feature points, which may be very difficult in ICU patient’s data or high BP
patients with diversified even deteriorated PPG morphology and disturbed by all kinds of
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noise (Mousavi et al. 2019b; Haddad et al. 2021). Therefore, some authors try to achieve
BP prediction using informative features only or other implicit feature extraction tech-
niques such as K-SVD (Aharon et al. 2006), etc. A summary of these studies in presented
in Table 9.

Normalization Normalization is a technique to eliminate dimensional differences
between different features. Common normalization techniques include Z-Score standardi-
zation, min-max scaling, etc. However, there are two new minor changes when it is applied
to DL-based BP prediction. First, for DL methods with raw signal as input, normalization
is performed at segment level instead of feature level to eliminate the difference of sig-
nals among different individuals (Fan et al. 2019; Slapnicar et al. 2019; Schrumpf et al.
2021a; Fan et al. 2021). Second, normalization is also performed on target variable (we
call normalize target) for better gradient-based update in addition to input. This technique
is widely used, especially in those studies of trying to reconstruct ABP waveform (Mah-
mud et al. 2022; Aguirre et al. 2021; Athaya and Choi 2021; Cheng et al. 2021; Qin et al.
2021). Especially note that when normalize target is used for model training, the scaled
prediction of the model has to be inversely normalized again in the test stage.

Feature selection/reduction To reduce the number of features and filter out effective fea-
tures required for model training, there are two solutions. The first is feature selection. Spe-
cifically, it can be divided into filter methods, wrapper methods, and embedded methods
(Yang et al. 2020a; Chandrashekar and Sahin 2014). For filter methods, variable selection
is performed using variable ranking techniques. For wrapper methods, the predictor’s per-
formance is served as objective function to evaluate variable feature subset. For embedded
methods, feature selection is performed during model training. The second is feature reduc-
tion, which represents a class of unsupervised methods that based on some transformation
such as principal components analysis (PCA), etc. Table 10 summarizes widely used fea-
ture selection/reduction techniques in the relevant literatures.

Besides, Miao et al. (2019) proposed a novel spectral analysis-based weakly supervised
feature selection (WSFS) method specific to oscillometric method. Hassani and Foruzan
(2019) firstly use ANN module to map the hand-crafted feature set to acquire the so-called
latent features, before model training. Herein, ANN actually plays the role of feature reduc-
tion. In several studies, partial least square (PLS) model is usually employed to eliminate
the multicollinearity issues between variables (Fujita et al. 2019; Singla et al. 2020b).

Training algorithms Different from traditional explicit analytical models such as PTT
methods and other haemodynamic-based methods (Liu et al. 2020a; Yamakoshi et al. 2021;
Thambiraj et al. 2019; Matsumura et al. 2018; Ebrahim et al. 2019; Hassani and Foru-
zan 2019; Ganti et al. 2021) where the relationship between explanatory variables and BP
is pre-determined. In feature-based ML methods, each algorithm actually determines a
hypothesis space, and the algorithm is employed to learn the best mapping between varia-
bles and BP from the hypothesis space using training data. Therefore, ML methods enables
the model with stronger nonlinear expression ability.

Currently, almost all kinds of classical ML algorithms have been employed to train pre-
diction models. The usage of different algorithms is summarized in Table 11. LR is widely
used in this area owning to its strong interpretability and ease-of-use. It is noted that PTT
methods (Mukkamala et al. 2015; Peter et al. 2014; Sola et al. 2013) and its variants (Chan-
drasekhar et al. 2020; Esmaili et al. 2017; Shao et al. 2020; Hsieh et al. 2016; Das et al.
2020) can be seen as a special application of LR algorithm where PTT-related features are
served as explanatory variable and linear/quasi linear relationship between these features
and BP is assumed. Since different algorithms have different hypothesis spaces, and it is
impossible to know which algorithm will derive the best predictor given specific datatset.
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Therefore, a common practice (Yang et al. 2020a; Miao et al. 2017; Kachuee et al. 2016;
Monte-Moreno 2011; Esmaelpoor et al. 2021a; Hasanzadeh et al. 2019; Thambiraj et al.
2020; Chowdhury et al. 2020; Chen et al. 2019) is that a prediction model is trained using
each algorithm on the given dataset, respectively, and then the prediction model with the
best performance is selected as the final model for further test. It is observed that SVR,
AdaBoost and RF has gained the most popularity due to their excellent performance in
most cases (Zhang et al. 2021a).

Hyper-Parameter optimization and model selection During the construction of predic-
tion model, there are two type of parameters that need to be determined, namely model
parameters and hyper-parameters. For example, SVM algorithm contains model param-
eters (i.e weights and bias) and hyper-parameters such as penalty coefficient C and coef-
ficient of kernel function y, etc. Model parameters are tuned iteratively based on training
set during training. Hyper-parameters are determined using hyper-parameter optimization
(HPO) techniques, based on validation set. Currently used HPO techniques include grid
search, random search, genetic algorithm (GA), particle swarm optimization (PSO), Bayes-
ian optimization (BO), etc. All of them are black-box optimization methods, and a sum-
mary of these HPO methods is presented in Table 12.

3.2.2 Deep learning-based methods

Deep learning based methods for BP prediction are mainly characterized in neural net-
work architecture exploration. Generally speaking, there are two directions are available
for consideration, (1) the first direction is to utilize classic models from other fields such as
computer visions (CV), etc. However, CV model is usually designed based on 2D-convolu-
tion, while physiological signal is one-dimensional. In practice, there are two ways to over-
come this problem. The first way is to convert 1D signal in some way to a 2D format, and
then CV models can be used directly. The second way is to modify 2D-convolution-based
CV models to its corresponding 1D-convolution-based format. (2) the second direction is
to design domain-specific models. Next, we will review related work based on the model
architecture used. Relevant studies can be coarsely divided into two parts, i.e basic DL
models for BP prediction, and hybrid DL models for BP prediction.

3.2.3 Part 1-Basic DL models for BP prediction

As shown in Fig. 7, we summarized five basic model structures for BP prediction, namely
FFNN, RNNs, CNN, BNN, and Siamese architectrue, of which the first three are widely
used and the latter two are rarely used.

FFNN Feed-forward neural network (FFNN), also known as artificial neural network
(ANN), multilayer perceptron (MLP) or back-propagation network, is one of the easiest-to-
understand neural networks that has been widely used, especially in earlier studies (Jeong
et al. 2019; Attarpour et al. 2019; Mabher et al. 2021; Yin et al. 2021; Xing and Sun 2016;
Wang et al. 2018a; Zhang and Wang 2017; Wang and Zhang 2017; Sadrawi et al. 2016;
Wang et al. 2018b; Tan et al. 2018; Wu et al. 2016; Mahmud et al. 2022; Lin et al. 2021b).
A classical FFNN usually contains three layers of input layer, hidden layer and output layer,
and any two neuron nodes of adjacent layers are connected with each other. For example,
Wang et al. (2021) built a stacked autoencoder for the estimation of BP under blood loss,
the network is firstly perform unsupervised layer-by-layer greedy pre-training, and then is
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Table 7 Summary of different types of features

Type Detail Description
Physi- Pulse Time duration between R-peak of ECG and different feature points of synchronous
ological  transit PPG signal
features  time
Time Time difference between different feature points of signal
dura-
tion
Ampli- Amplitude of/between different feature points of signal
tude
feature
Pulse Pulse width at different level of signal amplitude
width
Area Area between different feature points under signal curve
Com- Defined based on ratio and difference operations, such as K-value Miao et al.
bined (2019), etc.
features
Informa-  Statistical Mean, standard deviation, Skewness Liang et al. (2018), Kurtosis Miao et al.
tive features (2019), signal mobility and signal complexity Simjanoska et al. (2018, 2020), etc.
features
Fre- Amplitude of specific frequency component of signals, spectral entropy Monte-
quency Moreno (2011)
domain
based
features

Wavelet  Qualify the complexity of signals, include wavelet energy entropy Miao et al.
domain (2019)
based
features

Entropy  Describe the confusion degree of signals, include sample entrope and approximate
based entropy Miao et al. (2019)
features
Whole- - Signal segment in a specific interval
based
features
Demo- - Age, sex, height, BMI Li et al. (2017), etc.
graphi-
cal
features

further trained as a whole through supervised learning. Zhang and Wang (2017) built a
BP network for BP estimation, where genetic algorithm is firstly used to initialize model
parameters, and then the model is trained by back-propagation.

Recently, Huang et al. (2022) develops a BP prediction model based on the novel MLP-
Mixer architecture. As Fig. 8 illustrates, the multi-filter to multi-channel (MFMC) tech-
nique is firstly used to extend the channel dimension of the raw input signal, and then the
embedded representation is fed into the MLP-Mixer module which iteratively performs
channel-mixing and temporal-mixing based solely on MLP module. Inspired by biological
neurons, Ji et al. (2022) proposed a novel dendritic neural model (DNM), a single neu-
ral model with a plastic dendritic structure, for BP prediction. Experiments show that this
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Table 9 Implicit feature extraction approaches appeared in related studies

Name Description

FFT based Xing and Sun (2016) Amplitude and phase features are extracted from PPG
cycle based on FFT transform

DCT based Wang and Zhang (2017) The first 15 points of the DCT transform sequence of raw
PPG signal is used as input feature

DWT based Gao et al. (2016) DWT coefficients of raw PPG segments is used as input
feature

MSE Sadrawi et al. (2016) 75 scale of MSE of raw PPG segments is used as input
feature

SCSA Li and Laleg-Kirati (2021) SCSA features are derived by decomposing PPG segments

into two partial sums

K-SVD based Bose and Kandaswamy (2018)  Feature extraction is modeled as a dictionary learning
problem, the sparse features of PPG cycle generated
based on K-SVD is used as input feature

McSharry dynamic model fitting based Feature extraction is modeled as a signal fitting problem,
Mousavi et al. (2019a) the parameter values in McSharry equations by fitting
ECG signal based on McSharry Dynamic model is used
as input feature
Autoencoder based Shimazaki et al. (2018), The outputs of autoencoder which is trained by recon-

Mahmud et al. (2022) structing input signal or converting input signal to target
signal, are used as input feature

FFT fast Fourier transform, DCT discrete cosine transform, DWT discrete wavelet transform, MSE multi-
scale entropy, SCSA semi-classical signal analysis

special model has achieved competitive results both on static BP estimation and long-term
BP estimation.

RNNs Considering the temporal order and dynamic nature of physiological signals,
standard recurrent neural networks (RNNs) and its variants such as GRU (Chung et al.
2014), LSTM (Hochreiter and Schmidhuber 1997), and Bi-LSTM (Liwicki et al. 2007),
etc., have been widely used for BP prediction due to their strong ability to model temporal
dependencies (El-Hajj and Kyriacou 2020a; Liu et al. 2018; Koshimizu et al. 2020; Li et al.
2017, 2020a; Lee et al. 2021; Paviglianiti et al. 2020b; Lo et al. 2017). Li et al. (2017)
proposed a LSTM model with contextual layer (named LSTM-CL) to better predict indi-
vidual’s BP using both clinical data and contextual data. Su et al. (2018) proposed a deep
LSTM model for long term BP prediction. Similar to Su et al. (2018), Li et al. (2020a) pro-
posed a deep LSTM model with residual connection for BP prediction, and investigated the
best model configuration in terms of both network depth and residual connection. Results
indicate that the average prediction accuracy decreases with the increase of network depth,
which is unexpectedly opposite with the conclusion in study (Su et al. 2018). Furtherly, El-
Hajj and Kyriacou (2021a, b) proposed a deep LSTM-based network with attention mecha-
nism to predict BP. Specifically, the attention module attached is employed to focus on the
more important hidden states in each time step automatically.

CNN Generally, 1D convolution network is utilized to learn temporal features/patterns
from raw signal (Esmaelpoor et al. 2021b; Baek et al. 2019, 2020; Athaya and Choi 2021;
Sadrawi et al. 2020; Cheng et al. 2021; Ibtehaz and Rahman 2020). For example, Baek
et al. (2019) built a fully-convolution network based on the proposed extraction-concen-
tration block (EC_block) for BP prediction. As Fig. 9 illustrates, the network comprising
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Table 11 Representative machine learning algorithms used for BP prediction

Algorithm  References

LR Natarajan et al. (2021), Haddad et al. (2021), Dey et al. (2018), Esmaelpoor et al. (2021a)
Chowdhury et al. (2020), Yousefian et al. (2020), Zhang et al. (2021a),Zheng and Yu
(2021), Lazazzera et al. (2019), Singla et al. (2020a), Khalid et al. (2018),Marzorati et al.

(2020)

PLS Zhang et al. (2021b), Fujita et al. (2019), Singla et al. (202b0)

GPR Zheng and Yu (2021), Huttunen et al. (2019), Chowdhury et al. (2020), Chen et al.
(2022),Esmaelpoor et al. (2021a)

SVR Fong et al. (2019), Khalid et al. (2018), Zheng and Yu (2021), Esmaelpoor et al.

(2021a),Chowdhury et al. (2020), Hassani and Foruzan (2019), Kachuee et al. (2015), Chen
et al. (2019),Zhang et al. (2017, 2019b, 2021a), Dagamseh et al. (2021)

AdaBoost  Hasanzadeh et al. (2019), Ibrahim and Jafari (2019), Kachuee et al. (2016), Wang and Zhang
(2017),Mousavi et al. (2019b, 2020), Zhang et al. (2021a)

RF Kachuee et al. (2016), Simjanoska et al. (2018, 2020), Chen et al. (2021), Fati et al. (2021)
Huang et al. (2019), Thambiraj et al. (2020), Xing et al. (2019), Monte-Moreno (2011),Bose
and Kandaswamy (2018), Zhang et al. (2021a), He et al. (2016a)

CART Golino et al. (2014), Zhang et al. (2018), Chiang Chiang et al. (2021), Esmaelpoor et al.
(2021a)
DT Slapnicar et al. (2018), Khalid et al. (2018), Chowdhury et al. (2020)

two branches for learning time domain and frequency domain information of raw signal,
respectively. The idea behind EC_block is that multiple dilated convolution are performed
to learn various relationships between different neighboring pixels and the concatenated
output is reduced to its initial dimension through 1x1 convolution, then strided convolution
is performed to increase the depth of the features and halve the temporal length. Besides,
a few authors (Sasso et al. 2020; Wang et al. 2020) directly use classical 2D convolution-
based CV networks for BP estimation by converting PPG segment to 2D format in some
way. Qiu et al. (2021) built a composite 2D-CNN based model for BP prediction, where
raw signals (PPG &ECG) are firstly processed through CNN-Sequential-Adapt layer to
generate appropriate output for ResNet-25 with channel attention. Malayeri and Khoda-
bakhshi (2022) built a two stream compound CNN model for BP prediction using PPG sig-
nal. As Fig. 10 illustrates, the 1D CNN module learns morphological information directly
from raw PPG segment, and the 2D CNN module learns information from the 2D image
converted from the raw PPG segment based on fuzzy recurrent plot (FRP), then the infor-
mation from the two streams are fused for BP prediction. In addition, considering the dura-
tion of sample and network complexity, sampling techniques (Qiu et al. 2021; Baek et al.
2019; Panwar et al. 2020) are usually used to down sample the raw signals before it is fed
into the network.

BNN Boosting neural network (BNN) (Schwenk and Bengio 2000) is the product of
the combination of the general Boosting algorithm and neural networks. As Fig. 7d illus-
trates, BNN is a class of networks with cascade structure, and the usually used decision
tree serving as base learner in Boosting algorithm is replaced with neural network. Song
et al. (2019, 2021) proposed a stacked DNN model for BP prediction using both PPG
&ECG signals and demographical features. As Fig. 11 illustrates, a shallow FFNN mod-
ule is trained using the total features for BP prediction in the first stage, and then a second
FFNN is trained using the total features and the estimated BP value of the last model as
input. In other words, the second model is trained by fitting the residual between the last
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Fig.7 Several representative network architectures for blood pressure prediction. a feedforward neural net-
works (FFNN); b convolutional neural networks (CNN); ¢ recurrent neural networks (RNN); d boosting
neural networks (BNN); e siamese architecture

model’s output and the genuine BP value. The so-called stacked DNN is actually a BNN,
although it is not explicitly stated in the paper.

Siamese architecture Siamese network (Bromley et al. 1993; Chopra et al. 2005) is a
novel architecture that is closely related to contrastive learning and representation learning,
and has been widely used in various computer vision tasks. Generally, Siamese is com-
posed of two identical networks and one cost module. The network accepts a pair of sam-
ples as input, and the outputs of the two sub-networks are passed to the cost module to
compute similarity. Schlesinger et al. (2020a, b) firstly proposed a novel Siamese-based
model for BP prediction. Specifically, as Fig. 7e illustrates, they made two modifications,
(1) it is a regression network: the final layer of the network is fully-connected layer with lin-
ear activation, which outputs BP difference; (ii) instead of metrics with positives value used
in cost module, the two resulting feature vectors are directly subtracted. In other words, the
model learn the difference vector of current input with respect to reference input, which is
utilized to estimate BP difference. The final BP is acquired by plus the estimated BP differ-
ence with the reference BP.

3.2.4 Part 2-Hybrid DL models for BP prediction

The combination of multiple basic model architectures is also widely used in related stud-
ies for BP prediction. As shown in Fig. 15, we summarized a total of three combination
modes of designing hybrid architectures that are widely used in related studies.

In mode-1 (Fig. 15a), CNN module is followed by RNN module, which is just oppo-
site to mode-1. Baker et al. (2021) built a hybrid model where temporal CNN module is
firstly used to identify important features and patterns, which is followed by Bi-LSTM
module for modeling temporal dependency. Panwar et al. (2020) use the similar network
as in Baker et al. (2021) for estimating BP and heart rate simultaneously. Esmaelpoor et al.

¥ . MLP-Mixer module

= Channel mixe: g)
annels Temporal mixer P 2 &
Embedding Temporal P §_ E —y>
e |
Ny : .
7 P

Fig. 8 MLP-Mixer based model for blood pressure prediction proposed in study Huang et al. (2022)
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Fig.9 Fully-convolution network for blood pressure prediction proposed in study Baek et al. (2019). DConv
dilated convolution, SConv strided convolution
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2D image % 2D CNN

Fig. 10 Two stream compound CNN network for blood pressure prediction proposed in study Malayeri and
Khodabakhshi (2022). FRP fuzzy recurrent plot

(2020) proposes a novel two-stage hybrid model for BP prediction where both temporal
dependency in each task and correlations between SBP and DBP prediction are mod-
eled. As Fig. 12 illustrates, in the first stage, two separate sequential CNN modules are
trained for SBP and DBP prediction, respectively. In the second stage, for each prediction
task, in addition to the resulting feature vector of the first stage, both the estimated BP in
the first and the second stages from another task is used to train a LSTM model. Leitner
et al. (2021) proposed a transfer learning framework for BP prediction based on the hybrid
CRNN model. As Fig. 13 illustrates, a pretrained/generalized model is firstly trained using
source patient’s data and is then fine-tuned using partial target patient’s data to obtain per-
sonalized model. Experimental results indicate that the best performance is obtained when
retraining only the last fully-connected layer and the last convolutional layer. Eom et al.
(2020) proposed a CNN-RNN model with attention mechanism to predict BP. Specifically,
a VGGNet-like CNN module is modified to automatically extract features from raw sig-
nals, which is followed by a Bi-GRU module to encode temporal information between the
learned features. Finally, the estimated BP is computed based the attention module to focus
on the different importance of hidden states in each time step. Chuang et al. (2021) pro-
posed a hybrid model similar to Eom et al. (2020) except that the CNN module extracts
features from both temporal domain and frequency domain of the input signal.

Different from the above-mentioned literatures (Baker et al. 2021; Panwar et al. 2020;
Esmaelpoor et al. 2020; Leitner et al. 2021) where RNN module is used to model tempo-
ral dependency within sample (i.e. the output of convolution module), in Jeong and Lim
(2021) work, RNN module is utilized to model temporal dependency between samples
since the CNN module is time-distributed.

In mode-2 (Fig. 15b), CNN and RNN modules are used to capture different feature in
parallel, and then these features are further fused through FFNN module. For example,
Miao et al. (2020) proposed a hybrid model consisting of ResNet-50 and LSTM models
to capture morphological and rhythmic features that relates to BP variation, respectively,
which is followed by several fully-connected layers for fusion of the two types of features.
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Rong and Li (2021a) proposed a hybrid model composed of two CNN modules and one
Bi-LSTM module to extract morphological, frequency spectrum and temporal features
of PPG signal, respectively. Unlike the above-mentioned studies (Miao et al. 2020; Rong
and Li 2021a) that only consider learning from time domain signals, as Fig. 14 illustrates,
Slapnicar et al. (2019) proposed a hybrid network that learning both in time domain and
time-frequency domain of PPG signal and its derivatives for BP estimation.

In mode-3 (Fig. 15c¢), time-distributed ANN is followed by RNN module. Tanveer and
Hasan (2019) proposed an ANN-LSTM model for BP prediction where a time-distributed
ANN module is used to extract morphological features from multiple segments of raw
PPG and ECG signals in parallel, which is followed by a LSTM module to learn the time
domain variation of the extracted features.

In addition, Yang et al. (2020a) proposed a novel framework for BP prediction based
on the hypothesis that estimation performance may be improved by separating BP and
feature variations into low frequency components (LFC) and high frequency components
(HFC), and modeling each separately. As Fig. 16 illustrates, both BP sequence and fea-
ture sequences are separated into LFC and HFC using a first-order low-pass Butterworth
digital filter, and then a regression model is trained using feature-BP pair in each frequency
component. In the test phase, the sum of the two model’s outputs plus the mean BP of test
subject constitutes the final BP. Note that although the model uses a multi-branch structure,
while with purpose different from previous studies (Miao et al. 2020; Rong and Li 2021a).

Remark There is no one-size-fits-all model that work well on all problems and datasets.
For example, Paviglianiti et al. (2020b) finds that the selection of model architecture is
dependent on the type of input signal. Xiang et al. (2021) finds that LSTM works best
when there is a high temporal dependency between trajectory data, otherwise RF model
works best. Currently, model designing and configuration follows certain principles (quali-
tative) and relies on extensive trial and error. Generally, for models of sequential struc-
ture, CNN or FFNN module is usually served as feature learner to extract and fuse fea-
tures, RNNs module is usually utilized to model temporal dependencies. FFNN is usually
used with hand-crafted features (Wu et al. 2016; Tan et al. 2018; Zhang and Wang 2017,
Attarpour et al. 2019; Maher et al. 2021; Yin et al. 2021; Wang et al. 2018a, b) or implicit
features derived from some transformations (Xing and Sun 2016; Wang and Zhang 2017)
or sparse representation (Bose and Kandaswamy 2018) of raw signal as input. Since a sin-
gle RNNs module has no capability of feature extraction, it is usually used in combina-
tion with other modules such as CNN or FFNN, etc. (e.g., Baker et al. 2021; Panwar et al.
2020; Esmaelpoor et al. 2020; Leitner et al. 2021), or directly feed with extracted features
(e.g., El-Hajj and Kyriacou 2021b). For models composed of multiple parallel structures,
features learned from different streams of network are further fused based on FFNN mod-
ule for BP prediction. The features to be fused may come from different signal sources
(e.g., Baek et al. 2020), different modalities of specific signal (e.g., Rong and Li 2021a;

PPG & ) Feature
ECG extraction

Demographical features
(age, sex, Hight, etc.)

Fig. 11 Boosting neural network for blood pressure prediction proposed in study Song et al. (2019)
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Fig. 12 Model architecture proposed in study Esmaelpoor et al. (2020)
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Fig. 13 Transfer learning framework proposed in study Leitner et al. (2021)

Slapnicar et al. 2019), or even outputs of different network with the same input (e.g., Miao
et al. 2020).

3.2.5 Discussion

In this subsection, we make a general comparison of traditional feature-based ML methods
and DL methods for BP estimation from the following four aspects.

Performance Due to the powerful ability of deep learning to extract, represent, and fit
complex relationships, it is reasonable to believe that given a sufficiently large dataset, a
well-designed, sufficiently complex, and optimized deep neural network model can achieve
superior performance over feature-based ML methods. Several studies (Slapnicar et al.
2019; Fan et al. 2019, 2021) with empirical evaluation have confirmed this.

End-to-end training property As Fig. 6 illustrates, for feature-based ML methods, fea-
ture engineering is an extremely important pre-step for training ML model. However, for
DL methods, a predictive model can be obtained by training directly with raw data (only
simple preprocess in required) directly in an end-to-end fashion. In other words, automatic
feature extraction/learning and model training are performed simultaneously by minimiz-
ing the prediction loss at each iteration.

Scalability Generally, for traditional feature-based ML methods, a model is trained
using the whole dataset in each iteration, and the model has to be trained from scratch if
new data arrives. However, for DL methods, due to the modularity architecture of neural
network models with fully parameterized characteristics, DL model is scalable to data
size and can be easily used for incremental update. The practice of using pre-trained
models for transfer learning actually takes advantage of this characteristic of DL model.
Besides, the modularity characteristics of neural network enables the popularity of deep
multi-task learning for BP estimation (refer Sect. 3.3.2).
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Interpretability Lack of interpretability is a common issue in ML, especially in DL.
For traditional feature-based ML methods, hand-crafted features are usually designed
with inspiration from physiological explanation or by capturing some characteristics of
input data. Although DL method seems to have higher performance than traditional fea-
ture-based ML methods, it remains unclear whether DL models learn effective and uni-
versal features, and what is the difference and relationship between these features and
hand-crafted features. Qin et al. (2021) has visualized the feature representation of the
trained convolution-based Autoencoder model for converting PPG signal to ABP wave-
form, and finds that the encoder learns a sparse, hierarchical abstract of signal segments.

3.3 Taxonomy 3: single-task learning vs. multi-task learning

BP prediction is naturally a multi-task learning question where three prediction tasks
of SBP, DBP and MBP share the same input. Figure 17 visually shows the difference

CNN module

CNN module

CNN module

Concat |—>[ GRU module

>—>| Concat l——)[FFNN]

GRU module
GRU module
GRU module

Fig. 14 Model architecture proposed in study (Slapnicar et al. 2019)
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@] cNN > RNNs | (©)ifmédisaibuiedr,

®)  cNN

FFNN
. FFNN
| RN | —— ;

Fig. 15 Several representative hybrid network architectures for blood pressure prediction. a mode 1; b
mode 2; ¢ mode 3

-
-
=z
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{(zLre, Vo)) ANN  —> 75
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in frequency

(mHFc,yy;;@}]—» RN g

x: feature sequence
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Fig. 16 Model framework for blood pressure prediction proposed in study Yang et al. (2020a)
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Multi-task model SBP

x ? feature differences Y DBP
? task loss scale R

differences Y MBP

Fig. 17 Single task learning vs. multi-task learning for blood pressure prediction. Left: single-task learning;
Right: multi-task learning

between single-task learning (STL) and multi-task learning (MTL) for BP prediction. In
STL, a prediction model has to be trained independently for each task. In MTL, while,
only one model with multiple outputs is need to be trained for estimating SBP, DBP and
MBP in parallel. However, nothing is available for free. Specifically, there are two issues
need to be solved in MTL for BP prediction, which will be detailed in the following.

3.3.1 Single-task learning

Almost all of traditional ML-based methods follow the STL mode. Specifically, a model
is trained independently for each prediction task, feature selection and model build-
ing need to be performed on a task-by-task basis, which is cumbersome and increases
memory costs in practical application. Besides, there are several interesting finds as
follows by reviewing ML-based methods with explicit feature extraction (EI-Hajj and
Kyriacou 2021b; Liu et al. 2021; Miao et al. 2017, 2019; Yang et al. 2020a; Ibrahim and
Jafari 2019; Song et al. 2019; Yang et al. 2021; Chen et al. 2019). First, there is a large
amount of intersection between the feature sets selected for different tasks, and a few
features are task-specific. Second, the importance of each feature is varied for different
prediction tasks. Third, the prediction error of SBP is significantly larger than DBP.
These findings propose new challenges to the designing of accurate MTL model for BP
prediction.

3.3.2 Multi-task learning

Currently, studies with respect to multitask learning (MTL) for BP prediction (Tanveer and
Hasan 2019; Baek et al. 2019; Eom et al. 2020; Su et al. 2018; Slapnicar et al. 2019; Fan
etal. 2021, 2019; Esmaelpoor et al. 2020; Zhang et al. 2020b) are all in neuro models own-
ing to the modularity architecture of neural network. In the context of Ruder (2017), almost
all of the mentioned studies above except study (Esmaelpoor et al. 2020) follow the hard
parameter sharing mode, i.e. several layers are shared among all tasks for learning informa-
tive representations, which is followed by multiple independent task networks, with each
corresponding to a prediction task. A simplest case is that the number of neurons in the last
fully-connected layer equals the number of prediction tasks. What’s embarrassing is that a
large number of studies such as SlapniCar et al. (2019) utilize this simplest MTL network
for BP prediction. Surprisingly, there are still a substantial part of DL-based studies (Yang
et al. 2021; Baker et al. 2021; Attarpour et al. 2019; Jeong et al. 2019; Wu et al. 2016)
where the STL mode is utilized.

Zhang et al. (2020b) proposed a multitask network with adversarial training to predict
BP. As Fig. 18 illustrates, additional domain classifier module is introduced to train the fea-
ture learner module adversarial to make the learned intermediate features informative (for
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Fig. 18 MTL framework proposed in study Zhang et al. (2020b) for blood pressure prediction

the BP prediction task) as well as cross-individual, allowing for faster knowledge trans-
fer for personalized model. Formally, the feature learner parameterized with 6, is updated
based on gradient as follows,

oo oL, oL,
—h._ %%
reTe 00, 90, )’

where L, and L, denote the losses of BP prediction and domain classifier, respectively. The
minus sign with red color means feature learner is updated by minimizing prediction loss
and maximizing classification loss, trade-off by parameter A.

However, in comparison with traditional ML-based STL for BP prediction, there are
two import issues that we think is critical for achieving successful BP prediction with
MTL, under the hard parameter sharing mode. The first question is that how fo conquer
the significant loss scale difference among different prediction tasks that may hinder multi-
task joint training? the second question is that how to cope with the difference in the most
informative features accounting for different prediction tasks?

For the first problem, the multi-task loss can be expressed as Zi w; L, i € {s,d,m},
where L; denotes the loss of task i. The basic idea is to adjust the loss weight w adaptively
during training to balance the contribution of each task to the total loss. Up to date, we have
found that there are only two articles (Fan et al. 2019, 2021) where there is explicit mecha-
nism to deal with this problem. Fan et al. (2019) proposed a MTL network for BP predic-
tion using ECG signal. As Fig. 19 illustrates, the training process includes two stages: in
first pre-training stage, the model is updated based on naive loss-weighting. In the second
phase, both model parameters and loss weights are updated alternatively, loss weights is
updated heuristically based on PSO optimization. However, the model is complex and the
amount of computation is large. Therefore, Fan et al. (2021) further proposed a lightweight
version where an adaptive weight learning-based method via the estimation loss trend on
validation set is proposed. Specifically, based on the assumption that the trend of task loss
variation is positively correlated with the optimization space of the task, the weight of each
task loss is defined to be the product of the trend, mean value, and standard deviation of the
loss as follows,

12)

w; = Timean . T;m’ % (L;nean + L.;rd)’ (13)
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Fig. 19 MTL framework proposed in study Fan et al. (2019) for blood pressure prediction

where L and Lf’d denote the mean value and the standard value of losses on all batches,
respectively. 77" and Tl.”d denote the trend of mean value and standard value of losses,
which are defined as,

(L Go=L =D,

Tmean =
i L:"“m(k) ’

e _ N 0-L D, (14)
i Lf’d(k) ’

where L:(k) denotes the corresponding statistic value of the k-th epoch. Finally, w is nor-
malized as w; = w;/ Y, w;.

For the second question, almost no relevant research work has been seen. Fan et al.
(2019) argue that each BP estimation task has its own characteristics, and developed an
attention-based multi-task Bi-LSTM network to automatically select temporal information
for SBP, DBP and MBP estimation, respectively. However, no any ablation experiments are
performed to validate the effectiveness of the so-called “automatic information selection”.

3.4 Taxonomy 4: signal source

Signal source used for BP prediction includes physiological signal, behavior data, trajec-
tory data, and facial video, etc.

3.4.1 Physiological signal based

Most studies with respect to BP prediction are based on physiological signals. As Table 13
presents, signals commonly used include PPG signal, ECG signal, piezoelectric signal,
oscillometric wave signals, and auscultatory waveform, etc.

PPG signal-based Unlike that ECG signals are measured at the wrist chest with multi-
ple electrode attached, PPG signal can be easily measured from finger using a single PPG
sensor. Therefore, PPG signal has been widely used for BP estimation due to its simplicity
and easy-to-use as well as cheapness. Besides, PPG’s derivatives contains much informa-
tion helpful to BP estimation, and this technique has been widely used in related studies
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(Yang et al. 2020a; Baek et al. 2019; Slapnicar et al. 2019; Cheng et al. 2021; Harfiya et al.
2021; Wang and Zhang 2017; Liu et al. 2021; Attarpour et al. 2019; El-Hajj and Kyriacou
2021b; Lin et al. 2021a; Shimazaki et al. 2018; Baek et al. 2020; Xing et al. 2019; Atomi
et al. 2017). Specifically, the first-order differential PPG signal, also known as velocity ple-
thysmography (VPG), contains slope information related to BP. The second-order differ-
ential PPG signal, also known as accelerated plethysmograph (APG), contains dominating
information about the dichroic notch and diastolic point (Cheng et al. 2021).

There are two other variants of PPG technique in addition to single site PPG. The first
is multi-wave PPG signals (MWPPG) which is acquired based on different colors of light.
For example, Baek et al. (2020) measured single multi-wave PPG signals using a smart-
phone for BP prediction, and finds that the best performance is achieved when a green PPG
signal is used in conjunction with an instantaneous frequency signal. Liu et al. (2020a) pro-
posed a PCA-based MWPPG algorithm for BP prediction using only a single sensing node,
where MWPPG decodes the compounded multi-wave PPG signals into arterial pulse and
capillary pulse, and the phase lag between them is used further to compute PTT. The sec-
ond is multi-channel PPG signals (MCPPG) which is acquired at different sites (Attarpour
et al. 2019; Fong et al. 2019; Lazazzera et al. 2019). For example, Fong et al. (2019) pro-
posed a SVR-based ensemble method for BP prediction using MCPPG signals collected
from multiple arterial segments of an individual’s left arm, where each SVR in the ensem-
ble is trained on a comprehensive feature set that is derived from a distinct PPG signal.

ECG signal-based ECG signal-based BP estimation has attracted some attention
recently since ECG signals are easy to collect using wearable devices. Based on literature
search, we find that current studies related are all based on a single lead ECG signal (Fan
et al. 2019, 2021; Landry et al. 2019; Wu et al. 2016; Miao et al. 2020; Haddad et al. 2021;
Mousavi et al. 2020; Simjanoska et al. 2020; Wu et al. 2016). The fusion of multi-lead
ECG signals for BP estimation may be a potential research direction.

Piezoelectric signal-based Piezoelectric (PZT) sensor can sense pressure changes and
convert them into electrical signal. Therefore, it is suitable for arterial distension sens-
ing during the cardiac cycle (Samartkit et al. 2022; Yi et al. 2022b). PZT sensor is usu-
ally attached on the subject’s wrist through a wrist strap and can work without an exter-
nal power source, making it superior to other high-power sensors while providing safety
insurance (Park et al. 2017; Samartkit et al. 2022). Wang and Lin (2020) proposed to use
PZT signal for beat-by-beat BP monitoring, where the pressure change is converted from
the voltage change by the pressure sensitivity of the sensor. However, the relation between
PZT signal and BP waveform remains unclear. Recently, Yi et al. (2022a) elucidated the
first derivative correlation between PZT signal and BP waveform for the first time based on
theoretical analysis and experimental simulation, which lays foundations for BP monitor-
ing using a single PZT signal.

OMW-based Oscillometric waveform (OMW) signal represents a class of oscillography.
In traditional oscillography methods, SBP and DBP that usually obtained by mapping the
position at predetermined ratio of the envelope of the maximum amplitude of the OMW
signal to the deflation curve are very sensitive to the ratio. Therefore, several researchers
treat OMW as regular signal source for BP estimation under regression scenario where ML
and DL methods are adopted to solve the nonlinear relationship between time domain fea-
tures extracted from OMW signal and the reference BP (Lee et al. 2018; Lee and Lee 2020;
Lee and Chang 2016, 2017a, b, 2019; Forouzanfar et al. 2011; Lee et al. 2019a, 2020).
Besides, Argha et al. (2019); Argha and Celler (2019) firstly model OMW-based BP pre-
diction as a sequence-to-sequence classification question. Specifically, each OMW beat is
labeled with one of three classes, namely pre-systolic (PS), between systolic and diastolic
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(BSD) and after diastolic (AD). Then, SBP and DBP points are determined based on the
beat at which the model output sequence switches from PS to BSD and from BSD to AD,
respectively.

AW-based Auscultatory waveform (AW) represents a class of auscultation methods. Tra-
ditional auscultation methods require the participation of experts. Recently, some research-
ers are committed to using advanced machine learning technology to realize automatic BP
estimation based on AWs (Celler et al. 2019a; Argha et al. 2020; Pan et al. 2019). For
example, Celler et al. (2019a) proposed a Gaussian mixture Models and hidden Markov
model (GMM-HMM) method to automatically discover and learn the latent structure in
the AW sequence, and then SBP and DBP points are determined as the cuff pressures at
which the AW sequence changes its structure. Similar to previous studies (Argha et al.
2019; Argha and Celler 2019), Argha et al. (2020) models AW-based BP estimation as a
sequence-to-sequence classification question.

Multi-sensor signal-based Multi-sensor signal fusion (Khaleghi et al. 2013) technolo-
gies have been widely used in BP prediction area. Specifically, for traditional explicit-
feature-extraction-based methods, the features extracted from multiple synchronized sig-
nals are concatenated together to form the final feature vector, which is usually followed
by feature selection/reduction methods to reduce dimension before it is used for training.
While, for DL methods with raw signal as input, multiple signals are combined in some
form (refer Sect. 5.2.2) and then are fed into neural network for model training.

Since the amount of information about BP collected by a single sensor is often limited,
and the signals collected by different sensors (usually worn it on different sites of the body,
with different working principle) have certain complementarity, modeling all kinds of
influence factors about BP through the fusion of multi-sensor signals is promising. A large
number of studies have confirmed that the BP prediction accuracy of the method based on
multi-sensor signal fusion is better than that of any method based on a single sensor signal
(Lee et al. 2021; Paviglianiti et al. 2020a; Esmaelpoor et al. 2021b; Thambiraj et al. 2020;
Huang et al. 2022; Baek et al. 2019). ECG signal contains important information about
BP, which can effectively improve the prediction accuracy as a supplement to PPG signal
(Esmaelpoor et al. 2021a). It is observed that PPG and ECG signals are the most popular
combination used for BP prediction. Due to its simple configuration and portability, PZT
may be a promising alternative to ECG for calculating pulse transit time together with PPG
in conventional PTT methods (Samartkit et al. 2022). Besides, other signals such as PCG,
BCG and ICG are used in conjunction with PPG and/or ECG signals for better BP predic-
tion (Samartkit et al. 2022). In short, BP prediction based on multi-sensor signal fusion
has potential applications prospects in wearable devices. However, this inevitably increases
the difficulty of configuration and proposed new challenges for storage and response time
when deployed on hardware.

3.4.2 Health Behavior data based

One of the advantages of health behavior data-based BP monitoring is that the convenience
to explore the primary factors affecting individual’s BP, which provides an opportunity
for health behavior recommendations. Chiang and Dey (2018) investigated the relation-
ship between several health behavior such as sleep and exercise and daily BP based on
the proposed random forest with feature selection (RFFS). Experimental results show that
the healthy behavior recommendation function of RFFS can in turn be used to regulate
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individual’s blood pressure. Chiang et al. (2021) further proposed a method called RFSV
for BP prediction and personalized recommendation. Specifically, the best ARIMA mod-
el’s parameter is used to extend the original feature set, and then a general random forest
(RF) model is trained using the whole feature set. Next, RF with shapley value (RFSV)
technique is utilized to select important features to train model for final prediction and
recommendation.

3.4.3 Trajectory data based

Trajectory data based BP monitoring is a potential way for unobtrusive BP monitoring,
since no wearable device is needed, and trajectory data can be easily acquired from mobile
devices. Currently, there are few relevant studies. Xiang et al. (2021) firstly proposed a
framework for BP prediction using individual’s daily trajectory data in conjunction with
demographical characteristics. As Fig. 20 illustrates, through grid-based clustering algo-
rithm, the trajectory data is firstly converted to region-of-interest (ROI) label sequences,
which is followed by Bayesian topic model comprising the LDA for acquiring the prob-
ability of daily routine pattern distribution. Finally, the acquired daily routine topic distri-
bution, historical BP and demographical features are used as input to train a LSTM model
for prediction.

3.4.4 Facial video based

Facial video based methods are a class of contactless, cuffless methods that only use
facial video for BP estimation, which overcome the drawback that PPG-based methods
are sensitive to contact pressure (Chandrasekhar et al. 2020) and have a very wide range
of potential application values.

For video-based methods, an important technique is how to obtain the PPG compo-
nent (aka iPPG signal) from video. Based on Lambert-Beer law and light scattering the-
ory, a general method in firstly determine ROI from video, and then PPG component is
extracted from ROI of the video based on spatial averaging operation (Tasli et al. 2014;
Sugita et al. 2015; Jeong and Finkelstein 2016; Secerbegovic et al. 2016; Fan et al.
2018; Takahashi et al. 2020; Djeldjli et al. 2021; Zhou et al. 2019; Luo et al. 2019).

The development of video-based BP measurement has experienced a process similar
to that of physiological signal-based BP measurement. Specifically, facial video-based
BP prediction methods can be generally grouped into three categories, namely (i) math-
ematical/optical methods, (ii) video-based ML methods, (iii) video-based DL methods,

etc.
Home/work ome/work
inference time N

Trajectory data: . ‘ +/ ROI label N Daily routine /! ¥
Loct = [t,py : (Ing, lat)] lustermgl 7/ sequences 1 ol pattern distr,/ & LS
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LDA Toutine pattern: ! H
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Fig.20 Model framework proposed in study (Xiang et al. 2021)
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Mathematical/optical methods includes image-based PTT (iPTT) methods, etc. Image-
based PTT (iPTT) methods (Sugita et al. 2015; Jeong and Finkelstein 2016; Secerbegovic
et al. 2016; Fan et al. 2018) is similar to traditional PTT methods. In iPTT methods, the
pulse transient time or instantaneous phase difference is firstly calculated between two or
multiple pulse waves obtained from different parts (such as face and palm) of an individ-
ual’s body captured by a video camera. However, subjects are often required to maintain
a fixed posture, which is unrealistic in real-life scenarios. Hence, Takahashi et al. (2020)
examined the feasibility of acquire PTT based on a single part of the body, and the strong
correlation between PTT acquired from the forehead and the chin of a face and BP is con-
firmed. In addition, Zhou et al. (2019) proposed a multiple channel averaging-based meth-
ods for BP estimation using RGB camera. Specifically, the facial video is firstly converted
from RGB space to YCrCb space for face detection. Spacial averaging is then performed
for each channel of the ROI image, and the obtained average is used as input to the JADE
algorithm for blind source separation. Based on radial resonance theory, the peaks and val-
leys of the resulting time series signal are related to pressure waves.

For video-based ML methods (Djeldjli et al. 2021; Luo et al. 2019; Rong and Li 2021b;
Gonzalez Viejo et al. 2018), after PPG component is extracted from video, relevant fea-
tures are extracted from the PPG component, which is further used for training BP predic-
tion model. For example, Djeldjli et al. (2021) proposed a single channel averaging-based
methods to acquire iPPG signal. Specifically, after ROI is detected, the green channel of
the ROI image is selected and averaged to acquire iPPG signal, which is further used for
the extraction of BP-related features. Rong and Li (2021b) acquired three iPPG signals
from the ROI of the channels of videos, and a total of 26 features are extracted from these
signals, Then, four algorithms including LR, SVR, RF and MLP are employed to train BP
prediction model based on these features, respectively. In the well-known transdermal opti-
cal imaging (TOI) method (Luo et al. 2019), subtle changes in facial image is captured to
to detect blood pulsation in cardiovascular system, which is further used for BP estimation.
Specifically, 17 ROIs of facial image with robust hemoglobin fluctuations are selected.
Then averaging operation in performed in each ROI, resulting in 17 hemoglobin signals.
Next, features are extracted from these signals to train a MLP model for BP prediction.

For video-based DL methods, although we have not found any ready-made literature,
please note that video-based technologies for other related tasks such as heart rate moni-
toring have achieved some progress (Yu et al. 2019). In addition, Yu et al. (2019) firstly
use a deep spatio-temporal network for reconstructing precise remote PPG (rPPG) signal
from facial videos. We believe that video-based DL methods will also usher a new period
of vigorous development as in physiological signal-based methods in the near future.

4 Datasets and evaluation
In this section, we plan to summarize the widely used public datasets and processing tools,

followed by an overview and commentary on the widely used evaluation metrics, evaluation
procedure, and splitting strategies. Finally, we made a critical analysis of the reported results.

4.1 Dataset and processing toolbox

Since the publication of the first Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC) dataset in 1996 by Moody and Mark (1996), there have been several freely
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accessible databases supporting BP estimation. In this subsection, we summarized several
representative datasets in this field and the relevant supporting tools for data processing.

Table 14 summarized several popular datasets used in related studies. It can be seen that
several datasets such as MIMIC xxx and PPGBP are constantly expanding, producing sever
different versions. The specific version of the dataset used should be declared when using
a dataset. Especially note that datasets such as MIMIC xxx, etc., are heterogeneous dataset
collected from ICU. The collected signals are accompanied with various noise interfer-
ence and measurement error, etc., it can not be directly used for experiment. Therefore,
Kachuee et al. (2015) published a pre-processed version of the MIMIC II dataset named
UCI-BP, this version of the dataset has been widely used in this field due to its ease-of-use.
However, note that the sampling rate of ECG signal is reduced from 500 to 125 Hz to keep
synchronization with PPG signal, which may lead to time jitter of about 8 ms in the extrac-
tion of PTT-related features (in the worst case). This small problem has been neglected in
most of the studies, and Sharifi et al. (2019) proposed to tackle this problem by averaging
PTT based on cubic splines.

Besides, several researchers use virtual database for experiments. For example, Hut-
tunen et al. (2019) used a database of virtual subjects generated based on 1D haemody-
namic model where model parameters are varied to reflect variations between different
subjects. Magbool et al. (2021) used two publicly available, virtual pre-validated databases
of simulated pulse waves for experiments.

Table 15 presents several widely used toolboxes for processing and analyzing physi-
ological signals.

4.2 Evaluation metrics

The metrics used in classification scenario include accuracy, precision, recall, and F1
Score, etc. The metrics used in other learning scenarios include mean absolute error
(MAE), mean absolute percentage error (MAPE), mean square error (MSE), mean
error (ME), standard error (STD), and R> (Monte-Moreno 2011), etc. Herein, we focus
mainly on the latter, and a summary of these metrics is in Table 16. Especially, MAE is
related to the BHS standard (O’Brien et al. 1993), ME and STD are related to the AAMI
standard. Therefore, these three metrics are widely used for performance comparison
in related studies. However, as Fig. 21 illustrates, a single metric MAE is insufficient to
objectively evaluate the performance of an algorithm on a dataset with skewed distribu-
tion. This is inspired by the fact that the generalization ability of a model may be very
poor even if the Accuracy value is high in the class-imbalance scenario. That is why
the existence of metrics such as F1 Score, etc. Naturally, is there such a metric like F1
Score in regression scenario?

Based on the above considerations, we introduced a new evaluation metric named bin-
balanced MAE (b>MAE), and propose the MAE of prediction for each bin corresponding
to different BP levels should also be reported, in addition to the global MAE. The defini-
tion of b>’MAE is as follows.

Nhin

1 1
BPMAE= — Y ————— % |y, -3, 15
Ny ; I{y; € bin;}| y,';l{"i b )
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Table 15 Toolboxes for processing and analyzing physiological signals

Toolbox

Description

Neurokit2 (Makowski et al.
(2021)

Scipy Virtanen et al. (2020)

WEFDB Vijayarangan et al. (2020)

wfdb-python Vilalta and Drissi
(2002)

Peak detection Virtanen et al.
(2020)

Vayu Mahajan (2021)

A user-friendly Python package for simulating and processing various
neurophysiological signals such as PPG, ECG, RSP, EDA, and EMG,
etc.

A well-known Python package including modules for statistical, opti-
mization, integration, Fourier transform, etc. Its sub-module Scipy.
signal implements various filters and peak detection, interpolation and
transformation algorithms for signal

A well-known, source software available for all popular platforms,
which supports signal processing, automatic analysis, visualization,
annotation and interactive analysis of waveform

A Python package for reading, writing and processing WFDB signals
(e.g ECG ) and annotations. This package provides a python interface
to access MIMIC series databases

A Python package including peak detection algorithm

A open-source, cross-platform sensor data analysis toolbox, including
data con- version, interpolation, aggregation and prediction

Table 16 Summary of metrics used in the evaluation of BP estimation

Metric Calculation formula Description
MAE 1 ZN ly; = 3 Calculate the MAE of prediction over all samples
N =11 i
MAPE Lyw 1 bi=9il Calculate the MAPE of prediction over all samples
N &=Ly
MSE 1 Z"i O = 9,2 Calculate the MSE of prediction overall sample, sensitive to
N == abnormal predictions
1 N . -
ME 3 Zizl(yi -9 Calculate the ME of prediction over all samples
STD /1 O, = 9. Calculate the STD of prediction over all samples, the square
N of metric MSE
R? 1— =9 Measure the fitting effect of the model, the closer its value is
03P to 1, the better
Task Test dataset Model (biased) Metrics
I L 1 L T L 1T L 1
Binary A _ 1 X L Large! Precision = Lot Small!
classification ceuracy = N Z F=Li=1Uy=05:=0 L= F1 Score
Vz, class2 := Model(z) pred.§ ”} Recall —
Class 1 dlass 2 © [ Tlr, F?\l i=1

Category

Regression

Frequency

S 0 170 at0- 1t
Blood pressure

Vz,120 := Model(z)  MAE —

=
<o Fp [N

Does it really mean strong
lization ability?

lyi — §;| Smant

=z

N i=1

Fig. 21 In class imbalance scenario, a single metric-Accuracy can not objectively evaluate the performance
of classifier. Similarly, a single metric-MAE is insufficient to evaluate the performance of a model in imbal-

anced regression scenario
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where N, refers the number of bins with equal length s included in the total BP range
[bp,bpl, ie. Ny, = [(bp —bp)/s], parameter s controls the granularity. The i-th bin
bﬁ =bp+G—-1s,bp+i-s).

It is intuitive that the "Mean’ operation is performed within each bin to offset the imbal-
anced distribution. Similarly, bin-balanced version of other conventional metrics can also
be easily derived.

4.3 Evaluation procedure and splitting strategy

The selection of evaluation procedure is dependent on the learning scenario. Specifically,
for online/incremental learning scenario, the usually used evaluation procedure is prequen-
tial evaluation (Gama et al. 2009), i.e each sample in the data stream is firstly served as test
sample for prediction, and then is used as training sample to update prediction model. For
sequence prediction scenario, the usually used evaluation procedure is sequential test, i.e
the former part of the sequence data is used to train model and the latter part of which is
used for test. For other learning scenarios, the usually used evaluation procedures include:
(1) cross evaluation, i.e the whole dataset is split into multiple equal portions (e.g. 10 por-
tions, which is called 10-fold cross-validation). In each iteration, a portion of data is used
to test the model trained on the remaining portions of data, and the loop does not terminate
until each portion of data has been used as test set; (2) random splitting, i.e the whole
dataset is randomly split into training, validation, and test set according to a certain ratio,
the experiment is repeated by changing random seed to obtain multiple different divisions.
However, the splitting operation in the above two evaluation procedures itself is a critical
Jactor that affect the final division, which is usually ignored in most of the literature.

Specifically, as Fig. 22a and b illustrates, the splitting can be performed at the record
level or sample level. For splitting strategy (a), all samples of each record appears only in
training, validation or test set. Whereas, this strategy may leads to large differences of BP
distribution among training, validation and test set, especially when the total number of
records is small. Therefore, careful check is required to ensure the BP distribution among
the three sets is consistent (Schrumpf et al. 2021a, b). However, there are only a few studies
where the consistency check is performed and disclosed (Schrumpf et al. 2021a, b; Song
et al. 2019; Yang et al. 2020a; Atomi et al. 2017; Bose and Kandaswamy 2018). For exam-
ple, Bose et al. confirmed the consistency between training and test sets in terms of several
characteristics such as SBP, DBP, Body mass index (BMI), etc. Besides, we noticed that
in several studies (Qin et al. 2021), all BP records are firstly divided into several disjoint
subsets based on BP category, each subset is then split into training, validation and test
records, the final splitted dataset is acquired by merging the records with same kind from
different subsets.

For splitting strategy (b), the final aggregated samples are randomly divided to form
training, validation and test sets. In other words, samples of a record may appears simul-
taneously in training, validation and test sets. However, physiological signal of an indi-
vidual is highly regular and will not change significantly in a short time, especially, signals
are usually collected from individuals in an enclosed environment (we means participants’
range of activity, status and posture when measuring data), leading to insufficient BP var-
iations. Therefore, this splitting strategy is at the risk of data leakage, although there is
no intersection among training, validation and test sets(Eom et al. 2020; Schrumpf et al.
2021a, b; Hasanzadeh et al. 2019).
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Fig.22 Several splitting strategies used for evaluation. Splitting strategy—(a) ensures all samples of a
record appear only in training, validation or test set, refer rows @~® for details. Nevertheless, for splitting
strategy—(b), samples of a record may distributed among training, validation and test set, refer rows @~®
for details. ¢ denotes a special experimental protocal that sample level splitting strategy is used for experi-
ment, and experiments are performed individual-by-individual, refer ©~@ for details

In addition, there are other experimental procedures such as Leave-one-subject/record-
out (LOSO) (Yu et al. 2019), and individual test (Yan et al. 2019; Liu et al. 2020b; Lin
et al. 2021b), etc. LOSO can be regarded as a special case of cross-validation with record
level splitting strategy, in which only one record data is used as the test set in each itera-
tion. Since BP changes vary greatly among different individuals (Zhang et al. 2021c¢), the
test results on different individuals often vary widely. In individual test (as illustrated in
Fig. 22c), the experiment is performed individual-by-individual. Specifically, for each indi-
vidual, part of the individual’s data is used to train a personalized prediction model, and the
remaining data is used to further test the model. Since the limited individual BP dynamics
and the small amount of data, the trained model is subject-specific and its generalization
ability is very limited, although experimental results usually seems well.

4.3.1 Quantitative comparison

To quantitatively analyze the effect of different splitting strategies-© &® &® &® (refer
Fig. 22. Note that splitting strategies-® &® &@ were excluded considering the too small
number of samples included or unbearable computational cost) on experimental results, we
utilize the classical ResNet (He et al. 2016b) and MIMIC III database for our experiments.
Concretely, ResNet was modified for BP prediction (2D convolution was replaced by 1D
convolution, and the last classification layer was replaced by regression layer consisting of
two neurons). For dataset, we used the version published by Schrumpf et al. (2021a) and
randomly select 750 records (i.e v, version) for experiments. The statistics of several data-
sets finally used are summarized in Table 17 and a graphical illustration of the BP distribu-
tion and individual BP dynamics is attached in Appendix 2. It can be seen that both SBP
and DBP cover an extensively large range in terms of overall population BP and individual
BP dynamics.

Table 18 presents the global numerical results. Moreover, considering the severely
skewed BP distribution both in training set and validation set, the corresponding test
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Table 17 Statistics with respect to total BP as well as individual BP dynamics, of the final used datasets
derived from MIMIC III

Dataset Type  #Data Total population Individual dynamics

Range Mean Std Range Mean Std

vO SBP 375 records, totally 50-199 12223 24.62 58145 10470 15.27

DBP 7.5¢5 samples 40-119 6175 12,60 32-78 58.01 11.65

vl, SBP 750 records, totally 50-200  122.59 2422 58-145 10480 1522

(default) ppp 1.5¢6 samples 40-119 61.68 1241 25-78 5822 1145

V2 SBP 1500 records, totally ~ 44-200 12244 2433 58-147 10527 14.74

DBP 3e6 samples 40-119 62.03 1265 25-78 5892  11.49

v3 SBP 2250 records, totally 40-200 122.40 24.23 58-147 105.62 14.51

DBP 4.5e6 samples 40-119 6196 12.52 25-79 59.02  11.50

v4 SBP 3000 records, totally 40-200 12226 2433  58-153 105.67 14.85

DBP 6¢6 samples 40-119 61.83 1248 25-79 5891 11.70
vOcvlcv2cv3cv4

performance of different models on each bin of test range is visualized in Appendix 3
(Figs. 28, 29). We can find several interesting observations as follows,

(1) The test result of ResNet model based on sample level splitting strategies-® &@ &® is
significantly better than that based on record level splitting strategy-®. However, note
that this does not necessarily ensures the former with stronger generalization ability,
since data of an individual appears simultaneously in training set and validation set;

(2) No matter which splitting strategy is adopted, the trained model prefer to make predic-
tions towards central BP region. In other words, skewed data sets lead to biased model.
As illustrated in Figs. 28 and 29, the corresponding MAE of the model increase gradu-
ally as the test bin is farther away from the central region of the possible BP range,
which is inversely proportional to the BP distribution of training set. This circumstance
is even more serious when the record level splitting strategy is used. One may question
whether this phenomenon is caused by too few training samples away from the central
area. Our experimental results on more large datasets such as v, (4x larger that v,)
indicate that this phenomenon is still occurred.

(3) No matter which splitting strategy is adopted, although the BP distribution among train-
ing, validation and test set is confirmed to be consistent, the performance of the model
on validation set and test set is lower than that on training set by a large margin, which
is even more obvious when record level splitting strategy is used. We confirm that no
over-fitting phenomenon is occurred during training, and believe that this is mainly
caused by individual differences, which challenges the training of general models with
robustness, and strong generalization ability.

In addition, Friedman test (Demsar 2006) is employed to judge whether the performance
of ResNet models based on different splitting strategies is comparable. Specifically, the
mean rank of each method over five experiments is calculated and the resulting p-value
is 3.57e—3 (0.05) for both SBP and DBP prediction. Therefore, the null hypothesis is
rejected at a = 0.05, i.e splitting strategy has a significant effect on the trained model’s
performance for both SBP and DBP prediction. Furtherly, post-hoc Nimenyi test (Nemenyi

@ Springer



Machine learning and deep learning for blood pressure prediction:...

099°0 1€TL  8L00 T6T°TS 8L0°0 0e8't 0ZL0 ST8TI 6510 — €LY 91 1200 YOr'8 195 189,
6590 6VTL  SLOO 6¥S°TS 6L0°0 8¢8Y 02L0 Ge8TI  ILIO— 0FL+91 1L0°0 9018 195 UOTIEPI[RA
7560 TILT 1010 09¢°L S€0°0 980°C SL60 798¢ 8870 - €671 §T0°0 896'C 108 Suurer], ®
8590 YPTL PELO 18+°CS 6L0°0 158 61L°0 78Tl 600 — 0791 TS0°L €07'8 105 189,
8590 €9TL  €91°0 09L°TS 6L0°0 Se8'y 12L°0 GT8TI €600 — 187 +91 9%0°L €6€°8 105 UOTEPI[EA
156°0 LYL'T  ¥€0°0 — 1SS°L SE0°0 (4884 SL60 8¥8'c  v0TO - 018%1 ¥20°0 €26'C 108 Sururel], ®
1290 LIT'L 70 L¥9°0S 9L0°0 TILY 62L°0 09Tl 6L1°0 698'8S1 690°0 381°8 195 159,
1£9°0 €L LTTO 865°0S 9L0°0 €LY 8TL°0 €9°TI  8LIO 87€°651 690°0 961°8 108 UONEPI[EA
¥$6°0 LS9T  $LOO 0L0'L Y€0°0 10T SL6'O $08°¢ $S0°0 S8y vl ¥20°0 168°C 108 Sururer, ®
96£°0 6.6 0LO0 €816 LOT°0 1L5°9 95t°0 0LI'8T 0870 — LST0EE €01°0 88TT1 108 189,
8YL'E 65L'6  610°0— 992°S6 011°0 €899 910 16L°LT  9LT0— YOL9I¢E 701°0 €0I'CI 39S UOnEPI[EA
956°0 vI9T  TET0— 6589 €€0°0 6661 9L6'0 L89°C  9¥E0 - €29°¢l €200 L8LT 108 Jururer], ®
A airs JN ASIN HdVIN AVIN ! ars JN ENA HdVIN HYIN (Sorexs
ddga dds - Sumndg

[000301d TRIUSW
-11adxo (¢ uonoasqng 1oyar) Sumnids wopuer 9y Iopun sinsal [eIudWIIddxe oAl Ay} Jo aFeI0AR ) 1R synsa1 pajudsard oy, '7:z:9 01 39S St onel SumIds "SpI0dI )G/ WOIY
sordwres 96T A[[e101 Jo Sunsisuod jeserep 1 DINTIA U0 uonorpaid Jg I0J sorSojens Sumifds JuaIolIp uo paseq S[opow JONSIY Jo douewiojrad oy) jo uostredwo)) g| dqel

pringer

As



K.Qin et al.

(@) . D .
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ResNet model based on (@) ResNet model based on (5)
(b) | cD ,
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Fig. 23 Visualization of post-hoc Nimenyi test (Nemenyi 1963) (in terms of MAE) of ResNet models based
on different splitting strategies, for a SBP prediction, b DBP prediction

1963) is applied for pairwise performance comparison. Specifically, a critical difference
at 95% confidence interval is 2.0976, and the results are visualized in Fig. 23. It can be
seen that ResNet model based on record level splitting strategy-® achieves the worst rank-
ing among models based on other splitting strategies, and ResNet model based on sample
level splitting strategy-® achieves the best ranking among models based on other splitting
strategies. The p-value for ResNet models based on splitting strategies-® &® is 1.363e—3
for both SBP and DBP prediction. Therefore, the null hypothesis is rejected at a = 0.05,
and we conclude splitting strategy is statistically significantly factor relating to model’s test
result. Moreover, we find that only models based on splitting strategies-® &@® are statisti-
cally comparable when the number of experiments exceeds twelve since the rank of models
in each experiment is relatively stable.

4.4 Analysis of reported results

Instead of simply comparing the results as in other studies, in Table 22, we conducted a
comprehensive comparison of the latest/representative literature on BP prediction based on
twelve metrics. We can find several basic facts as follows,

(1) The prediction results reported in different articles vary greatly, even for those that
using the same data source and similar methods. This naturally brings people some
confusion when comparing the results of related articles: First, what makes the results
reported in different articles so different? Second, for those papers reporting good
results, where does the performance improvement come from? data cleaning, feature
engineering, algorithm improvement or hyper-parameter optimization?

(2) The performance of models trained on different datasets using the same method varies
greatly.

(3) The prediction accuracy reported in some studies is obviously unrealistic (note that we
are not questioning the authenticity of the experiment, but the procedural irrationality).
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(4) The accuracy reported in those studies based on ICU patients’ data is generally lower
than that based on data collected from healthy or ordinary individuals.

(5) Those studies with fewer records/subjects included for experiment are more likely to
produce better results. Since the experimental settings vary from studies to studies, a
more rigorous experiment (refer Appendix 5) by us more fully confirmed this point.

(6) The inclusion of demographic characteristics for building model can improve prediction
accuracy.

(7) Calibration/fine-tuning techniques can help to significantly improve the prediction
accuracy of the model.

(8) The reported accuracy in those studies based on individual test or experiments with
sample level splitting strategy is usually significantly higher than those based on experi-
ments with record/subject level splitting strategy.

We would like to state a basic view-a single good result does not necessarily ensure the
model with strong generalization ability. For example, due to the limited and stable varia-
tion of individual BP, the personalized model usually performs very well under individual
test protocal. However, the performance of the model will be significantly degraded when
it is not calibrated for a long time or the physiological activity of the individual changes,
let alone on other individuals that have never been seen during training. That is why intra-
individual BP variation is so important for the evaluation of individualized estimation
methods with individual-by-individual calibration (Liu et al. 2020a). In fact, Mukkamala
et al. (2021) has disclosed that the conclusions of an increasing number of publications are
potentially misleading. Herein, we summarized possible reasons for unfairness in compari-
sons and some of the possible reasons for unreliable results, mainly from the perspective of
an ML researchers.

Possible reasons for unfairness in comparison. Unlike other ML/DL application areas
such as computer vision where there are plenty of baseline methods and out-of-the-box
public datasets. In the BP estimation community, due to the lack of baseline methods and
ready-to-use datasets (note that although several public datasets have been summarized in
Sect. 4.1, there are still many processing procedures to be done before it can be used in
experiments, such as data cleaning, signal denoising, segmentation, data splitting, etc.), the
direct comparison method (i.e comparing a system) is widely used for comparison. How-
ever, this method of comparison is unfair due to the following reasons,

(1) Even if the same data source is used, the final processed data sets used in the experi-
ment may vary greatly, since the sample duration, the signal preprocessing method and
the data cleaning procedures vary from studies to studies (Schrumpf et al. 2021a, b;
Slapnicar et al. 2019; Tazarv and Levorato 2021; Mousavi et al. 2019b).

(2) The splitting ratio used for the generation of training, validation, and test sets varies
from studies to studies.

(3) The experiment procedure as well as splitting strategy used vary from studies to studies,
which is one of the main reasons for significant differences between the results reported
in different studies.

Possible reasons for the unreliability of some reported results. We summarized several fac-

tors accounting for the unreliability of some results from an ML researcher’s perspective,
as follows,
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A large proportion of papers are based on private data that is non-accessible. In addi-
tion, for those literatures based on public data, the final processed dataset is rarely
made public and usually can not be exactly regenerated due to missing or inadequate
description of the details such as parameter configuration.

The data set used in some studies contains too few records with narrow BP range and
insufficient/sparse BP variations, which means the conclusions itself has great limita-
tions. In fact, He et al. (2016a) has experimentally confirmed that the performance of
predictor degrades significantly when it is applied to individuals with dramatically
fluctuating BP values. More seriously, the BP range of test set is narrower than that
of training set in some studies, which is problematic.

Some articles did not even disclose the details (the number of records/samples, sta-
tistics on the range of BP and its distribution, in the final processed dataset) of the
data used.

The data leakage issue both in the process of normalization and feature selection/
reduction, test set should not be included in the above two processes.

There are few studies where the consistency check of the BP distribution between
training set and test set (the characteristic of .1.D) is performed and reported, which
is an critically important procedure for the objective assessment of ML models.

The widely used splitting strategy at the final sample level is at the risk of data leak-
age, resulting in some unrealistic results, which further leads to overestimation of
the performance of model, although there is no sample overlap between training,
validation and test set.

There are some studies where a single metric is used to evaluate the performance of
the model.

There are a few literatures where the normalize target operation was used during
training, and the reported evaluation results were computed based on the normalized
predictions.

Due to the severely skewed BP distribution in the data set, metric values such as MAE
that evaluated on the whole data set are not sufficient to explain the performance of
the model.

The currently used evaluation standards for traditional BP measurement methods
seems no longer necessarily suitable to ML/DL based methods (Mukkamala et al.
2021).

It is observed that the factors leading to unreliable results involve almost all links of the
blood pressure prediction pipeline, many of which are more or less related to the data itself.
It is worth mentioning that, in addition to contributing to the unreliability of the results,
some of the above-mentioned factors also bring about a reproducibility crisis to a certain
extent. Besides, in this area, there are few authors publish code along with their papers
(Slapnicar et al. 2019). Here, we list all the open-source implementations we can find for
BP prediction in Table 20 (Appendix 4).

5 Some critical issues and techniques

In this section, we will discuss and summary several key issues as well as newly-emerging
techniques in the BP prediction community in the form of special topics.
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5.1 Critical issues

On the basis of a large number of literature analysis, we condensed six issues to be dis-
cussed, which are imbalanced phenomenon, interpretability issue, sample duration, indi-
vidual difference, large difference between SBP and DBP prediction accuracy, and hand-
crafted features versus machine-learned features.

5.1.1 Imbalanced phenomenon

In a large number of related studies (Kachuee et al. 2016; Radha et al. 2019; Schrumpf
et al. 2021a; Jeong et al. 2019; Dagamseh et al. 2021; Esmaelpoor et al. 2020; Schrumpf
et al. 2020; Schlesinger et al. 2020; Sagirova et al. 2021), when analyzing the distribution
of MAE for different SBP and DBP values, there is a similar expression such as “for the
bins far from the central area within the total BP range, the larger the corresponding MAE”.
Actually, considering the scatter plot, as shown in Fig. 24, the slope of the fitted line from
the (ground-truth, prediction) pairs is always smaller that 1 (ideally, the slope should be
equal to 1). In other words, the BP of samples in the area with relatively low BP is overesti-
mated, and the BP of samples in the area with relatively high BP is underestimated.

Herein, we formally declare that this is the effect of imbalance phenomenon. From a
statistical point of view, the usually used MSE loss in regression modeling is equivalent
to the negative log likelihood loss of a noisy prediction distribution-p(y|x;8), of which the
mean is the model’s prediction (Bishop and Nasrabadi 2006). We further assume the label-
conditional distribution-p(x|y) is the same in both training and test set, then by Bayes’s
rule, it is easily derived,

ptrain(y|x) - pt.rain(y)
Prest %) Prest )

(16)

Equation (16) indicates that the ratio between p,.,;,(y|x) and p,(y|x) is proportional to
Dieain(¥), Which is lower when a BP value rarely appears in the training set. Summarily, the
BP dataset with skew/imbalanced distribution leads the trained model to make prediction
biased towards central BP region.

Generally speaking, imbalanced regression is a novel and challenging topic in the whole
machine learning community(Krawczyk 2016). Currently, the imbalance issue in BP pre-
diction has hardly been paid attention to in related studies. So far, we have found several
tricks appeared in a few studies (Radha et al. 2019; Tjahjadi et al. 2020; Wang et al. 2022)

Fig.24 A demo interpreting a
general case of scatter plot of
blood pressure prediction results
reported in related studies

-
1
— Fitted line Ungefestimation

A A

Reference line

dd PaIpaId

Ov%res Mation

Ground-truth BI;

@ Springer



K.Qin et al.

which actually serve to mitigate the imbalance issue, although this is not explicitly stated
in the text. Radha et al. (2019) believe that there will be a problem when the commonly
used mean square loss that favours minimizing samples with large errors is used for the BP
prediction task in which the genuine BP presents a normal distribution. Therefore, a strat-
egy that amplifying the loss of samples by the absolute difference of the corresponding BP
from the mean BP is proposed, which is similar to cost sensitive learning in classification
scenarios. Tjahjadi et al. (2020) used up-sampling technique to overcome the imbalance
issue between different BP groups. Wang et al. (2022) proposed a modified loss function
based on quantile, in which the loss of the samples whose genuine BP is lower that quartile
1 of the overall BP in the population or higher than quartile 3 of the overall ground-truth
BP in the population is magnified.

5.1.2 Interpretability issue

The lack of interpretability and poor robustness are two important, common issues of arti-
ficial intelligence technologies when applying it into specific application fields. Specifi-
cally, predictive models/systems should be explainable to understand how they work and
the predictions should be realistic and consistent with basic principles, which is crucial for
adopters to be confident when using them to aid decision making (Sethi et al. 2020; Moss
et al. 2022). This issue has been mentioned in Sect. 3.2.3. Generally, the higher the model
complexity, the lower the interpretability. However, the complexity of healthcare decisions
often requires the use of complex models. Therefore, for a specific task, there is a trade-
off between model performance and model interpretability (Moss et al. 2022; Sethi et al.
2020). Here, we plan to conduct a more in-depth analysis in conjunction with relevant lat-
est research.

Currently, there are little related work focuses on the interpretability of AI models for
BP prediction. For studies applying traditional feature-based ML methods, in addition to
using interpretable ML algorithms such as decision tree and gradient-boosting tree (Zhang
et al. 2019a) to ensure interpretability, the focus is on eliciting interpretable features such
as PIR (Ding et al. 2017; Ding and Zhang 2015), Womersley number (Thambiraj et al.
2020, 2019) and contact pressure (Chandrasekhar et al. 2020), which can be used to both
clinically justify an non-invasive BP estimation and inspire new research on physiologi-
cal correlates of BP. Since current Al is intrinsically data-driven (Zhang et al. 2020a), for
those studies applying DL models, how to combine it with related prior knowledge/correla-
tions (such as those discussed in Sect. 2) to infer more biologically and physically realistic
models for robust estimation is a challenging while meaning topic. For example, Kissas
et al. (2020) proposed a physics-informed neural network for BP estimation where data-
driven DL models was seamlessly synthesized with one-dimensional blood flow model
derived from first physical principles for the first time, and the final model can return phys-
ically consistent predictions. Besides, there are many post hoc methods (Moss et al. 2022)
to achieve model interpretability, such as Shapley values (SHAP), Locally interpretable
model-agnotic explanations (LIME), etc. These methods are model-agnostic, and therefore
can be applied to various models.

5.1.3 Sample duration

For signal data, to acquire a dataset available for training, raw signal has to be divided
into disjoint signal segments, each of which corresponds to a sample. There are two
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types of segmentation methods: i) segment based on fixed time duration; ii) non-uniform
segmentation.

The commonly used method is segment based on fixed time duration. Time duration is
usually set to 5 s(Slapnicar et al. 2019), 7 s (El-Hajj and Kyriacou 2021a), 10 s (Fan et al.
2021), 15 s (Mousavi et al. 2019b), 30 s (Schlesinger et al. 2020), 60 s (Monte-Moreno
2011) in related studies. Time duration, as a hyperparameter, affects experimental results,
and its effect has been investigated in a few studies (Schrumpf et al. 2021a, b; Simjanoska
et al. 2020). Schrumpf et al. (2021a, b) experimentally finds that different time duration (1,
2,5,7,9, 11, 13, 15, 17, 20 s) resulted in an almost equal prediction error, and the maxi-
mum time duration of 20 s is recommended for experiment. Simjanoska et al. (2020) per-
formed experiments using ECG signals with different time duration (10, 20, 30 s), filtered
with different cut-off frequencies (0.05~0.5 Hz), and confirmed that for the final sample
level splitting strategy, time duration of 30 s filtered with cut-off frequency of 0.35 Hz
leads to the best result. While, for the record level splitting strategy, time interval of 10
s filtered with cut-off frequency of 0.30 Hz produces the best result. Sasso et al. (2020)
performed experiments using different sample duration (15, 30, 45 s) both in the stress test
data and 24-h data, and finds that sample duration of 30 s leads to relatively better results
in average.

However, this segment approach will cause an interruption of PPG cycles at the begin-
ning and the end of each segment. Moreover, the resulting varying number of cycles in
each segment will induces bias in the extracted features towards subjects with higher heart
rate (Tanveer and Hasan 2019).

Non-uniform segmentation is proposed to overcome the above mentioned issues by
dividing according to fixed number of cycles. In this context, the so-called beat-by-beat
BP prediction (Miao et al. 2020; Esmaelpoor et al. 2020; Xing and Sun 2016; Bose and
Kandaswamy 2018; Singla et al. 2020a) can be viewed as a special case of non-uniform
segmentation where each beat/cycle of signal segment corresponding to a sample. How-
ever, please note that since deep learning model with raw signal as input accepts only the
input of fixed length, the non-uniform segments have to be resampled (e.g. zero-padding
or signal interpolation (Yang et al. 2020a; Li et al. 2021; Dey et al. 2018), etc.) to make its
length the same.

For example, Tanveer and Hasan (2019) proposed a non-uniform waveform segmenta-
tion method where PPG segment with a length of three consecutive systolic peaks as well
as ECG segment with a length of three R-peaks are extracted from raw signals, then the
normalized two segments are resampled to fixed length and then are concatenated to form
the final waveform-based feature vector. Schrumpf et al. (2021a, b) divided both PPG and
ABP signals into segments containing distinct fixed number of cycles, and then these seg-
ments were resampled to have equal length. Experimental results indicate that the predic-
tion errors based on non-uniform segmentation are lower compared to that based on fixed
time duration.

5.1.4 Individual difference

The existence of individual differences is a significant characteristic of physiological signal
data, which increased the difficulty of learning tasks. Taking BP prediction as an example,
the relationship between input signal and BP may vary from individual to individual, since
each person had unique and subtly different cardiovascular dynamics (Zhang et al. 2021a).
A more extreme example is that the same PPG cycle shapes do not always guarantee the
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same BP values (Slapnicar et al. 2018). There are a total of three strategies to overcome
individual difference in this area.

The first is based on divide and conquer strategy. Khalid et al. (2018) experimentally
confirmed the significant prediction error differences among normotensive, hypertensive
and hypotensive groups, and suggests that the future BP prediction model should be more
specific for different BP categories. Generally, the total population is divided into several
disjoint groups based on one or more characteristics, such as age and BP category, etc., and
then each group of data is used to train a distinctive prediction model. In the test phase, an
additionally trained classifier is firstly used to predict the belonging group, and then the
corresponding model is called for prediction. Actually, individual test (Miao et al. 2019)
can be seen as a special case where each individual is treated as a distinct group. There are
several studies following this schema (Yamanaka et al. 2021; Maher et al. 2021; Khalid
et al. 2020; Chen et al. 2022). For example, Dey et al. (2018) proposed an ensemble of six
Lasso regression models for BP prediciton where each model is trained on a distinct group
of data determined based on the value of age, gender, and BMI.

Instead of training multiple models, Simjanoska et al. (2018) directly use the predicted
group of the classifier to extends the feature set which is further used for training prediction
model. Further, Simjanoska et al. (2020) proposed an ensemble of the three multi-target
regression models trained on each BP group for BP prediction where the ensemble weights
are determined by the output probabilities of the additional classifier.

The second is the inclusion of demographical features (aka personal information), since
demographical features such as age and BMI are critical influencing factors related to indi-
vidual BP state (Yang et al. 2020b). This technique has been widely used in related studies
to improve BP prediction accuracy. Concretely, for traditional feature-based methods (Song
et al. 2021; Monte-Moreno 2011; Attarpour et al. 2019; Yin et al. 2021; Atomi et al. 2017;
Shimazaki et al. 2018; Dey et al. 2018; Datta et al. 2016; Yamanaka et al. 2021; Zhang
et al. 2019a; Liu et al. 2021; Simjanoska et al. 2018; Chowdhury et al. 2020), demographi-
cal features are directly used to extends the feature set. For deep learning methods with raw
signal as input (Liu et al. 2018; Xiang et al. 2021; Koshimizu et al. 2020; Yang et al. 2021,
Lee et al. 2021), demographical features are usually embedded to the last layers of the neu-
ral network model via a fully-connected layer.

The third is the utilization of domain adversarial training technology, which is usually
in conjunction with with deep learning. Specifically, in addition to the learning task, an
additional classifier is introduced to enforce the model to learn cross-individual features by
adversarial training. In this scenario, the optimization target can formulated as,

where L,, L; denote the main task loss and classifier loss. 8y, 6, and 6, denote the param-
eters of feature learner, task network, classifier module, respectively. Experimental results
indicate that domain adversarial training technique can boost model training, enables the
predictive model with better generalization ability to other individuals, allowing less target
domain samples for training accurate personalized model (Zhang et al. 2020b; Qin et al.
2021).

In addition, individual-by-individual BP centralization (aka zero meanization) technique
is used in several studies (Yang et al. 2020a; Miao et al. 2020; Haddad et al. 2021). In other
words, model is trained to prediction BP variation instead of genuine BP. Specifically, BP
data of each individual in the training set is subtracted by its mean value during training,
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and in the test phase, for each individual, the final predicted BP is the sum of the model’s
prediction and its mean BP, which can be seen as one-time calibration.

5.1.5 Large difference between SBP and DBP prediction accuracy

Based on extensive literature analysis, we find an interesting phenomenon-the prediction
accuracy of SBP reported is significantly lower than that of DBP (Jeong et al. 2019; Miao
et al. 2020; Das et al. 2020; Haddad et al. 2021; Esmaelpoor et al. 2021b; Mousavi et al.
2019b; Attarpour et al. 2019; Thambiraj et al. 2020; Rong and Li 2021a; Wang et al. 2021;
Qiu et al. 2021; El-Hajj and Kyriacou 2021b; Yin et al. 2021; Huang et al. 2022; Lin et al.
2021a; Xing and Sun 2016; Bose and Kandaswamy 2018; Bose and Kandaswamy 2017;
Zhang et al. 2019b; Baker et al. 2021; Fong et al. 2019; Esmaelpoor et al. 2020; Wang
et al. 2020; Zhang and Wang 2017; Wang and Zhang 2017; Singla et al. 2019; Baek et al.
2020; El Hajj and Kyriacou 2020a; Chiang and Dey 2018; Datta et al. 2016; Kachuee et al.
2015; Dastjerdi et al. 2017; Liu et al. 2018; Schlesinger et al. 2020; Schrumpf et al. 2021a,
b; Yamanaka et al. 2021; Liu et al. 2020b; Baek et al. 2019; Zhang et al. 2019a; Chiang
and Dey 2019; Yousefian et al. 2020; Liu et al. 2021; Li and Laleg-Kirati 2021; Zhang
et al. 2021c; Chen et al. 2021; Miao et al. 2019; Yang et al. 2020a; Liu et al. 2020a; Leitner
et al. 2021; Chiang et al. 2021; Hasanzadeh et al. 2019; Ibrahim and Jafari 2019; Kachuee
et al. 2016; Fan et al. 2019; Esmaili et al. 2017; Slapnicar et al. 2018; Simjanoska et al.
2020; Wang et al. 2018b; Zhang et al. 2020b; Yang et al. 2021; Radha et al. 2019; Tham-
biraj et al. 2019; Simjanoska et al. 2018; Chen et al. 2019; Slapnicar et al. 2019; Eom
et al. 2020; Chowdhury et al. 2020; Li et al. 2020a; Lee et al. 2021; Fati et al. 2021; Li
et al. 2021). This phenomenon is consistent with physiological explanations. Concretely,
the relation of DBP and its variability with aortic stiffness are generally weaker than those
of SBP and its variability, and the popular datasets in this area (refer Sect. 4.1) are mainly
collected from ICU patients, surgery patients and outpatients suffering from a variety of
cardiovascular diseases. However, there are a few literatures (Simjanoska et al. 2018; Khan
Mamun and Alouani 2022) where the reported SBP prediction accuracy is unexpectedly
higher than that of DBP. We argue this abnormal phenomenon is originates from the spe-
cial statistical characteristics (we refer to the BP range and BP distribution) of the collected
dataset.

Musini and Wright (2009) confirmed that the coefficient of variation of SBP was sig-
nificantly greater than the coefficient of variation of DBP. In fact, based on the statisti-
cal description about the data used in related studies and in our study (refer Table 17 and
Fig. 27), the range and standard deviation of SBP in the population are usually signifi-
cantly larger than those of DBP in the population, which undoubtedly increases the dif-
ficulty of SBP prediction. This is no problem in traditional STL scenario. As mentioned in
Sect. 3.3.2, however, this is an important issue to consider when designing MTL model for
BP prediction.

5.1.6 Hand-crafted features versus machine-learned features
It is generally assumed that hand-crafted features are limited since it can not adequately
express the information in the input signals related to BP variations. On the other hand,

DL enables automatic feature learning from raw signals, making it more and more popular
in cuffless BP estimation community. However, it is unclear whether there is a difference
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between these two types of features and which type is better. Currently, few articles pay
attention to this problem.

Mahmud et al. (2022) proposed a novel MLP model for BP prediction, in which a pre-
trained U-Net model is used as feature learner. Experiments show that a U-Net model
trained by mapping PPG to ABP instead of PPG signal can help the MLP model achieve
the best performance. Its high predictive accuracy is impressive. Shimazaki et al. (2018)
found in the experiment that the combination of hand-crafted features and learned features
based on auto-encoder enables the predictive model to obtain better performance than the
model based on any single type of features. Esmaelpoor et al. (2021a) compares the effects
of physiological parameter and learned feature based on CNN network in BP prediction,
and they fond that the learned features are superior over physiological parameters, and
the combination of these two types of features does not improve prediction performance.
What’s embarrassing is that the conclusions in the two articles are exactly the opposite. It
should be noted that the conclusion in study (Esmaelpoor et al. 2021a) is limited since the
extracted features are relatively few, and the learned features are based solely on CNN net-
work which is trained by predicting BP. We recommend other types of network can be tried
and the network used for outputting learned features can be trained with diverse purposes
(such as reconstructing input signal, predicting BP, etc.)

5.2 Techniques

The techniques to be discussed include data augmentation, and different signal combina-
tion schemes.

5.2.1 Data augmentation

Data augmentation is an important technology to solve the problem of insufficient data in
training complex models, especially deep neural networks. We noticed that, in computer
vision area, there are many popular data augmentation techniques (Shorten and Khosh-
goftaar 2019; Hussain et al. 2017) are available for image data. However, it is unclear what
data augmentation techniques are applicable to signal data, and there is no relevant system-
atic review, which is what we are going to discuss here. We summarized three types of data
augmentation techniques for signal data used in BP prediction research.

The first is cropping-based data augmentation technique. Esmaelpoor et al. (2020) used
cropping technique for enhancing the training set. Specifically, for each PPG segment,
additional ten sub-segments are cropped for better describing the time-domain possible
relationships.

The second is filter-based technique. Huang et al. (2022) proposed a novel multi-filter
to multi-channel (MFMC) technique to generate multi-channel signal to adapt the input
format of the MLP-mixer architecture. The so-called MFMC technique is that the multi-
channel signals are derived by applying multiple distinct filters and filtering parameters to
the original signal. Simjanoska et al. (2020) tried to generate multiple datasets/configura-
tions for final ensemble learning by setting different cut-off frequency and sample dura-
tion. Specifically, by setting sample duration of 10, 20, 30 s and cut-off frequencies starting
from 0.05 Hz up to 0.50 Hz by step of 0.05 Hz, a total of 3 X 10 datasets are generated.

The third is parametric Bootstrap method (Lee and Chang 2016, 2017a; Lee et al. 2018,
2019a, 2020). In parametric Bootstrap method, mean and standard deviation are firstly esti-
mated using limited training set based on Normal distribution assumption (note that this
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process is performed feature by feature), then the bootstrap samples based on the estimated
distribution were calculated using the Monte Carlo method. Furtherly, Song et al. (2021)
proposed a similar parametric Bootstrap method based on multivariate Gaussian distribu-
tion (MGD) where the relationship between the features is incorporated in a multi-dimen-
sional feature vector.

5.2.2 Different signal combination schemes

In BP estimation area, techniques such as fusion of multiple different signals (e.g PPG
and ECG signals, etc. (Kachuee et al. 2016; Miao et al. 2017; Baek et al. 2019; Miao et al.
2019; Yang et al. 2020a; Song et al. 2019; Baker et al. 2021)), multi-channel homogene-
ous signal (e.g multi-channel PPG signals, etc. Attarpour et al. 2019; Fong et al. 2019;
Lazazzera et al. 2019), multi-wave signals (Baek et al. 2020; Liu et al. 2020a), different
modalities of homogeneous signal (generated based on multi-order difference and time
domain/time-frequency domain transformation Baek et al. 2019; Slapnicar et al. 2019; El-
Hajj and Kyriacou 2021b; Rong and Li 2021a; Harfiya et al. 2021) are usually used to
improve BP estimation accuracy. Naturally, a practical issue in how fto effectively combine
these input signals for deep learning methods with raw signal as input?

Currently, there are three signal combination schemes. The first is to directly concat-
enate different signal segments in temporal direction (Shimazaki et al. 2018; Tanveer and
Hasan 2019). For example, Tanveer and Hasan (2019) directly concatenate PPG and ECG
segments in temporal direction, which is fed into an ANN-LSTM network for training.
What we want to emphasize is that this combination scheme is limited to specific network,
which may be problematic when it is used in convolutional network, since different signals
have different varying patterns and temporal dynamics.

The second is to concatenate different signal segments in channel direction. This is
reasonable since the feature map of each channel in a tensor represents distinct patterns
extracted from the input. The network, correspondingly, is built based on 1D convolution,
which is widely used in related studies (Baek et al. 2019; Cheng et al. 2021), since different
signals are synchronous signal.

The third is to consider different signals through multi-branch structure (Slapnicar et al.
2019; Rong and Li 2021a; Baek et al. 2019, 2020). Intuitively, different signals are pro-
cessed using independent network module separately, and then the outputs of which are
further fused based on FFNN module.

In addition, Qiu et al. (2021) proposed a 2D-convolution-based network for BP predic-
tion where two PPG and ECG segments are stacked and treated as a picture for process-
ing. However, although the two signals are intrinsically related, signals collected from
multi-modal sensors have modality-specific characteristics. Shared weights for whole
input signals may lead to interference between features, which originates from capturing
modality-specific features of different signals. Ha and Choi (2016) proposed to extracts
modality-specific features and common features for human activity recognition task based
on partial-weight sharing and full weight sharing strategy, which may inspire us to devise
more effective network models with multi-modality signals as input, for BP prediction.
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6 Some related machine learning topics

In this section, we introduce several advanced ML technologies for potential applications
in BP estimation.

6.1 Auto ML/AI

Although there has made much progress in the application of ML and DL for BP predic-
tion, humans are heavily involved in almost all aspects (such as feature engineering, the
selection of feature selection method, model selection, etc.) of constructing ML predic-
tion models. In fact, Chowdhury et al. (2020) has investigated the best combination of fea-
ture selection methods and training algorithms manually in order to improve BP prediction
accuracy, but it is very cumbersome.

AutoML (Waring et al. 2020; He et al. 2021) is a new-emerging technology for auto-
matically building a specialized system without human assistance. Although AutoML has
made significant progress, it is rarely mentioned in the field of healthcare monitoring such
as BP estimation (Waring et al. 2020). Fati et al. (2021) firstly proposed a BP prediction
model based on the tree-based pipeline optimization tool (TPOT), which automatically
selects the best combination of training algorithm and feature selection method from the
library for SBP and DBP estimation, separately.

In addition to TPOT, there are also other AutoML pipelines, such as H20 (LeDell and
Poirier 2020), Auto-sklearn (Feurer et al. 2019) and FLAML [304]. Especially, for DL
methods, there is neural architecture search (NAS) (Elsken et al. 2019) which automat-
ically finds the best neural network architecture configuration for any given dataset and
learning task.

6.2 Transfer learning

Transfer learning (Pan and Yang 2009) is novel framework aiming at improve the learning
of target domain using related source domain. Taking BP prediction into account, a single
individual contains relatively little data, which is insufficient (consider data amount and
BP variations) to train a robust model with strong generalization ability. Therefore, is it
possible to consider leveraging other individual’s data in some way to facilitate training?
On the other hand, there are plenty of freely released pretrained deep learning models espe-
cially in CV areas, is it possible to leverage these models for BP estimation? Following the
above two questions, related works were categorized into two folds, as Fig. 25 illustrates.
Leitner et al. (2021) formally proposed a transfer learning framework for BP prediction
based on convolutional-recurrent neural network (CRNN) for the first time. Ablation stud-
ies indicate that the best performance is acquired when finetune the specific layers (the last
Conv. and FC layers) of CRNN during knowledge transfer. Final experiments demonstrated
that the performance of the finetuned model is superior over the general model (i.e no cali-
bration) and the model trained from scratch (i.e using only limited target data). Nevertheless,
we would like to emphasize that transfer learning is not a novel topic in BP estimation area,
although it is not explicitly mentioned in the relevant literature. Actually, there have been
a large count of studies where both record/subject level splitting strategy and calibration
technique have been used for experiment (Leitner et al. 2021; Kachuee et al. 2016; Slapnicar
et al. 2019; Schrumpf et al. 2021a, b; Song et al. 2019; Qin et al. 2021; Zhang et al. 2020b;
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Fig.25 Two representative transfer learning scenarios for blood pressure prediction. a other patients data
is served as source domain for knowledge transfer; b pretrained models from other areas such as computer
vision are directly used for knowledge transfer

Bose and Kandaswamy 2018; Kachuee et al. 2015). Since the existence of individual differ-
ence, the transferred model usually performs poor on the test individual, and calibration pro-
cedure is employed to calibrate the model to adapt to the test individual using limited data
from test individual. From this point of view, subject/record level experiment + calibration
C transfer learning. Besides, there are a few authors first train a pretrained model using
PPG-BP dataset, then a personalized model is fine-tuned from the pretrained model using
rPPG-BP dataset (Schrumpf et al. 2020, 2021a, b). In the above studies, all of the source
domain individuals are used to train a general model for further knowledge transfer. How-
ever, since different individuals have different BP levels and BP dynamics, more intelligent
selection of source individuals suitable for target individual for knowledge transfer may help
to improve prediction accuracy (Zhang et al. 2020b; Leitner et al. 2021).

When employing pretrained CV models for knowledge transfer, the input signal has to
be processed to adapt to the input format of the model, and the model needs to be modi-
fied to perform BP estimation. Sasso et al. (2020) proposed a method by fine-tuning the
pretrained ResNet-18 model on ImageNet using HYPE dataset. Specifically, the time-
domain PPG segments are firstly converted to image representations (spectograms and
scalograms), which are then fed into ResNet-18 for model fine-tuning. Wang et al. (2020)
proposed a method by fine-tuning the pretrained Inception V3 model on ImageNet using
MIMIC II database. Specifically, the last FC layer with softmax activation is replaced with
FC layer contains two neurons and with linear activation. Next, time-domain PPG segment
is firstly converted to image based on the visibility graph technique and then the self-repli-
cated images are fed into Inception V3, and only the FC layer is updated for BP prediction
during fine-tuning.

6.3 Meta learning

Meta learning (Vilalta and Drissi 2002; Vanschoren 2018) is a novel learning framework that
learn meta-knowledge from a variety of tasks, such that it can generalize well on new task
when using only limited data from the new task. Taking BP estimation into account, with
similar motivation to transfer learning, meta learning attempts to learn how to learn from
other individual’s data and then quickly generalize to test individual by fine-tuning using
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limited test data. Intuitively, the experimental protocol is under subject/record level experi-
ment + calibration. Currently, there are few studies in this area. Cheng et al. (2021) proposed
a convolutional network with U-Net architecture for ABP waveform reconstruction where the
well-known model-agnostic meta-learning (MAML) algorithm is utilized for model training.
Specifically, each record is treated as a learning task, the model is firstly initialized using
the pre-training set. Next, a learning task is randomly selected in each iteration, support set
and query set are acquired from the corresponding record, support set is used to update task
parameters and generate the task model. Query set is then used to evaluate the personalized
model and update the global model. Finally, for any test individual, the global model is fine-
tuned using limited data from the individual, and the remaining data is used for test.

6.4 Federated learning

Federated learning (Li et al. 2020b) is new-emerging technology that tackles data sharing
and privacy issues by training a global model over remote devices, such as mobile phones,
while keeping data localized. Considering the importance of user privacy protection and
data security, this technology has great development potential in healthcare area (Hakak
et al. 2020). For example, Brophy et al. (2021) proposed a CycleGAN-based model for gen-
erating ABP waveform from PPG sigal under the federated learning framework. Specifically,
to simulate the decentralized environment, the whole dataset is split into multiple disjoint
parts, each of which represents a terminal. A localized model is trained on each terminal,
and then these models are send to a global model for aggregation. Next, the aggregated
model can be used to perform downstream task or used to update each localized model.

6.5 On-device machine learning

On-device ML (Dhar et al. 2021) is a technology that running (including model training,
model inference) machine learning on edge devices, which propose new challenges to the
requirements for model size and time delay, due to the limited resources such as memory and
computing power. Currently, a variety of smartphone-based health applications are emerg-
ing, due to the widespread popularity of smartphones with high-resolution cameras and
built-in sensors such as accelerometers, orientation sensors. We noticed that there are sev-
eral smartphone-based BP monitoring literatures (Matsumura et al. 2018; Chandrasekaran
et al. 2012; Dey et al. 2018; Visvanathan et al. 2014; Luo et al. 2019; Sagirova et al. 2021)
where the models used are either explicit analytical models based on hemodynamics, or tra-
ditional ML models such as LR, SVM, MLP, etc. Although DL for BP prediction has been
extensively studied at the academic level, as far as we know, there is no application that has
been successfully deployed on devices such as smartphones and has been certified by rel-
evant institutions. We think this is a potential and meaningful research direction.

7 Discussions and conclusions
In this section, we discuss the challenges in BP prediction, and the question of what a good
BP estimator should look like?, which is followed by a general proposal towards the objec-

tive evaluation of model’s performance. Finally, we end this survey with conclusions and
several potential research directions.
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7.1 Challenges

Non-invasive BP prediction is a meaningful while challenging issue in healthcare monitor-
ing area. Specifically, the challenges include the follow three aspects,

)

2

3)

Complexity of problem/data itself. Firstly, as mentioned in Sect. 3.2.1, the signal data
collected by the sensor is seriously disturbed by all kinds of noise, which seriously
affects the quality of the data. Secondly, during data collection, the health status of
the participants may be different (such as diabetes, obesity and other cardiovascular
diseases), and the measurement status may be various (rest or exercise, standard or sit,
alcohol/drug intake, mood, etc.), all these factors more or less affect the collected data
and indirectly affect the prediction accuracy of the model, which undoubtedly increases
the difficulty of the problem. Since these factors have different characteristics from the
measured data (Li et al. 2017), it is worthwhile to further investigate how to effectively
take these factors into account when training the model and how to quantitatively assess
the impact of these factors on the model. Thirdly, the existence of individual differ-
ences is a significant characteristic of physiological signal dataset, which means the
underlying relationship between input and BP may vary from individual to individual.
Even, there may be situations where two individuals have similar input signals but the
measured BP differs significantly (Slapnicar et al. 2018). Resultly, there may be some
other types of 'mismatch’ between training set and test set in addition to the overall
BP range and BP distribution.

The severely skewed/imbalanced distribution of BP in dataset (we call target imbal-
ance, which is similar to class imbalance in classification scenario, but is more chal-
lenging). As noted in Sect. 5.1.1, imbalanced regression is a challenging and neglected
problem in the ML community and almost all related application fields including BP
prediction, although this phenomenon has been done and mentioned several times in
related studies. Moreover, target imbalance is usually intertwined with other imbalance
factors such as imbalance between the number of samples among different individuals
(we call record/subject imbalance) (Khalid et al. 2018; Schrumpf et al. 2021a), etc.
For record/subject imbalance, a common practice is to control the number of samples
from different individuals to a specified number (Schrumpf et al. 2021a, b).

How to objectively evaluate the performance of BP prediction algorithms is an opening
and challenging questions in this area. As mentioned in Sects. 4.3 and 4.2, we have
disclosed some critical factors responsible for the objective evaluation of BP prediction
model from multi-aspects such as data itself, evaluation strategy, evaluation metrics,
etc.

7.2 A BP estimator with good generalization ability

The current progress of BP prediction in summarized in Table 22. The experimental results
reported in different papers vary greatly, even for the same data source. We further dis-
closed several factors that lead to this phenomenon and some unreasonable practices across
through the experiments in Sect. 4.3.1. It seems that a single result does not necessarily
reflect the generalization ability of the model. Herein, we discuss the question of what a
BP estimator with good generalization ability should look like?
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(1) Good performance over different BP intervals The results (e.g MAE, etc.) reported
in almost all related studies are average results across the total BP range bounded by
the BP of test set. However, as detailed in Sect. 4.2 , this is insufficient because the
poor performance of the biased model on the regions far from the central BP range is
covered up by the severely skewed distribution of BP data set. However, overestimating
the BP of individuals with hypotension, especially underestimating the BP of individu-
als with hypertension, will seriously mislead doctors’ decision-making and may cause
irreparable losses. Therefore, a good BP estimator should perform well in different BP
intervals within the possible BP range.

(2) Good performance over different individuals It seems that significant results have
been achieved in BP prediction, especially those studies based on sample level split-
ting strategies or individual test schemes. However, please note that the goal is to train
a general BP estimator by using the data of limited individuals to make it generalize
well on "unseen" individuals. A good BP estimator should perform well on different
individuals, especially those individuals never appeared during training and validation
processes.

(3) Good performance over different databases. A good BP estimator should perform
well on different BP data sets. However, currently, there are only a few studies (Miao
et al. 2020; Xing and Sun 2016; Yang et al. 2020a; Huang et al. 2022) where external
validation is performed.

7.3 A general proposal-towards objective evaluation of model’s performance

Mukkamala et al. (2021) argue that the increasing number of papers on BP prediction
that pass traditional evaluation criteria are methodologically inadequate and misleading,
and further revealed the capabilities and limitations of these methods based on several
solid experiments. It seems that passing conventional evaluation standards (such as BHS
O’Brien et al. 1993, AAMI Zhang et al. 2020b, etc.) and analysis tools (such as Bland-
Altman plot, etc.) may not necessarily guarantee good performance.

Corresponding to Sects. 4.4 and 7.2, we give an overall proposal by examining the
entire pipeline shown in Fig. 6 in order to objectively evaluate the performance of predic-
tive models.

(1) Both the training set and the test set should contain enough BP variations as well as
diversity in terms of age, etc., which is necessary to train a general model and for objec-
tive evaluation. Commonly used means of changing BP include exercise (such as rope
skipping, running, etc.), cold stimuli and brain activity (e.g mental arithmetic), etc (Lin
et al. 2020; Esmaili et al. 2017; Miao et al. 2017; Block et al. 2020; Ding et al. 2017;
Ibrahim and Jafari 2019; Ganti et al. 2021). Moreover, necessary check must be made
to ensure that the BP distribution between the training set and the test set is consistent,
which is the characteristic of I.I.D assumption (w.r.t dataset building).

(2) In addition to the average results calculated over the entire BP range, the prediction
results on each BP interval should also be reported, especially those areas of hypoten-
sion and hypertension (w.r.t evaluation metrics).

(3) In additional to BP, the test set should be diverse with respect to age, height, sex, etc.
Especially, for video based methods, the test set should cover a large range of BP and
lighting conditions (Steinman et al. 2021; Rong and Li 2021b) (w.r.t test set).
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Strict separation of training set and test set should be ensured in order to simulate the
real environment, and the strategy of splitting at record/subject level is strongly recom-
mended for experiments (w.r.t splitting strategy).

The selection of the optimal feature subsets should be performed using only training
set during feature selection/reduction process (w.r.t feature selection).

Only the training set should be used to solve the normalizer during the data normaliza-
tion process (w.r.t normalization).

In addition to the conventional evaluation standards (BHS, AAMLI, etc.) and analyzing
tools (scatter plot, Bland-Altman plot, etc.), the analyzing tools proposed by Muk-
kamala et al. (2021) is strongly recommended for further evaluation (w.r.t evaluation
standards).

External evaluation is recommended to further evaluate the performance of model on
other databases (w.r.t external evaluation).

7.4 Conclusions and future work

Future work There are many open issues worth studying.

)

2

3)

The imbalance regression is a key issue in BP estimation. However, as mentioned in
Sect. 5.1.1, it has not received enough attention at present. Recall that our objective
is to train an unbiased BP estimator from the severely skewed training data, similar to
class-imbalanced issue, there should have data-level methods (such as under-sampling,
over-sampling, etc.) and algorithm-level methods (cost-sensitive learning, etc.), which
is left for further exploration.

It makes sense to solve the problems of data privacy and model deployment through
some cutting-edge ML technologies, such as federated learning and On-device
ML, etc., both from the academic and practical point of view. Although there have
been plenty of studies utilizing ML and DL technologies for BP estimation, and
some promising results have been made, they fall within the scope of proof of
concept. There are at least two issues that need to be considered before it can be
put into practical application. Firstly, compared to experimental environment, the
limited memory and weak computing capability of local computing node propose
new requirements to time delay, model size and model complexity. Secondly, user
privacy protection is becoming more and more important. How to collect data for
model training & update without violating user’s privacy is a problem that can not
be ignored.

It is time and necessary to explore relevant evaluation standards as well as clinical
approval criterion that suitable to cuffless BP estimator, especially to those estimators
based on ML and DL methods. By examining the whole process of establishing BP
prediction pipeline, we revealed potential factors leading to the unreliability of results
related to traditional assessment criteria such as the AAMI and the BHS standards.
Besides, Mukkamala et al. (2021) has revealed the potentially misleading facts of some
reported conclusions by presentating the limitations of widely-used, conventional BP
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evaluation standards such as AAMI, etc., and related analyzing tools such as Regres-
sion plot and Bland-Altman plot.

(4) Long-term BP prediction (Su et al. 2018) is a challenging while meaningful direction
in BP research community. Due to the time varying nature of physiological signal
originating from the complex regulation mechanism of human body and the effect of
abnormal event/reaction, individual’s BP pattern may change over time. Therefore, the
mainstream methods that under static environment may no longer be suitable. Sequence
prediction and online/incremental learning scenarios may be promising solutions to
long-term BP prediction.

(5) All kinds of ML algorithms and a variety of dazzling neural networks have been
developed for BP prediction, and some promising results have been made. How-
ever, these approaches, especially DL methods, act as a black-box, and we still
lack a clear understanding of the nature of the relationship between the input
(signal) and BP. Besides, there is no further clinical validation and interpretation
for the predictions. We believe that solving this problem requires the cooperation
of experts from different disciplines, including machine learning, artificial intel-
ligence, medicine and physiology. In fact, exploration of the physical principles
and related models of hemodynamics help to find the most relevant factor respon-
sible for BP change, which in further helps to identify suitable inputs and even to
guide the design of informative features account for BP estimation. For example,
PIR (Ding and Zhang 2015), which reflects the arterial diameter change, was ini-
tially proposed to overcome the limitation in classical PTT methods that arterial
geometries keep unchanged during cardiac cycle. Womersley number (Thambiraj
et al. 2019) was proposed to model the viscous flow properties of blood. Both
PIR and Womersley number have been validated as significant factors in improv-
ing BP estimation accuracy (Thambiraj et al. 2019, 2020). In addition, how to
combine the explicit analytical model with the deep learning model so that the
latter can make more physically consistent predictions is a promising exploratory
point.

Conclusions In this survey, we made a systematic review of current progress in the
application of ML and DL for BP estimation, from a total of four perspectives. Espe-
cially, the content covers the whole BP prediction pipeline including dataset, signal
denoising, data cleaning, feature engineering, feature selection, training algorithms,
hyper-parameter optimization, evaluation procedures and evaluation metrics, etc. In
addition, we discussed several critical issues and summarized several practical tech-
niques emerging in the BP estimation community. Moreover, we introduced the poten-
tial application of several advanced ML topics in BP estimation.

Based on the significant difference about the BP prediction results reported in a
large count of studies, we analyzed the factors that led to the unreliability of the results
reported in some literatures by checking the whole BP prediction pipeline, from the per-
spective of an ML researcher. Finally, we proposed an overall proposal for an objective
evaluation of different prediction methods. We accept that the proposal is not complete
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and should be viewed as suggestions for further discussion by the community. Besides,
how to describe the results accurately for further objective comparison is a problem
worth of attention. It is certain that the previous practice of focusing mainly on the
results while ignoring the data itself (data complexity, data scale in terms of the num-
ber of subjects/records/samples included, BP range, BP distribution, and the differences
between training set and test set) is obviously problematic for data-driven methods. On
this point, our view is consistent with the latest published review article (Liang et al.
2022) on trustworthy artificial intelligence. As shown in Table 22, we made a compre-
hensive comparison of relevant studies based on thirteen indicators, which provides a
helpful reference for solving this problem.

In conclusion, we hope this survey can provide researchers with a systematic, compre-
hensive understanding of this field, including the latest advances as well as some common
issues and newly-emerging techniques, and shed some light on the future directions. Mean-
while, we believe that training a general BP predictor with genuine strong generalization
ability is still challenging, instead of the overly optimistic conclusions claimed in some
literatures. In fact, the latest evaluation of smartphone-based BP estimator in a large clini-
cal settings indicates that no commercialization has been made yet (Dorr et al. 2021). We
appeal an objective view and deeper thinking on the reported results in a more systematic
way.

Appendix 1: Summary of representative surveys of blood pressure
prediction

We summarized several representative surveys on blood pressure measurement in Table 19.
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Appendix 2: Graphical illustration of the final processed dataset

Figure 26 presents the total BP distribution of the final processed dataset. Figure 27 illus-
trates the individual BP dynamics.

80000
70000
60000

>

£ 50000

H

]

§ 40000
30000
20000

10000

50 75 100 125 150 175 200
Train BP range

Frequency

50 75 100 125 150 175 200
Validation BP range

Frequency

25000

20000

15000

10000

5000

50 75 100 125 150 175 200
Test BP range

Fig.26 Blood pressure distribution of training, validation and test set using sample level splitting strat-

egy-®

Fig. 27 Individual BP dynamics. a individual SBP dynamics. SBP distribution of each record is illustrated
with "Boxplot’, and records are sorted in the ascending order of *max(SBP)-min (SBP)’. The distribution
of SBP dynamics of all individuals illustrated based on “Histplot” is shown in the right figure; b individual

DBP dynamics
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Appendix 3: Prediction performance of the model using different
splitting strategies on different BP intervals

Figures 28 and 29 illustrates the prediction performance of the model using different split-
ting strategies on different BP intervals.
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Fig. 28 Performance of ResNet model for SBP prediction on different BP intervals, based on different split-
ting strategies. a based on splitting strategy-®; b based on splitting strategy-®; ¢ based on splitting strat-
egy-@; d based on splitting strategy-®
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Fig.29 Performance of ResNet model for DBP prediction on different BP intervals, based on different
splitting strategies. a based on splitting strategy-®; b based on splitting strategy-®; ¢ based on splitting
strategy-@; d based on splitting strategy-®

Appendix 4: Open-source implementations

Table 20 summarizes the open-source implementation of all the papers we found for BP
estimation.
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Appendix 5: The effect of the size of dataset on final performance

To quantitatively evaluate the effect of the size of dataset used on the experimental results,
we created five versions of datasets namely v, v,, v,, v3, and v,, where the number of
records included in v, is @ times of v,. The corresponding statistical information of these
datasets is summarized in Table 17. All experiments were performed under the same
experimental settings, except that Batchsize is set to 64, 128, 256, 384, 512 for the fives
versions of datasets, respectively. Inspired by Goyal et al. (2017), the corresponding initial
learning rate is set to [r = Ir,, - BatchSize/128 , Ir;, equals 0.001. The maximum number of
epochs is set to 50, and model is trained using Adam optimizer. Experimental code was
implemented using Python 3.8 with TensorFlow 2.4.0 framework, and all the experiments
were performed on Ubuntu 20.04 server equipped with two RTX 3090 GPUs.

Table 21 presents the numerical results. It is observed that the test performance drops
gradually with the increase of the size (in terms of the number of records) of the dataset
used, although the overall BP range and BP distribution of different versions of data sets
are basically similar (refer Table 17). We attribute this to individual differences. The more
records contained in the data set, the more complex and diverse individual physiological
dynamics, which undoubtedly increases the difficulty of training more general models. The
mean rank of each model over five experiments is calculated and the resulting p-value is
6.98e-3 (< 0.05), 2.85e-3 (< 0.05) for SBP and DBP prediction, respectively. Therefore,
the null hypothesis is rejected at a = 0.05, i.e the size of dataset has a significant effect on
the trained model’s performance for both SBP and DBP prediction.

Table 21 Comparison of the test performance of ResNet models on MIMIC III dataset of different size,
based on record level splitting strategy-®

Method Dataset Task Metrics
MAE  MAPE MSE ME STD R2
ResNet  v0:375 records, SBP 1176 0.100 315.164  —0430 17741  0.447
75e4 samples DBP  6.493 0.107 92356  0.050  9.606  0.357
v1:750 records, SBP 12288  0.103 330257 —0280 18.170  0.456

15e5 samples DBP  6.571 0.107 91.823 0.070 9.579 0.396
v2:1500 records, ~ SBP  12.783  0.108 341.866  0.161 18.484  0.421

3e6 samples DBP  7.080 0.115 100.765  0.575 10.037  0.357
v3:2250 records,  SBP  14.810  0.126  397.920 —0.183 19.946  0.331
4.5¢6 samples DBP 8068  0.132 116.863 —0.236 10.808  0.258
v4:3000 records,  SBP  14.696  0.125  399.584  —0.099 19.986  0.332
6e6 samples DBP  7.955 0.130 114348  —0.149 10.692  0.247

Appendix 6: Comprehensive comparison of studies related to BP
prediction

A comprehensive comparison of related studies for BP prediction is presented in Table 22.

@ Springer



K.Qin et al.

eusis (6100)
YCr 68'¢ O9I'L ON ON OIS M ON mey TLN OSd ‘NNAJ-INLST dbV ‘D04 swened ND[ umowu) I DINIIN 610CTLL Te 10 ueq
®S1°0:68°0
LS P9 €6'L - (STO:SL0)TS
saInedy sord
@®ST1°0:68°0 PpayeId syuen  -wes 671¢ 0T0T"uoIsng  (0ZOT) T8 10
086 ¥7'6 0991 ON ON (ST0:SL°0) M ON  -pueH 1LS (1¥) dlquiasug gV ‘DOF  -ed ‘Ayp[eay  “s1valgns [¢ se01n0s BIEp 4 Jur  eysouelwrg
soInyedJ dg sord
pajjeld paseq-jno -wes 0ZLe P3o9] (6100
€09 TSS €19 - ON 159) [enpIATpuy ON  -pueH LS YA ‘Mdd ‘DDd  sweneding  900fqns ¢8 <[00 Ajp1eAlld  61OTTHEAL  T& 10 ORI
- 66T ¥0°S SOA
a1oko (81020)
9[urs sord Kurem
PIM [eu JY-Surures] -wres 08¢8 (dg-100) -sepues|
— LLOT 8O0°LI ON ON OTEEL M ON -BIs mey 1LS Areuondiq  dgv ‘Ddd swwened NI ‘spI0da1 G| I-OIAIIN L10Z°SDOVIIL pue osog
ordures
- Iy 178 QBuS'SX  ON
SQIN)LaJ sord
payeId dav -wes ¢99¢ (9100)
oS SES LI'TI ON ON O16H ON  -pueH LS 1500gepy ‘DD ‘Ddd siened N ‘SPI0dAT £99¢ II-DININ - 9TOZT'HINEL TR 19 99nyoey
- 889 ¢¥6 %0T “SX
sordwres
000°00S
[eusis mnoqe (6102) Te 1
- 8€TI I¥6SI ON ON 0so1 ON mey TLN MYO+NND  dEV ‘Ddd swened ND[ ‘$100[qns OIS [II-OINIIN 610 SI0suas Tepruders
d9IN d9d  dd4S
_— 1o810) QR | 21100
(BHwwuN) YW uoneiqie) "WwioN  A3aens Sumids -owaadAy indug yseL, pPOURIAL pasn [BUSIS  1els I[ESH  ,Pasn Ble#  d0INOS Be(  UOHEIIqNd soIpms

uono1paid J¢ 10j serpnis aaneIuasaidar [e1eads Jo uostredwo) gz djqeL

pringer

A s



Machine learning and deep learning for blood pressure prediction:...

- 8FY 6L9 UG SIX
[eusis I0MIOU [RINON SpI00AI P07 5(Q0202)
- 89% 9L ON S T ON mey TLIA [eHESI9ApE URWOP 9V ‘Odd umowyup)  192qns [ -[02 A[PIvALd  OZOTOHTIN  '[e 10 Sueyz
- 8¢¢ TE¢ SOA
[eusts dav Sp10dal (d9-10N)  610T°SS90Y (6100)
- s 0g6 ON ON T ON mey TLN NND “DOd ‘Odd swened ND[ 100[qns 7161 II-DINTIN (551 B LR S Gl |
- T 65V SOA 159) [enplIAlpuf
- 0TC wse SOA
eep
y QI Ioao
[eusis ‘SpI02a1 (1202)
- 98 €9l ON ON 1 ON ey TLN NNY-NND dV ‘Ddd swened D1 109[qns 001 III-OININ [20TTHAL T8 30 oW
SaINBay
pajjeld (1200)
wy 9Y 019 SIK ON T ON  -pueH LS YTN d4V ‘Ddd swened ND]  ‘sp10dor g7 1 DINTIN 0TOTTHA! 'T® ¥ peppeH
SaImedy
payjeld ddv Pa109] -(8100)
- #EVT %EL'E - SA 18 ON  -pueH TLN Spomidu [eIndN ‘DDA ‘Odd Appeoy  “s100[qns 8 -[09 A[reAtig 810¢°THd ‘e ng
SQIN)LaJ sord
paseq -Wwes 696¢ (dg-10n) (Q6100)
19T €¥'T L6E - ON ®16 ON -9[oym TLS (1s0ogepy) TN AV ‘Ddd swened N ‘SpI0dar €7¢ T IIDININ  6102°DdSE T8 12 1ABSnOA
[eusts (1200
Ly 9¢¥ 69°L ON ON QI8 M ON mey TLN NNHA-NLST gV “Ddd swaned ND1 umowupy II DINIIN  120T'S10SUdS ‘Te1e ueq
ddIN d9d  dd9S
B — 1a81e) B 21100
(BHuwuN) YN uoneiqie) "wioN gASerens Sunydg -oweqodA ndug yse, pPOUIINL Posn [EUSIS  2)els I[BOH  ,pasn Eje(J#  ddmos eje  uonedrqng SAIpMS

(penunuod) gz ajqey

pringer

As



K.Qin et al.

soInyedJ
paseq (dg-100n) (Q6102)
19C ¢v'C Lot - ON s ON  -°[oym LS 1s00gepY  d9V ‘Ddd swwened DI sp1odar ¢re] IIDININ  610T DdSE [® 12 1ABSnON
SoIMeo)
payeId (dg-120) 610T (6107) T30
8y LIt TT8 - S M ON  -PueH LS soogepy  dgV ‘Ddd swened ND1 umouyu) 11 DINTIN “SI0SUSS HHHI  YopezueseH
dg
NOJINO
- WY Iy 1vd ‘DD ‘Ddd
SoIMeo) dd
payeId NOJIIWO Pa3d9] L10T (L100)
- L6E TT9 - ON 159} [enpIAIpu] ON  -pueH LS LLd ‘DDd ‘Odd Appeoy  s100lqns g¢ -[00 Ajreatid  IL AL ‘[8 10 [[rewsy
SoINJeJ
payerd dav P13 610C (6102)
- 8% 8¥ - SeA M SeX  -pueH LS (NNID NNE D0d ‘Ddd - umouyup)  109[qus 011 -[09 Ajareatid ‘N[ dHAT e 10 Suog
[eusts (dg-100) 0T0T's108 (02020)
- 0€T L6€ - SX umowyuny ON mey TLN INLST-NND d€V ‘Odd swoned ND spi0dar £6GT 1T OTNTIN -USS HHATL T8 10 Temueq
- %S €TIISY %0T ‘SOA M s100[qns (g
wopuer
- €9 0¢l %0T “S9X H s100(qns (g
sorduwres
99¢°1
- &8 V9l ON 2 ‘100[qns G/
sajdures (®12020)
reusis 996°] ‘e
- ¥vr LL - ON s ON mey TLN NND dgV ‘Odd swened ND['s10fqns g/ey  MI-DININ  170g'siosusg  jdwniyog
d9N d9d d9S
B —— 19810) 8o £ 1100
(BHww:uN) YN uoneIqie) "WoN  ASaens Sumnds owaadA indug yseL, pPOUISIN posn [euSIS 9JeIs YI[BOH  PIsn eje(# odImoseleg  uonedlqng soIpmg

(penunuod) gz ajqey

pringer

A s



Machine learning and deep learning for blood pressure prediction:...

samnjeay dd paseq-
paye Amorowr [ewtouqe  sajdwes gyt P19l 20T ‘sseudxHq(1207) T8 1R
- 6£€ 697 ON ON 0SOT ON  -pueH LS INAS SDdd  +H[EWION ‘s1alqns gy -[0d A[reatd  1dQ ‘paworg  yasweSe(
SoIn)edy dd paseq sordwres
payeId -NOYWO 11 ‘sEenpia  (49-100) (6100) Te 1
- SFv 65§ ON ON 0SOT ON  -pueH LS dTN sDdd Apresy SIPUTIIT MOININ  610T °DdSd  modreny
sarmnjeay
pajyerd dav (dg-100) (0202) T8 1
LTE 8FS ¥56 ON ON M ON  -pueyq LS J¥ ‘DOH ‘Ddd swened N[ umouyup)  JIDININ  020T ‘Odsd  fenqueqy,
SaINYEay (e1200)
pajjerd uonuane nodeLIKY
- 9TT 8ST - ON umouyu)  ON  -pueH LS -NLSTdeo@ gV ‘Ddd siuened N[ sp10%2100S I OIAIN - 120C OdSd  pue [feH-1q
samnjeay
payeI dav (®12020)
- VT 65T - ON Is9) [ENpIATPU]  ON  -pueH LS ATN D04 ‘Ddd swwened ND1 s109[qns 601 [I/II DININ ~ 120T DdSE ‘Tee ury
- €60 LET SPI0JQI Of
[eusTs dav (dg-100) (1200)
- 18T 0L¢ - ON 1S OoN mey LA NNAA-(d2) NND ‘DOH ‘Ddd swwened (D[ sp102a19izl  IIDIANIN 1207 OdSd  Te 1o ni)y
[eusis sord 12N (®12020)
- 9¢€ 65 SO ON umouyuny  oN mey TLN INLST+NND ddV ‘DOd swened ND[  -wes 9pG[[  IIDININ 1207 “OdSd V1 pue Suoy
sjeaqirey
[eusis €YLLOS 020T “PPN (0T02)
99t 19F% 0I'L SO ON M ON | TLN INLST+NND ddV ‘D0d swened ND['$102[qns 11 TIDININ  TIWI JIIY  [e 12 OBy
d9N d9d  d9S
—_— uvw\_mu e n..EOo
(SHww:uN) gYIA juoneiqie) "wWIoN {Awo:wbm Sumds owdadAy nduy ysel, pPOUIIA pasn [eUSIS 9JeIS YIBOH ,POSn BIR(J# OINOS B  uonedIqng sAIpmS

(penunuod) gz ajqey

pringer

A's



K.Qin et al.

syuaned
- 661 I6¢ [eo18Ing Ut 06t aano
(1200)
reusis 0JBIOAT
- TW0T oLe - SX A ON mey umowyupy INLST-NND d9V ‘Ddd swened ND1  s100lqns og IIOININ 120 DGINI  pue Aleze],
dg Loy
reusis -e)[nosne P10 0202)
§9 S6v 8CTS - ON ®TI9s ON mey TLN NND  ‘OddMN  umouyun)  s1alqns 97 -[00 A[@1eAlld 00T ‘OGN 'Te 10 Yorg
sordwres 0202
[eusis (NND 6SY9¢€1 “1oidxg (0202 Te 1
- S6v IL6 SOX ON OTTYHM ON mey TLS A7)9SPWRIS+IALS dFV ‘Odd swuened NDT ‘s109lqns 67¢ 1T DINIIN are) M) 13UISAYOS
sordwes
[eusis (NND L0901 (0200) e 10
- I¥'e S6¢ SX ON ®©TT9s ON mey LS qg)esewreIS+ALS  d9V ‘“Odd swened ND] ‘s100[qns p(¢ 11 DIAIIN 020 ‘dSSVOI  1o3uIso[yog
s1eaqIEy
s[eusts NLST 78816 020T “PIN(0ZOT) T8 10
- 0I'c L6¢ - ON s ON meyd TLA -NND ‘@8misom], ddVv ‘Ddd s1wened ND1 ‘s109fqns 0oz I1 DINIIN “org indwo)  Joodjoewsgy
saInjeay dd paseq
payerd “NOJNO P39 610T “PAIN (6100)
- 10§ 6TL ON  ON 0SOT ON  -pueH LS (JAS) dlquiesug ‘sDdd Apreay  s1algns o -[09 Ajrearq ‘org ndwo) e 10 Suoq
sordwres 1202
[eusis dav 00000T “org So1g (1200)
LLT 16T 1¥'¥ - ON umouyupn) ON meyd LS INLST-NND ‘DDd ‘Ddd s1uened ND1°s1920qns 7469 1T DTNTIN WRIN “Indwio)  “[e 1o 1oveg
ddIN d9d dd4S
_ 19810) 8o £ 1100
(BHww:uN) YN uoneIqie) "WoN  ASaens Sumnds owaadA indug yseL, pPOUISIN posn [euSIS 9JeIs YI[BOH  PIsn eje(# odImoseleg  uonedlqng soIpmg

(penunuod) gz ajqey

pringer

A s



Machine learning and deep learning for blood pressure prediction:...

dd paseq
“VAON 610C
SaIn)eay saxdeury NLET] “18KG "o1) (6102)
OI1:1:8 payeId ‘steusis -1189Y 887 Pa109] ‘paworg LIeje[ pue
L9Y LSS 1SS - ON  ‘Isa}[enplAlpuf  ON  -pueHq LS 1S00gEPY  Z-01g In0j Apreoy  “spalqns 0 -[00 Ajpreald  suel], HHHI wiyeIqy
soInjesy dd £10y
payeId [epow  -B)nosne s[enpIA Pa199] (®0Z02)
L9V LSS 1SS ON ON 1S9} [enpIATpU]  ON  -pueH - [eondpeueIndxg  ‘OddMIN -TPUT A[IOpIH  s109[qns g7 -[00 APIeATld 170 ‘THAl ‘el nrp
NLET
saImyesy -1y M 0T
payed dgav 1an0 (e0202)
- 98T LOS ON ON ®¢LM  ON  -pueH LS NNY+NNV D04 ‘Ddd ApeoH ‘s109[qns 9/¢1 qamevyA - 10T ‘THAr e 39 Suex
SoINedy dd sord
pajyeId NOYINO -wes O0gLT Pa1od] (6102)
187 ¥Sv €19 - ON 1s9) [enpiAlpu]  ON  -pueH LS AINDDF ‘Smdd Apreoy  “salgns g8 -[00 AjpreAlld 10T ‘THAl T2 30 ORI
saInyesy dg
payerd Jno‘0Dg Pa1d9] 1202 (1200
- $6¢ St & ON umouYU[)  S9X  -pueH LS A4 ‘OOH‘Ddd  umowyun) sdnois 0901 -[09 A[PIBATIJ ‘SSe00Y HAAL  Te 10 uey)
SaIn)eay dg
pajyeIo I ‘0D Pa1od] 120T (51200
- 9'S +89 L ON umouyuy  ON  -pueyq LS A1 “DDd ‘Ddd Apreoy  s1alqns o7 -[00 A[aleAlld ‘sse00y HHHAL [E 0 SueyZ
soInjesy dd paseq- S1BIqIIRAY
payeId Amopw  ewouqe 0LZT101 Pa109] 120T (1200)
- tve 8t - ON IS ON  -pueHq LS AdO ‘DDH ‘Ddd  +[ewloN  ‘s109[qns g -[00 A[IeAL] ‘$S200V HHAHATL ‘Teje nrp
d9N dd9a d4S
—_— uvw\_ma e n..EOo
(SHww:uN) gYIA JuoneIqIe) WION {Awo:wbm Sumds owdadAy nduy ysel, pPOUIRAL pasn [eUSIS 9JeIS YIBOH ,POSn BIR(J# OINOS B  uonedIqng saIpnI§

(penunuod) gz ajqey

pringer

As



K.Qin et al.

Pa399[
LY0'0 660 061 paseasiq  $1020qQns g¢ -109 A[reALld
dd
[eusis ("LLd) 1opow  NOJINO P3o9] 610C (6107 T8 W
SS°0 SLO OF'l ON ON M ON mey - onkpeue yordxg ‘D)F ‘Ddd Apeoy  s100[qns gy -[09 A[1eALIg“SEOIN “[OIsAyd  [exiqurey,
SPI0d3I
Areay Iree adrerA
- 'S €00l ‘syuaned N1 ‘s1alqns £ece + DININ
SPI0031
Soge
- SS9 L9TI Aqireaq ‘s1alqns goge dadrerA
SQINJL
payeId dav SpI0d31 1202 SeN (e1200)
- e 99 ON ON 18 ON  -pueH 1LS 1soogepy ‘DO ‘Ddd swened N 9¢ 109lqus ¢ DININ ‘Jorskyg e 10 Sueyy
dd
SQINJedy paseq-ynd
payeId [opow Tergo [ewouqe  sordwes 667 P9 (1200) Te 1@
s€V €€ 39°¢ SOK ON 159 [enplAIpuL ON  -pueH — [eondeuerondxy  -e1q ‘Ddd  +[PWION  ‘s1afqns ¢ -[00 A[aleAlld  [T0T ‘[199d  Tysoyeuwrex
- Wy ISS ON
dg paseq
s[eusis “Id91 SPI0AI CTE PAIdd]  [ZOT “uond9g (1200)
- €Tt ey ON ON Mo SX mey LS NND ‘DDd ‘Ddd Apreoy  “s1algns i -[09 Ajpreatd wmuend 1dQ e 30 Sueg
- 3L8T slv'y 159} [enplAlpu]
SoINJedJ sodures
payesd S6L8S 810 “3ug (a8102)
- 3LTT 3007 - ON ©SI:SI0L IS ON  -pueH TLN (dTA) NNAd  d9V “Ddd swwened N1 “s1valqns g DININ OYESH [ [e e Suepm
ddIN d9d dd4S
_— 1o810) eoq 21100
(BHww:uN) YN uoneIqie) "WoN  ASaens Sumnds owaadA indug yseL, pPOUISIN posn [euSIS 9JeIs YI[BOH  PIsn eje(# odImoseleg  uonedlqng soIpmg

(penunuod) gz ajqey

pringer

A's



Machine learning and deep learning for blood pressure prediction:...

SaInjesy sjeaqyreay
payjeld 8819L1T (dg-100) (0202)
- €TT 1T¢ - ON TLLIS ON -pueH TIN NN d9V ‘Ddd stwened N[ ‘sp10d2a1 0006 11 DIINTIN. 0T0C ‘STosuag ‘e 30 nsH
SaIN)Lay
payed sodures 77z (0700 Te 30
- PLT TW0€E - ON s Sk -pueH LS AdO d4V ‘Ddd  sweneding ‘s109(qns 97| dg9dd 070 ‘stosudg  Kmypmoy)
- 6L'S 0L6 ON 0SO1
dav sorduwres
[eusIs ‘D04 ¥100099C Pa19L (0200
- €ge 90Y - ON TILS ON mey TIN NNI-NND ‘DDd ‘Ddd [euiON  03[qns GT -[09 A[QeALId  ()TOT SIOSUIS ‘Te 30 woy
- 0% €6 LLdJ ‘SA
saInjeay s1eaqIRaY
payend (LLd) 1opowt dg yno 000001 Pa1dd| (0200
- ¥¥ 09 LLJW'SSX  ON  ISI[EnplIpul  ON  -PuRH — [eonpeue yoNdxg ‘DDH ‘Ddd Apreag  “s1lqns 17 -[00 A[PIRALId (/TOT ‘S10SUSS  °[e 30 ORYS
€I'8 Sv'6e TLL SOX
sord
-wes 6TI¢
SoIN)edy (81) ‘$901INn0S
payjeId paseasIp 1noJ woly Pa309] (8102) ‘B 10
ceel 0081 198 ON ON M LS -pueH 1LS A4 4V ‘DD “(g¢) AmpeoH  s109[qns [¢ -[00 A[oIeALd  @T(Z sIosUaS  eysouelwrg
[eusis dgav (1202) wry
- 01 (! - ON umouup) ON mey TLN INLST-NNO ‘DDA ‘Ddd swened ND1  s100fqns g4 DINTINTZ0T “doy 'S pue Suodf
(T200)
ysyyeq
[eusis (ao (dd-100) Te0e -epoyy]
- 8¢T ¢€0¢ - ON A ON mey TLS NNO + (A1) NND  d4V ‘Odd swened DI sp10da1 007 II OINTIN - “paustiqndup) pue tiokefejy
d9dIN d9d dd9S
—_— uvw\_mu e n..EOU
(BHuw:uN) YN uoneiqie) "wioN gASerens Sunydg -owaqodA ndug ysel, pPOUIINL Posn [EUSIS  d)els I[BOH  ,pasn Eje# ddmos eje  uonedqng saIpnI§

(penunuod) gz ajqey

pringer

As



K.Qin et al.

8001 €8T ¥S0'I SOX 159} [enpIAIpu[ SPI0291 §
8102
saImyea) 198 “dwo) (8100)
poiyeIo dav (d9-10N) “Sug urszog
6£9°¢ €56'¢ ILEY - ON IS ON  -pueq umouyun INTA ‘DDH ‘Ddd swened NI SpI0NI 6Ty IIOININ "9 "ML pue [nignuyg
SoIn)edy sordures
payed STI¥9 120 (1202)
- 6I'F TS9 & ON ®TEIS  ON  -pueH LS UAS-dTN d9V “Ddd swened ND1 ‘s1alqns oz 1 OININ  ‘Anowwkg  [ejeneq
somnjeay 610T “d (6100)
payeo 09PIA uezZnIo
- 080 ITI L ON umouwyu)  ON  -pueyq 1LS YASdTN d4V “Ddd swened N1 s102[qns 0zI [ DININ  Sew] [euSIS  pue ruesseyq
- €0T 9T SOX 159} TenpIATpU[
- 60T 95T %0T ‘K
sarmnjeay dgv
pajyero ‘004 Pa1od] (1202)
- $9°¢ 1001 ON ON M SK  -pueH TLN INLST ‘D0d ‘Ddd ~ umouyup)  s19fqns g -[00 A[OJeALld  [ZOT'SIOSUSS B 1099
d4q
aSueyd [opow  dLIAWO[ Pa109] (0202)
- €8T TST SOX ON 159] TenpIATpUf ON aInssaid — [eonAreue o1dxyg -11950 ‘M dd Apreaq  s102[qQns ¢ -109 A[o1eALIQ (70T ‘SIOSUASUIT pue Juepy
DLETeiREE |
T0T8L9
- 9IST 9TL9 ‘SPI0J3I €3¢
SaInjevy sjeaq
payed dav 1183y 7689 (dg-10n) (e0202)
—L85S°0 LSELO - ON vl ON  -pueH TLN INLSTdoop ‘ODH ‘Ddd swened NDI  ‘spI0odar(s I DIANIN 0T0T ‘S10SUeS eI
d9N dd9a d4S
_— uvw\:ﬁ e ¢ 110D
(SHww:uN) gYIA juoneiqie) "wWIoN {Awo:wbm Sumds owdadAy nduy ysel, pPOUIIA pasn [eUSIS 9JeIS YIBOH ,POSn BIR(J# OINOS B  uonedIqng sAIpmS

(penunuod) gz ajqey

pringer

Qs



Machine learning and deep learning for blood pressure prediction:...

- 10L SS¥1 ON
- LS9 6€¥1 M
SaIn)eay sordures
payerd 96901 (1200)
- 96’ 80Tl - sx IS 9K -pueyq - (YD) boggbog  dAV ‘Ddd swened NDI‘s100fqns (€11 [II DIAIN [TOT ‘SI0SUAS °[e 10 211INTY
uonemnp
U 661 noqe
® S[eusts ‘SpI0931 (1200) 1oy
- L6T 89°¢ - SOAGI:GI:QL ‘umouyup)  ON ey - (BN NND 4V ‘Ddd s1wened D1 199[qns 001 III/I DINIIN 1T0T ‘$I0SUdS  pue ekeyyy
sord
s[eusis -wes 6156 (dg-10n) (1202)
- 6£T 96€ - ON ®SI:SI0LYS  ON mey - NNYD d9V ‘Ddd swened ND1°s102(qns ¢81¢  ITDIATIN 70T ‘S10SUdS O pue I'T
sordures
S[eusIs syuoned 9159¢ P19 (0200
- 8V'1 ¥ST - ON ®CS1:68°ls  ON mey - VD + (9NN NND  d4V ‘Ddd [eo18Ing  ‘s309[qns 81 -[00 A[aIeALld (TOT ‘SIOSUAS [E 10 IMEIPES
0g'e €Le  1¥9 SOk M
sordwres
[eusts 0SOLLT (dg-10n) 120T “PON (1202)
67T 06T LTE - sk ®1:6°7 ON mey - (9 NN NND  d4V ‘“Odd siwened NI ‘sp102210g9T 11 DIATIAL ‘[org Indwo)  “[e 30 Suey)
(6102)
sreusis dg9v ueseq
- 850 OI'I - ON ®TIL IS  ON ey TLN INLST-NNV ‘DOd ‘Ddd s1wened ND1  s19(qns 6¢ DININ  610T DdSd  Pue 1ooAue],
SoIn)edy SAVIN +
payed uononns dqav (dg-10n) 610T “POIN (6102)
€9¢ 98 €8°L - ON ®1+‘ s  ON  -pueHq TLS -uodarooeds aels “ODH ‘Odd sWuened NDI SPI0%AI €99¢  ITOINIIN - “TIWI JUIV  [e 19 YLIeys
d9IN d9a ddS
] uvw\:ﬁ e n..EOo
(SHww:uN) gYIA juoneiqie) "wWIoN {Awo:wbm Sumds owdadAy nduy ysel, pPOUIIA pasn [eUSIS 9JeIS YIBOH ,POSn BIR(J# OINOS B  uonedIqng sAIpmS

(penunuod) gz ajqey

pringer

As



K.Qin et al.

- - 9r¢ ® 6106 M
- - S8¢ ©01:01:08 M
SoINJed)
akisay s[enprarput
pue vid dgv ‘wep uorsu) - sajduwes 0gg PAId 70T RN (1202)
- - 879 ON ON ©CSISIOL M S9A  [edwID LS + (dTAD) NNIA [eowur)  -rdAyuoN ‘s1oalqns 06z -[0d APreAld -oueN ‘fnx pue Susyz,
sordwres
s[eusts dgv umouwyun  (49-10N) SL10D)
- ¥09'T 1SLT & ONO0Z:Z1:89 ‘umouyun) ON mey umouwun) NLST ‘D0H ‘Ddd swened N[ ‘sp1odar ¢g 11 DININ  L10T DGNE e o1
soInyedJ
payjerd dav TT0T “u10gk) (zz00)
€T 91T 61T & ON umouup) ON -pueH umouyun) (INAV) NN ‘DO ‘Ddd swened N1 umouyu) OININ  'Suel] HHI TRl
sordwres 1202 md
S910S -wop "qoN
z(1'0:6'0)8 [eusis ‘Sp10231 (dg-100) unw (1200)
- Ty S8L & ON ‘umowyup) ON mey TLAN WISTIE+NND ddV ‘Ddd swwened NDI umouur) IIOININ  -toD [oIIM eI
§88°C tvi'e vIv'S SOA
Sururen [erres sordwres
[eusis ~IoApE UrEWOp ¥9z6€  (d9-10N) (1200
7E€8°¢ VIT'Y SYO'L ON S QTTY M ON mey — M 1opodudomy  JgV ‘Ddd siened N ‘SpIodar £gT] IIDININ  120T ‘OdSd Te 10 U0
dTA + sordwres
[eusIs (toureay dqv 6S100T (dg-100) (z2oo) 18w
- €IL0 €£€7T ON  SoX O L:¢M ON mey - amea)) 10NN ‘DOH ‘Ddd s1uened (DI ‘sp10dar 687§ 11 DINIIN TTOT ‘s1osuas pnwye
sordures
[eusis (NLSTD 0000sT  (d9-10N) (1200
- T 0¥ & ON umouyupy ON meyd - Jopoougomy  Jgv ‘Odd siuened (D[ ‘spiodar 6876 IT DINTIN TT0T ‘s10SUdS e 10 eAYIe
ddIN d9d dd4S
_ 19810) 8o £ 1100
(BHww:uN) YN uoneIqie) "WoN  ASaens Sumnds owaadA indug yseL, pPOUISIN posn [euSIS 9JeIs YI[BOH  PIsn eje(# odImoseleg  uonedlqng soIpmg

(penunuod) gz ajqey

pringer

A s



Machine learning and deep learning for blood pressure prediction:...

wyIog[e onouas Yo ‘WIS UoNeZLIR[NSIY URISAARY Vyg JI0MIOU [BINAU UOISSIISAI PAZI[eIouad NNYO Qullds uorssardar aandepe-ninw Sy vy ‘Quiyoew
Surures] swanxe 77 1S9I0) WOPURI ,Jy ‘UOISSAITAI 20URISUI-N)NW Y7y ‘UOIssaIZar Jeaur] o[dnnw y7py ‘seiies) [eoryderSowop way owaq -diqedrdde jou sajouap —

s1oded [eur3uio woiy synsax oY) Sureroae £q parmboe S1[Nsa1 oY) 910N 5

-9[qeoridde jou st wre) Surpuodsariod Jy jey) SAJBIIPUL —, "BIRP S [enpIA

-IpuI 359 JO Jasqns  Sursn ejep S, [enpIAIPUI JOY)0O UO paures} [opoul [e1ouas oy) Surun) duy SUBIW UONBIQI[ED ‘SpPOYyIowl [/ TIN 10J ‘TOAOMOH ‘JUSIX9 UTB}ID B O} [9pOoUl UOTIOIp
-o1d Sururen se U9ds dq UEO YOTYM ‘EJEp S, [ENPIAIPUI UL JO 19SqNS € SUISN [9powW o) JO s1ojourered Mo & oUILISNOP SUBSW UONIGI[ED ‘[opoul [edNATeuE J1o1[dxa 10§ 18t} G10N]
JUSWIAIE)S JOOIIOOUT AY) POJOSIIOD SABY AN JOSEIEp JO UOISIOA STy} SuIsn uaym (£ 107 ‘Te 32 071 {120T ‘Te 30 BAYIeH 80T T 10

T $120T ‘Te 39 NIQ)) SAINJBIANI] JUBAS[AI dU) UI PIsnjuod sI Jdalqns, pue ,p1odai, Jo 3deduod ay Jey) A[SNOIAQO §,J] “umouun st sjuaned pue sp1odal usamiaq diysuonear aJeurp
-Toqns 2} pue ‘s)02lqns/siuened g WoIJ SPI0dAT WIOFIARM (00T JO [810) B SUTRIU0D (91(7) T& 12 2onydey ‘(S107) Te 12 2onyoey Aq paysiqnd joserep Jg-1DN 2U) 18y 20N,
‘[o[[ered/[enuenbas 1w g, pue v, Jeq soedIpul g+V,/ V.,

“pap1aoxd are GSIARY JO SINsaI oY) A[UO ‘SHIOM 9SAY) U],

*JOqUINU PJOIIO JO SUTUBIW Y} IO 7 d[qe], IJoY /4 JO 9sed [eroads & Se udas oq Ued Yorym ‘Ino pI0d91/02[qns duo 9ABI[ SA0Uap OSOT

‘[0A] prooai/oafqns atp Je 1fds axom $30s 159) pue uoNEpI[EA ‘Suluren) SAJoudp 4 ‘[oad] o[dures pajeSeISSe [euy oy Je I[ds a1om $30s 153) pur UONEPIEA ‘SUIUIEN) SAJOUS(,
*((1202) 1B 12 Suay) §'9) UONONIISUOIAI WIOJIABM UO PIASeq SAIPNIS 2SOY] JO [opowW [edjewAyjew/[opow [ednAeue Jo1dxa o ojqesrdde jou st wan siyy ‘Afero

-odsq "sopowr LN PUe LS OWI PIZLI03ILd 9q UBD SAIPNIS PIR[al ‘PaIapISuod SI (JGIN pue d9d ‘ddS) Ssel uonarpaid JuaIajIp udomiaq UOIB[ALIOD JYIYM 0} SUIPIOIIY,,

sordures
GoS6'Y
s[eusis dav noqe 120T (1200)
- WT ¥67T & ON 1:6 ‘umowyun ON mey  umouun) INLST-NND ‘DDA ‘Ddd swened N1 ‘s1oelgns ¢ 1 DINIIN “10§ [ddy “[e 10 Sueny)y
ddIN d9d ddS
_— uvw\_mu e n..EOo
(SHww:uN) gYIA JuoneIqIe) WION {Awo:wbm Sumds owdadAy nduy ysel, pPOUIRAL pasn [eUSIS 9JeIS YIBOH ,POSn BIR(J# OINOS B  uonedIqng saIpnI§

(ponunuoo) gz ajqeL

pringer

As



K.Qin et al.

Appendix 7: Abbreviations

All acronyms appearing in the paper are summarized in Table 23.

Table 23 Abbreviation table

Acronyms Full name

AAMI The Association for the Advancement of Medical Instrumenta-
tion

ABP Arterial blood pressure

AD After diastolic

Al Artificial intelligence

AMPD Automatic multi-scale-based peak detection

ANN Artificial neural network

APG Accelerated plethysmograph

ARIMA Autoregressive integrated moving average model

AW Auscultatory waveform

BCG Ballistocardiogram

Bi-LSTM Bidirectional long short-term memory

BH Bramwell-Hill

BHS British Hypertension Society

BMI Body mass index

BO Bayesian optimization

BRA Bayesian regularization algorithm

BW Baseline wandering

BNN Boosting neural networks

BP Blood pressure

BSD Between systolic and diastolic

CART Classification and regression tree

CNN Convolutional neural networks

(e(0] Cardiac output

CRNN Convolutional-recurrent neural network

cv Computer vision

CWT Continuous wavelet transform

DBP Diastolic blood pressure

DCT Discrete cosine transform

DL Deep learning

DNM Dendritic neural model

DNN Deep neural network

DPI Dynamic plosion index

DT Decision tree

DWT Discrete wavelet transform

ECG Electrocardiograpshy

EDA Electrodermal activity

ELM Extreme learning machine

EMD Empirical mode decomposition

EMG Electromyogram

ERM Empirical risk minimization

FC Fully-connected

FFNN Feedforward neural network
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Table 23 (continued)

Acronyms Full name

FFT Fast Fourier transform

FRP Fuzzy recurrent plot

GA Genetic algorithm

GAN Generative adversarial network

GMM-HMM Gaussian mixture models and hidden markov model
GPR Gaussian process regression

GRNN Generalized regression neural network

GRU Gate recurrent unit

HFC High frequency components

HPO Hyper-parameter optimization

ICG Impedance-cardiogram

ICU Intensive care unit

LILD Independent-identical-distribution

iPTT Image-based PTT

iPPG Image-based PPG

JADE Joint approximate diagonalization of eigenmatrices
K-SVD K-singular value decomposition

LCFs Level-crossing features

LDA Latent dirichlet allocation

LFC Low frequency components

LIME Locally interpretable model-agnotic explanations
LOSO Leave one subject out

LR Linear regression

LSTM Long short-term memory

LTF Linear transfer function

ML Machine learning

MA Motion artifacts

MAE Mean absolute error

MAML Model-agnostic meta-learning

MAPE Mean absolute percentage error

MARS Multi-adaptive regression spline

ME Mean error

MGD Multivariate Gaussian distribution

MIMIC Multiparameter Intelligent Monitoring in Intensive Care
MIR Multi-instance regression

MK Moens-Korteweg

MLR Multiple linear regression

MSE Mean square error

MTL Multi-task learning

MWPPG Multi wavelength PPG

MCPPG Multi channel PPG

MFMC Multi-filter to multi-channel

MLP Multilayer perceptron

NARX Nonlinear autoregressive model with exogenous input
NAS Neural architecture search

NNOE Neural network output-error

OWR Online weighted resampling

OMW Oscillometric waveform
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Table 23 (continued)

Acronyms Full name

PCG Phonocardiogram

PS Pre-systolic

PTT Pulse transit time

PWV Pulse wave velocity

PAT Pulse arrival time

PCA Principal components analysis

PI Pressure index

PIR Photoplethysmogram intensity ratio
PLS Partial least square

PLI Power line interference

PWA Pulse wave analysis

PPG Photoplethysmography

PSO Particle swarm optimization

PZT Piezoelectric

RF Random forest

RFE Recursive feature elimination

RFFS Random forest with feature selection
RFSV Random forest with shapley value
RNN Recurrent neural networks

ROI Region-of-interest

PPG Remote photoplethysmography
RSP Respiratory

SBP Systolic blood pressure

SCG Seismocardiogram

SCSA Semi-classical signal analysis
SHAP Shapley values

SRM Structural risk minimization

STD Standard error

STL Single-task learning

SVM Support vector machine

SVR Support vector regression

TOI Transdermal optical imaging

TPOT Tree-based pipeline optimization tool
TPR Total peripheral vascular resistance
UCI University of California Irvine
VPG Velocity plethysmography

WFDB Waveform database

WSFS Weakly supervised feature selection

Data availability The experiments involved are based on a publicly available database MIMIC 111, the script
to download the dataset and the related experimental code are released on the Github repository: https://

github.com/v3551G/BP-prediction-survey.
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