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ABSTRACT

A novel algorithm, called stochastic order learning (SOL), for reliable rank esti-
mation in the presence of label noise is proposed in this paper. For noise-robust
rank estimation, we first represent label errors as random variables. We then for-
mulate a desideratum that encourages reducing the dissimilarity of an instance
from its stochastically related centroids. Based on this desideratum, we develop
two loss functions: discriminative loss and stochastic order loss. Employing these
two losses, we train a network to construct an embedding space in which instances
are arranged according to their ranks. Also, after teaching the network, we iden-
tify outliers, which are likely to have extreme label errors, and relabel them for
data refinement. Extensive experiments on various benchmark datasets demon-
strate that the proposed SOL algorithm yields decent rank estimation results even
when labels are corrupted by noise.

1 INTRODUCTION

Rank estimation aims to predict the rank or ‘ordered class’ of an object, which is a fundamental
problem in machine learning. It has a variety of applications, such as facial age estimation (Ricanek
& Tesafaye, 2006; Shin et al., 2022), aesthetic score regression (Kong et al., 2016), and medical
assessment. Many approaches have been proposed for rank estimation (Pan et al., 2018; Li et al.,
2021; Liu et al., 2018). Recently, order learning techniques (Lim et al., 2020; Shin et al., 2022; Lee
et al., 2022) have shown promising results.

Although these techniques provide remarkable results, their performance may be sub-optimal under
the presence of label noise, as they are trained based on the assumption of accurate label annotations.
In many real-world scenarios, however, it is quite challenging to obtain error-free annotations of
‘ordered data.’ Unlike nominal data, it is difficult to distinguish between classes of ordered data,
since there is often no clear distinction between ranks. Figure 1(a) and (b) show nominal data for
classification and ordered data for rank estimation, respectively. Note that predicting the exact rank
of an instance is hard even for humans.

Many algorithms have been developed to train machines using imperfect data with noisy labels,
but most of them are for classification (Yao et al., 2022; Ye et al., 2023) or segmentation (Yang
et al., 2020). When applied to rank estimation using noisy training data, they may yield poor results
because they do not discriminate subtle differences across ordered classes. Therefore, it is crucial to
develop a noise-robust algorithm specialized for the task of rank estimation.

In this paper, we propose a novel algorithm, referred to as stochastic order learning (SOL), to es-
timate ranks reliably under the existence of label noise. Given a training dataset with noisy labels,
we first model the label errors with random variables. Hence, each instance relates stochastically to
multiple ranks rather than deterministically to a single rank. We then train an embedding network
based on a desideratum, which encourages minimizing stochastic dissimilarities of instances from
their corresponding centroids. To achieve this, we develop the discriminative loss and the stochastic
order loss. Moreover, after the training, we identify outliers that are likely to have extreme label
errors and relabel them to refine the noisy dataset. Extensive experiments demonstrate that the
proposed SOL algorithm provides reliable rank estimation results on various ordered datasets. Fur-
thermore, SOL even reduces the overall label noise of a given dataset based on the outlier detection
and relabeling.
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(a) Label noise in classification (b) Label noise in rank estimation

…

Cat (Dog) Bear (Dog) Dog (Bear)

Noisy

Cat (Cat) Dog (Dog) Bear (Bear)

Clean

26 (24) 52 (53) 40 (43)

Noisy

23 (23) 55 (55) 43 (43)

Clean

Figure 1: Nominal data in classification versus ordered data in rank estimation. True labels are
inside parentheses.

The contributions of this paper can be summarized as follows.

• We extend the concept of order learning to cope with noisy data by designing a stochastic
approach; we model label errors as random variables and derive embedding space constraints
to sort instances according to their stochastically related ranks.

• Also, we propose outlier detection and relabeling schemes to identify instances with extreme
label errors and reduce the overall noise level of a given dataset.

• Experiments on various benchmark datasets for facial age estimation, aesthetic score regression,
and medical image assessment validate the effectiveness of the proposed SOL under label noise.

2 RELATED WORK

Learning from noisy labels: With the availability of substantial training data, deep learning has
shown impressive performance in numerous machine learning tasks, but the performance may de-
grade severely in the presence of label noise. Thus, learning from noisy labels has been an active
area of research; various attempts have been made to alleviate the adverse impacts of label noise.
Some are based on robust loss functions (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Lyu & Tsang,
2019; Ma et al., 2020; Ye et al., 2023). Other methods include regularization (Tanno et al., 2019;
Menon et al., 2020; Xia et al., 2020), robust network architecture (Han et al., 2018a; Goldberger &
Ben-Reuven, 2022), and selective data sampling (Han et al., 2018b; Jiang et al., 2018; Song et al.,
2019). These methods, however, focus on classification or segmentation tasks.

Compared to classification, only a few noise-robust regression algorithms have been developed
(Garg & Manwani, 2020; Liu et al., 2020; Yao et al., 2022; Liu et al., 2024). Garg & Manwani
(2020) first considered label noise in ordinal regression. They, inspired by Natarajan et al. (2013),
proposed an unbiased estimator approach, in which loss correction takes place to cope with class-
dependent label noise. Liu et al. (2020) designed a label regularization strategy to suppress possible
noise in ordinal datasets. Yao et al. (2022) developed a variant of Mixup (Zhang et al., 2018), which
improves generalization performance by training on virtual examples linearly interpolated from two
training samples. To make the Mixup technique more suitable for regression tasks, they sampled a
pair with closer ordinal labels with a higher probability. Recently, Liu et al. (2024) proposed a robust
algorithm for support vector ordinal regression. Even though their algorithm addresses label noise
explicitly, it only handles cases in which the number of ordinal labels is less than 5. In contrast, the
proposed algorithm can deal with more difficult settings where datasets have more than 50 ranks.

Rank estimation: Different from ordinary classification, rank estimation aims to predict the ordered
class of an object. Many rank estimation methods estimate object ranks directly using classifiers or
regressors. Early methods convert a rank estimation problem into multiple binary classification
problems (Frank & Hall, 2001; Li & Lin, 2006). Recently, several techniques have been developed
to perform deep ordinal regression more effectively, such as pairwise regularization (Liu et al.,
2018), soft labels (Diaz & Marathe, 2019), continuity-aware probabilistic network (Li et al., 2019),
and uncertainty-aware regression (Li et al., 2021).

Order learning: Order learning (Lim et al., 2020) is a new approach to rank estimation based on
the idea that relative assessment is easier than absolute assessment. Instead of direct prediction,
Lim et al. (2020) estimated the rank of an instance by comparing it with references of known ranks.
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Embedding space construction
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(b)
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Figure 2: Overview of the proposed SOL algorithm

To find more reliable references, Lee & Kim (2021) proposed the order-identity decomposition
network. Shin et al. (2022) extended the idea of order learning to regression problems, and Lee
& Kim (2022) and Lee et al. (2024) developed weakly-supervised and unsupervised techniques for
order learning, respectively. Also, Lee et al. (2022) proposed a learning mechanism that exploits not
only ordering relations but also metric information among object instances. Similar to the proposed
algorithm, they constructed an embedding space in which objects are sorted according to their ranks.
However, their algorithm assumes that rank labels are deterministic and error-free, so it fails to model
the uncertainty and noise in data. To construct a well-arranged embedding space even in the case of
label noise, we propose a stochastic approach called SOL in this paper.

3 PROPOSED ALGORITHM

3.1 PROBLEM DEFINITION

There is a training set X , whose each instance is attributed with one of the n ranks (or ordered
classes), represented by consecutive integers in {1, . . . , n}. Let r̄x denote the true rank of instance
x ∈ X . However, only a noisy rank rx is available, given by

rx = r̄x + ex (1)
where ex is the label error of x. Let e be the random variable underlying each error ex. It is assumed
that e has a discrete Gaussian distribution;

ps ≜ Pr(e = s) = 1
C e−

s2

2σ2 (2)

where C =
∑

t e
− t2

2σ2 , and s, t ∈ Z. Note that the noise distribution in (2) is symmetric (ps = p−s)
and unimodal (ps ≥ pt for 0 ≤ s ≤ t). This models label errors in practice. For example, it is more
likely for an annotator to mislabel a 10-year-old as 8 or 12 years old than as 20 years old.

Given the noisy training set X , the objective is to develop a neural network to estimate the ranks of
unseen test instances reliably. To this end, we propose SOL. Furthermore, we propose detection and
relabeling schemes for outliers, i.e. instances with extreme label errors ex.

3.2 STOCHASTIC ORDER LEARNING

We employ an encoder h to map each instance x ∈ X into a feature vector hx = h(x) in an
embedding space, as shown in Figure 2. We aim to construct the embedding space in which the
instances are arranged according to their ranks and each ‘centroid’ µr is the representative vector
for instances with rank r ∈ {1, . . . , n}. However, since only the noisy rank rx in (1) — instead
of the true rank r̄x — is available, instance x relates stochastically to multiple centroids, rather
than deterministically to the single centroid µr̄x . More specifically, x is associated with µrx+s

with probability ps in (2). Thus, in the embedding space, the weighted sum of squared distances∑
s psd

2(hx, µrx+s) should be minimized, where d denotes the Euclidean distance.

Hence, we define the stochastic dissimilarity of instance x from rank r as
D(x, r) =

∑
s psd

2(hx, µr+s). (3)
During the encoder training, given each instance x with the noisy label rx, we have the following
desideratum:

D(x, rx) ≤ D(x, r) for all r ∈ {1, . . . , n}. (4)
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Figure 3: Illustration of constraint and training losses for construction of embedding space

Also, we determine each centroid µr to minimize
∑

x∈X D(x, rx) based on the desideratum,

µr =

∑
x∈X pr−rxhx∑
x∈X pr−rx

, r ∈ {1, . . . , n}, (5)

as derived in Appendix A. We update the centroids after every training epoch.

A sufficient condition for satisfying the desideratum in (4) is the monotonicity constraint, given by

d(hx, µrx+s) ≤ d(hx, µrx+t) for all |s| ≤ |t|, (6)

as proven in Appendix B. In general, this monotonicity can be achieved, provided that the centroids
are arranged directionally according to the ranks, and the instance hx is located near the centroid
µrx , as illustrated in Figure 3(a).

To design an embedding space in which instances and centroids are well aligned according to the
desideratum in (4), we optimize the encoder parameters by minimizing the loss function

ℓtotal =
∑

x∈X ℓdisc(x) +
∑

x,y∈X ℓorder(x, y) (7)

where ℓdisc is the discriminative loss, and ℓorder is the stochastic order loss.

Discriminative loss: To encourage the desideratum in (4), we employ

ℓdisc(x) =
∑T

t=1 (D(x, rx)−D(x, rx + t) +D(x, rx)−D(x, rx − t)) (8)

=
∑T

t=1

∑
s(2ps − ps−t − ps+t)d

2(hx, µrx+s) (9)

=
∑

s αsd
2(hx, µrx+s) (10)

where αs =
∑T

t=1(2ps − ps−t − ps+t).

Note that the coefficient αs is a discrete approximation of the 2nd-order derivative of the Gaussian
distribution, which has inflection points. Therefore, there exists a threshold δ such that αs is positive
if |s| < δ, while negative otherwise, as shown in Figure 3(b). Hence, to minimize the discriminative
loss, d(hx, µrx+s) should be reduced if |s| < δ. In other words, hx should be attracted to the
centroids for the ranks within the range (rx − δ, rx + δ). On the contrary, if |s| > δ, d(hx, µrx+s)
should be increased, thereby repelling hx from the centroids for the ranks outside (rx − δ, rx + δ).
To summarize, ℓdisc makes each hx attracted to the corresponding centroid µrx and its neighbors (to
consider the label error), but repelled from the other centroids.

Stochastic order loss: In order learning (Lim et al., 2020; Lee & Kim, 2021; Lee et al., 2022),
pairwise relationships between instances are used to construct a desired embedding space. Thus,
while the discriminative loss ℓdisc in (8) considers the geometric configuration of a single instance
x with respect to the centroids, the stochastic order loss ℓorder takes into account the geometric
configuration of two instances x and y simultaneously.

There are three ordering cases between x and y (Lim et al., 2020):

x ≺ y if r̄x − r̄y < −τ, x ≈ y if |r̄x − r̄y| ≤ τ, x ≻ y if r̄x − r̄y > τ, (11)

where τ is a threshold. For these three cases, Lee et al. (2022) use margin losses to align instances
according to the ranks. Similarly, the proposed ℓorder is based on margin losses. But, unlike Lee
et al. (2022), true ranks r̄x and r̄y are unknown in SOL. Also, each instance relates to multiple
centroids randomly in SOL. We hence develop ℓorder to address these differences.
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Algorithm 1 Stochastic Order Learning (SOL)
Input: A noisy dataset X , n = the number of ranks

1: Initialize centroids {µr}nr=1 via (5)
2: repeat
3: Fine-tune the encoder h to minimize ℓtotal in (7) ▷ Network training
4: for all r = 1, 2, . . . , n do
5: Update centroid µr via (5) ▷ Centroid rule
6: end for
7: for all x ∈ X do
8: Estimate the rank of x via (18)
9: end for

10: Detect the set of outliers
⋃n

r=1 Xr via (19) ▷ Outlier detection
11: for all x ∈

⋃n
r=1 Xr do

12: Estimate the label noise êx via (20)
13: Refine the label of x via (21) ▷ Relabeling
14: end for
15: until predefined number of epochs
Output: Updated labels {rx}, centroids {µr}nr=1, encoder h

Since only noisy ranks rx and ry are available, the true ranks r̄x and r̄y in (11) need to be re-
represented using (1). Let the label noise of samples x and y be s and t, respectively. Then r̄x − r̄y
is equal to rx − ry − s + t. As we model label noise as stochastic variables, we can compute the
probabilities for the three ordering cases using (2):

Pr(x ≺ y) =
∑

s

∑
t:rx−ry−s+t<−τ pspt, (12)

Pr(x ≈ y) =
∑

s

∑
t:|rx−ry−s+t|≤τ pspt, (13)

Pr(x ≻ y) =
∑

s

∑
t:rx−ry−s+t>τ pspt. (14)

Then, we define the margin loss for the case x ≺ y as

ℓx≺y =
∑

r≤rx
max{D(x, r)−D(y, r) + γ, 0}+

∑
r≥ry

max{D(y, r)−D(x, r) + γ, 0} (15)

where γ is a margin. To minimize the first sum in (15), D(x, r)−D(y, r) =
∑

s ps(d
2(hx, µr+s)−

d2(hy, µr+s)) should be reduced for r ≤ rx. Thus, hx should be near µr+s, while hy should be
far from µr+s. Note that this is enforced for small offsets s only because of the Gaussian weights
ps. Similarly, for r ≥ ry and a small s, hx should be far from µr+s, while hy should be near µr+s.
Hence, ℓx≺y helps the arrangement of instances and centroids in the embedding space, as illustrated
in Figure 3(c). Note that the loss ℓx≻y for the case x ≻ y is formulated in a symmetric manner.

Also, when x ≈ y, hx and hy should be close to each other. We hence define

ℓx≈y =
∑

r∈{1,...,n} max(|D(x, r)−D(y, r)| − γ, 0). (16)

Overall, we define the stochastic order loss as

ℓorder(x, y) = Pr(x ≻ y)ℓx≻y + Pr(x ≈ y)ℓx≈y + Pr(x ≺ y)ℓx≺y. (17)

3.3 INFERENCE RULE

In the testing phase, based on the desideratum in (4), we estimate the rank of an unseen instance x
by

r̂x = argminr∈{1,...,n} D(x, r). (18)

5
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Table 1: Performance comparison on the MORPH II dataset.

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
SPR (Wang et al., 2022) 8.446 41.71 8.881 34.79 9.239 36.89 9.993 28.14
ACL (Ye et al., 2023) 9.017 36.75 9.492 35.61 9.314 35.74 9.743 34.16
C-Mixup (Yao et al., 2022) 3.063 82.26 3.393 77.21 3.395 76.84 3.415 76.65

POE (Li et al., 2021) 2.989 82.88 3.093 80.33 3.253 79.23 3.580 74.41
MWR (Shin et al., 2022) 2.570 90.07 2.693 89.25 2.851 87.16 3.089 84.34
GOL (Lee et al., 2022) 2.516 90.89 2.671 89.07 2.861 85.97 3.078 84.70

SOL w/o refinement 2.507 91.26 2.657 88.71 2.842 86.89 2.995 84.79
SOL 2.489 91.35 2.663 89.62 2.826 87.70 2.986 85.88

Table 2: Performance comparison on the CLAP2015 dataset.

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
POE (Li et al., 2021) 4.052 70.34 4.169 68.86 4.390 65.52 4.538 65.34
MWR (Shin et al., 2022) 3.577 79.80 3.830 76.18 4.299 72.85 4.600 69.60
GOL (Lee et al., 2022) 3.624 77.94 3.866 76.03 4.105 72.10 4.284 70.90

SOL w/o refinement 3.556 78.41 3.766 76.37 4.058 73.68 4.208 72.57
SOL 3.559 78.68 3.764 77.11 4.002 73.68 4.170 71.64

3.4 OUTLIER DETECTION AND RELABELING

To obtain a more reliable rank estimator, we identify outliers, likely to have extreme label errors,
among instances in the noisy training set and refine their labels by estimating the errors. Then, in
turn, we fine-tune the encoder or equivalently revamp the embedding space, so the instances are
better arranged based on the refined rank information.

Outlier detection: We first estimate the rank of each training instance x using the inference rule in
(18). Then, for each rank r ∈ {1, . . . , n}, we detect the set Xr of outliers by

Xr = {x : rx = r and |rx − r̂x| ≥ β · max
y:ry=r

|ry − r̂y|} (19)

where β ∈ (0, 1) is a constant to control the precision of the outlier detection.

Relabeling: For each detected outlier x ∈
⋃n

r=1 Xr, we estimate its label error as

êx =

{
1

2|X |
∑

y∈X |ry − r̂y| if rx > r̂x,

− 1
2|X |

∑
y∈X |ry − r̂y| if rx < r̂x.

(20)

Then, from (1), we refine the rank of x by

rx ← rx − êx. (21)

We note that, in (20), |êx| is determined as half of the average absolute difference between noisy
and estimated ranks over all training instances. It is to prevent drastic changes in rank labels, which
may rather increase the label errors after relabeling. We repeat the encoder fine-tuning and the
outlier detection and relabeling alternately to gradually reduce the label errors and construct a better
embedding space. Algorithm 1 summarizes the overall process of SOL.

4 EXPERIMENTAL RESULTS

4.1 IMPLEMENTATION

We adopt VGG16 (Simonyan & Zisserman, 2015), initialized with the pre-trained parameters on
ILSVRC2012 (Deng et al., 2009), as the encoder h. We use the Adam optimizer (Kingma & Ba,

6
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Table 3: Performance comparison on the AADB dataset.

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
POE (Li et al., 2021) 0.122 89.00 0.123 89.30 0.120 89.10 0.124 88.70
MWR (Shin et al., 2022) 0.123 89.00 0.124 87.60 0.122 89.80 0.131 87.70
GOL (Lee et al., 2022) 0.114 92.40 0.117 91.80 0.119 91.00 0.117 92.00

SOL w/o refinement 0.112 93.20 0.115 93.10 0.117 91.40 0.117 92.20
SOL 0.111 92.70 0.114 93.20 0.115 92.00 0.114 92.60

Table 4: Performance comparison on the RSNA dataset.

κ = 0.1 κ = 0.15 κ = 0.2

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
POE (Li et al., 2021) 8.517 33.50 8.614 39.50 8.796 36.00
MWR (Shin et al., 2022) 7.833 41.00 8.239 39.50 8.353 39.50
GOL (Lee et al., 2022) 8.170 38.50 7.995 38.50 8.334 40.50

SOL w/o refinement 7.967 38.50 7.800 42.50 8.196 44.00
SOL 7.579 46.50 7.706 39.00 8.051 39.50

2015) with a batch size of 32 and a weight decay of 5× 10−4. Also, we set the learning rate to 10−4

for training on facial age estimation datasets and 5 × 10−5 for others. For data augmentation, we
do random horizontal flips and random crops. We set T = 1 in (8) and τ = 3 in (12)∼(14) as the
default mode. More implementation details are in Appendix C.2.

4.2 DATASETS

We conduct our experiments on facial age estimation (Ricanek & Tesafaye, 2006; Escalera et al.,
2015), aesthetic score regression (Kong et al., 2016), and medical assessment (Halabi et al., 2019)
datasets to assess the proposed algorithm. Due to the space limitation, we provide more details of
the datasets in Appendix E.

4.3 RANK ESTIMATION

We evaluate the rank estimation performances at various severities of label noise. Specifically, we
randomly generate label errors according to the zero-mean Gaussian distribution with a standard
deviation of σ, given by

σ = κ · σX (22)

where κ is a ratio in (0, 1) to control the severity of label noise, and σX is the standard deviation of
true rank labels in the training set. We list the values of σ used for generating label noise in each
experiment in Appendix C.3.

Metrics: We adopt the mean absolute error (MAE) and cumulative score (CS) metrics. MAE is the
average absolute error between estimated and ground-truth ranks, and CS computes the percentage
of instances whose absolute errors are less than or equal to a tolerance value of 5.

Age estimation: For facial age estimation, we employ MORPH II and CLAP2015, which are two of
the most popular datasets. We compare the proposed SOL algorithm with recent noise-robust clas-
sification methods SPR (Wang et al., 2022) and ACL (Ye et al., 2023), and noise-robust regression
method C-mixup (Yao et al., 2022). Also, we compare the proposed SOL algorithm with POE (Li
et al., 2021), MWR (Shin et al., 2022), and GOL (Lee et al., 2022), which are state-of-the-art rank
estimators. For fair comparison, the same backbone of VGG16 (Simonyan & Zisserman, 2015) was
used for all methods.

Table 1 compares the results on the MORPH II dataset. SPR (Wang et al., 2022) and ACL (Ye et al.,
2023), which are recent noise robust-classification methods, do not take ordinal relations of different

7
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Table 5: Comparison of the average noise levels before and after the label refinement.

CLAP2015 MORPH II

MAE Standard Deviation MAE Standard Deviation

κ = 0.2 1.961 → 1.959 1.508 → 1.537 1.737 → 1.718 1.361 → 1.343
κ = 0.3 2.970 → 2.896 2.262 → 2.254 2.599 → 2.534 1.991 → 1.942
κ = 0.4 4.006 → 3.793 3.038 → 2.899 3.504 → 3.401 2.638 → 2.499
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𝜅 = 0.2 𝜅 = 0.3 𝜅 = 0.4

(a)

Noise 

severity

Number of 

instances (Before)

Number of 

instances (After)

4 300 294

5 125 107

6 41 36

7 9 12

8 2 1

Noise 

severity

Number of 

instances (Before)

Number of 

instances (After)

4~5 883 848

6~7 328 305

8~9 77 59

10~11 10 9

12 2 0

Noise 

severity

Number of 

instances (Before)

Number of 

instances (After)

7~8 367 351

9~10 157 134

11~12 59 37

13~14 10 5

15~16 5 3

c

(b) (c)

Figure 4: Comparison of the numbers of instances at each noise level before and after the label
refinement on the MORPH II dataset.

classes into account. Thus, compared to rank estimation methods, they yield poor performances as
they cannot distinguish between subtle differences across ordered ranks. To show the effectiveness
of our proposed refinement (i.e. outlier detection and relabeling) scheme, we list the results of the
proposed SOL with and without the refinement scheme. Note that even without the refinement,
SOL outperforms the conventional algorithms in terms of MAE at all κ’s. By further applying
the refinement scheme, we reduce extreme label errors in MORPH II, as illustrated in Figure 4.
Consequently, the refined labels enable SOL to provide even better rank estimation results.

Table 2 lists the performances on the CLAP dataset. The proposed algorithm also achieves the best
MAE scores in all settings. Detecting outliers is more challenging when the average noise level
(i.e. standard deviation) is relatively low. Thus, at κ = 0.2, the label refinement rather degrades the
MAE, though negligibly. In contrast, for all the other noise settings, SOL achieves the best scores
with the refinement. Note that GOL (Lee et al., 2022) also aims to sort instances according to their
ranks in the embedding space. Compared to GOL, the proposed SOL achieves a larger CS score gap
when the noise level is high (κ = 0.4) than when it is low (κ = 0.2). This indicates that, despite
of label errors, SOL arranges the instances according to their true ranks more reliably than GOL. In
other words, SOL is more noise-robust than GOL.

Aesthetic score regression: Table 3 lists the results on the AADB dataset. Note that each CS score
in this table computes the percentage of images whose absolute errors are less than or equal to 0.25,
rather than 5, because the ranks in AADB are decimal values within [0, 1]. It is challenging to esti-
mate aesthetic scores reliably due to the subjectivity and ambiguity of aesthetic criteria. However,
SOL performs the best in all tests. It is worth pointing out that, even at the highest κ = 0.5, the
proposed SOL achieves better scores than the second-best GOL at the lowest κ = 0.2.

Medical assessment: In Table 4, we compare the rank estimation results on the RSNA dataset. The
proposed SOL yields the best results with no exception. Specifically, at κ = 0.2, SOL without the
refinement scheme outperforms the second-best GOL with significant gaps of 0.138 and 3.5 in the
MAE and CS metrics, respectively. It is meaningful because obtaining error-free annotations on
medical datasets is difficult and costly in general.
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(a)

41 → 39 (39)23 → 22 (22) 19 → 16 (16)42 → 36 (36) 18 → 23 (23)

40 → 42 (44) 17 → 16 (16)24 → 22 (23) 41 → 37 (34)66 → 62 (62)

24 → 22 (23)30 → 32 (32)

19 → 2 1 (23) 19 → 17 (17)

(b)

42 → 43 (38) 49 → 50 (42)

57 → 61 (56) 24 → 23 (30)

Figure 5: (a) Success and (b) failure cases of the label refinement. Under each image, the noisy,
refined, and true ranks are specified: noisy→ refined (true).

Table 6: Ablation studies for the loss functions in (7) on the CLAP2015 dataset.

κ = 0.2 κ = 0.3 κ = 0.4

Method ℓdisc ℓorder MAE (↓) CS (↑) MAE (↓) CS (↑) MAE (↓) CS (↑)
I ✓ 15.885 23.26 16.576 19.33 38.391 17.79
II ✓ 3.598 78.13 3.888 75.90 4.038 74.70
III ✓ ✓ 3.556 78.41 3.766 76.37 4.058 73.68

4.4 ANALYSIS

Label refinement: The proposed SOL algorithm is capable of refining noisy ranks, as well as
obtaining a reliable rank estimator from a noisy training set. In Table 5, we report MAEs between a
noisy rank rx and the true rank r̄x and the standard deviations of such noise levels before and after
the label refinement. In this test, we use the CLAP2015 and MORPH II datasets. Note that the MAE
or the standard deviation is reduced in 11 out of 12 tests, confirming the effectiveness of the label
refinement scheme.

For further analysis, we test how the refinement changes the number of instances at each noise level
(i.e. label error). Figure 4 plots such statistics on the MORPH dataset at various κ’s. The red boxes
in Figure 4 specify the numbers of instances with high noise levels. We see that the number of
instances with an extreme noise level is reduced in general. Especially, at κ = 0.4, the number
of instances with 2 ≤ ex ≤ 4 is increased, while that with ex ≥ 7 is reduced significantly. It
is desirable because severe label errors hinder the construction of a well-sorted embedding space.
Consequently, in Tables 1∼4, the refinement generally boosts the performances of SOL.

We also provide examples of detected outliers in Figure 5. These examples are from MORPH II
at κ = 0.4. With the refinement scheme, instances with extreme label errors in Figure 5(a) are
relabelled more faithfully to the true ranks. Along with these successful cases, we also show some
failures cases in Figure 5(b). Although SOL succeeds in detecting these instances as outliers, it fails
to correct the labels in the right directions. We see that facial images with closed eyes tend to be
corrected wrongly. More label refinement results are provided in Appendix D.1.

Ablation study: Table 6 compares ablated methods for the loss functions in (7). Method I employs
the discriminative loss ℓdisc only, while method II does the stochastic order loss ℓorder only. Com-
pared with method III (SOL), both methods I and II degrade the rank estimation results, indicating
that both losses contribute to the performance improvement and are complementary to each other.
Note that method I yields poor results, since the discriminative loss alone cannot construct a mean-
ingful embedding space; it is trivial to reduce ℓdisc to zero by merging all instances into a single
point in the embedding space. However, by comparing methods II and III, we see that ℓdisc helps
to sort instances in the embedding space by properly attracting and repelling instances according to
their ranks.
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Table 7: Comparison of rank estimation results on the MORPH II dataset according to β in (19).

β = 0.8 β = 0.85 β = 0.9 β = 0.95

MAE (↓) CS (↑) MAE (↓) CS (↑) MAE (↓) CS (↑) MAE (↓) CS (↑)
κ = 0.2 2.511 90.07 2.506 90.80 2.489 91.35 2.525 90.80
κ = 0.3 2.672 90.16 2.715 88.89 2.663 89.62 2.677 89.80
κ = 0.4 2.839 87.25 2.811 87.61 2.826 87.70 2.897 86.98

Table 8: Comparison of rank estimation results on the MORPH II dataset according to T in (8).

T = 1 T = 2 T = 3

MAE (↓) CS (↑) MAE (↓) CS (↑) MAE (↓) CS (↑)
κ = 0.2 2.507 91.26 2.573 90.53 2.565 90.80
κ = 0.3 2.657 88.71 2.685 89.71 2.658 89.53
κ = 0.4 2.842 86.89 2.839 87.34 2.810 87.52

Table 9: Comparison of rank estimation results on the MORPH II dataset according to σ in (2).

σ = 0.5 σ = 1 σ = 1.5

MAE (↓) CS (↑) MAE (↓) CS (↑) MAE (↓) CS (↑)
κ = 0.2 2.557 90.62 2.507 91.26 2.529 90.80
κ = 0.3 2.682 88.62 2.657 88.71 2.689 89.44
κ = 0.4 2.850 86.98 2.842 86.89 2.869 86.70

Analysis on β: Table 7 compares the MAE and CS scores at different β’s on the MORPH II dataset.
Note that β is a parameter to control the precision of outlier detection in (19). In general, at high
β ≥ 0.9, SOL yields better results than at low β < 0.9. It is because inaccurate outlier detection at
low β may deteriorate the network training by increasing the label noise. Thus, we set β = 0.9 as
the default option.

Analysis on T : Table 8 compares the results at different T ’s on MORPH II. T is a hyper-parameter
used in (8). Given an instance, using a bigger T enforces that the stochastic similarities to more
neighboring ranks are considered in the optimization. In the case of κ = 0.4, the performance gets
better with a bigger T . However, excluding this case, using T = 1 yields decent results. Thus, we
set T = 1 in the default mode.

Analysis on σ: Table 9 compares the MAE and CS scores at different σ’s on MORPH II. In (2),
σ is the standard deviation of label errors e. The larger σ, the more strongly each instance x is
associated with the centroids for distant ranks from rx. Therefore, it may hinder constructing a rank
discriminative embedding space. On the other hand, if σ is small, the network training is vulnerable
to label errors because each instance x is related to nearby centroids only. Hence, at σ = 1, which
is the default option, SOL achieves good results in most tests.

5 CONCLUSIONS

The SOL algorithm for rank estimation in the presence of label noise was proposed in this work.
First, we represented label errors as random variables. Then, we formulated a desideratum to reduce
the dissimilarity of an instance from the stochastically related centroids. Using the discriminative
loss and the stochastic order loss, we constructed an embedding space satisfying the desideratum.
Specifically, we trained a network to arrange the instances according to their unknown true ranks.
Moreover, by using the trained network, we identified outliers, likely to have extreme label errors,
and relabelled them for data refinement. Extensive experiments on various rank estimation tasks
demonstrated that the proposed SOL algorithm yields decent rank estimation results even when
labels are corrupted by noise.
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A DERIVATION OF CENTROID RULE IN (5)

Based on the desideratum in (4), we formulate a cost function

J =
∑

x∈X D(x, rx) (23)

=
∑

x∈X
∑

s psd
2(hx, µrx+s) (24)

=
∑

x∈X
∑

s ps(µ
T
rx+sµrx+s − 2hT

xµrx+s + hT
x hx) (25)

=
∑

x∈X
∑

r pr−rx(µ
T
r µr − 2hT

xµr + hT
x hx). (26)

We then update the centroids {µr}nr=1to minimize the cost function J . By differentiating J with
respect to each µr and setting it to zero, we have

∂J
∂µr

=
∑

x∈X pr−rx(2µr − 2hx) = 0. (27)

Hence, the optimal centroid is given by

µr =

∑
x∈X pr−rxhx∑
x∈X pr−rx

, r ∈ {1, . . . , n}. (28)

B DERIVATION OF MONOTONICITY CONSTRAINT IN (6)

The desideratum in (4) can be written as∑
s psd

2(hx, µrx+s) ≤
∑

s psd
2(hx, µ(rx+k)+s) for all k. (29)

For simpler notations, let Ls ≜ d2(hx, µrx+s). Then, the desideratum is given by∑
s psLs ≤

∑
s psLs+k for all k. (30)

First, let us consider the case for k = 1. From (30), we have

· · ·+ p2L−2 + p1L−1 + p0L0 + p1L1 + p2L2 + · · · ≤ (31)
· · ·+ p3L−2 + p2L−1 + p1L0 + p0L1 + p1L2 + · · ·

since ps in (2) is symmetric. Thus,

(p0 − p1)(L0 − L1) + (p1 − p2)(L−1 − L2) + (p2 − p3)(L−2 − L3) + · · · ≤ 0. (32)

Because ps in (2) is also unimodal, the coefficients (ps − ps+1) are positive for all s ≥ 0. Hence,
the inequality in (32) is satisfied if

L0 ≤ L1, L−1 ≤ L2, L−2 ≤ L3, · · · (33)

or equivalently
L−m ≤ L1+m for all m ≥ 0. (34)

Next, let us consider the case for k = 2. Similar to (32), we have

(p0 − p2)(L0 − L2) + (p1 − p3)(L−1 − L3) + (p2 − p4)(L−2 − L4) + · · · ≤ 0. (35)

This is satisfied if
L1−m ≤ L1+m for all m ≥ 0. (36)

In general, if k ≥ 1, we have the following condition:

L⌊ k
2 ⌋−m ≤ L⌈ k

2 ⌉+m for all m ≥ 0. (37)

Note that (34) and (36) are special cases of (37). Symmetrically, if k ≤ −1, we have the condition:

L⌊ k
2 ⌋−m ≥ L⌈ k

2 ⌉+m for all m ≥ 0. (38)

Both conditions in (37) and (38) are satisfied if

L0 ≤ L±1 ≤ L±2 ≤ L±3 ≤ · · · , (39)

implying that Lk should be a monotonic increasing function of |k|. Rewriting this monotonicity
constraint in the original notations, we have the sufficient condition in (6),

d(hx, µrx+s) ≤ d(hx, µrx+t) for all |s| ≤ |t|. (40)
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C IMPLEMENTATION DETAILS

C.1 NETWORK ARCHITECTURE

As described in Section 3.2, we employ an encoder to map each instance into a feature vector in
an embedding space. The network structure used for the encoder h is specified in Figure 6. The
encoder is based on the VGG16 network and takes a 224× 224× 3 image as input.

Figure 6: Network structure of the encoder h.

C.2 HYPER-PARAMETER SETTINGS

Using an encoder based on the VGG16 network, we train the network for 100 epochs. According to
the dataset, some of the hyper-parameters such the learning-rate, β and τ are set differently. Table 10
summarizes the hyper-parameters used for training and detecting the outliers.

Table 10: Hyper-parameter settings

Dataset Learning rate Batch size β τ T γ σ

MORPH II 10−4 32 0.9 3 1 0.25 1
CLAP2015 10−4 32 0.85 3 1 0.25 1
AADB 5× 10−5 32 0.85 5 1 0.25 1
RSNA 5× 10−5 32 0.9 3 1 0.25 1

C.3 DETAILS OF σ IN (22)

We specify the actual values of σ used for generating the Gaussian noise in (22). Table 11 lists the
values of σ according to κ.

Table 11: Actual values of σ according to κ.

σ

κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

MORPH II 1.092 1.638 2.184 3.276 4.368 5.460
CLAP2015 1.235 1.853 2.471 3.706 4.941 6.177
AADB 0.018 0.0276 0.037 0.055 0.074 0.102
RSNA 4.118 6.177 8.326 12.355 16.473 20.591
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D MORE RESULTS

D.1 MORE EXAMPLES OF DETECTED OUTLIERS

We provide more examples of the detected outlier instances. Figures 7, 8, and 9 show results from
the MORPH II, CLAP2015, and AADB dataset, respectively

(a)

24 → 22 (23)

19 → 17 (17)

(b)

58 → 55 (55)

24 → 22 (23) 48 → 51 (51)

41 → 39 (39)47 → 45 (45)

19 → 16 (16)

44 → 46 (47)

21 → 18 (18)

64 → 67 (67)

52 → 48 (48)

62 → 65(65)

18 → 24 (24) 46 → 50 (42) 75 → 72 (76)

14 → 11 (18) 63 → 67 (61)

MORPH II (𝜅 = 0.3)

Figure 7: (a) Success and (b) failure cases of the label refinement on the MORPH II dataset at
κ = 0.3. Under each image, the noisy, refined, and true ranks are specfied: noisy→ refined (true).

CLAP2015 (𝜅 = 0.4)

(a)

59 → 63 (63)51 → 46 (46) 28 → 32 (32)50 → 52 (52) 52 → 57 (57)

23 → 26 (26) 25 → 26 (26)18 → 23 (23) 54 → 51 (51)66 → 72 (72)

50 → 54 (54)65 → 62 (62)

34 → 26 (26) 9 → 11 (11)

(b)
52 → 58 (49) 44 → 59 (50)

57 → 58 (52) 81 → 73 (78)

Figure 8: (a) Success and (b) failure cases of the label refinement on the CLAP dataset at κ = 0.4.
Under each image, the noisy, refined, and true ranks are specfied: noisy→ refined (true).

AADB (𝜅 = 0.3)

(b)

0.46 → 0.35 (0.50)

0.53 → 0.43 (0.55)

0.95 → 1.00 (1.00)

(a)

0.21 → 0.30 (0.30) 0.14 → 0.10 (0.10)0.64 → 0.7 (0.70)

0.90 → 0.80 (0.80) 0.59 → 0.65 (0.65)0.76 → 0.70 (0.70) 0.82 → 0.75 (0.75)

0.91 → 0.95 (0.95)

0.72 → 0.75 (0.75)

Figure 9: (a) Success and (b) failure cases of the label refinement on the AADB dataset at κ = 0.3.
Under each image, the noisy, refined, and true ranks are specfied: noisy→ refined (true).
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E DATASETS

MORPH II (Ricanek & Tesafaye, 2006): It is a dataset for facial age estimation, consisting of 55K
facial images in the age range [16, 77]. It provides age, gender, and race labels. As in Chang et al.
(2011), we use 5,492 Caucasian images, which are divided into training and test sets with ratio 8:2.

CLAP2015 (Escalera et al., 2015): It is for apparent age estimation; the apparent age of each
image was rated by at least 10 annotators within the range [3, 85], and the mean rating was used as
the ground-truth. This dataset provides 4,691 facial images in total, which are split into 2,476 for
training, 1,136 for validation, and 1,079 for testing.

AADB (Kong et al., 2016): It is a dataset for aesthetic score regression, composed of 10,000 pho-
tographs of various themes such as scenery and close-up. We use 8,500 images for training, 500
for validation, and 1,000 for testing. Each image is annotated with an aesthetic score in [0, 1]. We
quantize the continuous score with a step size of 0.01 to have 101 score ranks.

RSNA (Halabi et al., 2019): It is a dataset for pediatric bone age assessment, containing 14,236
hand radiographs. We employ the official evaluation protocol in Halabi et al. (2019): 12,611 for
training, 1,425 for validation, and 200 for testing. The bone age range is [0, 216] in months.

F MORE EXPERIMENTS

F.1 MORE COMPARISONS

Due to limited space, in the main paper, we compare the proposed algorithm with only rank estima-
tion methods for CLAP2015 (Escalera et al., 2015), AADB (Kong et al., 2016), and RSNA (Halabi
et al., 2019) datasets. Here, we include the results of conventional noise-robust classification and
regression methods.

Table 12 is an extended version of Table 2.

Table 12: Performance comparison on the CLAP2015 dataset.

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
SPR (Wang et al., 2022) 9.170 44.21 9.215 43.19 9.534 40.12 9.832 37.72
ACL (Ye et al., 2023) 9.483 41.06 9.239 39.57 9.583 452.3 9.651 38.14
C-Mixup (Yao et al., 2022) 5.042 61.65 5.285 58.71 5.302 58.52 5.576 55.40

POE (Li et al., 2021) 4.052 70.34 4.169 68.86 4.390 65.52 4.538 65.34
MWR (Shin et al., 2022) 3.577 79.80 3.830 76.18 4.299 72.85 4.600 69.60
GOL (Lee et al., 2022) 3.624 77.94 3.866 76.03 4.105 72.10 4.284 70.90

SOL w/o refinement 3.556 78.41 3.766 76.37 4.058 73.68 4.208 72.57
SOL 3.559 78.68 3.764 77.11 4.002 73.68 4.170 71.64

Table 13 is an extended version of Table 3.

Table 13: Performance comparison on the AADB dataset.

κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
SPR (Wang et al., 2022) 0.149 81.20 0.150 82.10 0.151 81.60 0.158 81.10
ACL (Ye et al., 2023) 0.147 82.90 0.148 82.50 0.157 79.43 0.159 78.95
C-Mixup (Yao et al., 2022) 0.119 91.13 0.122 89.31 0.130 88.51 0.135 86.39

POE (Li et al., 2021) 0.122 89.00 0.123 89.30 0.120 89.10 0.124 88.70
MWR (Shin et al., 2022) 0.123 89.00 0.124 87.60 0.122 89.80 0.131 87.70
GOL (Lee et al., 2022) 0.114 92.40 0.117 91.80 0.119 91.00 0.117 92.00

SOL w/o refinement 0.112 93.20 0.115 93.10 0.117 91.40 0.117 92.20
SOL 0.111 92.70 0.114 93.20 0.115 92.00 0.114 92.60
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Table 14 is an extended version of Table 4.

Table 14: Performance comparison on the RSNA dataset.

κ = 0.1 κ = 0.15 κ = 0.2

Algorithm MAE(↓) CS(↑) MAE(↓) CS(↑) MAE(↓) CS(↑)
SPR (Wang et al., 2022) 33.80 14.00 36.48 9.50 34.88 6.50
ACL (Ye et al., 2023) 35.09 11.33 35.15 11.25 35.26 10.17
C-Mixup (Yao et al., 2022) 8.200 40.10 8.621 35.42 9.054 33.33

POE (Li et al., 2021) 8.517 33.50 8.614 39.50 8.796 36.00
MWR (Shin et al., 2022) 7.833 41.00 8.239 39.50 8.353 39.50
GOL (Lee et al., 2022) 8.170 38.50 7.995 38.50 8.334 40.50

SOL w/o refinement 7.967 38.50 7.800 42.50 8.196 44.00
SOL 7.579 46.50 7.706 39.00 8.051 39.50

F.2 PERFORMANCE ON PARTIALLY CORRUPTED DATA

Table 15 lists the MAE results of when only 10% of the total data have labeling errors. We compare
the proposed algorithm to the state-of-the-art algorithm GOL (Lee et al., 2022). Even in this case,
the proposed SOL achieves better results than GOL.

Table 15: MAE results of when only 10% of total data is corrupted on the CLAP2015 dataset.

Algorithm κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

GOL (Lee et al., 2022) 3.442 3.540 3.590 3.690
SOL (Proposed) 3.420 3.505 3.549 3.639

F.3 RELABELING SCHEME

In our proposed relabeling scheme, the rank of detected outliers are adjusted by the same magnitude
using (20). Here, we assess the performance of when each detected outlier is relabeled using dif-
ferent magnitudes. Specifically, we adjust the rank of each outlier instance by half of the absolute
difference between its noisy and estimated rank. Table 16 lists the results on the CLAP2015 dataset.
Compared to when no relabeling method is used, method II shows performance improvement. How-
ever, our proposed relabeling scheme provides better results. Using the same average values to adjust
the ranks prevent drastic changes in rank labels, thus it results in more stable performance.

Table 16: Ablation studies for relabeling scheme on the CLAP2015 dataset at κ = 0.4.

Relabeling mechanism MAE (↓) CS (↑)
I No relabeling 4.058 73.68
II Different magnitudes 4.012 72.75
III Proposed 4.002 73.68

G LIMITATIONS

SOL is the first attempt to extend the concept of order learning to noise-robust rank estimation.
Hence, not all details in real-world scenarios are covered. It is a future research issue to set noise
distributions adaptively according to each instance, and design an adaptive mechanism for selecting
optimal values of hyper-parameters.
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