
Under review as a conference paper at ICLR 2024

NEURAL TANGENT KERNELS FOR AXIS-ALIGNED
TREE ENSEMBLES

Anonymous authors
Paper under double-blind review

ABSTRACT

While axis-aligned rules are known to induce an important inductive bias in
machine learning models such as typical hard decision tree ensembles, theoretical
understanding of the learning behavior is largely unrevealed due to the discrete
nature of rules. To address this issue, we impose the axis-aligned constraint on soft
trees, which relax the splitting process of decision trees and are trained using a
gradient method, and present their Neural Tangent Kernel (NTK) that enables us
to analytically describe the training behavior. We study two cases: imposing the
axis-aligned constraint throughout the entire training process, or only at the initial
state. Moreover, we extend the NTK framework to handle various tree architectures
simultaneously, and prove that any axis-aligned non-oblivious tree ensemble can be
transformed into an axis-aligned oblivious tree ensemble with the same NTK. One
can search for suitable tree architecture via Multiple Kernel Learning (MKL), and
our numerical experiments show a variety of suitable features depending on the
type of constraints, which supports not only the theoretical but also the practical
impact of the axis-aligned constraint in tree ensemble learning.

1 INTRODUCTION

(b)(a)

Figure 1: Splitting strategies. (a): Axis-
aligned splitting, (b): Oblique splitting.

One of the most practical machine learning techniques
used in real-world applications is ensemble learning. It
combines the outputs of multiple predictors, often referred
to as weak learners, to obtain reliable results for complex
prediction problems. A hard decision tree is commonly
used as a weak learner. Its inductive bias caused by the
axis-aligned splitting of a feature space, which Figure 1(a)
shows, is considered to be important. For example, Grin-
sztajn et al. (2022) experimentally demonstrated that the
presence or absence of rotational invariance due to the
axis-aligned constraint has a significant impact on gen-
eralization performance, especially for tabular datasets.
However, although a number of machine learning models have been proposed that are aware of
axis-aligned partitioning (Chang et al., 2022; Humbird et al., 2019), it has not been theoretically clear
what properties emerge when the axis-aligned constraints are imposed.

In this paper, we consider ensemble learning of soft trees to realize a differentiable analysis of
axis-aligned splitting. A soft tree is a machine learning model that continuously relaxes the splitting
process in a decision tree and is trained using a gradient method. There are various reasons why
formulating trees in a soft manner is beneficial. Soft tree ensemble models are recognized for their
high empirical performance (Kontschieder et al., 2015; Popov et al., 2020; Hazimeh et al., 2020). In
addition, unlike hard decision trees, soft tree models can be updated sequentially (Ke et al., 2019)
and trained in conjunction with pre-training (Arik & Pfister, 2021), resulting in desirable traits for
continuous service deployment in real-world settings. Soft trees are also implemented in well-known
open-source software such as PyTorch Tabular (Joseph, 2021), and its practical application is thriving.

Recently, there has been progress in the theoretical analysis of soft tree ensembles (Kanoh &
Sugiyama, 2022; 2023) using the Neural Tangent Kernel (NTK) (Jacot et al., 2018). The NTK
framework provides analytical descriptions of ensemble learning with infinitely many soft trees,

1

Under review as a conference paper at ICLR 2024

yielding several non-trivial properties such as the existence of tree architectures that have exactly
the same training behavior even if they are non-isomorphic. However, the current NTK analysis
assumes all the input features to be taken into account in each splitting process of soft trees, resulting
in oblique splitting boundaries as shown in Figure 1(b). Therefore, it cannot directly incorporate the
axis-aligned constraint in its current state.

In this paper, we extend the NTK concept to the axis-aligned soft tree ensembles to uncover the
theoretical properties of the axis-aligned constraint. Our contributions can be summarized as follows:

• Closed form solution of the NTK induced by axis-aligned tree ensembles.
We succeed in extending the prior work of Kanoh & Sugiyama (2022; 2023) to axis-aligned trees
and successfully formulate a closed-form kernel induced by infinitely many axis-aligned tree
ensembles. Using this kernel, we are able to analytically obtain the behavior of the training of
axis-aligned trees (Theorem 2). We conducted a theoretical analysis on two cases: one in which the
axis-aligned constraint is always imposed during training, and the other in which only the initial
model is axis-aligned and training is conducted freely from there.

• Deriving the NTK of ensembles of various tree architectures.
Prior studies (Kanoh & Sugiyama, 2022; 2023) were limited to analyzing the scenario of an infinite
number of weak learners with identical architectures, which is not practical. This limitation is
particularly unrealistic when analyzing axis-aligned trees, as a single feature is used at each split
in axis-aligned trees (e.g., the second feature is always used at the first node in all trees, and the
third feature is not used at any trees), which may cause a lack of representation power. We have
successfully eliminated this unrealistic constraint and show that the NTK induced by a model that
computes the sum of outputs from multiple sub-models is equal to the sum of the NTKs induced by
each sub-model (Proposition 1). This proposition is applicable to not only tree ensembles but also
any ensemble models such as Generalized Additive Models (GAM) (Hastie & Tibshirani, 1986).

• Sufficiency of the oblivious tree for architecture search.
We show that any axis-aligned non-oblivious tree ensemble can be transformed into a set of
axis-aligned oblivious tree ensembles that induces exactly the same NTK (Proposition 2). This
proposition enables us to substantially reduce the number of potential tree architecture patterns.

• Finding suitable tree architecture via Multiple Kernel Learning (MKL).
We employ MKL (Gönen & Alpaydın, 2011; Aiolli & Donini, 2015), which determines the weights
of a linear combination of multiple kernels during training, to analyze the effect of the axis-aligned
constraint in feature selection. The learned weights of the linear combination of NTKs induced
by various tree architectures can be interpreted, using Proposition 1, as the proportion of the
presence of each tree architecture. Our empirical experiments suggest that the suitable features
vary depending on the type of training constraints.

2 PRELIMINARIES

2.1 SOFT TREE ENSEMBLES

We formulate regression using soft decision trees based on the literature (Kontschieder et al., 2015).
Let x ∈ RF×N be input data consisting of N samples with F features. Assume that there are M
soft decision trees and each tree has N splitting nodes and L leaf nodes. For each tree m ∈ [M] =
{1, . . . ,M}, we denote trainable parameters of the m-th soft decision tree as wm ∈ RF×N and
bm ∈ R1×N for splitting nodes, which correspond to feature selection and splitting threshold in
typical decision trees, and πm ∈ R1×L for leaf nodes.

Unlike typical hard decision trees, each leaf node ℓ ∈ [L] = {1, . . . ,L} in soft decision trees hold a
value µm,ℓ(xi,wm, bm) ∈ [0, 1] that represents the probability of input data reaching the leaf ℓ:

µm,ℓ(xi,wm, bm)=

N∏
n=1

σ(w⊤
m,nxi + βbm,n)︸ ︷︷ ︸

flow to the left

1ℓ↙n
(1− σ(w⊤

m,nxi + βbm,n))︸ ︷︷ ︸
flow to the right

1n↘ℓ
, (1)

where wm,n ∈ RF is the n-th column vector of the matrix wm, β ∈ R+ is a hyperparameter that
adjusts the influence of the splitting threshold, and 1ℓ↙n(1n↘ℓ) is an indicator function that returns
1 if the ℓ-th leaf is on the left (right) side of a node n and 0 otherwise.

2

Under review as a conference paper at ICLR 2024

Internal nodes use a decision function σ : R → [0, 1] that resembles the sigmoid. This function
is rotationally symmetric about the point (0, 1/2) and satisfies the conditions: limc→∞ σ(c) = 1,
limc→−∞ σ(c) = 0, and σ(0) = 0.5 for c ∈ R. Examples of such functions include the two-class
sparsemax function given as σ(c) = sparsemax([αc, 0]) (Martins & Astudillo, 2016), and the
two-class entmax function given as σ(c) = entmax([αc, 0]) (Peters et al., 2019). In this paper, we
mainly consider the scaled error function σ(c) = 1

2 erf(αc) +
1
2 = 1

2 (
2√
π

∫ αc

0
e−t2 dt) + 1

2 . As
the scaling factor α ∈ R+ (Frosst & Hinton, 2017) tends towards infinity, sigmoid-like decision
functions become step functions that correspond to (hard) Boolean operation. Note that if we replace
the right-flow term (1− σ(w⊤

m,nxi + βbm,n)) with 0 in Equation 1, we obtain a rule set, which is
represented by a linear graph architecture.

The function fm : RF × RF×N × R1×N × R1×L → R that returns the prediction of the m-th tree
is given by the weighted sum of leaf-specific parameters πm,ℓ, weighted by the probability that the
input data xi reaches each leaf:

fm(xi,wm, bm,πm) =

L∑
ℓ=1

πm,ℓµm,ℓ(xi,wm, bm). (2)

Furthermore, the output of the ensemble model with M trees for each input xi is formulated as a
function f : RF × RM×F×N × RM×1×N × RM×1×L → R as follows:

f(xi,w, b,π) =
1√
M

M∑
m=1

fm(xi,wm, bm,πm). (3)

In general, parameters w = (w1, . . . ,wM), b = (b1, . . . , bM), and π = (π1, . . . ,πM) are ran-
domly initialized using independently and identically distributed normal distributions with mean 0
and variance 1 and updated using gradient descent. In this paper, the term “tree architecture” refers to
both the graph topological structure of the tree and a parameter initialization method at each node.
Even if the graph topology is identical, those architectures are considered to be distinct when different
parameter initialization methods are adopted.

2.2 NEURAL TANGENT KERNELS

We introduce the NTK based on the gradient flow using training data x ∈ RF×N , the prediction
target y ∈ RN , trainable parameters θτ ∈ RP at time τ , and an arbitrary model function g(x,θτ) :
RF×N × RP → RN . With the learning rate η and the mean squared error loss function L, the
gradient flow equation is given as

∂θτ
∂τ

=−η
∂L(θτ)

∂θτ
=−η

∂g(x,θτ)

∂θτ
(g(x,θτ)− y). (4)

Considering the formulation of the gradient flow in the function space using Equation 4, we obtain

∂g(x,θτ)

∂τ
=

∂g(x,θτ)

∂θτ

⊤
∂θτ
∂τ

= −η
∂g(x,θτ)

∂θτ

⊤
∂g(x,θτ)

∂θτ︸ ︷︷ ︸
Neural Tangent Kernel:Ĥτ (x,x)

(g(x,θτ)− y). (5)

Here, we can see the NTK matrix Ĥτ (x,x). In general, the NTK can take two input datasets
x ∈ RF×N and x′ ∈ RF×N ′

, resulting in Ĥτ (x,x
′) with the shape of RN×N ′

. The kernel value
calculated for the two samples xi and xj is represented as Θ̂τ (xi,xj).

From Equation 5, if the NTK does not change during training, the formulation of the gradient flow
in the function space becomes a simple ordinary differential equation, and it becomes possible to
analytically calculate how the model’s output changes during training. When the NTK is positive
definite, it is known that the kernel does not change from its initial value during the gradient descent
with an infinitesimal step size when considering an infinite number of soft binary trees (Lee et al.,
2019; Kanoh & Sugiyama, 2022) under the formulation described in Section 2.1.

The NTK induced by a typical soft tree ensemble with infinitely many trees is known to be obtained
in closed-form at initialization.

3

Under review as a conference paper at ICLR 2024

Initial model

Trained model

(a) (b) (c)

Figure 2: Splitting boundaries. (a): AAA, Always Axis-Aligned, during training, (b): AAI, Axis-
Aligned at Initialization, but not during training, (c): Oblique splitting conducted by typical soft trees.

Theorem 1 (Kanoh & Sugiyama (2023)). Assume that all M trees have the same tree architecture.
Let Q : N → N ∪ {0} be a function that takes the depth as input and returns the number of leaves
connected to internal nodes at that depth. For any given tree architecture, as the number of trees M
goes to infinity, the NTK probabilistically converges to the following deterministic limiting kernel:

ΘOblique(xi,xj) := lim
M→∞

Θ̂Oblique
0 (xi,xj) =

D∑
d=1

Q(d)
(
d Σ{i,j}T d−1

{i,j}Ṫ{i,j} + T d
{i,j}

)
, (6)

where T{i,j} = E[σ(u⊤xi + βv)σ(u⊤xj + βv)], Ṫ{i,j} = E[σ̇(u⊤xi + βv)σ̇(u⊤xj + βv)], and
Σ{i,j} = x⊤

i xj + β2. Here, the values of the vector u ∈ RF and the scalar v ∈ R are sampled from
zero-mean i.i.d. Gaussians with unit variance. Furthermore, if the decision function σ is the scaled
error function, T{i,j} and Ṫ{i,j} are obtained in closed-form as

T{i,j} =
1

2π
arcsin

 α2(x⊤
i xj + β2)√

(α2(x⊤
i xi + β2) + 0.5)(α2(x⊤

j xj + β2) + 0.5)

+
1

4
, (7)

Ṫ{i,j} =
α2

π

1√(
1 + 2α2(x⊤

i xi + β2)
)
(1 + 2α2(x⊤

j xj + β2))−4α4(x⊤
i xj + β2)2

. (8)

This kernel has rotational invariance with respect to input data.

3 THE THEORY OF THE NTK INDUCED BY AXIS-ALIGNED TREES

We first formulate the axis-aligned splitting (Section 3.1), and consider the NTK induced by axis-
aligned soft tree ensembles, composed of weak learners with identical architectures, as assumed in
Theorem 1 (Section 3.2). We then extend it to handle different tree architectures simultaneously
(Section 3.3). Detailed proofs can be found in the Appendix A and B.

3.1 SETUP ON AXIS-ALIGNED SPLITTING

In Equation 1, input to the decision function σ includes the inner product of F -dimensional vectors
wm,n and xi. Since wm,n is typically initialized randomly, which is also assumed in Theorem 1, the
splitting is generally oblique. Thus, Theorem 1 cannot directly treat axis-aligned tree ensembles.

To overcome this issue, we analyze the NTK when all the elements except one are set to be zero
for every randomly initialized vector wm,n. This setting means that the corresponding features are
eliminated from consideration of the splitting direction. This is technically not straightforward, as
Gaussian random initialization is generally assumed in the existing NTK approaches. Parameters b
and π are initialized with random values, as is commonly done.

We conduct a theoretical analysis of two cases: one where the parameters with zero initialization are
not updated during training, as illustrated in Figure 2(a), and the other where they are updated during
training in Figure 2(b). These two cases are referred to as AAA (“A”lways “A”xis-“A”ligned) and
AAI (“A”xis-“A”ligned at “I”nitialization, but not during training) in this paper.

4

Under review as a conference paper at ICLR 2024

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2
K

er
ne

l v
al

ue

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

=2.0, =0.5

Figure 3: The rotation angle dependency of ΘAxisAligned(xi,xj) with α = 2.0 and β = 0.5. Different
training procedures, AAA and AAI, are listed vertically, and two settings of tree architectures are
listed horizontally. The dotted lines show the limiting NTK induced by typical oblique soft tree
ensembles defined in Theorem 1, which is rotational invariant.

The place of the non-zero element of wm,n, which corresponds to the feature assigned to a node
in a tree, needs to be predetermined before training. This is different from typical decision trees
that search for features to be used for splitting during training. We address this issue by combining
multiple kernels for multiple tree architectures via MKL in Section 4.2.

3.2 THE NTK INDUCED BY AXIS-ALIGNED SOFT TREES

For an input vector xi, let xi,s ∈ R be the s-th component of xi. For both AAA and AAI conditions,
at initialization, we derive the NTK induced by axis-aligned soft tree ensembles in a closed-form as
the number of trees M → ∞.
Theorem 2. Assume that all M trees have the same tree architecture. Let {a1, · · · , aℓ, · · · , aL}
denote the set of decomposed paths of the trees from the root to the leaves, and let h(aℓ) ⊂ N be the
set of feature indices used in splits of the input path aℓ. For any tree architecture, as the number of
trees M goes to infinity, the NTK probabilistically converges to the following deterministic limiting
kernel:

ΘAxisAligned(xi,xj) := lim
M→∞

Θ̂AxisAligned
0 (xi,xj)

=

L∑
ℓ=1

 ∑
s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t +
∏

s∈h(aℓ)

T{i,j},s

 , (9)

where T{i,j},s = E[σ(uxi,s + βv)σ(uxj,s + βv)] and Ṫ{i,j},s = E[σ̇(uxi,s + βv)σ̇(uxj,s + βv)].
Here, scalars u, v ∈ R are sampled from zero-mean i.i.d. Gaussians with unit variance. For Σ{i,j},s,
it is xi,sxj,s + β2 when AAA is used, and x⊤

i xj + β2 when AAI is used. Furthermore, if the decision
function is the scaled error function, T{i,j},s and Ṫ{i,j},s are obtained in closed-form as

T{i,j},s =
1

2π
arcsin

 α2(xi,sxj,s + β2)√
(α2(x2

i,s + β2) + 0.5)(α2(x2
j,s + β2) + 0.5)

+
1

4
, (10)

Ṫ{i,j},s =
α2

π

1√(
1 + 2α2(x2

i,s + β2)
)
(1 + 2α2(x2

j,s + β2))−4α4(xi,sxj,s + β2)2
. (11)

5

Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
 (iteration)

2

1

0

1

2

M
od

el
 o

ut
pu

t

AAA

0 200 400 600 800 1000
 (iteration)

2

1

0

1

2
AAI

Analytical M = 16 M = 1024

Figure 4: Output dynamics of test data points for axis-aligned soft tree ensembles with two conditions.
(Left): AAA, (Right): AAI. Each data point is represented by a different line color. The left and right
figures are created using exactly the same training and test data.

Since we are considering axis-aligned constraints, only a single feature is used at each split for every
input path aℓ. It is straightforward to extend this formulation and allow multiple features at each split.
In an extreme case, if all features are always used at every split, this formula matches the formulation
for arbitrary soft trees without axis-aligned constraints in Theorem 1.

The difference between AAA and AAI is whether partial features of inputs are used or all features are
used in Σ{i,j},s. In AAA, the impact of features that are not used for splitting is completely ignored,
while in AAI, the kernel is affected by all features through the inner product of the inputs.

Figure 3 shows ΘAxisAligned(xi,xj). We set α = 2.0 and β = 0.5. We calculated the kernel values
for two rotated vectors: xi = (cos(ω), sin(ω)), xj = (cos(ω + ϕ), sin(ω + ϕ)) where ω ∈ [0, π/2]
and ϕ ∈ [0, π]. The line colors show ω, and the x-axis shows ϕ. We use an oblivious tree with depth
2, where we use the first feature at both depths 1 and 2 for the architecture (A) (left column), and we
use the first feature at depth 1 and the second feature at depth 2 for (B) (right column). We can see
that rotational invariance for the input has disappeared. This is different from the NTK induced by
typical soft tree ensembles, shown by the dotted lines (Theorem 1). Moreover, when we compare the
left and right plots, we can see that the kernel varies depending on the features used for splitting. In
the Appendix D.1 and D.2, we show how the NTK induced by a finite number of trees converges to
the limiting NTK as the number of trees increases, and the visualization of the kernel when changing
hyperparameters.

Figure 4 shows that for both AAA and AAI, as the number of trees increases, the trajectory obtained
analytically from the limiting kernel and the trajectory during gradient descent training become
more similar. This result validates the use of the NTK framework for analyzing training behavior.
For our experiment, we consider an ensemble of oblivious trees with α = 2.0, β = 0.5, where the
first feature is used for splitting at depth 1 and the second feature at depth 2. The training and test
datasets contain 10 randomly generated F = 2 dimensional points each. The prediction targets are
also randomly generated. The models with M = 16 and 1024 are trained using full-batch gradient
descent with a learning rate of 0.1. The initial outputs are shifted to zero (Chizat et al., 2019). Based
on Lee et al. (2019), to derive analytical trajectories, we use the limiting kernel (Theorem 2), as
f(ν,θτ) = H(ν,x)H(x,x)−1(I − exp[−ηH(x,x)τ])y, where H is a function that returns the
limiting NTK matrix for two input matrices, and I represent an identity matrix. The input vector
ν ∈ RF×1 is arbitrary, and the training dataset and targets are denoted by x ∈ RF×N and y ∈ RN ,
respectively. The behavior of the prediction trajectory changes depending on the configurations (AAA
or AAI), even when exactly the same training and test data are used. In Appendix D.3, we present
results from a real-world dataset, where one can see a similar trend.

3.3 THE NTK INDUCED BY ENSEMBLES OF VARIOUS TREES

In Section 3.2, we have followed the prior work (as per Theorem 1) and assumed that soft tree
ensembles consist of weak learners with identical architectures, as shown on the left-hand side of
Figure 5. However, it is more practical if tree structures and features for splitting vary within an
ensemble, as illustrated on the right-hand side of Figure 5. To address this issue, we theoretically
analyze ensembles with various tree architectures mixed together. Assuming the existence of an

6

Under review as a conference paper at ICLR 2024

Figure 5: Ensemble of trees with different tree architectures. The color of tree nodes indicates a
feature used for splitting.

infinite number of trees for each architecture in an ensemble, the NTK can be computed analytically
using the amount (ratio) of each architecture in the ensemble.

Proposition 1. For any input xi, let p(xi,θτ) be the sum of two model functions q(xi,θ
′
τ) and

r(xi,θ
′′
τ), where θ′

τ ∈ RP ′
and θ′′

τ ∈ RP ′′
are trainable parameters and θτ is the concatenation of

θ′
τ and θ′′

τ used as trainable parameters of p. For any input pair xi and xj , the NTK induced by p is
equal to the sum of the NTKs of q and r: Θ̂(p)

τ (xi,xj) = Θ̂
(q)
τ (xi,xj) + Θ̂

(r)
τ (xi,xj).

For example, let q and r be functions that represent perfect binary tree ensemble models with a depth
of 1 and 2, respectively. In this case, the NTK induced by trees with a depth of 1 and 2 is the sum of
the NTK induced by trees with a depth of 1 and the NTK induced by trees with a depth of 2. Note
that one can straightforwardly generalize it to ensembles containing various tree architectures.

Proposition 1 is particularly relevant in the context of axis-aligned trees, as it is impractical to
have identical features for splitting across all trees. In addition, this proposition is applicable to
not only tree ensembles but also various other models. For example, the Neural Additive Model
(NAM) (Agarwal et al., 2021), which is a GAM using neural networks, can be treated using this
proposition.

4 INSIGHTS DERIVED FROM THE NTK INDUCED BY AXIS-ALIGNED TREES

In this section, we present insights obtained using the NTK induced by the axis-aligned tree ensembles.

4.1 SUFFICIENCY OF THE OBLIVIOUS TREE FOR ARCHITECTURE CANDIDATES

The oblivious tree architecture is a practical design where the decision rules for tree splitting are
shared across the same depth. This approach reduces the number of required splitting calculations
from an exponential time and space complexity of O(2D) to a linear time complexity of O(D),
where D represents the depth of the perfect binary tree. This property makes the oblivious tree
architecture a popular choice in open-source libraries such as CatBoost (Prokhorenkova et al., 2018)
and NODE (Popov et al., 2020). Kanoh & Sugiyama (2022) demonstrated that parameter sharing
used in oblivious trees does not affect the NTK of soft tree ensembles. However, their analysis does
not give any insight if only specific features are used for each splitting node.

With Theorem 2 and Proposition 1, we show that we can always convert axis-aligned non-oblivious
tree ensembles into axis-aligned oblivious tree ensembles that induce exactly the same limiting NTK.

Proposition 2. For any ensemble of infinitely many axis-aligned trees with the same architecture,
one can always construct an ensemble of axis-aligned oblivious trees that induces the same limiting
NTK, up to constant multiples.

This proposition means that there is no need to consider combinations of complex trees, and it is
sufficient to consider only combinations of oblivious trees. This insight supports the validity of
using oblivious trees when using axis-aligned soft trees, as in Chang et al. (2022). Although various
trial-and-error processes are necessary for model selection to determine features used at each node,
this finding can reduce the number of processes by excluding non-oblivious trees from the search
space.

Technically, the conversion to oblivious trees is achieved by creating 2D−1 copies of the tree as
shown in Figure 6. Detailed explanations are provided in the Appendix C. Note that creating copies
multiplies the NTK values by a constant factor, but theoretically, this does not have a significant

7

Under review as a conference paper at ICLR 2024

The limiting NTK becomes the same when
multiplied by 4 (=2D-1).

The limiting NTK matches exactly.

Figure 6: Conversion to oblivious trees inducing exactly the same NTK. The color of tree nodes
indicates a feature used for splitting.

0 1 2
3 4 5
6 7 8

Figure 7: Weights of a linear combination of multiple kernels obtained using EasyMKL. The
interactions highlighted by red dotted vertical lines indicate the feature combinations that determine
the outcome of the tic-tac-toe game. The correspondence between the game board and the feature
indices is displayed on the left side of the figure.

impact. As Equation 5 shows, even if two kernels are different only up to a constant, adjusting the
learning rate η can make their training behavior exactly the same.

4.2 MULTIPLE KERNEL LEARNING AS TREE ARCHITECTURE SEARCH

Our theoretical analysis in Section 3 assumes that features used at nodes are predetermined. To
alleviate this limitation and include feature selection, we use MKL (Gönen & Alpaydın, 2011). MKL
determines the weights ρi of a linear combination of multiple kernels via training such that

∑
i ρi = 1

and ρi ≥ 0 for all i. Using NTKs induced by various tree architectures in MKL, it becomes possible
to learn how much each tree architecture should exist (Proposition 1). This approach can be also
interpreted as Neural Architecture Search (NAS) (Elsken et al., 2019; Chen et al., 2021a; Xu et al.,
2021; Mok et al., 2022).

We use EasyMKL (Aiolli & Donini, 2015), a convex approach that identifies kernel combinations
maximizing the margin between classes. Figure 7 displays the weights obtained by EasyMKL on
the entire tic-tac-toe dataset1 preprocessed by Fernández-Delgado et al. (2014). Tic-tac-toe is a
two-player game in which the objective is to form a line of three consecutive symbols (either “X” or
“O”) horizontally, vertically, or diagonally on a 3× 3 grid. The tic-tac-toe dataset provides the status
for each of the F = 3× 3 = 9 positions, indicating whether an “X” or “O” is placed or if it is blank,
and classifies the outcome based on this data. We enumerate all the combination patterns from the first
to the third order and use EasyMKL to determine the linear combination of

(
F
1

)
+

(
F
2

)
+

(
F
3

)
= 129

kernels2 with α = 2.0 and β = 0.5. As shown in Figure 7, for AAA, interactions that are essential to
determine the outcome of the game carry significant weights. In contrast, for AAI, weights tend to
be more uniform. This suggests that AAA is more sensitive to the nature of data than AAI, while a
simple approach that randomly selects diverse tree architectures can be effective for AAI in practice.

1https://archive.ics.uci.edu/dataset/101/tic+tac+toe+endgame
2While there are more than 129 tree architecture candidates when considering factors such as which feature

is used for the initial splitting, as shown in Proposition 2, we only need to consider the oblivious tree. Therefore,
the order of splitting becomes irrelevant to the model’s behavior. As a result, considering the 129 patterns
ensures that we cover all the possible patterns.

8

https://archive.ics.uci.edu/dataset/101/tic+tac+toe+endgame

Under review as a conference paper at ICLR 2024

Such a trend appears to hold true on not only the tic-tac-toe dataset but across a wide range of datasets.
Details can be found in the Appendix D.4.

We also analyze the generalization performance on the tic-tac-toe dataset. Three types of the limiting
NTKs induced by the soft tree ensembles are employed: AAA, AAI (Theorem 2) and Oblique
(Theorem 1), as shown in Figure 2. For the oblique kernel, we assumed a perfect binary tree structure
and, since AAA and AAI consider interactions up to the third order, we set the tree depth to 3.
The Support Vector Machine (SVM)3 with these kernels was used for classification (Hearst et al.,
1998). Kernel parameters were set with α in {0.5, 1.0, 2.0, 4.0} and β in {0.1, 0.5, 1.0}. We used
the regularization strength C = 1.0 in SVMs. It is known that an SVM using the NTK is equivalent
to the training of its corresponding model (Chen et al., 2021b). For both AAA and AAI, a total of(
F
1

)
+
(
F
2

)
+
(
F
3

)
= 129 kernels were prepared and three types of weights for the linear combination

of these kernels were tested: the weight of the first type, called “MKL”, is obtained by EasyMKL;
the second, called “Optimal”, is 1/8 if the interaction determines the outcome of the tic-tac-toe game
(there are eight such interactions) and 0 otherwise; and the third, called “Benchmark”, is uniform
for all kernels. Additionally, we present the performance of Random Forest4 (Breiman, 2001) with
max_depth = 3 and n_estimators = 1000.

0.5 1.0 2.0 4.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

AAA (MKL)
AAA (Optimal)
AAA (Benchmark)
AAI (MKL)
AAI (Optimal)
AAI (Benchmark)
Oblique
Random Forest

Figure 8: Classification accuracy on the tic-tac-toe
dataset. The performance of Random Forest does
not depend on α, and is represented by the horizon-
tal line. Since only Random Forest has random-
ness, its standard deviation of the four-fold cross-
validation accuracy in 12 executions is shown by a
semi-transparent band.

Figure 8 displays the results of four-fold cross-
validation, where 25% of the total amount of
data was used for training and the remainder
for evaluation. No significant variations were
observed when adjusting β, so we present re-
sults with β = 0.5. Detailed experimental re-
sults, including those obtained by modifying
β and comparisons with forest models under
diverse configurations, are provided in the Ap-
pendix D.5 and D.6. From the results, it is ev-
ident that setting appropriate weights for each
interaction using methods like MKL improves
generalization performance. This improvement
is particularly remarkable in AAA, that is, AAA
(MKL) and AAA (Optimal) are superior to AAA
(Benchmark) across all α. For AAI, the perfor-
mance is comparable between AAI (Optimal)
and AAI (Benchmark), which is consistent with
the insights obtained from Figure 7. Under the
optimal hyperparameters, the performance was ranked in the order of AAA, AAI, and then Oblique.
This order reflects the strength of the inductive bias. While AAA may be more challenging than
AAI in terms of feature selection, the effort might be worthwhile if one is striving for maximum
performance. Moreover, since α adjusts the proximity of the sigmoidal decision function to the step
function, our result of different optimal values of α between AAA, AAI, and Oblique means that
the optimal structure of the decision function can vary depending on training constraints, which is a
noteworthy insight.

5 CONCLUSION

In this paper, we have formulated the NTK induced by the axis-aligned soft tree ensembles, and we
have succeeded in describing the analytical training trajectory. We have theoretically analyzed two
scenarios, one where the axis-aligned constraint is applied throughout the training process, and the
other where the initial model is axis-aligned and training proceeds without any constraints. We have
also presented a theoretical framework to deal with non-identical tree architectures simultaneously
and used it to provide theoretical support for the validity of using oblivious trees. Furthermore,
through experiments using MKL, we have shown that the suitable features for AAA and AAI can be
different from each other. Our work highlights the importance of understanding the impact of tree
architecture on model performance and provides insights into the design of tree-based models.

3https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

9

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

Our perspective is that the theoretical examination of the NTK will not result in detrimental uses.

REPRODUCIBILITY STATEMENT

All proofs can be found in the Appendix. To reproduce the numerical tests and illustrations, the
source codes are available in the supplementary material.

REFERENCES

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey Hinton. Neural Additive Models: Interpretable Machine Learning with Neural Nets.
In Advances in Neural Information Processing Systems, 2021.

Fabio Aiolli and Michele Donini. EasyMKL: a scalable multiple kernel learning algorithm. Neuro-
computing, 2015.

Fabio Aiolli, Giovanni Da San Martino, and Alessandro Sperduti. A Kernel Method for the Opti-
mization of the Margin Distribution. In Artificial Neural Networks, 2008.

Sercan Ö. Arik and Tomas Pfister. TabNet: Attentive Interpretable Tabular Learning. Proceedings of
the AAAI Conference on Artificial Intelligence, 2021.

Leo Breiman. Random Forests. In Machine Learning, 2001.

Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. NODE-GAM: Neural generalized additive
model for interpretable deep learning. In International Conference on Learning Representations,
2022.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural Architecture Search on ImageNet in
Four GPU Hours: A Theoretically Inspired Perspective. In International Conference on Learning
Representations, 2021a.

Yilan Chen, Wei Huang, Lam Nguyen, and Tsui-Wei Weng. On the Equivalence between Neural
Network and Support Vector Machine. In Advances in Neural Information Processing Systems,
2021b.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On Lazy Training in Differentiable Programming.
In Advances in Neural Information Processing Systems, 2019.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017. URL http://archive.
ics.uci.edu/ml.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture Search: A Survey.
Journal of Machine Learning Research, 2019.

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we Need Hundreds
of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research,
2014.

Nicholas Frosst and Geoffrey E. Hinton. Distilling a Neural Network Into a Soft Decision Tree.
CoRR, 2017.

Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. Journal of Machine
Learning Research, 12, 2011.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022.

Trevor Hastie and Robert Tibshirani. Generalized Additive Models. Statistical Science, 1986.

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Under review as a conference paper at ICLR 2024

Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The Tree
Ensemble Layer: Differentiability meets Conditional Computation. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector machines. IEEE
Intelligent Systems and their Applications, 1998.

Kelli D. Humbird, J. Luc Peterson, and Ryan G. Mcclarren. Deep Neural Network Initialization With
Decision Trees. IEEE Transactions on Neural Networks and Learning Systems, 2019.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems, 2018.

Manu Joseph. PyTorch Tabular: A Framework for Deep Learning with Tabular Data. CoRR, 2021.

Ryuichi Kanoh and Mahito Sugiyama. A Neural Tangent Kernel Perspective of Infinite Tree
Ensembles. In International Conference on Learning Representations, 2022.

Ryuichi Kanoh and Mahito Sugiyama. Analyzing Tree Architectures in Ensembles via Neural
Tangent Kernel. In International Conference on Learning Representations, 2023.

Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, and Tie-Yan Liu. DeepGBM: A Deep Learning
Framework Distilled by GBDT for Online Prediction Tasks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulò. Deep Neural
Decision Forests. In IEEE International Conference on Computer Vision, 2015.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide Neural Networks of Any Depth Evolve as Linear Models
Under Gradient Descent. In Advances in Neural Information Processing Systems, 2019.

Andre Martins and Ramon Astudillo. From Softmax to Sparsemax: A Sparse Model of Attention
and Multi-Label Classification. In Proceedings of The 33rd International Conference on Machine
Learning, 2016.

Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and Sungroh Yoon. Demystifying the
Neural Tangent Kernel from a Practical Perspective: Can it be trusted for Neural Architecture
Search without training? In IEEE Conference on Computer Vision and Pattern Recognition, 2022.

Ben Peters, Vlad Niculae, and André F. T. Martins. Sparse Sequence-to-Sequence Models. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural Oblivious Decision Ensembles for
Deep Learning on Tabular Data. In International Conference on Learning Representations, 2020.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information
Processing Systems, 2018.

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. KNAS: Green
Neural Architecture Search. In Proceedings of the 38th International Conference on Machine
Learning, 2021.

A PROOF OF THEOREM 2

Theorem 2. Assume that all M trees have the same tree architecture. Let {a1, · · · , aℓ, · · · , aL}
denote the set of decomposed paths of the trees from the root to the leaves, and let h(aℓ) ⊂ N be the
set of feature indices used in splits of the input path aℓ. For any tree architecture, as the number of
trees M goes to infinity, the NTK probabilistically converges to the following deterministic limiting
kernel:

ΘAxisAligned(xi,xj) := lim
M→∞

Θ̂AxisAligned
0 (xi,xj)

11

Under review as a conference paper at ICLR 2024

=

L∑
ℓ=1

 ∑
s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t +
∏

s∈h(aℓ)

T{i,j},s

 , (A.1)

where T{i,j},s = E[σ(uxi,s + βv)σ(uxj,s + βv)] and Ṫ{i,j},s = E[σ̇(uxi,s + βv)σ̇(uxj,s + βv)].
Here, scalars u, v ∈ R are sampled from zero-mean i.i.d. Gaussians with unit variance. For Σ{i,j},s,
it is xi,sxj,s + β2 when AAA is used, and x⊤

i xj + β2 when AAI is used. Furthermore, if the decision
function is the scaled error function, T{i,j},s and Ṫ{i,j},s are obtained in closed-form as

T{i,j},s =
1

2π
arcsin

 α2(xi,sxj,s + β2)√
(α2(x2

i,s + β2) + 0.5)(α2(x2
j,s + β2) + 0.5)

+
1

4
, (A.2)

Ṫ{i,j},s =
α2

π

1√(
1 + 2α2(x2

i,s + β2)
)
(1 + 2α2(x2

j,s + β2))−4α4(xi,sxj,s + β2)2
. (A.3)

Proof. Based on the independence of parameters at each leaf and the symmetry of the decision
function, Kanoh & Sugiyama (2023) showed that the NTK induced by arbitrary soft tree ensembles
can be decomposed into the sum of the NTKs induced by the rule sets, which are constructed by
paths from the tree root to leaves. This property of the independence of parameters at each leaf and
the symmetry of the decision function also holds in our formulation (Section 2.1). Therefore, we
formulate the NTK induced by rule sets and use it to derive the NTK induced by axis-aligned soft
tree ensembles.

For simplicity, first we assume β = 0 in Equation 1. Let Dℓ be the depth of a rule set, which is a path
from the root to a leaf ℓ. We consider the contribution from internal nodes Θ(Dℓ,Rule,nodes) and the
contribution from leaves Θ(Dℓ,Rule,leaves) separately, such that

Θ(Dℓ,Rule) (xi,xj) = Θ(Dℓ,Rule,nodes) (xi,xj) + Θ(Dℓ,Rule,leaves) (xi,xj) . (A.4)

As for internal nodes, when we treat the axis-aligned case (Section 3.1), only a single parameter in
wm,n is non-zero at initialization. When calculating the NTK as shown in Equation 5, the parameter
derivatives in terms of trainable parameters are considered. In the cases of AAA and AAI, they are
given as follows:

∂f (Dℓ,Rule) (xi,w,π)

∂wm,n,kn

=
1√
M

xi,kn σ̇(wm,n,knxi,kn)f
(Dℓ−1,Rule)
m (xi,wm,−n,πm) , (AAA)

(A.5)

∂f (Dℓ,Rule) (xi,w,π)

∂wm,n
=

1√
M

xiσ̇(wm,n,knxi,kn)f
(Dℓ−1,Rule)
m (xi,wm,−n,πm) , (AAI)

(A.6)

where xi,kn
and wm,n,kn

are kn-th feature in xi and kn-th parameter in wm,n, respectively, and
wm,−n denotes the internal node parameter matrix except for the parameters of the node n.

As a preliminary step for calculating the NTK, we obtain the following equation:

Em

[
f (Dℓ,Rule)
m (xi,wm,πm) f (Dℓ,Rule)

m (xj ,wm,πm)
]

= Em

[
σ(w⊤

m,1xi)σ(w
⊤
m,1xj) · · ·σ(w⊤

m,Dxi)σ(w
⊤
m,Dxj)π

2
m,ℓ

]
= Em

σ(wm,1,k1
xi,k1

)σ(wm,1,k1
xj,k1

)︸ ︷︷ ︸
→T{i,j},k1

· · ·σ(wm,Dℓ,kDℓ
xi,kDℓ

)σ(wm,Dℓ,kDℓ
xj,kDℓ

)︸ ︷︷ ︸
→T{i,j},kDℓ

π2
m,ℓ︸︷︷︸
→1

=

∏
t∈h(aℓ)

T{i,j},t, (A.7)

where the symbol “→” denotes the expected value of the corresponding term will take. The
transition from the second line to the third line in Equation A.7 uses the equality σ(w⊤

m,nxi) =
σ(wm,n,knxi,kn).

12

Under review as a conference paper at ICLR 2024

Using Equation A.7, the limiting NTK contribution from the n-th node is

lim
M→∞

1

M

M∑
m=1

(
Σ{i,j},kn

× σ̇(wm,n,kn
xi,kn

)σ̇(wm,n,kn
xj,kn

)

× f (Dℓ−1,Rule)
m (xi,wm,πm) f (Dℓ−1,Rule)

m (xj ,wm,πm)

)

=Σ{i,j},kn
× Em

σ̇(wm,n,kn
xi,kn

)σ̇(wm,n,kn
xj,kn

)︸ ︷︷ ︸
→Ṫ{i,j},kn

× Em

f (Dℓ−1,Rule)
m (xi,wm,πm) f (Dℓ−1,Rule)

m (xj ,wm,πm)︸ ︷︷ ︸
→

∏
t∈h(aℓ)\{kn} T{i,j},t

 , (A.8)

where Σi,j,kn
= xi,kn

xj,kn
when AAA is used, and Σi,j,kn

= x⊤
i xj when AAI is used. Since there

are Dℓ possible locations for n, we obtain

Θ(Dℓ,Rule,nodes) (xi,xj) =
∑

s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t

 . (A.9)

For leaves, since

∂f (Dℓ,Rule) (xi,w,π)

∂πm,ℓ
=

1

πm,ℓ

√
M

f (Dℓ,Rule)
m (xi,wm,πm) , (A.10)

with Equation A.7, we have

Θ(Dℓ,Rule,leaves) (xi,xj) =
∏

s∈h(aℓ)

T{i,j},s. (A.11)

Combining Equation A.7 and Equation A.11, we obtain

Θ(Dℓ,Rule,nodes) (xi,xj) =
∑

s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t

+
∏

s∈h(aℓ)

T{i,j},s.

(A.12)

When we sum up this NTK over multiple rule sets constructed by multiple leaves, it becomes the
NTK of the axis-aligned soft tree ensembles:

ΘAxisAligned(xi,xj) =

L∑
ℓ=1

 ∑
s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t +
∏

s∈h(aℓ)

T{i,j},s

 .

(A.13)

Up until this point, we have been considering the case of β = 0. It is straightforward to take the case
β ̸= 0 into account because, in the case of soft tree ensemble, the bias term can be represented by
using an extra feature that takes a constant value β as input. This allows us to generally express the
bias term’s contribution by adding β2 to the section where the product of the inputs is calculated.

B PROOF OF PROPOSITION 1

Proposition 1. For any input xi, let p(xi,θτ) be the sum of two model functions q(xi,θ
′
τ) and

r(xi,θ
′′
τ), where θ′

τ ∈ RP ′
and θ′′

τ ∈ RP ′′
are trainable parameters and θτ is the concatenation of

θ′
τ and θ′′

τ used as trainable parameters of p. For any input pair xi and xj , the NTK induced by p is
equal to the sum of the NTKs of q and r: Θ̂(p)

τ (xi,xj) = Θ̂
(q)
τ (xi,xj) + Θ̂

(r)
τ (xi,xj).

13

Under review as a conference paper at ICLR 2024

Proof. The NTK induced by this model can be decomposed into the sum of the NTKs of each tree
architecture as follows:

Θ̂(p)
τ (xi,xj) =

〈
∂p(xi,θτ)

∂θτ
,
∂p(xj ,θτ)

∂θτ

〉

=
(

∂p(xi,θτ)
∂θ′

τ,1
, · · · , ∂p(xi,θτ)

∂θ′
τ,P ′

, ∂p(xi,θτ)
∂θ′′

τ,1
, · · · , ∂p(xi,θτ)

∂θ′′
τ,P ′′

)

∂p(xj ,θτ)
∂θ′

τ,1

...
∂p(xj ,θτ)
∂θ′

τ,P ′
∂p(xj ,θτ)

∂θ′′
τ,1

...
∂p(xj ,θτ)
∂θ′′

τ,P ′′

=
(

∂q(xi,θ
′
τ)

∂θ′
τ,1

, · · · , ∂q(xi,θ
′
τ)

∂θ′
τ,P ′

,
∂r(xi,θ

′′
τ)

∂θ′′
τ,1

, · · · , ∂r(xi,θ
′′
τ)

∂θ′′
τ,P ′′

)

∂q(xj ,θ
′
τ)

∂θ′
τ,1

...
∂q(xj ,θ

′
τ)

∂θ′
τ,P ′

∂r(xj ,θ
′′
τ)

∂θ′′
τ,1

...
∂r(xj ,θ

′′
τ)

∂θ′′
τ,P ′′

=
(

∂q(xi,θ
′
τ)

∂θ′
τ,1

· · · ∂q(xi,θ
′
τ)

∂θ′
τ,P ′

)
∂q(xj ,θ

′
τ)

∂θ′
τ,1

...
∂q(xj ,θ

′
τ)

∂θ′
τ,P ′

+
(

∂r(xi,θ
′′
τ)

∂θ′′
τ,1

· · · ∂r(xi,θ
′′
τ)

∂θ′′
τ,P ′′

)
∂r(xj ,θ

′′
τ)

∂θ′′
τ,1

...
∂r(xj ,θ

′′
τ)

∂θ′′
τ,P ′′

=

〈
∂q(xi,θ

′)

∂θ′ ,
∂q(xj ,θ

′)

∂θ′

〉
︸ ︷︷ ︸

Θ̂
(q)
τ (xi,xj)

+

〈
∂r(xi,θ

′′)

∂θ′′ ,
∂r(xj ,θ

′′)

∂θ′′

〉
︸ ︷︷ ︸

Θ̂
(r)
τ (xi,xj)

. (B.1)

Here, since q is not a function of θ′′ and r is not a function of θ′, the property of their respective
derivatives being zero is used at the transition from the second line to the third line in Equation B.1.

The NTK decomposition for any number of sub-models follows by repeatedly using this property.

C PROOF OF PROPOSITION 2

Proposition 2. For any ensemble of infinitely many axis-aligned trees with the same architecture,
one can always construct an ensemble of axis-aligned oblivious trees that induces the same limiting
NTK, up to constant multiples.

Proof. We prove this proposition using Figure A.1 as an instance. It is straightforward to generalize
the following discussion to any trees. As shown in Theorem 2, the limiting NTK is characterized by
the root-to-leaf paths. Therefore, the limiting NTK induced by an infinite number of trees shown
at 1⃝ in Figure A.1 is identical to the limiting NTK induced by an infinite number of trees shown
at 2⃝ in Figure A.1. For any root-to-leaf path with the length Dℓ, one can always construct a single
oblivious tree architecture that induces exactly the same NTK using 2Dℓ rule sets composed of the
same features with the path. Since we consider binary splitting at every node, the number of children
at each node is 2. Therefore, for the maximum depth D of a tree, by having 2D−1 copies of the
same tree ensembles (2⃝→ 3⃝ in Figure A.1), we can convert them into oblivious trees (3⃝→ 4⃝
in Figure A.1). Here, each copy is identical in terms of its graph topological structure and the
features used during the initialization of splitting nodes, but their randomly initialized parameters
are independent. Note that when there are D copies, the NTK also becomes D times larger. This

14

Under review as a conference paper at ICLR 2024

Decompose to rule sets 2D-1 copies

Convert to oblivious trees

① ② ③ ④

Figure A.1: A procedure to convert any arbitrary binary tree ensemble into a set of oblivious trees
with the exactly same limiting NTK up to a constant multiple.

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

 (A
A

A
)

xi = (1, 0), Tree architecture=(A)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2), Architecture=(A)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1, 0), Tree architecture=(B)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2), Architecture=(B)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

 (A
A

I)

xi = (1, 0), Tree architecture=(A)

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2), Architecture=(A)

AAA
M = 16
M = 64

M = 256
M = 1024

M = 4096
M =

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1, 0), Tree architecture=(B)

AAI
M = 16
M = 64

M = 256
M = 1024

M = 4096
M =

1.0 0.5 0.0 0.5 1.0
Inner product of the inputs

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2), Architecture=(B)

Figure A.2: An empirical demonstration of convergence of Θ̂0(xi,xj) to the fixed limit Θ(xi,xj)
as M increases. Two conditions (AAA/AAI) are listed vertically, and settings of vectors and tree
architectures for computing the kernel are listed horizontally.

can be understood using Equation B.1 by considering the case in Proposition 1, where we have
p(xi,θτ) = q(xi,θ

′
τ) + q(xi,θ

′′
τ).

D ADDITIONAL EXPERIMENTS

D.1 CONVERGENCE OF THE NTK WITH AAA/AAI

Figure A.2 shows the convergence of the NTK with AAA or AAI cases as the number M of trees
increases on the same datasets and tree architectures used in Figure 3. We set α = 2.0 and β = 0.5.
The kernels induced by finite trees M = {16, 64, 256, 1024, 4096} are computed numerically by
re-initializing the parameters 10 times. We plot two cases: xi = (1, 0),xj = (cos(ω), sin(ω)) with
ω ∈ [0, π], and xi = (1√

2
, 1√

2
),xj = (cos(ω), sin(ω)) with ω ∈ [π4 ,

5π
4]. We employ an oblivious

tree of depth 2. For architecture (A), the first feature is used at both depths 1 and 2. For architecture

15

Under review as a conference paper at ICLR 2024

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

K
er

ne
l v

al
ue

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

=1.0, =0.5

Figure A.3: The rotation angle dependency of ΘAxisAligned(xi,xj) with α = 1.0 and β = 0.5. The
protocol for creating the figure is the same as Figure 3.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

K
er

ne
l v

al
ue

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

=4.0, =0.5

Figure A.4: The rotation angle dependency of ΘAxisAligned(xi,xj) with α = 4.0 and β = 0.5. The
protocol for creating the figure is the same as Figure 3.

(B), the first feature is used at depth 1 and the second feature at depth 2. This visualization confirms
that as the number of trees increases, the kernel asymptotically approaches the formula defined in
Theorem 2.

D.2 VISUALIZATION OF THE NTK WITH AAA/AAI FOR EACH HYPERPARAMETER

We performed the same visualization as in Figure 3 with varying hyperparameters. The results are
shown in Figures A.3, A.4, A.5, and A.6.

D.3 OUTPUT DYNAMICS WITH A REAL-WORLD DATASET

Figure A.7 demonstrates that for both AAA and AAI, as the number of trees increases, the trajectory
derived analytically from the limiting kernel becomes more aligned with the trajectory observed
during gradient descent training. The protocol used to create this figure is the same as that for Figure 4.
In this experiment, we used the diabetes dataset5, a commonly used real-world dataset for regression
tasks that predicts a quantitative measure of disease progression one year after the baseline. The
diabetes dataset consists of F = 10 features, including body mass index, average blood pressure, age,

5https://archive.ics.uci.edu/dataset/34/diabetes

16

https://archive.ics.uci.edu/dataset/34/diabetes

Under review as a conference paper at ICLR 2024

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

K
er

ne
l v

al
ue

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

=2.0, =0.1

Figure A.5: The rotation angle dependency of ΘAxisAligned(xi,xj) with α = 2.0 and β = 0.1. The
protocol for creating the figure is the same as Figure 3.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

K
er

ne
l v

al
ue

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

K
er

ne
l v

al
ue

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

0

1

2

AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

=2.0, =1.0

Figure A.6: The rotation angle dependency of ΘAxisAligned(xi,xj) with α = 2.0 and β = 1.0. The
protocol for creating the figure is the same as Figure 3.

0 200 400 600 800 1000
 (iteration)

2

1

0

1

2

M
od

el
 o

ut
pu

t

AAA

0 200 400 600 800 1000
 (iteration)

2

1

0

1

2
AAI

Analytical M = 16 M = 1024

Figure A.7: Output dynamics of test data points for axis-aligned soft tree ensembles with two
conditions. The protocol used to create the figure is identical to that of Figure 4

.

17

Under review as a conference paper at ICLR 2024

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{3
, 4

}

{3
, 5

}

{4
, 5

}

0.0

0.1

W
ei

gh
t

acute-inflammation

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{3
, 4

}

{3
, 5

}

{4
, 5

}

0.0

0.1

W
ei

gh
t

acute-nephritis

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{1
, 2

}

{1
, 3

}

{2
, 3

}

0.00

0.25

W
ei

gh
t

balloons

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{1
, 2

}

{1
, 3

}

{2
, 3

}

0.00

0.25

W
ei

gh
t

blood

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{6
, 7

}

{6
, 8

}

{7
, 8

}

0.0

0.1

W
ei

gh
t

breast-cancer

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{6
, 7

}

{6
, 8

}

{7
, 8

}

0.00

0.05

W
ei

gh
t

breast-cancer-wisc

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{9
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{0
, 9

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{1
, 9

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{2
, 9

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{3
, 9

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{4
, 9

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{5
, 9

}

{6
, 7

}

{6
, 8

}

{6
, 9

}

{7
, 8

}

{7
, 9

}

{8
, 9

}

0.00

0.05

W
ei

gh
t

echocardiogram

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{6
, 7

}

{6
, 8

}

{7
, 8

}

0.00

0.05

W
ei

gh
t

fertility

AAA
AAI

{0
}

{1
}

{2
}

{0
, 1

}

{0
, 2

}

{1
, 2

}

0.00

0.25

W
ei

gh
t

haberman-survival

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{8
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{0
, 8

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{1
, 8

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{2
, 8

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{3
, 8

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{4
, 8

}

{5
, 6

}

{5
, 7

}

{5
, 8

}

{6
, 7

}

{6
, 8

}

{7
, 8

}

0.0

0.1

W
ei

gh
t

ilpd-indian-liver

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{2
, 3

}

{2
, 4

}

{3
, 4

}

0.0

0.2

W
ei

gh
t

mammographic

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{7
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{0
, 7

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{1
, 7

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{2
, 7

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{3
, 7

}

{4
, 5

}

{4
, 6

}

{4
, 7

}

{5
, 6

}

{5
, 7

}

{6
, 7

}

0.00

0.05

W
ei

gh
t

pima

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{6
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{0
, 6

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{1
, 6

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{2
, 6

}

{3
, 4

}

{3
, 5

}

{3
, 6

}

{4
, 5

}

{4
, 6

}

{5
, 6

}

0.0

0.2

W
ei

gh
t

pittsburg-bridges-T-OR-D

AAA
AAI

{0
}

{1
}

{2
}

{3
}

{4
}

{5
}

{0
, 1

}

{0
, 2

}

{0
, 3

}

{0
, 4

}

{0
, 5

}

{1
, 2

}

{1
, 3

}

{1
, 4

}

{1
, 5

}

{2
, 3

}

{2
, 4

}

{2
, 5

}

{3
, 4

}

{3
, 5

}

{4
, 5

}

0.0

0.1

W
ei

gh
t

vertebral-column-2clases

AAA
AAI

Figure A.8: Weights of a linear combination of multiple kernels obtained by EasyMKL on 14 UCI
dataset.

sex, and six blood serum measurements. All features and prediction targets have been standardized to
have zero mean and unit variance. We considered an ensemble of oblivious trees with parameters
α = 2.0 and β = 0.5. The body mass index was chosen for splitting at depth 1, while the average
blood pressure was used for depth 2 during initialization. We selected 50 random training samples
and 10 test samples for this study.

18

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8
AAA

0.0

0.2

0.4

0.6

0.8

A
A

I

Kullback Leibler divergence between obtained weights by MKL and uniform weights

Figure A.9: The KL divergence from the weights obtained by MKL to the uniform distribution under
AAA or AAI. Each point on the scatter plot corresponds to a specific dataset.

0.5 1.0 2.0 4.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

=0.1

0.5 1.0 2.0 4.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00
=0.5

0.5 1.0 2.0 4.0

0.75

0.80

0.85

0.90

0.95

1.00

=1.0

AAA (MKL) AAA (Benchmark) AAA (Optimal) AAI (MKL) AAI (Benchmark) AAI (Optimal) Oblique Random Forest

Figure A.10: Classification accuracy on the tic-tac-toe dataset with β = {0.1, 0.5, 1.0}. The
procedure of the experiment is the same as that in Figure 8.

D.4 MKL WEIGHTS OBTAINED FROM VARIOUS DATASETS

To investigate how MKL behaves on datasets other than the tic-tac-toe dataset, we used the UCI
datasets (Dua & Graff, 2017) preprocessed by Fernández-Delgado et al. (2014). We selected and
utilized 14 binary classification datasets with less than 1000 data points and 10 features. We
constructed kernels considering interactions up to the second order, resulting in

(
F
1

)
+
(
F
2

)
kernels.

The weights obtained in a manner similar to Figure 7 are shown in Figure A.8. Similar to the tic-tac-
toe dataset, AAI yields weights that are relatively close to a uniform distribution, while AAA tends to
produce larger weights for specific interactions. To quantitatively analyze such trends, we compared
the KL (Kullback–Leibler) divergence between the obtained weights and a uniform distribution to
examine how it behaves under AAA or AAI. Results are shown in Figure A.9. From this figure, it can
be seen that the KL divergence for AAA is larger, indicating a tendency of deviating from a uniform
distribution, and this holds true across various datasets.

D.5 GENERALIZATION PERFORMANCE ON VARIOUS DATASETS

All the results about the generalization performances conducted in Section 4.2 are shown in Fig-
ures A.10, A.11, A.12, and A.13. As shown in Figure A.10, the accuracy trend on the tic-tac-toe
dataset as shown in Figure 8 in the main text does not largely depend on β. This trend is also observed
in a variety of datasets, commonly used in Appendix D.4, as shown in Figures A.11, A.12, and A.13.
Overall, the performance depends on datasets and it is not fundamental to make a general claim
that AAA and AAI are better or worse than other models in terms of generalization performance
compared to other models. This is a natural consequence and orthogonal to our claim in this paper.

19

Under review as a conference paper at ICLR 2024

0.94

0.96

0.98

1.00

A
cc

ur
ac

y
acute-inflammation

0.96

0.98

1.00
acute-nephritis

0.50

0.55

0.60

balloons

0.76

0.77

blood

0.68

0.70

0.72

breast-cancer

0.955

0.960

0.965

breast-cancer-wisc

0.70

0.75

0.80

0.85
echocardiogram

0.5 1.0 2.0 4.0

0.84

0.86

0.88

A
cc

ur
ac

y

fertility

0.5 1.0 2.0 4.0

0.72

0.74

haberman-survival

0.5 1.0 2.0 4.0

0.650

0.675

0.700

0.725
ilpd-indian-liver

0.5 1.0 2.0 4.0

0.80

0.82

mammographic

0.5 1.0 2.0 4.0
0.70

0.72

0.74

0.76

pima

0.5 1.0 2.0 4.0

0.82

0.84

0.86

pittsburg-bridges-T-OR-D

0.5 1.0 2.0 4.0

0.75

0.80

0.85
vertebral-column-2clases

=0.1

AAA (MKL) AAA (Benchmark) AAI (MKL) AAI (Benchmark) Oblique Random Forest

Figure A.11: Classification accuracy on 14 UCI dataset with β = 0.1. The procedure of the
experiment is the same as that in Figure 8. Interactions are considered up to the second order.

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

acute-inflammation

0.96

0.97

0.98

0.99

1.00
acute-nephritis

0.500

0.525

0.550

0.575

0.600

balloons

0.760

0.765

0.770

0.775

blood

0.68

0.70

0.72

breast-cancer

0.955

0.960

0.965

breast-cancer-wisc

0.70

0.75

0.80

0.85
echocardiogram

0.5 1.0 2.0 4.0

0.84

0.86

0.88

A
cc

ur
ac

y

fertility

0.5 1.0 2.0 4.0

0.71

0.72

0.73

0.74

haberman-survival

0.5 1.0 2.0 4.0

0.68

0.70

0.72

ilpd-indian-liver

0.5 1.0 2.0 4.0

0.80

0.82

mammographic

0.5 1.0 2.0 4.0

0.72

0.74

0.76

pima

0.5 1.0 2.0 4.0
0.82

0.84

0.86

pittsburg-bridges-T-OR-D

0.5 1.0 2.0 4.0

0.75

0.80

0.85
vertebral-column-2clases

=0.5

AAA (MKL) AAA (Benchmark) AAI (MKL) AAI (Benchmark) Oblique Random Forest

Figure A.12: Classification accuracy on 14 UCI dataset with β = 0.5. The procedure of the
experiment is the same as that in Figure 8. Interactions are considered up to the second order.

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

acute-inflammation

0.96

0.98

1.00
acute-nephritis

0.50

0.55

0.60

balloons

0.75

0.76

0.77

blood

0.70

0.72

breast-cancer

0.955

0.960

0.965

breast-cancer-wisc

0.70

0.75

0.80

0.85
echocardiogram

0.5 1.0 2.0 4.0

0.84

0.86

0.88

A
cc

ur
ac

y

fertility

0.5 1.0 2.0 4.0

0.70

0.72

0.74

haberman-survival

0.5 1.0 2.0 4.0
0.66

0.68

0.70

0.72

ilpd-indian-liver

0.5 1.0 2.0 4.0

0.80

0.82

mammographic

0.5 1.0 2.0 4.0

0.72

0.74

0.76

pima

0.5 1.0 2.0 4.0
0.82

0.84

0.86

pittsburg-bridges-T-OR-D

0.5 1.0 2.0 4.0

0.75

0.80

0.85
vertebral-column-2clases

=1.0

AAA (MKL) AAA (Benchmark) AAI (MKL) AAI (Benchmark) Oblique Random Forest

Figure A.13: Classification accuracy on 14 UCI dataset with β = 1.0. The procedure of the
experiment is the same as that in Figure 8. Interactions are considered up to the second order.

20

Under review as a conference paper at ICLR 2024

100 101 102 1030.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

AAA (Benchmark)

Random Forest

0.4 0.2 0.0 0.2 0.4
c

0.0

0.2

0.4

0.6

0.8

1.0

(c
)

= 100

= 101

= 102

= 103

Figure A.14: Accuracy of AAA (Benchmark) on the tic-tac-toe dataset when varying α, with β = 0.5.

3 5 7 inf
max_depth

0.70

0.75

0.80

0.85

0.90

0.95

1.00
A

cc
ur

ac
y

AAA (Benchmark)
AAI (Benchmark)
Random Forest
Gradient Boosting Decision Tree

Figure A.15: Performance of Random Forest and Gradient Boosting Decision Trees on the tic-tac-toe
dataset for each max_depth. The procedure of the experiment is the same as that in Figure 8.

D.6 COMPARISON WITH RANDOM FOREST AND GRADIENT BOOSTING DECISION TREES

We further examine the performance of Random Forest and Gradient Boosting Decision Trees on the
tic-tac-toe dataset and discuss the effectiveness of AAA reported in Figure 8.

Even when feature selection is not explicitly conducted (“AAA (Benchmark)” in Figure 8), the
performance of the AAA model calculated using the NTK is superior to that of a typical Random
Forest. In addition, as shown in Figure A.14, even if α increases to the extent so that the splitting
function is nearly equivalent to a step function, the performance of AAA (Benchmark) remains
superior to that of Random Forest. These results suggest that factors other than the feature selections
and the softness of the splitting are important. This comparison of AAA (Benchmark) and Random
Forest means that such a gradient descent-based learning is more effective than a greedy learning
approach of Random Forest for the tic-tac-toe dataset. The output variable in the tic-tac-toe dataset,
the game’s outcome, is determined only by the third-order interactions of features, and it seems that
greedy approaches are not appropriate to pick up such interactions.

Moreover, as shown in Figure A.15, even when the maximum depth of the tree is set to be large, the
performance of Random Forest and gradient boosting6 does not reach that of AAA (Benchmark).
In terms of trained models, if the splitting function is replaced with a step function, both of AAA,
Random Forest, and Gradient Boosting Decision Trees have the same format, indicating that there is
no difference in the expressive power due to tree architectures. These observations indirectly support
the fact that how to learn parameters in the tree is a contributing factor.

D.7 EMPIRICAL VALIDATION OF PROPOSITION 2

Figure A.16 shows the empirical validation of Proposition 2. We consider an asymmetric tree
architecture, where the first feature is used for splitting at depth 1 and the second feature used for
splitting at depth 2. The left child of the first splitting node is not a splitting node but a leaf node.
Using Figure A.16, we can verify whether the trajectories trained under the conditions of AAA and
AAI, for M = 16 and M = 1024, respectively, match those obtained using the tree converted to

6https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

21

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

Under review as a conference paper at ICLR 2024

The limiting NTKs are equivalent.

Figure A.16: Output dynamics of test data points for axis-aligned soft tree ensembles under four
conditions. (Top left): AAA with M = 16, (Top right): AAA with M = 1024, (Bottom left): AAI
with M = 16, (Bottom right): AAI with M = 1024. Dashed and solid lines represent the asymmetric
tree model and the oblivious trees converted using Proposition 2, respectively. Each data point is
represented by a different line color. All plots are created using exactly the same training and test
data.

oblivious trees using Proposition 2. Results show that if there are a total of 1024 trees, the behavior
before and after the conversion is consistent. Note that in the case of architecture 2, since there are
two tree architectures after conversion, each tree architecture has 8 and 512 trees respectively so that
the total number of trees is 16 and 1024. The method for training a finite number of trees is the same
as that in Figure 4.

E COMPUTATIONAL COMPLEXITY

First we analyze the computational cost of kernel matrix computation. To obtain a single kernel
matrix, a calculation defined in Equation 9 is performed N2 times, where N is the size of an input
dataset. When we denote the number of leaves as L and the depth of the tree as D, the overall
computational complexity is O(N2LD2). Note that if there are duplicates in the output of h(aℓ) for
all ℓ ∈ [L], the computational cost can be reduced by aggregating and computing these duplicates
together, so the actual computational cost is often less than this. For example, when considering
oblivious trees, the computational complexity reduces to O(N2D2).

Second, we consider the computational cost of MKL. Since MKL uses multiple kernels, it repeats
calculation of kernel matrices for all the kernel matrices, while parallelization is possible in this
process. Note that if there are duplicates in the output of h(aℓ) for all ℓ ∈ [L], the computational
cost can actually be reduced by aggregating and computing these duplicates together, so the actual
computational cost is often less than this. The cost to calculate the weights of the kernels by EasyMKL
depends on the number of kernels. Specifically, the EasyMKL uses Kernelized Optimization of the
Margin Distribution (KOMD) (Aiolli et al., 2008), and its computational cost is known to be linear
with respect to the number of kernels (Aiolli & Donini, 2015).

22

	Introduction
	Preliminaries
	Soft Tree Ensembles
	Neural Tangent Kernels

	The Theory of the NTK Induced by Axis-Aligned Trees
	Setup on Axis-Aligned Splitting
	The NTK Induced by Axis-Aligned Soft Trees
	The NTK Induced by Ensembles of Various Trees

	Insights Derived from the NTK Induced by Axis-Aligned Trees
	Sufficiency of the Oblivious Tree for Architecture Candidates
	Multiple Kernel Learning as Tree Architecture Search

	Conclusion
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Proposition 2
	Additional Experiments
	Convergence of the NTK with AAA/AAI
	Visualization of the NTK with AAA/AAI for each hyperparameter
	Output dynamics with a real-world dataset
	MKL Weights obtained from various datasets
	Generalization Performance on various datasets
	Comparison with Random Forest and Gradient Boosting Decision Trees
	Empirical validation of Proposition 2

	Computational Complexity

