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ABSTRACT

Despite the widespread use of text-to-image diffusion models across various tasks,
their computational and memory demands limit practical applications. To mitigate
this issue, quantization of diffusion models has been explored. It reduces memory
usage and computational costs by compressing weights and activations into lower-
bit formats. However, existing methods often struggle to preserve both image qual-
ity and text-image alignment, particularly in lower-bit(< 8bits) quantization. In
this paper, we analyze the challenges associated with quantizing text-to-image
diffusion models from a distributional perspective. Our analysis reveals that acti-
vation outliers play a crucial role in determining image quality. Additionally, we
identify distinctive patterns in cross-attention scores, which significantly affects
text-image alignment. To address these challenges, we propose Distribution-aware
Group Quantization (DGQ), a method that identifies and adaptively handles pixel-
wise and channel-wise outliers to preserve image quality. Furthermore, DGQ ap-
plies prompt-specific logarithmic quantization scales to maintain text-image align-
ment. Our method demonstrates remarkable performance on datasets such as MS-
COCO and PartiPrompts. We are the first to successfully achieve low-bit quanti-
zation of text-to-image diffusion models without requiring additional fine-tuning
of weight quantization parameters.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015) have recently become a key component of modern
text-to-image models (Rombach et al., 2022; Ramesh et al., 2022; Li et al., 2023b; Podell et al.,
2024), enabling the generation of high-quality images from natural language prompts. However,
they often require a high computational workload, driven by iterative computations and significant
memory costs. (Figure 1). This has limited their practicality in real-world applications, particularly
on resource-constrained devices or in real-time generation (Kim et al., 2023; Ulhaq et al., 2022).
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Figure 1: Memory requirements and computa-
tional cost of Stable diffusion v1.4.

To reduce excessive computing resource us-
age, model quantization has gained signifi-
cant attention. It involves compressing weights
and activations from floating-point formats
to lower-bit representations, thereby reduc-
ing both memory usage and computational
requirements. Numerous approaches (Shang
et al., 2023; Li et al., 2023a; He et al., 2023;
Huang et al., 2024; So et al., 2024; He et al.,
2024) have been proposed to quantize dif-
fusion models while minimizing image qual-
ity degradation. However, these methods often
fail to maintain accurate text-image alignment,
which is crucial for text-to-image models (Figure 2). While reducing the degradation in text-image
alignment after quantization has been less explored, it is essential considering the application sce-
narios of text-to-image models. Most recently, Mixdq (Zhao et al., 2024) and PCR (Tang et al.,
2023) have tried to quantize text-to-image diffusion models. These methods evaluated the sensitiv-
ity of each layer (Zhao et al., 2024) or timesteps (Tang et al., 2023) based on both image quality
and text-image alignments, and allocate higher bit precision to more sensitive components. Both ap-
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“A photo of the room with a yellow walls and white clock”
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Figure 2: The impact of DGQ. (a) Two types of performance degradation in text-to-image diffusion
model quantization. DGQ preserves both text-image alignment (as shown above) and image quality
(as shown below) significantly better than TFMQ-DM. Each model is quantized to the 8-bits setting
(both weight and activation). (b) Performance comparison with other methods.

Figure 3: Comparison of quantization strategies. We show layer-wise, channel-wise and group-
wise quantization methods. Minmax and MSE (mean-squared error) are the most common strate-
gies for calibrating the quantization scale, but both approaches struggle to effectively quantize the
activation. The gray dotted lines represent the quantized values. Unlike layer-wise quantization, in
channel-wise quantization, the quantized values are adapted to each channel. In group-wise quanti-
zation, the quantized values are adapted to groups, such as outliers or other channels. More detailed
information about quantization granularity can be found in Appendix E

proaches, however, rely on mixed precision which presents challenges for hardware implementation.
Additionally, they didn’t focus on a lower-bit(below 8-bits) setting.

This paper investigates the quantization of text-to-image diffusion models, enabling hardware-
friendly lower-bit precision quantization. While existing methods primarily focus on maintaining
high image quality, our approach aims to preserve both high image quality and text-image align-
ment after quantization. We analyze the distribution of activations and identify key characteristics
necessary for maintaining model performance during the quantization process. Firstly, we observe
the presence of outliers in activations (C1), and recognize their critical role in preserving image
quality. We also find that existing method using layer-wise quantization fail to retain these outliers.
As a result, their generation performance is largely degraded even though quantization errors are
successfully minimized (Figure 3).

We also observed that the attention scores in the cross-attention layers form a distinctive distribution
(C2). As noted in many prior quantization studies on ViT (Lin et al., 2022; Li et al., 2023c), atten-
tion scores typically exhibit a simple log-normal distribution. However, our analysis revealed that,
unlike self-attention, cross-attention exhibits two distinct peaks each corresponding to <start>
token and the remaining tokens, respectively. Existing methods disregard this distribution and em-
ploy a uniform quantizer, resulting in inadequate quantization of smaller values on a logarithmic
scale. Moreover, due to the presence of the <start> token, the quantization error for the remain-
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ing tokens becomes significant, leading to degradation of text-image alignment. However, simply
removing the <start> token significantly degrades image fidelity. Thus, we treat the <start>
token separately, enabling us to achieve a high level of text-image alignment without compromising
image quality.

Based on these findings, we propose Distribution-aware Group Quantization (DGQ) to address two
key challenges in diffusion model quantization: (C1) outliers in activations and (C2) distinctive pat-
terns in cross-attention, each having critical impact on image quality and text-image alignment. For
C1, we introduce the outlier-preserving group quantization, which categorizes outliers into pixel-
wise and channel-wise outliers. Then, for each outlier type, we form a group and apply customized
quantization with group-wise scale parameters. To address C2, we apply logarithmic quantization
to the attention scores, except for <start> token, and use different quantization scales based on
the input prompt. The attention score corresponding to <start> token is handled separately and
maintained in full precision.

We tested our method on various datasets, including MS-COCO (Lin et al., 2014) and Par-
tiPrompts (Yu et al., 2022), and confirmed its superior performance in generating high-quality and
text-aligned images. Our method achieved a reduction of 1.29 in FID score compared to full pre-
cision and an almost identical CLIP score (a decrease of only 0.001) on MS-COCO dataset, while
saving 93.7% in bit operations (from 694 TBOPs to 43.4 TBOPs).

To the best of our knowledge, we are the first to achieve low-bit quantization (< 8-bit) on text-
to-image diffusion models (e.g., Stable Diffusion (Rombach et al., 2022)) without additional fine-
tuning of weight quantization parameters.

In summary, our contributions are as follows:

• We identify that text-to-image diffusion models exhibit unique patterns in activations and
cross-attention scores, which lead to performance degradation in existing quantization
methods.

• We propose Distribution-aware Group Quantization (DGQ). It consists of outlier-
preserving group quantization for activations and a customized quantizer for attention
scores.

• Our outlier-preserving group quantization significantly enhances image quality after quan-
tization, particularly in lower-bit settings. Meanwhile, customized quantizer for attentions
facilitates high text-image fidelity.

• Extensive experiments demonstrate our method outperforms existing approaches. On the
MS-COCO dataset, we achieve an FID score of 13.15, which is even lower than the score
for full precision. Furthermore, we are the first to achieve lower-bit quantization (under
8-bit) in text-to-image diffusion models without any additional fine-tuning.

2 RELATED WORK

Diffusion models can successfully generate high-quality images through an iterative denoising pro-
cess. Combined with pre-trained language models, diffusion models have shown outstanding perfor-
mance in text-to-image generations. The release of large diffusion models such as Imagen (Saharia
et al., 2022), Midjourney1, DALL-E2 (Ramesh et al., 2022), GLIDE (Nichol et al., 2021), Stable
Diffusion (Rombach et al., 2022), and FLUX2 has further accelerated advancements in the field of
generative AI. However, the high memory and computational costs of these large diffusion models
present challenges for practical use.

Model quantization is a technique to reduce model size and improve inference speed by lowering
the bit precision of the model’s weights and activations. There are two primary approaches to model
quantization: post-training quantization (PTQ) (Lin et al., 2024; Li et al., 2023a; Huang et al., 2024;
Tang et al., 2023; Lin et al., 2022; He et al., 2024; Shang et al., 2023; Nagel et al., 2020; Wei et al.,
2022; Li et al., 2021) or quantization-aware training (QAT) (Bondarenko et al., 2021; Esser et al.,
2019; Jung et al., 2019). PTQ applies the quantization process after the model has been fully trained,

1https://midjourney.com/
2https://github.com/black-forest-labs/flux
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requiring no additional training. In contrast, QAT incorporates the quantization process during train-
ing. It allows the model to adjust and maintain performance at lower precision. However, since QAT
requires additional training time and resources compared to PTQ, PTQ is often more suitable for
quantizing large foundation models. Recent works have a quantization-aware fine-tuning (He et al.,
2023; Wang et al., 2024; Ryu et al., 2024; Kim et al., 2024; Dettmers et al., 2024) approach that
slightly modifies QAT from-scratch and performs fine-tuning after PTQ. However, this ultimately
requires additional computational cost. Our method has the advantage of not requiring such fine-
tuning.

There have been studies on the quantization of diffusion models. These studies propose methods for
quantization that take into account the timestep of diffusion models. Specifically, Q-Diffusion (Li
et al., 2023a) constructs a calibration dataset by considering activation diversity across timesteps,
while TFMQ-DM (Huang et al., 2024) employs a differently structured reconstruction block to
better preserve temporal features. However, these studies focus solely on timestep-related character-
istics without considering the text-condition. More recently, MixDQ (Zhao et al., 2024) measured
layer-wise sensitivity with respect to the text condition and quantized through mixed precision.
PCR (Tang et al., 2023) introduced a dynamic bit-precision mechanism depending on the timestep.
However, both methods rely on mixed precision, making practical implementation challenging. A
similar approach to ours, QuEST (Wang et al., 2024), highlights the importance of activation out-
liers and varies the quantization of weights. Different from these studies, our approach focuses on
activation quantization, and both methods can be applied simultaneously.

3 METHOD

In this section, we provide an overview of hardware-friendly quantization techniques and analyze
the challenges of applying existing methods to text-to-image diffusion models. To address these
challenges, we introduce our approach, Distribution-aware Group Quantization (DGQ). DGQ is
specifically designed to preserve the unique characteristics of activations and cross-attention scores.
As a result, it maintains high image quality even at lower-bit settings and significantly improves
text-to-image alignment.

3.1 PRELIMINARY: HARDWARE-FRIENDLY QUANTIZATION

We briefly introduce two hardware-efficient quantization methods: linear (uniform) quantization and
logarithmic (log) quantization.

Linear Quantization. Linear quantization maps floating-point values to discrete integer levels uni-
formly across the value range. The quantization and de-quantization processes are defined as:

xq = clamp
(⌊x

s

⌉
+ z, 0, 2b − 1

)
, xdq = s · (xq − z) ≈ x. (1)

x, xq , xdq are the floating-point input, quantized input, de-quantized input, respectively. s, z and b
are the quantization parameter(scale factor, zero-point, bit-width). This method is popular due to its
simplicity and compatibility with standard hardware operations.

Logarithmic quantization. Log quantization utilizes a logarithmic scale to handle values with a
wide dynamic range, particularly effective for exponential distribution. The quantization and de-
quantization processes are defined as:

xq = clamp
(⌊

− log2

(x
s

)⌉
, 0, 2b − 1

)
, xdq = s · 2−xq ≈ x. (2)

This method benefits from efficient hardware implementation using bit-shifting operations.

3.2 ANALYZING CHARACTERISTICS OF TEXT-TO-IMAGE DIFFUSION MODELS

To effectively quantize text-to-image models, we focus on analyzing them, particularly from a distri-
butional perspective. Specifically, we examine the activations and attention scores, which we expect
to significantly impact on image quality and text-to-image alignment, repectively. Based on our
investigation, we identified several key characteristics.

Activation outliers play a crucial role in image quality. We analyzed the importance
of individual activation by examining the activation distribution of the diffusion model.
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"A mountain with snow-capped peaks rising high into the sky."

Original Random 

dropping

Outlier dropping

"A cute cat, eating a fish, with a big smile on its face."

Pixel-wise boxplot Channel-wise boxplot

Case2: Outliers on specific channel

Case1: Outliers on specific pixel

(a) (b)

channel index

channel index

pixel index

pixel index

Figure 4: Characteristics of activation outliers. (a) Comparison of dropping random values and
dropping outlier values. (b) Two types of outliers are identified. These outliers often appear in spe-
cific channels or at specific pixels. We provide full activation matrix visualization in Appendix H

Table 1: Comparison of
dropping values.We used
the original samples as ref-
erence images and evaluated
them on a randomly sam-
pled set of 1,000 MS-COCO
prompts.

Methods PSNR↑ LPIPS↓
random drop 17.81 0.295

outlier drop 9.34 0.773

Our analysis revealed that outliers (i.e., small fractions of activa-
tions with either very high or very low values) play a critical role in
image generation. In Figure 4(a), we create three different images
using the same text prompt with different activation manipulation.
The first image represents the original generation (without any ac-
tivations dropped), while the second and third images show exam-
ples where a single activation from each layer was set to zero. As
illustrated in the figure, dropping random activations (that are not
outliers) had minimal impact on the output image. However, drop-
ping outlier activations resulted in images with drastically different
shapes and noticeably lower quality (Table 1). This indicates that
certain activations, specifically the outliers, are crucial for image generation. Overall, our findings
reveal that outliers significantly impact model performance, consistent with observations made in
studies on large language models (Lin et al., 2024) and Vision Transformers (Darcet et al., 2023).
Unlike these studies, our work primarily focuses on the effects of activations, particularly the role
of activation outliers.

Outliers appear on a few specific channels or pixels. Then, where do outliers occur? We fur-
ther trace the occurrence of outliers along various spatial dimensions. As shown in Figure 4(b),
we confirmed that the outliers tend to appear in specific channels or pixels, rather than being evenly
distributed. Furthermore, the locations of these outliers vary across different layers. This pattern per-
sists even when the seeds and prompts are changed, suggesting that it is a distinctive characteristic
of text-to-image diffusion models. We speculate that this results from specific architectural choices
and long pretraining without activation regularization (Bondarenko et al., 2021).

Cross-attention score corresponding to <start> token make a distinct peak. Since attention
scores are computed using the Softmax function, they typically follow a logarithmic distribution:

Attention Score(Q,K)ij = Softmax(
sij√
d
) =

exp
(

sij√
d

)
∑

j′ exp
(

sij′√
d

) , where sij = Qi · KT
j . (3)

Q ∈ Rnq×d, K ∈ Rnk×d, i = 1, 2, ..., nq , and j = 1, 2, ..., nk. nq and nk denotes number of tokens,
and d is the feature size. Since qi and kj are normally distributed in self-attention, sij√

d
is also nor-

mally distributed, and the exponentials exp
(

sij√
dk

)
follow a log-normal distribution. Consequently,

in log scale, self-attention scores are approximated by a normal distribution. However, when ex-
amining the distribution of cross-attention scores, distinct patterns emerge, where they clearly differ
from that of self-attention scores. As shown in Figure 5(a), the first notable difference is the presence
of a peak near the <start> (also referred to as <bos>) token. To find the cause of this pattern,
we analyze the attention score of the <start> token. We find that the background pixels tend to
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Figure 5: Characteristics of cross-attention scores. (a) The <start> token causes a peak near
1.0(Left). Background pixels tend to have high attention scores for the <start> token (Right). (b)
Unlike self-attention, the maximum values of cross-attention scores change more dynamically.

have high attention scores (almost close to 1.0) for the <start> token. Moreover, we empirically
confirmed the role of these high attention scores of the <start> token. Adjusting attention scores
to various levels (e.g., dropping to zero and clamping to the second highest token’s attention score)
affects overall image details. (See Appendix A).

The distribution of cross-attention scores is highly dependent on the input prompts. Addition-
ally, we analyzed the attention scores except for <start> token and observed that the distribution
of the cross-attention scores are also different from those of self-attention. An image input has fixed
pixel size and locality, resulting in consistently widespread attention scores and a similar distribu-
tion range across the input prompts. In contrast, the number of text tokens relevant to specific pixels
varies, causing cross-attention scores to either concentrate or disperse. As shown in Figure 5(b), this
variation in distribution depends on the input prompts (Statistical results are in Appendix G). The
high variation makes it difficult for a static quantizer to preserve large values, resulting in informa-
tion loss in the content at the pixel level, which is important for text-image alignment.

3.3 DISTRIBUTION-AWARE GROUP QUANTIZATION

Based on our findings on activation and cross-attention scores, we develop a novel quantization
method tailored to text-to-image diffusion models. Specifically, we suggest (1) outlier-preserving
group quantization for handling outliers in activations and (2) attention-aware quantization for ad-
dressing patterns in cross attention.

Outlier-preserving group quantization. To maintain high image quality during quantization, it
is essential to preserve outliers while minimizing quantization error. However, most existing ap-
proaches fail to meet both of these criteria at the same time. As shown in Figure 3, when outliers are
preserved, the overall quantization error becomes excessively large. Conversely, if the quantization
scale is optimized to minimize mean-squared error, outliers are often ignored. Although channel-
wise quantization can mitigate this issue, it introduces significant computational overhead and is
ineffective at handling pixel-level outliers.

We propose outlier-preserving group quantization, that effectively reduces computational overhead
while maintaining image quality. Our approach identifies the most efficient dimension for applying
group quantization in each layer. After considering the activation range for vectors along the selected
dimension, we group them accordingly and create a customized quantizer for each group. Specifi-
cally, for each layer, we identify the outlier type by examining the activation range across channels
or pixels. Since outliers appear in specific channels or pixels, the difference in activation range in
the dimensions, where outliers occur, is larger than in other dimensions. We determine the optimal
dimension d ∈ {channel, pixel} and apply quantization in a way that preserves critical outlier infor-
mation. To achieve this, we define a metric Dd that measures the variability of activation values in

6
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each dimension:

Dd =
(
max

i
amax
i,d −min

i
amax
i,d

)
+
(
max

i
amin
i,d −min

i
amin
i,d

)
, (4)

where amax
i,d and amin

i,d represent the maximum and minimum values of the i-th vector in dimension
d, respectively. i is the index of the d-th dimension. This metric indicates the magnitude of the
differences in activation value ranges across the channel and pixel dimensions

Then, the dimension d∗, where Dd is large, is selected as the dimension to be used for grouping:
d∗ = argmax

d
Dd. (5)

At the optimal dimension d∗, we divide the activation values into K groups, based on their range
using K-means clustering. For each group, quantization scale sk and zero-point zk are calculated as:

sk =
max x −min x

2b
, zk = min x, (6)

where k ∈ {1, ...,K}. x represents the activation belonging to the k-th group, and b denotes the
number of quantization bits. Each group quantizes its values using the same quantizer. This approach
adjusts the quantization scale according to the distribution range of the activation values within
each group. This minimizes quantization errors and preserves outliers, effectively preserving image
quality.

Finally, we consider the variance of activation that changes with the timestep of the diffusion model,
we consider the same process for each timestep as described in previous studies (He et al., 2023;
Huang et al., 2024). The overall quantization scale S and zero-point Z for each layer are as follows:

S = {s0, s1, ..., sT−1} , Z = {z0, z1, ..., zT−1} . (7)
Note that T represents the total denoising step. For Stable Diffusion v1.4, when T is set to 25
steps and 16 groups are used, the additional memory occupied by the quantization parameter is
25 × 16 × 3008(byte) = 2.29MB. This is negligible(≃ 0.1%) compared to the UNet’s memory
requirement of 3,438 MB.

Attention-aware quantization. Cross-attention plays a crucial role in aligning text and images, as
it integrates text conditions into the image generation model (Zhao et al., 2024; Wang et al., 2024).
As discussed in Section 3.2, the distribution of attention scores has several clearly different patterns
from other activations. However, existing methods naively use a uniform quantizer for handling
these attentions. They therefore fail to preserve this distribution and leading to text-image alignment
degradation. To address this problem, first, we apply a logarithmic quantizer to both self and cross-
attentions. In this way, we can preserve the small values in log scale while uniform quantizer cannot.
Secondly, for cross-attention, we separate the forward path for the attention scores corresponding
to the <start> token and the others. Then, we maintain the attention scores of <start> token
and apply the quantizer to attention scores of the others. Since the Softmax operation is normally
performed in full precision, no additional dequantization is needed, making it efficient to implement
in hardware. Third, since the range of cross-attention scores varies depending on the input prompt,
we employ dynamic quantization, which adjusts the quantization scale to the maximum value of
the attention score excluding <start> token in inference-time. Our quantization process can be
expressed as the multiplication between quantized attention score Â ∈ Rnq×nk and quantized value
V̂ ∈ Rnv×d. That is,

Aq
[:,1:] = clamp

(⌊
− log2

(
A[:,1:]

s

)⌉
, 0, 2b − 1

)
, where s = max(A[:,1:]) (8)

Â = [A[:,0], s · 2
−Aq

[:,1:] ], ÂV̂ =
[
A[:,0]V̂[0,:], s · 2

−Aq
[:,1:]V̂[1:,:]

]
, (9)

where A is the full precision attention score. nq , nk, nv are the number of tokens of query, key, and
value, respectively.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets, models and evaluation metrics. The dataset used for calibration during quantization
was generated using 64 captions from the MS-COCO Dataset (Lin et al., 2014). Similar to the ap-
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Model Method Bits(W/A) Model Size BOPs MS-COCO PartiPrompts
IS↑ FID↓ CLIP↑ CLIP↑

SD v1.4

Full Precision 32/32 3,438MB 823T 36.52 14.44 0.298 0.293

Q-Diff 8/8 871MB 51.4T 27.65 26.12 0.273 0.275
TFMQ 8/8 871MB 51.4T 32.79 18.85 0.286 0.286
DGQ (#groups=8) 8/8 871MB 51.4T 35.38 13.26 0.297 0.292
DGQ (#groups=16) 8/8 871MB 51.4T 35.22 13.15 0.297 0.292
Q-Diff 8/6 871MB 38.6T 4.12 221.76 0.080 0.120
TFMQ 8/6 871MB 38.6T 6.57 175.16 0.146 0.178
DGQ (#groups=8) 8/6 871MB 38.6T 22.65 37.76 0.268 0.277
DGQ (#groups=16) 8/6 871MB 38.6T 24.77 31.36 0.273 0.279
Q-Diff 4/8 436MB 25.7T 26.52 28.06 0.269 0.271
TFMQ 4/8 436MB 25.7T 30.85 19.98 0.281 0.281
DGQ (#groups=8) 4/8 436MB 25.7T 33.91 13.28 0.294 0.289
DGQ (#groups=16) 4/8 436MB 25.7T 33.56 13.74 0.294 0.288

Q-Diff 4/6 436MB 19.3T 3.37 242.75 0.072 0.108
TFMQ 4/6 436MB 19.3T 5.24 229.64 0.127 0.155
DGQ (#groups=8) 4/6 436MB 19.3T 20.14 51.94 0.257 0.272
DGQ (#groups=16) 4/6 436MB 19.3T 22.17 43.66 0.263 0.274

SDXL Turbo

Full Precision 32/32 10,269MB 6,927T 35.97 21.25 0.308 0.309

TFMQ 8/8 2,567MB 433T 12.24 111.69 0.067 0.069
DGQ (#groups=8) 8/8 2,567MB 433T 34.79 22.46 0.299 0.294

(4 steps)

TFMQ 8/6 2,567MB 325T 4.27 163.02 -0.002 0.025
DGQ (#groups=8) 8/6 2,567MB 325T 28.56 34.31 0.251 0.223
TFMQ 4/8 1,284MB 216T 13.00 109.56 0.068 0.069
DGQ (#groups=8) 4/8 1,284MB 216T 28.33 29.22 0.289 0.291
TFMQ 4/6 1,284MB 162T 1.99 270.45 0.022 0.049
DGQ (#groups=8) 4/6 1,284MB 162T 22.93 45.00 0.245 0.226

Table 2: Quantitative Comparison. Results of different quantization methods on MS-COCO and
PartiPrompts datasets.

proach taken in Tang et al. (2023), we evaluated prompt generalization performance using the Par-
tiPrompts (Yu et al., 2022) dataset, which differs from the calibration dataset. For the text-to-image
model, we used Stable Diffusion v1.4. We measured FID (Heusel et al., 2017) and IS (Salimans
et al., 2016) scores to evaluate image quality, and the CLIP score to evaluate text-image alignment.
For main results (Table 2), we compute the FID and IS using 30K samples. For the ablation study
(Table 3), we use 10K samples. Additionally, to evaluate computational cost, we measured BOPs
(BOPs = FLOPs ·bw ·ba), where bw and ba each stand for bits of weight and activation, respectively.

Baseline and implementation details. We use two state-of-the-art methods, Q-Diffusion (Li et al.,
2023a) and TFMQ-DM (Huang et al., 2024), as baselines for comparison. To ensure a fair evaluation,
we employ the diffusers 3 library for both the baselines and our method. For the text-to-image
models, we conducted tests using Stable Diffusion v1.4. Unless specified otherwise, we apply 25
inference steps for computational efficiency. It should be noted that Q-Diffusion and TFMQ-DM
set the attention score’s quantizer bits of Stable Diffusion to 16 bits to avoid text-image alignment
degradation. However, in our implementation, to ensure a fair comparison, we set all attention score’s
quantizer bits to match the activation bits.

Weight quantization. Since our method focuses on activation quantization, we evaluated its effec-
tiveness by applying the same quantization methods to the weights of both the baseline and our
method. Following previous studies Huang et al. (2024); Li et al. (2023a); Shang et al. (2023); Tang
et al. (2023), we used BRECQ (Li et al., 2021) and Adaround (Nagel et al., 2020) for weight quan-
tization. Block reconstruction were applied to both transformer and residual blocks. The calibration
dataset used for reconstruction was the same as that used for activation quantization. We collect the
intermediate output with 64 captions from the MS-COCO dataset.

4.2 MAIN RESULTS

We conducted experiments on the MS-COCO and PartiPrompts Datasets, with the results presented
in Table 2. First, on the MS-COCO Dataset, all results show that our DGQ significantly outper-
forms previous methods. Specifically, with 8-bit activations, DGQ consistently delivers the best

3https://github.com/huggingface/diffusers
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Figure 6: Qualitative Comparison. Images in the top row were generated with the W8A8 setting,
and images in the bottom row were generated with the W4A6 setting. WXAY represents weights
and activations with X and Y bits, respectively.

performance, regardless of the weight bits. The FID scores were 13.15 and 13.28 for the W8A8 and
W4A8 settings, respectively, surpassing the performance of the full precision model (14.44). For
text-image alignment, the CLIP score experienced only minimal drops, with decreases of 0.001 and
0.004.

For settings below 8 bits, such as 6-bit activations, previous baseline methods essentially failed to
generate viable images, while DGQ successfully produced images of acceptable quality. Although
there was inevitable performance degradation compared to the full precision model, our results
showed significant improvement over the baseline methods. These improvements were evident in
both the FID(from more than 200 to 43.66 on a 4/6 setting.) and CLIP scores(from 0.155 to 0.274
on a 4/6 setting.).

Our method outperformed all previous approaches when evaluated on the PartiPrompts dataset,
which is designed to assess prompt generalization performance. Despite the PartiPrompts dataset
includes different types of prompts compared to the captions in MS-COCO, we achieved a high
CLIP score, suggesting our successful preservation of text-to-image alignment. The qualitative re-
sults can be seen in Figure 6.

4.3 ABLATION STUDY

We performed an ablation study to analyze the impact of each component of our proposed method.
The experimental results are presented in Table 3. All experiments were conducted under the W8A8
setting.

Effects of each component. In this section, we analyze the effect of each component of DGQ. We
examined the impact of Outlier-preserving Group Quantization and Attention-aware Quantization
individually, and the results are shown in Table 3(a). For Outlier-preserving Group Quantization,
a group size of 8 was used. For Attention-aware Quantization, we applied a Log Quantizer, sep-
arating the <start> token, and utilized dynamic quantization. Each component contributed to
improvements in image quality and text-image alignment, with the performance boost from Outlier-
preserving Group Quantization being particularly significant. The best performance was achieved
when both techniques were applied together.

Effects of grouping strategy. We investigated the effects of group size and dimension selection in
outlier-preserving group quantization. As shown in Table 3(b), the best image quality was achieved
when dimension selection was applied and the group size was set to 2. Meanwhile, the best text-
image alignment performance occurred when dimension selection was applied with a group size
of 8. This suggests that increasing the group size does not always lead to better performance, and
there exists an optimal group size. We interpret this phenomenon as being influenced by the 8-bit
environment used in the experiments, where the quantization scale is already sufficiently small. As a

9
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Bits(W/A) Outlier Attention IS↑ FID↓ CLIP↑
8/8 ✗ ✗ 31.34 18.83 0.286
8/8 ✓ ✗ 32.76 17.00 0.296
8/8 ✗ ✓ 31.18 18.24 0.287
8/8 ✓ ✓ 33.61 14.40 0.297
8/6 ✗ ✗ 6.45 176.44 0.144
8/6 ✓ ✗ 18.20 50.04 0.250
8/6 ✗ ✓ 7.17 207.46 0.127
8/6 ✓ ✓ 21.88 40.15 0.267

(a) Effects of each component

Dim. # Groups IS↑ FID↓ CLIP↑
✗ 1 31.34 18.83 0.286

✗ 2 32.45 16.74 0.290
✗ 4 33.01 16.54 0.294
✗ 8 32.61 16.79 0.294
✗ 16 32.07 16.91 0.294

✓ 2 32.94 16.24 0.292
✓ 4 33.03 16.64 0.295
✓ 8 32.64 16.99 0.295
✓ 16 32.42 17.15 0.295

(b) Effects of grouping strategy

Bits(W/A) Quantizer Seperate <start> IS↑ FID↓ CLIP↑
8/8 Linear ✗ 31.34 18.83 0.286
8/8 Linear ✓ 31.44 18.78 0.285
8/8 Log (w/ dynamic quant.) ✗ 30.91 18.37 0.287
8/8 Log (w/ dynamic quant.) ✓ 31.18 18.24 0.287
8/8 Log (w/o dynamic quant.) ✗ 24.51 31.12 0.265
8/8 Log (w/o dynamic quant.) ✓ 24.60 28.79 0.271

8/6 Linear ✗ 18.20 50.04 0.249
8/6 Linear ✓ 17.64 49.98 0.249
8/6 Log (w/ dynamic quant.) ✗ 21.36 41.28 0.268
8/6 Log (w/ dynamic quant.) ✓ 21.88 40.15 0.267

(c) Effects of attention-aware quantization.

Table 3: Ablation study. In (c), Due to the low-quality image under the 8/6-bit setting, evaluation
was not possible. Therefore, we applied outlier-preserving group quantization beforehand to analyze
the impact of attention-aware quantization.

result, increasing the group size further does not significantly enhance the precision of the activation
representation. The drop in performance may be attributed to overfitting to the calibration dataset
as the group size increases. In 8-bit settings, the best solution was to use 2 groups with dimension
selection. However, we anticipated that a larger group size would be more effective in lower-bit
settings. Therefore, we set the default group sizes to 8 and 16. As shown in Table 2, the results
confirmed that in lower-bit settings, a group size of 16 outperformed a group size of 8 in both image
quality and text-image alignment. More ablation study on 6-bit setting can be found in Appendix. B

Effects of attention-aware quantization. Table 3(c) illustrates the impact of each component
of attention-aware quantization. The best performance was observed when applying all com-
ponents(Log quantizer, separating <start> token, and dynamic quantization). Separating the
<start> token resulted in a slight reduction in the FID score. For Log quantizer without dynamic
quantization, the quantization scale is determined using the running-minmax method. It calculates
the min-max range through the exponential moving average of multiple batches (Krishnamoorthi,
2018). This method is commonly used to calibrate the log quantizer in existing vision transformer
quantization approaches (Li et al., 2023c; Li & Gu, 2023), but we find that it is not suitable for the
cross-attention in diffusion models. The log quantizer with dynamic quantization outperforms the
linear quantizer; in particular, on a 6-bit activation setting, it outperforms the linear quantizer by a
large margin.

5 CONCLUSION

In this work, we propose Distribution-aware Group Quantization (DGQ) for text-to-image diffusion
models. We identify the crucial role of outliers in image quality and preserve them by grouping
channels or pixels based on activation distribution. Furthermore, we uncover unique patterns in
cross-attention scores and apply prompt-specific logarithmic quantization. DGQ outperforms exist-
ing methods and, for the first time, enables low-bit quantization of text-to-image diffusion models
without additional fine-tuning. By reducing computational costs while preserving both image quality
and text-image alignment, our approach broadens the deployment of diffusion models in real-world
applications, including edge devices.
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A EFFECTS OF THE ATTENTION SCORE CORRESPONDING TO <START>
TOKEN.

We analyze the effects of the attention score corresponding to <start> token. For that, we adjust
the attention scores, and compare the sampled images. We change the attention score of <start>
token in two ways, clamping and dropping. clamping sets the attention score to the maximum value
of attention score corresponding to the other tokens(except <start> token), and dropping sets it
to 0. Clamping is used to check whether this can be excluded when determining the quantization
scale of the quantizer, and dropping is used to check whether this can be excluded altogether. We
confirmed that the <start> token doesn’t change the main contents of the images, but it affects on
the details of the images. Therefore, in order to maintain full precision output as much as possible,
<start> token should be preserved.

Original Clamped Dropped

“A cat riding a bike”

“A monkey playing a guitar”

“A virus monster playing a guitar”

“A painting of a car”

Figure A.1: Analysis on <start> token.
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B FURTHER ABLATION STUDY ON GROUPING STRATEGY

We conduct an ablation study to assess the impact of different grouping strategies on a 6-bits setting.
As shown in Table A.1, increasing the number of groups generally improves model performance.
Applying dimension selection consistently yields better results, and, unlike the 8-bit setting, more
groups consistently improve model performance.

Table A.1: Effects of grouping strategy on 8/6 setting.

Dim. # Groups IS↑ FID↓ CLIP↑
✗ 1 6.45 176.44 0.144

✗ 2 8.44 136.14 0.190
✗ 4 11.88 86.10 0.223
✗ 8 14.06 70.35 0.232
✗ 16 15.20 64.85 0.235

✓ 2 9.69 117.11 0.201
✓ 4 14.91 66.33 0.236
✓ 8 17.70 52.11 0.243
✓ 16 18.46 49.05 0.248

C EVALUATION ON VARIOUS METRICS

Considering the widespread usage of image quality assessment (IQA) models and human preference
reward models, we evaluate our methods on the IQA model MANIQA (Yang et al., 2022) and
the human preference model ImageReward (Xu et al., 2024). The evaluation is conducted on 30K
samples from the MS-COCO dataset. As shown in Table A.2, in almost all cases, DGQ significantly
outperforms the baseline. With 8-bit activation settings, TFMQ achieves slightly higher performance
with MANIQA, but on the ImageReward model, DGQ achieves better results in all cases.

Table A.2: Quantitative comparison. MANIQA is the image quality assessment model and Im-
ageReward is the human preference reward model.

Method Bits(W/A) MANIQA↑ ImageReward↑
Full Precision 32/32 0.5525 0.1120

TFMQ 8/8 0.5359 -0.0375
DGQ(groups=8) 8/8 0.5340 0.0668
TFMQ 8/6 0.3795 -1.8643
DGQ(groups=8) 8/6 0.4187 -0.2724
TFMQ 4/8 0.5265 -0.1222
DGQ(groups=8) 4/8 0.5223 -0.0256
TFMQ 4/6 0.3834 -2.0587
DGQ(groups=8) 4/6 0.4282 -0.4630

D DISCUSSION

D.1 LIMITATION AND FUTURE DIRECTIONS

We summarize the current limitation and potential future works.

Combining with advanced weight quantization methods. Since our methods are concentrate on
the activation quantization, it would be able combined with other advanced weight quantization
techniques such as EfficientDM, QuEST or the other quantization-aware training methods.
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More effective quantizer for attention scores. For cross-attention score, our analysis reveals that
the distribution range are deeply depends on the user input prompts. In DGQ, because of hardware-
constraint, we adjust the quantization scale as the maximum value of remaining attention scores, but
it would be more effective methods such as using lookup table or reparameterization.

D.2 DIFFERENCE BETWEEN POST-TRAINING QUANTIZATION AND QUANTIZATION-AWARE
TRAINING

Some other quantization methods (Zheng et al., 2024; Sui et al., 2024) achieve extremely low-bit
quantization. However, they are based on Quantization-Aware Training (QAT), which is a com-
pletely different setting from ours (i.e., Post-Training Quantization). BitFusion (Sui et al., 2024)
requires a huge dataset and significant computational cost to obtain a quantized model. In contrast,
DGQ (Ours) is a model generated through PTQ(Post-Training Quantization) that does not require a
dataset, requires only 64 prompts, and has a minimal computational cost. Specifically, according to
the BitFusion paper, their model was trained for 50K iterations with a batch size of 1024 using an
internal dataset, utilizing 32 NVIDIA A100 GPUs. On the other hand, DGQ used only 64 sample
prompts during the activation quantization process and was completed in about 20 minutes on just
one RTX A6000 (based on Stable Diffusion v1.4 with 25 steps).

Generally, models quantized through QAT have better performance compared to models quantized
through PTQ. However, due to the need for a huge training dataset and high training costs, QAT
is not practical. Therefore, recent quantization research for the large foundation models has been
focused on PTQ(please refer to the survey paper (Zhu et al., 2023)). DGQ is the first method to
achieve low-bit quantization of text-to-image diffusion models without any additional fine-tuning
(i.e., PTQ).

E QUANTIZATION GRANULARITY

Quantization in deep learning models involves reducing the precision of weights and activations to
lower bit-width representations, thereby enhancing computational efficiency and reducing memory
consumption. The granularity of quantization—that is, the level at which quantization parameters
are applied—significantly impacts the trade-off between model accuracy and computational perfor-
mance. The primary types of quantization granularity are layer-wise, group-wise, and channel-wise
quantization.

Layer-wise Quantization

c

p

b 

b: batch index, c: channel index, p: pixel index, g: group size

Group-wise Quantization

c

p

b 

𝑐

𝑔

Channel-wise Quantization

c

p

b 

1

Figure A.2: Illustration of Quantization Granularity. Different quantizers are applied to each
color.

As shown in Figure A.2, layer-wise quantization applies a single scale and zero-point to all weights
or activations within an entire layer, simplifying implementation but potentially reducing accuracy
due to its coarse approach. Group-wise quantization divides the weights or activations within a layer
into multiple groups, assigning separate quantization parameters to each group. This method offers
a balance between efficiency and precision, capturing more detail than layer-wise quantization with-
out the full complexity of channel-wise quantization. Channel-wise quantization assigns individual
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quantization parameters to each channel, providing the most precise representation of weight and ac-
tivation distributions. While this fine-grained approach often yields higher model accuracy, it comes
with increased computational and memory overhead due to the need to store and process multiple
sets of quantization parameters.

F IMPACT OF ATTENTION SCORE QUANTIZER BIT-WIDTH ON IMAGE-TEXT
ALIGNMENT.

To analyze the effect of the attention score quantizer’s bit-width, we adjust its bit-width while keep-
ing the other layers at full precision. As shown in Figure A.3, using the linear quantizer (employed
in the baselines Q-Diffusion and TFMQ-DM) causes slight changes in the image content, and at the
6-bit setting, the image becomes misaligned with the text prompt. However, with attention-aware
quantization, the image is successfully preserved, matching the quality of the full-precision images
even at the 6-bit setting.

“A photo of a cat and a dog”
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Figure A.3: Qualitative comparison of attention score quantizer

G STATISTICS FOR ATTENTION SCORE DISTRIBUTION

To provide more detailed information about the attention score distribution, we calculated the statis-
tics of attention scores and compared the distinct patterns between self-attention and cross-attention.
We conducted experiments on the PartiPrompts dataset and collected the maximum value of each
layer’s attention scores. We transformed the maximum values using a base-2 logarithm (log2) and
calculated the statistics.

As shown in Figure 5(b), the maximum values of cross-attention scores vary more dynamically than
those of self-attention. According to the statistics of the maximum attention scores, the standard

Statistic Value
Std of cross-attention 0.826
Std of self-attention 0.334

Mean ratio of each layer’s attention std 3.210

Table A.3: Statistics for attention score distribution.
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deviation of cross-attention is much larger than that of self-attention. The first two rows of Table
A.3 present the standard deviation(std) of all maximum attention scores for each attention type.
For a more accurate comparison, we calculated the standard deviation for each transformer layer
and computed the mean of the ratios of these standard deviations. This confirms that the standard
deviation of cross-attention is, on average, more than three times larger than that of self-attention.
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H FULL VISUALIZATION OF ACTIVATION MATRIX

To better illustrate that outliers occur at a specific pixel (case 1) or channel (case 2), we visual-
ized only the values around the indexes where outliers occur in Figure 4(b). Figure A.4 shows the
visualization of full activation matrix.

Outliers on the specific pixel

channel index

pixel index

(a) Case1: Outliers on the specific pixel
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(b) Case2: Outliers on specific channels
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Figure A.4: Visualization of full activation matrix in Figure 4(b)
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I ADDITIONAL QUALITATIVE RESULTS

we provide more random samples from quantized models obtained using DGQ and TFMQ-DM.
Results are shown in the figures below.

Full Precision DGQ(W8A8G8) DGQ(W8A8G16) TFMQ(W8A8)

Full Precision DGQ(W8A6G8) DGQ(W8A6G16) TFMQ(W8A6)

Figure A.5: Additional qualitative results with the 8-bit weight, SDv1.4. we randomly sampled
the captions from the MS-COCO and generate images with them. WXAYGZ represents weights and
activations with X and Y bits and a group size of Z.
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Full Precision DGQ(W4A8G8) DGQ(W4A8G16) TFMQ(W4A8)

Full Precision DGQ(W4A6G8) DGQ(W4A6G16) TFMQ(W4A6)

Figure A.6: Additional qualitative results with the 4-bit weight, SDv1.4 we randomly sampled
the captions from the MS-COCO and generate images with them. WXAYGZ represents weights and
activations with X and Y bits and a group size of Z.
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Full Precision DGQ(W8A8G8) TFMQ(W8A6)TFMQ(W8A8) DGQ(W8A6G8)

Figure A.7: Additional qualitative results with the 8-bit weight, SDXL-Turbo. we randomly
sampled the captions from the MS-COCO and generate images with them. WXAYGZ represents
weights and activations with X and Y bits and a group size of Z.
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Full Precision DGQ(W4A8G8) TFMQ(W4A6)TFMQ(W4A8) DGQ(W4A6G8)

Figure A.8: Additional qualitative results with the 4-bit weight, SDXL-Turbo. we randomly
sampled the captions from the MS-COCO and generate images with them. WXAYGZ represents
weights and activations with X and Y bits and a group size of Z.
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