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ABSTRACT

Sampling from multimodal distributions is a central challenge in Bayesian infer-
ence and machine learning. In light of hardness results for sampling—classical
MCMC methods, even with tempering, can suffer from exponential mixing
times—a natural question is how to leverage additional information, such as a
warm start point for each mode, to enable faster mixing across modes. For this
problem, we prove the first polynomial-time bound that works in a general set-
ting, under a natural assumption that each component contains significant mass
relative to the others when tilted towards the corresponding warm start point.
For this, we introduce a modified version of the Annealed Leap-Point Sampler
(ALPS) (Tawn et al., 2021; Roberts et al., 2022). Similarly to ALPS, we define
distributions tilted towards a mixture centered at the warm start points, and at
the coldest level, use teleportation between warm start points to enable efficient
mixing across modes. In contrast to ALPS, our method does not require Hessian
information at the modes, but instead estimates component partition functions via
Monte Carlo. This additional estimation step is critical in allowing the algorithm
to handle target distributions with more complex geometries besides approximate
Gaussian. For the proof, we show convergence results for Markov processes when
only part of the stationary distribution is well-mixing and estimation for partition
functions for individual components of a mixture. We numerically evaluate our
algorithm’s mixing performance on a mixture of heavy-tailed distributions, com-
paring it against the ALPS algorithm on the same distribution.

1 INTRODUCTION

A key task in statistics and machine learning is sampling from a probability distribution known up
to normalization, ω(x) → e→V (x). The standard approach of Markov Chain Monte Carlo (MCMC)
is to define a Markov chain with stationary distribution ω(x). The time it takes for MCMC methods
to produce an approximate sample from ω(x) depends on the mixing time of the underlying Markov
chain. Unfortunately, in many applications, the target distribution ω(x) is multimodal, which causes
Markov chains with local moves to mix slowly, as transitions between different modes rarely occur;
this is the general phenomenon of metastability Bovier et al. (2002).

Modern MCMC methods such as simulated tempering Marinari & Parisi (1992), parallel tempering
(also known as replica exchange) Swendsen & Wang (1986), Sequential Monte Carlo (also known
as particle filtering) Del Moral et al. (2006), and annealed importance sampling Neal (2001) attempt
to speed up sampling by running a Markov chain with a sequence of interpolating distributions
pω(x) → e→ωV (x) or pω(x) → ω(x)ωp0(x)1→ω at varying inverse temperatures ε. The idea is at high
temperatures the Markov chain can more easily mix between modes of the target distribution.

Recent analysis of these methods has shown that it is possible to obtain non-asymptotic mixing
time bounds for multimodal stationary distributions with polynomial dependence on parameters, but
only under restrictive assumptions. Indeed, there are simple families of multimodal distributions
with bottlenecks arising from low-weight components, which require exponentially many queries
to sample Ge et al. (2018a) (see also Example B.1). This motivates the search for algorithms that
leverage more information, such as approximate location of modes, which we term warm starts. We
formalize the problem of sampling with warm starts, and prove that our algorithm has polynomial
running times under general assumptions.
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To motivate the algorithm, we note another approach to multimodal sampling is using mode jump
samplers such as Tjelmeland & Hegstad (2001); Ibrahim (2009); Lindsey et al. (2022). These algo-
rithms address poor mixing due to multimodality by allowing samples to jump (teleport) between
modes of the target distribution. However, in high dimensions the Markov process can have very low
acceptance rates when jumping between modes, because arbitrary distributions will in general have
exponentially small overlap even when superimposed. Tawn et al. (2021) cleverly combine tem-
pering with teleportation in the Annealed Leap-Point Sampler (ALPS) which, given a warm starts
x1, . . . , xM to the modes, anneals the target distribution to colder temperature. At the coldest tem-
perature, the distribution is peaked around the warm start points, and samples can leap from mode
to mode of the peaked distributions with high acceptance probability. Note that annealing to cold
temperatures is exactly the opposite of how tempering methods typically function.

In this paper, we prove non-asymptotic bounds in total variation (TV) for a modified version of the
ALPS algorithm (Roberts et al., 2022). We make some modifications for technical convenience of
the analysis, and one critical modification that prevents bottlenecks in modes at different levels from
arising under general assumptions. Instead of using weight-preserving power tempering Tawn et al.
(2020b), we let the intermediate distributions be ωω(x) → ω(x) ·

∑M
k=1 wω,kqω(x ↑ xk) with wω,k

dynamically chosen by the algorithm. This allows eliminating bottlenecks without requiring the
components are approximately Gaussian, and does not require Hessian information.

Importantly, our results are free of functional inequalities that depend on the global geometry of the
target density. Instead, we prove upper bounds on mixing time for the underlying Markov process
in the algorithm in terms of local Poincaré constants (capturing local mixing) alone. Our analy-
sis proceeds through a Markov chain decomposition theorem Madras & Randall (2002); Ge et al.
(2018a), which requires us to bound the Poincaré constant of a certain projected chain (capturing
mixing between components). This Poincaré constant is bounded by appropriate algorithmic choice
of level and component weights ri, wi,k and temperature ladder εi.

We overcome two new technical challenges in the analysis. First, the tempering scheme can create
bad components, so we develop new theoretical analyses for Markov chains that show mixing in the
“good” part of the stationary distribution. Second, in addition to estimating the partition function of
the tempered distributions ωωi for each level i to balance the levels (via ri), we also need to estimate
the partition functions for the components ωωi,k of the mixture, in order to balance the modes (via
wi,k) and avoid a bottleneck in the projected chain. We show that the partition functions can be
approximated using Monte Carlo; the proof requires a technically involved analysis due to possible
interference between different components.

1.1 SAMPLING WITH DIFFERENT KINDS OF ADVICE

We are interested in the problem of approximately sampling from ω(x) → e→V (x) which is multi-
modal. A common way of formalizing the multimodality is to assume that ω =

∑m
i=1 wiωi, where

each component ωi satisfies a functional inequality; that is, the natural Markov chain on the space
mixes rapidly. We classify approaches to this problem depending on the strength of extra informa-
tion, or advice that we are given. Here, we focus on approaches with theoretical guarantees.

No advice. Without extra information, guarantees are available only under strong conditions.
Early work gives guarantees for simulated and parallel tempering assuming suitable decompositions
(Madras & Randall, 2002; Woodard et al., 2009a). Ge et al. (2018a) show that simulated tempering
combined with Langevin dynamics works for a mixture of translates of distributions satisfying a log-
Sobolev inequality (e.g. a mixture of Gaussians with equal covariance); this is generalized to other
Markov processes by Garg et al. (2025). For sequential Monte Carlo, Paulin et al. (2018); Mathews
& Schmidler (2024) show guarantees for multimodal distributions but require separation between
modes. Lee & Santana-Gijzen (2024) allow a general mixture but assume component weights do
not change between temperatures, which is relaxed by Han et al. (2025).

An inherent challenge that leads to restrictive assumptions in the above results is the following:
in general, a component can have smaller weights at higher temperatures, creating a “bottleneck”
that prevents samples from moving into that mode. In simple terms, it is generally difficult to
find a mode. A simple example is that of two Gaussians with different covariances. Woodard et al.
(2009b) observe exponential lower bounds for simulated and parallel tempering in this setting. More
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generally, considering a family of perturbations of such distributions, no algorithm can generate a
sample within constant TV distance with sub-exponentially many queries to ω or ↓ lnω (Ge et al.,
2018a). Reweighting is a possible solution (Tawn et al., 2020b) but relies on components being
located and approximable by nice distributions such as gaussians.

Strong advice. Given strong advice in the form of a few samples from the target distribution,
Koehler & Vuong (2023); Koehler et al. (2025); Gay et al. (2025) show that the problem is gener-
ically solvable: for a mixture with m components, given Õ(m/ϑ2) samples, a fresh sample within
distance ϑ in TV can be generated by simply running the Markov chain starting from a random sam-
ple; this is termed data-based initialization. This framework works for both continuous and discrete
settings. Although the assumption is strong, it is reasonable in the setting of generative modeling,
when a dataset of samples is given and the task is to learn to generate new samples.

Weak advice. Given the impossibility results in the setting of no advice and the lack of strong
advice in many problems, it is natural to try for general results given weaker information. As mode
location is an inherent challenge, a natural assumption to isolate the search problem from the sam-
pling problem is to assume we already have warm starts to the modes, e.g. obtained by multiple
runs of optimization. Tawn et al. (2021) introduce the annealed-leap point sampler, which combines
tempering towards a mixture of peaked distributions, with teleportation, and gives asymptotic anal-
ysis in the limit as the modes become gaussian (Roberts et al., 2022). Another kind of information
which can be considered as weak advice is that of a few reaction coordinates that are assumed to be
the main obstacle to fast mixing; algorithms can take advantage of this by stratifying the landscape
and forcing exploration in those directions. Examples include umbrella sampling Torrie & Valleau
(1977); Thiede et al. (2016) (with analysis in Dinner et al. (2020)), the Wang–Landau algorithm
Wang & Landau (2001), and adaptive biasing force Darve & Pohorille (2001).

Theoretical tools. We highlight some theoretical tools that are useful for analyzing sampling for
multimodal distributions. Firstly, Markov chain decomposition theorems Madras & Randall (2002);
Woodard et al. (2009a); Ge et al. (2018a) or two-scale functional inequalities Otto & Reznikoff
(2007); Grunewald et al. (2009); Lelièvre (2009); Chen et al. (2021) show that functional inequali-
ties for a Markov chain or process hold given that they hold locally (restricted to some component or
coordinate) and that they hold for a projected process that tracks flow or closeness between the com-
ponents. A number of works quantify and apply local mixing: Although Langevin diffusion does
not generally converge quickly, Balasubramanian et al. (2022) show it is efficient to sample with
small relative Fisher information, which for a mixture, corresponds to local mixing within modes
but not necessarily global mixing between modes. Huang et al. (2025) show that sampling is pos-
sible under weak Poincaré inequalities Andrieu et al. (2023) when a warm start can be maintained.
Finally, partition function estimation using simulated annealing and Monte Carlo Dyer et al. (1991);
Štefankovič et al. (2009) is well-studied theoretically.

1.2 PROBLEM STATEMENT & ASSUMPTIONS

We address the problem of sampling from a target distribution ω(x) → e→V (x) with oracle access to
the target distribution ω(x) by utilizing a set of warm start points {x1, . . . , xM}. (We will formally
define this below.) These can be obtained as prior information or from multiple runs of optimization
algorithms. close to local maxima of the target distribution ω(x).

Problem 1.1. Suppose we are given a set of “warm starts” {x1, . . . , xM} to the modes of a target
distribution ω(x) =

∑M
k=1 ϖkωk(x). Assume query access to ω(x) up to a normalization constant,

and possibly ↓ lnω (in the case of Rd). Produce a sample that is ϑ-close in total variation distance
to ω(x).

Note that we only assume the existence of a decomposition of ω, not that the ωk are known. To
introduce our algorithm, we fix a family of density functions qω on X , which have the property
qω ↔ ϱ0 weakly as ε ↔ ↗ and qω = 1 if ε = 0. For example, the qω could be Gaussians in Rd

or product distributions on the hypercube. We will apply simulated tempering to the sequence of
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distributions (for ε ranging from 0 to very large)

p̃ω(x) → ω(x)
M∑

k=1

wω,kqω(x↑ xk),

for some weights wω,k estimated by the algorithm. (On the hypercube, addition is understood in
Z/2.) Essentially, we tilt the target distribution towards the set of warm start points. At the coldest
level, the distribution becomes approximately a mixture of Dirac deltas, and because of their similar
shape, the teleportation step of our algorithm allows samples to move between the warm start points.

We will make the following assumptions on ω(x) and its components ωk(x). The general idea of
the warm start assumption (part 2 below) is that a significant portion of the mass should be located
in the component that corresponds to the product between the component ωk(x) and the qω centered
at the corresponding warm start point xk. We call this the tilt towards xk of the distribution ωk. In
addition, we assume that each of these tilts satisfy a Poincaré inequality.
Assumption 1.1. Suppose that ω(x) is a distribution on !, qω : ! ↔ R,ε ↘ 0 are functions with
q0 ≃ 1. Fix a way of associating a distribution p(x) on ! with a Markov process with generator Lp

that has p as stationary distribution.

1. (Mixture distribution) The target distribution ω(x) is a mixture distribution ω(x) =∑M
k=1 ϖkωk(x), where ϖk ↘ 0 and ωk is a probability distribution.

2. (xi are warm starts) For each i ⇐ [M ] and for every ε ↘ 0,
∫

X
ϖiωi(x)qω(x↑ xi)dx ↘ ctilt

∫

X
ω(x)qω(x↑ xi)dx.

3. (Local mixing) For all i ⇐ [M ], pω,i(x) → ωi(x)qω(x↑ xi) satisfies a Poincaré inequality
of the form

Varpω,i (f) ⇒ CPEpω,i(f, f),

where Eε(f, f) = ↑⇑f,Lεf⇓ε is the Dirichlet form and Lε is the generator of the Markov
process with stationary distribution ω.

4. (Markov chain decomposes) Whenever p =
∑m

i=1 aipi, ai ↘ 0 is a mixture distribution on
!, the generators decompose: ⇑f,Lpf⇓p ⇒

∑m
i=1 ai ⇑f,Lpif⇓pi

.

Many common Markov chains have generators which satisfy the last assumption, for example,
Langevin diffusion or the Metropolis random walk on Rd and Glauber dynamics on product spaces.
See Lee & Santana-Gijzen (2024) for a complete discussion with proofs. We work with continuous-
time Markov processes for technical convenience; any discrete time Markov chain can be converted
to a continuous-time by letting the waiting time between jumps be exponential random variables. For
a discussion of the limitations of the warm start assumption, see Section 6. For the main theorem,
we will make some additional assumptions on the tempering scheme in Assumptions 3.1.

2 ALGORITHMS

2.1 INGREDIENTS: SIMULATED TEMPERING AND TELEPORTATION

To introduce our main algorithm, we first define simulated tempering and the leap point process.
These two algorithms will be the primary components of our main algorithm.

Simulated tempering is a classical approach to sampling from multimodal target distributions
(Marinari & Parisi, 1992), where the target distribution is (typically) tempered to smoother (high-
temperature) distributions that allow mixing between modes. Particles are allowed to transition be-
tween temperatures (with appropriate Metropolis-Hastings acceptance ratio) in addition to moving
within their current temperature, and we take the samples that are at the desired temperature.

In our setting, the target measure is instead tempered to more peaked (colder temperature) distribu-
tions, and then at the coldest temperature the leap point process is applied to transition particles to
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different components of the mixture measure. This works particularly well given a set of warm starts
{xk}Mk=1 since the mixture ω0(x) can be tempered to peak around each xi and then a teleportation
map gjj→ can be defined to move points around xj to around xj→ . We define simulated tempering
generally to apply for any specified sequence of distributions.
Definition 2.1. Given a sequence of Markov processes Mi with stationary distributions pi, 1 ⇒ i ⇒
L on state space ! and level weights ri, we define simulated tempering to be the process on !⇔[L]
as follows. At each level i ⇐ [L] we are given a Markov process Mi with stationary pi(x). Then the
simulated tempering Markov process is defined as follows:

1. Evolve (x, i) ⇐ ! according to Mi.

2. Propose jumps with rate ς. When a jump is proposed, leap to i↑ with probability

1

2
min

{
ri→pi→(x)

ripi(x)
, 1

}
, i↑ = i± 1; (2.1)

otherwise stay at i ⇐ [L].

It is simple to check that the stationary distribution is p(x, i) =
∑L

j=1 rjpj(x)I{i = j} Marinari &
Parisi (1992); Neal (1996). In our case, the pi will be chosen as p̃ωi . For ease of notation, we will
overload notation by replacing εi by i in subscripts, e.g., p̃i := p̃ωi .

For the definition of the leap point process, we assume we are given a set of teleportation functions
gjj→ ; for Rd, a simple choice is translation between modes, gjj→(x) = x+ xj ↑ xj→ .
Definition 2.2. Given a set of teleportation functions gij , i, j ⇐ [M ] satisfying Definition D.1 and a
Markov process P with stationary distribution q, define the leap point process on the state space !
as follows.

1. Evolve x ⇐ ! according to P .

2. Propose leaps with rate φ. When a leap is proposed, choose j and j↑ uniformly and leap to
gjj→(x) with probability

1

M
min

{
gjj

→

# q(x)

q(x)
, 1

}
, ↖j↑ ↙= j; (2.2)

otherwise stay at x.

Note that we define j to be randomly sampled, which differs slightly from from Roberts et al. (2022);
Tawn et al. (2020a; 2021), where the current position x of the Markov chain is assigned to a mode
j = argmink d(x, xk); this is only for ease of analysis.

Our Markov chain uses simulated tempering to perform temperature swaps and employs the leap
point process at the coldest temperature to mix between modes. Formally, we define our process on
the level of the generators by adding together the original generator, the simulated tempering jumps,
and the leaps at the coldest level (i = 1). We defer a formal treatment to Section D.1. See Algorithm
2 for pseudocode of simulation.

2.2 WEIGHT ESTIMATION & LEVEL BALANCE

A challenge for tempering algorithms is the potential for bottlenecks to prevent the chain from
exploring the entire state space. These bottlenecks form when the probability mass of specific modes
becomes vanishingly small at certain levels. Our algorithm explicitly addresses this by iteratively
estimating the weights—modal and level—to maintain the following balance condition.
Definition 2.3. We define component balance with constant C1 for partition functions Zi,k =∫
! ϖkωk(x)qi(x↑ xk)dx and weights {wi,k}i↓[L],k↓[M ] to be the condition

wi,kZi,k

wi,k→Zi,k→
⇐
[
1

C1
, C1

]
for all i ⇐ [L], k, k↑ ⇐ [M ]. (2.3)
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We define level balance with constant C2 for partition functions Zi =
∫
! ω(x)·

∑
k wikqi(x↑xk)dx

and weights {ri}Li=1 as
riZi

ri→Zi→
⇐
[
1

C2
, C2

]
for all i, i↑ ⇐ [L]. (2.4)

Since level balance is enforced between each level, no exponentially bad bottlenecks can form be-
tween the coldest and warmest levels. Example B.2 illustrates a simple setting (a mixture of two
Gaussians with different covariances) where exponential bottlenecks form between cold and warm
levels.

2.3 MAIN ALGORITHM

Our algorithm is an inductive process which uses an auxiliary variable ε1 > · · · > εL = 0 to define
a sequence of distributions {

∑M
k=1 wi,kωi,k(x)}Li=1 which temper peaked multimodal distributions

to the target distribution. The main Algorithm 1 will inductively run Algorithm 2 (vanilla ALPS)
to level l and then approximate the weights of the component functions at l + 1 via Algorithm 3
(reweighting via partition function estimation). To start off, Algorithm 1 requires an estimation of
the partition functions of ω̃1,k. In Section I, we show that under appropriate conditions, for large
enough ε1, these estimates can be obtained.

Algorithm 2 (with all levels) is run once all the weights are learned; this is akin to a vanilla version
of ALPS (Roberts et al., 2022). As described in Section 2.1, it incorporates simulated tempering
to transition between adjacent temperature levels and the leap point process at the coldest level to
transition between modes.

Algorithm 3 runs Algorithm 2 to level l to acquire N samples at the l-th level. Then the weights

at level l + 1 are approximated as wl+1,k =

(
1
N

∑N
j=1

ε(xj)ql+1(xj→xk)
p̃(xj ,ij)

I{ij = l}
)→1

and r(l)l+1 =
(

1
N

∑N
i=1

ε(xj)·
(∑

k wl+1,kql+1(xj→xk)
)

p̃(xj ,ij)
I{ij = l}

)→1

. After these weights have been estimated,

Algorithm 3 re-runs the chain, this time to level l + 1, acquiring samples at levels. Then the level

weights are adjusted via empirical occupancy, i.e., r(l+1)
i = r(l)i

/
1
N

∑N
j=1 I{ij = i}.

For clarity, we note our algorithm and analysis is akin to the vanilla version of ALPS (Roberts et al.,
2022). This has the core algorithmic ideas of, but is different from the full version Tawn et al. (2021),
which is equipped with online mode location and parallel tempering.

Algorithm 1 Main Algorithm: Simulated Tempering with Teleporting
INPUT: Temperature scale ε1 > ε2 > · · · > εL = 0 and weights {w1,k}Mk=1 satisfying level
balance (2.3).
OUTPUT: A sample x ⇐ Rd

for l = 1 ↔ L do
2: Input weights {wi,k}, {r(l)i }li=1 for i ⇐ [1, l] and k ⇐ [1,M ] with temperature scale ε1 >

ε2 > · · · > εl, time T and rates ς, φ.
if l < L then

4: Run Algorithm 3 (reweighting with partition function estimates) to obtain weights
{wl+1,k}Mk=1 and {r(l+1)

i }l+1
i=1.

else if l = L then
6: Run Algorithm 2 (vanilla ALPS) and return sample x ⇐ Rd.

end if
8: end for

3 MAIN RESULT

We make some additional technical assumptions for the main theorem. We later show in Section I
that these assumptions are satisfied in representative settings.
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Assumption 3.1. Defining ωl,k(x) → ϖkωk(x)ql(x ↑ xk), ω̄l,k = ω(x)ql(x ↑ xk), Zl,k =
∫
ω̄l,k

for l ⇐ [1, L], k ⇐ [1,M ],

1. (Closeness at adjacent temperatures) ↼2 (ωl+1,k||ωl,k) = O(1), ↼2( ε̄l+1,k

Zl+1,k
∝ ε̄l,k

Zl,k
) = O(1).

2. (Closeness for components at lowest temperature) ↼2 (ω1,k||ω1,j) = O(1).

3. (Warmness of initial distribution) The initial distribution ↽0(x, i) satisfies
∥∥∥ ϑ0(x,i)

p(x,i)

∥∥∥
↔

⇒ U.

4. Component balance with constant O(1) (Definition 2.3) is satisfied when L = 1.

Given reasonable choices of tilting functions qω , Assumption 1 requires the temperature ladder to
be sufficiently closely spaced and Assumption 2 requires starting out at cold enough temperature so
that teleportation is accepted with good probability. Assumption 3 requires the initialization of the
samples to be close enough to the chain (this is possible by initializing at the lowest temperature,
which is easily approximable). Assumption 4 is the base case of the inductive hypothesis and again
depends on the lowest temperature distribution being approximable. As an example, we show these
assumptions hold for Gaussian tilts on Rd; we have not attempted to optimize the number of levels.

Proposition 3.2. (Tempering by Gaussians) Let Assumptions 1.1 hold for ω(x) =
∑M

k=1 ϖkωk(x)
with ϖkωk(x) = e→fk(x) where fk(x) is L-smooth. In addition, assume that a log-Sobolev in-
equality holds with constant CLS for ωi,j,k → ωj(x) · qi(x ↑ xk), for all i ⇐ [L], j, k ⇐ [M ].

Define qi(x) = e→ωi
↑x↑2

2 and the teleportation map gjj→(x) = x ↑ xj + xj→ . Lastly, choose
”ε = |εi↑εi+1| = O( 1

CLSd+r2 ) and ε1 = O(L2D2d), with ||xj ↑x↗
j || ⇒ D, where x↗

j is the true

mode and ||xj ↑ Epi,j,kx|| ⇒ r for all j, k ⇐ [M ]. Then Assumptions 3.1 hold with U = O
(

1
c2tilt



and w1k → 1
ε(xk)

on a temperature schedule of !(d2) levels.

We now state our main theorem.
Theorem 3.3. Suppose we are given a warm start of points {x1, . . . , xM} from a target distribution
p(x). Fix a family of density functions qω ,ε > 0 on X , with qω = 1 if ε = 0. Suppose Assumptions
1.1 and 3.1 hold. Then Algorithm 1 with parameters1

T = !

(
poly

(
U, C̃,M,L,

1

ctilt
,
1

φ
,
1

ς
,
1

ϑ

))
, N = !

(
poly

(
L,M,U,

1

ctilt
,
1

ϱ

))

produces samples from p̂(x) such that with probability 1↑ ϱ, TV (p̂(x),ω(x)) ⇒ ϑ.

4 PROOF OVERVIEW

A standard approach to proving mixing time bounds for tempering Markov chains is to use a Markov
decomposition theorem (Ge et al., 2018b). Decomposition theorems allow for mixing to be quan-
tified in terms of mixing within the components and mixing within the projected chain defined
through probability flow between components. However, in our setting, the tempered distributions
pω(x) →

∑
j ϖjωj(x)·

∑
k wω,kqω(x↑xk) have cross terms of components tilted towards the wrong

mode: pω(x) →
∑

k ϖkwω,kωk(x)qω(x↑xk)+
∑

j ↘=k ϖjwω,kωj(x)qω(x↑xk) =: p̃ω,0(x)+p̃ω,1(x).
The projected chain is no longer mixing on the entire distribution, only if we ignore the bad portion.

To remedy this issue, we formulate ↼2 bounds that quantify the mixing of the whole chain on the
good component, in terms of the mixing on the good component, Lemma F.1. We accompany
this provide a lower bound on the portion of the mass from the Markov chain within the good
component, Lemma F.2 and then use this to quantify the rate at which that portion converges to the
good component itself. Since our Markov chain operates on the extended state space ! ⇔ [L], we
generalize these results to the extended state space and quantify the amount of mass that mixes into
the target level (which is entirely in the good part), Lemma F.3.

1L is the number of levels and M the number of warm start points. ctilt, Cij and C̃ = maxij Cij are
defined in Assumptions 1.1, and ω,ε are hyper-parameters defined in D.5.
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This analysis quantifies the mixing of the whole chain by the Poincaré constant of the good com-
ponent CPI(p0(x, i)). Now, working within the good component, we are able to bound this
Poincaré constant using classical Markov decomposition theorems, Theorem E.1, which upper
bound CPI(p0(x, i)) by the mixing within the modes and the mixing on the projected chain. The
most difficult part is ensuring that there are no bottlenecks in the projected chain which would cause
the Poincaré constant to explode.

The Poincaré constant of the projected chain is controlled by the probability flow between modes,
which is ultimately determined by the modal and level balance (Definition 2.3). By defining the
good component as p0(x, i) →

∑
i ri

∑
k ϖkwωi,kωk(x)qωi(x ↑ xk), we have control over both

the level weights {ri}i↓[L] and the modal weights {wi,k}i↓[L],k↓[M ]—think of these as knobs that
tune the probability flow between component measures. Good level balance is ensured by induction
on the temperature levels, at each level showing that Definition 2.3 holds with C1 = poly( U

ctilt
)

and C2 = poly( U
ctilt

) for weights {wi,k}i↓[L],k↓[M ] and {ri}i↓[L] approximated by Monte Carlo
averages is done in Theorem G.13, G.17.

5 EXPERIMENTS

We demonstrate that our ST Teleporting algorithm works well on a heavy-tailed mixture that the
ALPS sampler Tawn et al. (2021) fails to sample from on as the dimension increases. First, we
define the target distribution to be an unnormalized bimodal mixture of Student’s t-distributions
ω(x) →

∑2
k=1(1 + ≃x→µk≃2

ϑ )→
ε+d
2 . We ran both our algorithm and the ALPS algorithm on this

target distribution. We supplied the ALPS algorithm with the exact modes of the components µ1, µ2

and the Hessian information at those points, which is approximately ϑ+d
ϑ Id.

We ran each algorithm for the same amount of time, with the same burn-in length and Metropolis
random walk steps. The temperature swaps and mode jumps were simulated in discrete time using
a Poisson process and we kept the hyperparameter for jump attempts and teleportation attempts the
same across algorithms.

For both algorithms, we chose the coldest level to have ε1 = 6. For ALPS, we chose
a geometric temperature ladder with 8 levels to the target level ε8 = 1 of εALPS =
(6, 4.65, 3.6, 2.78, 2.16, 1.67, 1.29, 1). We chose a similar ladder for ST teleporting; however the
target level requires ε8 = 0 therefore we used the ladder εSTTel = (6, 3.3, 1.75, .94, .51, .22, .1, 0).

ST Teleporting has one learning step where the modal weights and level weights are estimated.
Running this with N = 1500 samples for the Monte Carlo estimates took 167 seconds when d = 3
and 178 seconds when d = 10.

(a) Student’s t-distribution with d = 3 (b) Student’s t-distribution with d = 10

Figure 1: The first component of N = 10, 000 samples at the target level ω(x) with ↽ = 3 and
(µ1, µ2) = (↑10 ·⇀1d, 10 ·⇀1d).
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Figure (1a) shows both algorithms traversing the state space, effectively reaching each modes as
intended when the dimension is d = 3. After running both algorithms for 25, 000 potential tem-
perature swaps the ALPS algorithm had a mode leap acceptance rate of .655 (249/380 attempts)
and a temperature swap acceptance rate of .562 (14056/25000 attempts). By comparison, the ST
teleporting algorithm had a mode swap acceptance rate of .753 (1148/1525 attempts) and a temper-
ature swap rate of .765 (17973/25000 attempts). Notably, already in d = 3 the ALPS algorithm is
struggling to transition samples to the coldest temperature. This leads to the ALPS algorithm having
an ESS of 474 (4.7%) which is less than half that of ST Teleporting’s ESS of 1014 (10.1%)—ESS
is computed from samples at the target level.

Figure (1b) shows that when the dimension increases the ALPS algorithm fails to properly explore
both modes. After running both algorithms for 25, 000 potential temperature swaps the ALPS al-
gorithm had a mode leap acceptance rate of .25 (1/4 attempts) and a temperature swap rate of .092
(2293/25000 attempts). By comparison, ST teleporting had a mode leap acceptance rate of .745
(1356/1819 attempts) and a temperature swap rate of .728 (18201/25000 attempts).

This is what we would expect to see for ALPS on a heavy-tailed distribution. The temperature ladder
ωω(x) → ω(x)ωω(µk)1→ω sharpens the heavy tails of the target distribution too quickly causing
samples at the target level on the tails to never accept temperature swaps. In contrast, our algorithm
tames the tails lightly by the multiplicative factor of a flat gaussian mixture. This is failure in level
re-weighting, this also holds when modal weights are varied.

6 CONCLUSION AND FURTHER WORK

We prove the first general polynomial-time bounds for sampling from multimodal distributions un-
der the “weak advice” of warm start points to the different modes. Our algorithm is a modified
version of the ALPS algorithm Tawn et al. (2021) that is designed to work well on multi-modal
target distributions with difficult geometries. The core innovation is a modified tempering schedule,
ωω(x) → ω(x) ·

∑
k wω,kqω(x ↑ xk), where we estimate the weights via Monte Carlo simulation

to keep components balanced. As our focus is on an initial theoretical analysis, there are several
avenues for future theoretical and computational work towards making the algorithm practical.

Computationally speaking, our base algorithm has several computational inefficiencies, such as es-
timating the next level weights at every iteration from a fresh set of samples; it also requires warm
start points to already be located. Hence, a beneficial modification would be to update weights and
find additional modes in an online manner. As our algorithm is tailored for ease of theoretical analy-
sis, we do not recommend it in its current form as a replacement for ALPS, and believe that a hybrid
algorithm incorporating our approach to weight rebalancing may be ultimately more practical. We
leave to future work the design of a more versatile and efficient algorithm which works on practical
problems in high dimensions and with complex geometries.

Warm start assumption. An important limitation is our definition of a warm start point, in terms
of the tilt having significant mass. Applied to components of different shapes (e.g., Gaussians in
Proposition I.8), this may require separation conditions between the components. In order to loosen
the definition of warm start point, we may need adaptive tilting schemes, e.g. Gaussians with covari-
ances chosen adaptively. As a concrete theoretical problem to guide algorithm design, we propose
this open question: Is there a polynomial-time sampler for ω =

∑M
i=1 wiωi where each ωi is a

log-concave distribution, given one sample xi ′ ωi from each component?

Some more technical limitations of our warm start assumption is that (1) we currently assume a
1-to-1 correspondence between warm starts and modes, and (2) taking ε = 0, each component is
required to have mass that is lower-bounded. We can hope that this can be relaxed to making sure
that all modes are covered (and allowing spurious points), and that modes having small mass can be
disregarded.

Finally, theoretical analysis is also highly desirable for other algorithms in the weak advice setting,
such as those based on stratification. Another promising direction is to combine information on
warm starts with neural network flow-based methods for sampling Albergo et al. (2023); Vargas
et al. (2023); Albergo & Vanden-Eijnden (2024), as well as learning the interpolation (Máté &
Fleuret, 2023).
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Bálint Máté and François Fleuret. Learning interpolations between boltzmann densities. arXiv
preprint arXiv:2301.07388, 2023.

Joseph Mathews and Scott C Schmidler. Finite sample complexity of sequential monte carlo estima-
tors on multimodal target distributions. The Annals of Applied Probability, 34(1B):1199–1223,
2024.

Radford M Neal. Sampling from multimodal distributions using tempered transitions. Statistics and
computing, 6(4):353–366, 1996.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):125–139, 2001.

Felix Otto and Maria G Reznikoff. A new criterion for the logarithmic sobolev inequality and two
applications. Journal of Functional Analysis, 243(1):121–157, 2007.

Daniel Paulin, Ajay Jasra, and Alexandre H. Thiery. Error bounds for sequential Monte Carlo
samplers for multimodal distributions. The Annals of Applied Probability, 28(3):1495–1535,
2018. doi: 10.1214/17-AAP1323.

Gareth O. Roberts, Jeffrey S. Rosenthal, and Nicholas G. Tawn. Skew brownian motion and
complexity of the alps algorithm. Journal of Applied Probability, 59(3):777–796, 2022. doi:
10.1017/jpr.2021.78.
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