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Abstract

Mixed-mode ventilation (MMV) control presents
a complex decision-making problem due to highly
variable outdoor conditions and the need to bal-
ance natural ventilation with mechanical cooling.
We propose a novel Adversarial Inverse Reinforce-
ment Learning framework for MMV that tackles
this complexity by jointly learning a reward func-
tion and an adaptive policy from building opera-
tional data. Our approach incorporates a physics-
constrained neural network model of the MMV
environment and a hierarchical policy structure,
enabling effective handling of discrete window
operations alongside continuous HVAC control.
The results show that the learned policy reliably
captures the window operation patterns from the
rule-based control demonstration, while reducing
unnecessary window switching. In addition, the
learned policy reduced the temperature comfort
range violation from 1.7% to 0.4% compared to
the rule-based control. The results demonstrate
that the Adversarial Inverse Reinforcement Learn-
ing framework can achieve energy-efficient MMV
control with significantly fewer window adjust-
ments, thus improving occupant comfort and sys-
tem stability compared to conventional or heuris-
tic strategies.

1. Introduction

Climate change exacerbates heat stress, driving increased
air-conditioning (AC) usage, which in turn further accel-
erates global warming. Mixed-mode ventilation (MMYV),
combining natural ventilation (NV) and mechanical cooling,
mitigates reliance on AC and balances energy efficiency
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with thermal comfort. However, MMV controls have a com-
plex nature due to dynamic outdoor conditions, requiring
robust handling of energy efficiency, thermal comfort, and
occupant behavior.

We introduce an adversarial inverse reinforcement learning
(AIRL) (Fu et al., 2017) framework to address the issues as
follows: (1) learns a latent reward capturing energy, comfort,
and window operations from historical rule-based control
data, (2) employs a hierarchical actor-critic that decides
change vs. stay before issuing continuous set-points, and (3)
embeds a physics-constrained CNN-LSTM surrogate model
for the MMV environment. By unifying reward inference
and policy optimization while respecting thermodynamics,
our approach directly addresses the open issues left by prior
RL studies for MMV, enabling stable and realistic mixed-
mode control in both simulation and hardware-in-the-loop
experiments.

2. Related work

Reinforcement learning (RL) faces significant challenges in
MMV control, particularly in designing the reward function.
The traditional design of reward functions combines mul-
tiple weighted objectives (Chen et al., 2018; An & Chen,
2023), such as energy consumption, thermal comfort, and
indoor air quality. However, the reward function design for
MMV systems often overlooks interruptions to occupants
due to frequent window operations, outdoor noise (Peng
et al., 2023), and additional intricacies of occupant com-
fort. Recent works address this using imitation learning (IL)
and inverse reinforcement learning (IRL). Techniques such
as behavior cloning (Silvestri et al., 2025) and adversar-
ial methods like Generative Adversarial Imitation Learning
(GAIL) (Liu et al., 2024; Hu et al., 2025) have demon-
strated improved efficiency and stability (Dey et al., 2023)
by leveraging expert demonstrations, thereby reducing the
complexity of manual reward tuning (Giraldo-Pérez et al.,
2025).

3. Methodology

The diagram of the proposed adversarial inverse reinforce-
ment learning for mixed-mode ventilation systems is illus-
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trated in Figure 1. The surrogate data-driven environment
and expert trajectories were derived from real-world data
collected at one-minute intervals from a mixed-mode ven-
tilated open office in the tropics. The AIRL framework
performs an inner—outer learning loop. At each AIRL itera-
tion, we (1) roll out the policy trajectory, (2) update rewards
using the expert trajectory, and (3) improve the policy via
PPO. The complete algorithm is in Appendix A.
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Figure 1. Diagram of the proposed adversarial inverse reinforce-
ment learning framework. The PCNN-MMYV environment is intro-
duced in Section 3.1, the reward function learning is in Section 3.3,
the PPO agent is in Section 3.4.

3.1. Physics-Constrained Neural Network Model

MMV systems operate under various conditions, and each
condition exhibits distinct behaviors. Therefore, it is dif-
ficult to construct a sole data-driven model that can work
for both modes. To address this issue we introduced a data-
driven physics-constrained neural network (PCNN) to serve
as the environment of the AIRL framework. The PCNN
treats a mixed-mode system as two thermodynamically dis-
tinct regimes, AC and NV modes, and utilize a gate to
pick the corresponding surrogate dynamics at each time
step. The window status a,, € 0,1 is a discrete switching
variable representing the active regime at time ¢. The as-
sumption is that there is a distinct sub-model associated with
each regime. Each model branch features a Convolutional
Neural Networks-Long Short Term Memory (CNN-LSTM)
architecture, where the convolutional layer captures the spa-
tial patterns between different thermal zones and the LSTM
layer extracts the temporal dependencies.

3.2. Mixed-Mode Surrogate Environment Design

Our MMV environment comprises controllable (zone tem-
peratures, window status history), exogenous (outdoor tem-
perature, wind), and actionable (window signals, HVAC
setpoints) states. Actions involve window operation signals
and setpoint adjustments for mechanical cooling via fan coil

Table 1. State variables used in the MMV MDP. All continuous
quantities are normalized to [0, 1] before entering the network.

Controllable State Unit Range
T/, zone temperature °C [23,31]
t™", time since last window flip min [0, 720]
dWCllt = m IIlil'171 (0, ].]

W¢—1, previous window status - {0,1}
Exogenous State Unit Range
T¢", outdoor temperature °C (23, 34]
v}"™, wind speed ms~'  [0,10]
@Y™ wind direction deg  [0,360]
Action Unit Range
a™ window operate signal - {0,1}
T/*, FCU supply temperature °C [18,31]
T2, DOAS supply temperature °C [18,31]

units (FCUs) and dedicated outdoor air (DOAS) units. The
DOAS system can serve as a supplement to personalized
cooling when windows are open, as well as provide neces-
sary ventilation in mechanical cooling mode. Both types of
units are constant volume.

Custom window states include normalized timing since the
last state change, dwell time, and previous window status,
preventing frequent window flips (Dai et al., 2023) without
imposing window lockout or delay time as a penalty (An &
Chen, 2023). They encode information explicitly related to
window operation history and dynamics. Thereby, the pro-
posed framework remains an IRL approach without impos-
ing prior domain knowledge. The window variable states are
as follows: time since last flip ¢.,;,; dwell, = m,
quantifies the recency of window state changes. It’s already
normalized to (0, 1] by its form. A smaller value of dwell,
indicates a longer recency of window states, which is con-
trary to t"i"; previous window state (w;_1). By explicitly
capturing the temporal and historical dynamics of window
operations, expert demonstrations can guide RL policies to
learn towards stability, achieving energy and thermal com-
fort goals while recognizing the window operation issue.

3.3. Adversarial Reward Learning with AIRL

Our AIRL framework learns the underlying reward function
as a neural network from the expert behavior. We lever-
age historical Building Management System (BMS) data
following an RBC policy as expert demonstrations. In the
NV mode, the RBC policy regulates the window opening
when the outdoor temperature T,,,,; < 29°C. If the outdoor
temperature becomes warmer (29,°C < Tyydoor < 31,°C),
DOAS provides personalized cooling to the occupants. In
full AC mode (7, > 31°C) or during rain or haze, the win-
dows are fully closed, and the system switches to mechan-
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ical cooling with FCUs and DOAS units running. These
logged trajectories inherently encode the building opera-
tor’s strategy for MMV. In addition to the indoor temper-
ature comfort range, the BMS trajectories also contain in-
formation, such as time-delays after mode switches and
window operations, to avoid frequent and unnecessary open-
ing/closing of the window and short cycling of the mechani-
cal systems.

Let Dg = {75} denote expert trajectories from rule-based
control (RBC) over days of operation, and D,, = {7} be
the trained policy trajectories. We recover a reward function
(s, a) such that the expert policy appears optimal under
ry. We parametrize 7, with a discriminator, specifically a
Gated Recurrent Unit (GRU) that processes sequences of
states and actions, outputting a likelihood that a given tra-
jectory is from the expert. The GRU architecture allows 7,
to capture temporal dependencies. We adopt the maximum-
causal-entropy (MaxEnt) principle (Ziebart et al., 2008) to
make sure among all trained policy trajectory distributions
that match the expert’s feature expectations by choosing the
one with the highest causal entropy. The loss function is as
follows to maximize causal entropy (Finn et al., 2016):

L(y) :NLE D re(m) + IOgNLA > exp(—ry (7)),

7;€DE T7;€Dx
(H

where N is the data points of daily trajectories of RBC
demonstrations, and N4 is that of the policy trajectories, ¥
is the parameter to be optimized for the GRU-based reward
network.

3.4. Hierarchical Policy and PPO Optimization

Given the learned reward network 7, (s, a), we employ a
Proximal Policy Optimization (PPO) algorithm (Schulman
etal., 2017) to find a hierarchical policy (Pateria et al., 2022)
my that maximizes the expected return in stable iterations.
PPO is a policy-gradient method that uses a clipped surro-
gate objective to prevent overly large updates. In our setting,
we use PPO to iteratively improve the hierarchical policy
7o (a}™™ uy|s; ), which factorizes into high-level mode selec-
tion based on window operation and low-level mechanical
cooling: set-point control:

mo(ay™, g | s¢) = mp (™ | s¢) mg (we | se,af™), (2)

where u; = [T} %3 T303554] represents the actions of chang-
ing mechanical cooling setpoints. At each AIRL iteration,
we collect trajectories with the current my, compute the re-
wards learned at the current iteration from Section 3.3 , and
update the parameter set 6 via PPO. The PPO algorithm
optimizes the policy network parameters § by maximizing

the clipped surrogate objective:

L(§) = E, [min (pt(ﬂ)/lt,clip(pt(@), 1—e1+ E)Atﬂ :
3

where:
mo(ag|st)

7Tprev (at ‘St) ’

pe(0) = “
e is the clipping parameter preventing drastically large pol-
icy updates, Tprey is the policy from the previous PPO update,
and A, is the advantage estimate computed using Gener-
alized Advantage Estimation (GAE). Table 2 presents the
parameter sets and ranges utilized for grid search of the PPO
training.

Hyperparameter Range
Learning Rate {le-2, 1e-3, le-4}
Batch Size {5, 10, 20}
GRU Hidden Units {32, 64, 128}
PPO Epochs {68 10}
Clipping Parameter () {0.1,0.2,03 }
Discount Factor () {0.95, 0.99}
GAE Factor (\) {0.95, 0.99}

Table 2. Hyperparameter set in PPO with final value in bold.

4. Results

All the experiments were performed on a 2019 MacBook
Pro with an Intel Core 19 CPU (2.3 GHz, 8-core) and 16
GB DDR4 RAM. All experiments used a random seed set
to 42 across all libraries. The AIRL loop used five outer
iterations; in each, the reward network received ten gradient
updates at a learning rate of 0.0001.

4.1. Data-driven Modeling Result
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Figure 2. Validation results of PCNN for MMV environment.

Figure 2 shows the validation results of the proposed
physics-constrained CNN-LSTM model with three met-
rics, Mean Absolute Error (MAE), Root Mean Square Error
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(RMSE), and Mean Absolute Percentage Error (MAPE).
The results show that the validation MAE is less than 0.6 o
C, RMSE is less than 0.8 o C, and MAPE is slightly above
2%. The distributions of the three metrics also indicate that
the majority of errors, falling within the interquartile range
(IQR) of these metrics, are below the mean values. The re-
sults demonstrate the reliability of the proposed data-driven
model as a foundation for the subsequent AIRL framework.

4.2. AIRL Training Results

During the AIRL training, we monitor the evolution of
the learned reward function and the policy performance to
ensure stable convergence. Figure 3 shows that both the
adversarial reward network in the outer loop and the updates
of the PPO policy for each reward function converge rapidly.
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Figure 3. Left: Reward function update during each iteration of the
AIRL training loop. Right: The reward return of the PPO agent
during each iteration after each reward-net update.

Figure 4 further illustrates how AIRL policy gradually emu-
lates the expert’s control decisions, regarding window op-
eration timing. Throughout the AIRL iteration, the agent
transitions from rapid oscillations initially to accommodate
the improved reward function that learns from the window
usage patterns in the rule-based control. In other words,
the AIRL agent has internalized when it is appropriate to
open or close windows versus when to keep the system in
a steady state, thereby avoiding a negative impact on the
productivity of occupants.

As summarized in Table 3, the learned MMV control policy
significantly improves upon its initial iteration and closely
matches, and in some cases even exceeds, the performance
of the rule-based control on key metrics. The initial AIRL
agent, before undergoing complete adversarial training,
overachieved energy savings of 52.8 kWh of AC energy
consumption, but at the cost of 4.9% of temperature range
violation time and excessive window operations. After the
AIRL iterations, the final AIRL policy’s behavior aligns
with the expert demonstration, with a total energy consump-
tion of about 133.7 kWh, slightly lower than the energy
usage of the rule-based control (133.9 kWh), while improv-
ing the indoor temperature out of the comfort range for only
0.4% of the time compared to 1.7% discomfort violations
of the rule-based control. With the window operation be-
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Figure 4. The PPO agent can learn the window operation patterns
of the rule-based controller after a few iterations of the reward
function.

haviors aligned, the results show that the AIRL framework
can successfully capture the performance and intricacies of
rule-based control.

Table 3. MMV Metric Comparison. E: Energy; C: Percentage of
indoor temperature out of comfort range (> 30 °C); W: Average
times of daily window operations

Agent E (kWh) C w
Initial AIRL 52.8 49% 59
Final AIRL 133.7 04% 1
Expert 133.9 1.7% 2

5. Conclusion

In this work, we presented an adversarial inverse reinforce-
ment learning framework for adaptive mixed-mode venti-
lation control, which learns effective HVAC and window
operation policies directly from rule-based control demon-
strations. We used a physics-informed surrogate model, de-
signed a hierarchical action space, and unified reward func-
tion inference with proximal policy optimization through
the adversarial inverse reinforcement learning framework.
Our approach addresses the complexity of MMV systems
without requiring hand-crafted reward functions. The re-
sults demonstrate that the learned policy closely replicates
expert control strategies and even improves upon them: it
maintains thermal comfort more consistently while using
comparable energy and drastically reducing unnecessary
window flips. These findings highlight that an AI agent
can autonomously discover a balanced control strategy for
hybrid building systems, such as mixed-mode ventilation
systems. The framework minimizes mode switching and
maximizes comfort, effectively handling the challenge of
when to rely on natural ventilation versus air conditioning.
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For future work, we need to further test the robustness of
this framework on different mixed-mode ventilated environ-
ments. Also, we need to compare the effectiveness of the
AIRL framework with direct RL with fine-tuned rewards, as
well as other IRL techniques, such as T-REX (Brown et al.,
2019). Lastly, future work involves deploying the proposed
framework in a long-term real-world testbed, which would
allow us to assess its performance under evolving conditions.
This would further validate the robustness and versatility of
our approach in practical and dynamic environments.
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A. Pseudo-code of the AIRL framework for MMV

Algorithm 1 AIRL for MMV

1: Input: Rule-based MMV control demonstrations D, PCNN-MMYV surrogate environment £, policy 7, value net Vj,,,

reward net fy

2. for AIRL iteration k = 1,2,..., K do

3:  Roll out N days with w9 — buffer D;’“) (store states, actions, features ¢ (s, a), log-probs, values)

4: [/ ===== Reward-net update =====

5. Roll-out: collect N surrogate days with 7y in &, store trajectories D) (m)
6:  Reward update (MaxEnt IRL):
7.
8
9

for Each reward update do

L) = 5= 2 ep, o) +log 350, cp_exp(—7y(7)))
: Vi 4= — ), Vg Ly
10:  end for

11:  Assign per-step rewards r; < 74 (s¢, a;) for every (s¢,a;) € D*)(m)
2. // PPO

13:  Compute advantages At and returns R, via GAE
14:  for each PPO epoch do

15: Update actor parameters 6 with clipped surrogate loss

16: Update critic parameters ¢ with value loss

17:  end for

18:  Evaluate 76 on validation days; save 6 if performance improves
19: end for
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B. Examples of the comparison between the physics-constrained CNN-LSTM model and the
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Figure 5. A one-day comparison between the physics-constrained CNN-LSTM model and the validation data.
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C. Examples of the comparison between the final policy and expert trajectories
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Figure 6. A one-day comparison between the expert trajectory and the final policy. The shaded area indicates the window open status.




