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ABSTRACT

Ultra-High-Definition (UHD) photo has gradually become the standard configu-
ration in advanced imaging devices. The new standard unveils many issues in
existing approaches for low-light image enhancement (LLIE), especially in deal-
ing with the intricate issue of joint luminance enhancement and noise removal
while remaining efficient. Unlike existing methods that address the problem in
the spatial domain, we propose a new solution, UHDFour, that embeds Fourier
transform into a cascaded network. Our approach is motivated by a few unique
characteristics in the Fourier domain: 1) most luminance information concentrates
on amplitudes while noise is closely related to phases, and 2) a high-resolution
image and its low-resolution version share similar amplitude patterns. Through
embedding Fourier into our network, the amplitude and phase of a low-light im-
age are separately processed to avoid amplifying noise when enhancing lumi-
nance. Besides, UHDFour is scalable to UHD images by implementing ampli-
tude and phase enhancement under the low-resolution regime and then adjusting
the high-resolution scale with few computations. We also contribute the first real
UHD LLIE dataset, UHD-LL, that contains 2,150 low-noise/normal-clear 4K im-
age pairs with diverse darkness and noise levels captured in different scenarios.
With this dataset, we systematically analyze the performance of existing LLIE
methods for processing UHD images and demonstrate the advantage of our solu-
tion. We believe our new framework, coupled with the dataset, would push the
frontier of LLIE towards UHD. The code and dataset are available at https://li-
chongyi.github.io/UHDFour/.

1 INTRODUCTION

With the advent of advanced imaging sensors and displays, Ultra-High-Definition (UHD) imaging
has witnessed rapid development in recent years. While UHD imaging offers broad applications
and makes a significant difference in picture quality, the extra pixels also challenge the efficiency of
existing image processing algorithms.

In this study, we focus on one of the most challenging tasks in image restoration, namely low-light
image enhancement (LLIE), where one needs to jointly enhance the luminance and remove inherent
noises caused by sensors and dim environments. Further to these challenges, we lift the difficulty
by demanding efficient processing in the UHD regime.

Despite the remarkable progress in low-light image enhancement (LLIE) (Li et al., 2021a), existing
methods (Zhao et al., 2021; Wu et al., 2022; Xu et al., 2022), as shown in Figure 1, show appar-
ent drawbacks when they are used to process real-world UHD low-light images. This is because
(1) most methods (Guo et al., 2020; Liu et al., 2021b; Ma et al., 2022) only focus on luminance
enhancement and fail in removing noise; (2) some approaches (Wu et al., 2022; Xu et al., 2022)
simultaneously enhance luminance and remove noise in the spatial domain, resulting in the subop-
timal enhancement; and (3) existing methods (Wei et al., 2018; Zhao et al., 2021; Wu et al., 2022;
Xu et al., 2022) are mainly trained on low-resolution (LR) data, leading to the incompatibility with
high-resolution (HR) inputs; and (4) some studies (Xu et al., 2022; Zamir et al., 2022) adopt heavy
structures, thus being inefficient for processing UHD images. More discussion on related work is
provided in the Appendix.
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Figure 1: Visual results of state of the arts (Zhao et al. (Zhao et al., 2021), URetinex-Net (Wu et al., 2022),
and SNR-Aware (Xu et al., 2022)) pre-trained on an existing low-light image dataset for processing the real-
world UHD low-light images. We amplify the brightness of the input UHD low-light images 10 times (top
right corner of the first column) to show details and noise. These officially released models were trained using
existing paired LR images with mild noise (i.e., the LOL dataset (Wei et al., 2018)). Existing models cannot
cope with challenging UHD low-light images well.

To overcome the challenges aforementioned, we present a new idea for performing LLIE in the
Fourier Domain. Our approach differs significantly from existing solutions that process images in
the spatial domain. In particular, our method, named as UHDFour, is motivated by our observation
of two interesting phenomena in the Fourier domain of low-light noisy images: i) luminance and
noise can be decomposed to a certain extent in the Fourier domain. Specifically, luminance would
manifest as amplitude while noise is closely related to phase, and ii) the amplitude patterns of images
of different resolutions are similar. These observations inspire the design of our network, which
handles luminance and noise separately in the Fourier domain. This design is advantageous as
it avoids amplifying noise when enhancing luminance, a common issue encountered in existing
spatial domain-based methods. In addition, the fact that amplitude patterns of images of different
resolutions are similar motivates us to save computation by first processing in the low-resolution
regime and performing essential adjustments only in the high-resolution scale.

We also contribute the first benchmark for UHD LLIE. The dataset, named UHD-LL, contains
2,150 low-noise/normal-clear 4K UHD image pairs with diverse darkness and noise levels captured
in different scenarios. Unlike existing datasets (Wei et al., 2018; Lv et al., 2021; Bychkovsky et al.,
2011) that either synthesize or retouch low-light images to obtain the paired input and target sets,
we capture real image pairs. During data acquisition, special care is implemented to minimize
geometric and photometric misalignment due to camera shake and dynamic environment. With the
new UHD-LL dataset, we design a series of quantitative and quantitative benchmarks to analyze the
performance of existing LLIE methods and demonstrate the effectiveness of our method.

Our contributions are summarized as follows: (1) We propose a new solution for UHD LLIE that is
inspired by unique characteristics observed in the Fourier domain. In comparison to existing LLIE
methods, the proposed framework shows exceptional effectiveness and efficiency in addressing the
joint task of luminance enhancement and noise removal in the UHD regime. (2) We contribute
the first UHD LLIE dataset, which contains 2,150 pairs of 4K UHD low-noise/normal-clear data,
covering diverse noise and darkness levels and scenes. (3) We conduct a systematical analysis of
existing LLIE methods on UHD data.

2 OUR APPROACH

In this section, we first discuss our observations in analyzing low-light images in the Fourier domain,
and then present the proposed solution.

2.1 OBSERVATIONS IN FOURIER DOMAIN

Here we provide more details to supplement the observations we highlighted in Sec. 1. We analyze
real UHD low-light images in the Fourier domain and provide a concise illustration in Figure 2.
Specifically, (a) Swapping the amplitude of a low-light and noisy (low-noise) image with that of
its corresponding normal-light and clear (normal-clear) image produces a normal-light and noisy
(normal-noise) image and a low-light and clear (low-clear) image. We show more examples in the
Appendix. The result suggests that the luminance and noise can be decomposed to a certain extent
in the Fourier domain. In particular, most luminance information is expressed as amplitudes, and
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Figure 2: Motivations. We observed that (a) luminance and noise can be ‘decomposed’ to a certain extent in
the Fourier domain and (b) HR image and its LR versions share similar amplitude patterns. The amplitude and
phase are produced by Fast Fourier Transform (FFT) and the compositional images are obtained by Inverse FFT
(IFFT). For visualization, we show the amplitude and phase in imagery format with common transformations.
Lines of the same color indicate a set of FFT/IFFT transforms. The red triangles mark the similar pattern
(obviously different from the gray one). Zoom in for the details and noise. We show more examples and
analysis in the Appendix.

noises are revealed in phases. This inspires us to process luminance and noise separately in the
Fourier domain. (b) The amplitude patterns of an HR normal-clear image and its LR versions are
similar and are different from the corresponding HR low-noise counterpart. Such a characteristic
offers us the possibility to first enhance the amplitude of an LR scale with more computations and
then only make minor adjustments in the HR scale. In this way, most computations can be conducted
in the LR space, reducing the computational complexity.

2.2 THE UHDFOUR NETWORK
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Figure 3: Overview of UHDFour. Our approach consists of an LRNet and an HRDNet. The LRNet is an
encoder-decoder network that produces 8× downsampled result ŷ8 and the refined amplitude Ar and phase
Pr features. We omit the skip connections for brevity. The HRNet contains an Adjustment Block and the
upsampling operation, producing the final result ŷ. Most computation is conducted in the LRNet.

Overview. UHDFour aims to map an UHD low-noise input image x ∈ RH×W×C to its correspond-
ing normal-clear version y ∈ RH×W×C , where H , W , and C represent height, width, and channel,
respectively. Figure 3 shows the overview of UHDFour. It consists of an LRNet and an HRNet.

Motivated by the observation in Sec. 2.1, LRNet takes the most computation of the whole network.
Its input is first embedded into the feature domain by a Conv layer. To reduce computational com-
plexity, we downsample the features to 1/8 of the original resolution by bilinear interpolation. Then,
the LR features go through an encoder-decoder network, which contains four FouSpa Blocks with
two 2×downsample and two 2×upsample operations, obtaining outputs features. The outputs fea-
tures are respectively fed to FFT to obtain the refined amplitude Ar and phase Pr features and a
Conv layer to estimate the LR normal-clear image ŷ8 ∈ RH/8×W/8×C .

The outputs of LRNet coupled with the input are fed to the HRNet. Specifically, the input x is
first reshaped to xpu ∈ RH×W×C×64 via PixelUnshuffle (8× ↓) to preserve original information,
and then fed to an Adjustment Block. With the refined amplitude Ar and phase Pr features, the
Adjustment Block produces adjusted features that are reshaped to the original height and width of
input x via Pixelshuffle (8× ↑). Finally, we resize the estimated LR normal-clear image ŷ8 to the
original size of input x via bilinear interpolation and combine it with the upsampled features to
estimate the final HR normal-clear image ŷ. We detail the key components as follows.
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Figure 4: Structures of the FouSpa Block (a) and Adjustment Block (b).

FouSpa Block. In Sec. 2.1, we observe that luminance and noise can be decomposed in the Fourier
domain. Hence, we design the FouSpa Block to parallelly implement amplitude and phase enhance-
ment in the Fourier domain and feature enhancement in the spatial domain. As shown in Figure
4(a), the input features are forked into the Fourier and Spatial branches. In the Fourier branch, FFT
is first used to obtain the amplitude component (A) and phase component (P ). The two components
are separately fed to two Conv layers with 1×1 kernel. Note that when processing amplitude and
phase, we only use 1×1 kernel to avoid damaging the structure information. Then, we transform
them back to the spatial domain via IFFT and concatenate them with the spatial features enhanced
by a Half Instance Normalization (HIN) unit (Chen et al., 2021a). We adopt the HIN unit based
on its efficiency. The concatenated features are further fed to a Conv layer and then combined with
the input features in a residual manner. Although our main motivations are in the Fourier domain,
the use of the spatial branch is necessary. This is because the spatial branch and Fourier branch
are complementary. The spatial branch adopts convolution operations that can model the structure
dependency well in spatial domain. The Fourier branch can attend global information and benefit
the disentanglement of energy and degradation.

Adjustment Block. The Adjustment Block is the main structure of the HRNet, and it is lightweight.
As shown in Figure 4(b), the Adjustment Block shares a similar structure with the FouSpa Block.
Differently, in the Fourier branch, with the refined amplitude Ar features obtained from the LRNet,
we use Spatial Feature Transform (SFT) (Wang et al., 2018) to modulate the amplitude features of
the input xpu via simple affine transformation. Such a transformation or adjustment is possible be-
cause the luminance, as global information, manifests as amplitude components, and the amplitude
patterns of an HR scale and its LR scales are similar (as discussed in Sec. 2.1). Note that we cannot
modulate the phase because of its periodicity. Besides, we do not find an explicit relationship be-
tween the HR scale’s phase and its LR scales. However, we empirically find that concatenating the
refined phase Pr features achieved from the LRNet with the phase features of the input xpu improves
the final performance. We thus apply such concatenation in our solution.

Losses. We use l1 to supervise ŷ8 and ŷ. We also add perceptual loss to supervise ŷ8 while the use
of perceptual loss on ŷ is impracticable because of its high resolution. Instead, we add SSIM loss
Lssim on ŷ. The final loss L is the combination of these losses:

L = ∥ŷ−y∥1+0.0004×Lssim(ŷ, y)+0.1×∥ŷ8−y8∥1+0.0002×∥VGG(ŷ8)−VGG(y8)∥2, (1)

where y is the ground truth, y8 is the 8× downsampled version of y, VGG is the pre-trained VGG19
network, in which we use four scales to supervise training Zhou et al. (2022).

3 UHD-LL DATASET

We collect a real low-noise/normal-clear paired image dataset that contains 2,150 pairs of 4K UHD
data saved in 8bit sRGB format. Several samples are shown in Figure 5.

Images are collected from a camera mounted on a tripod to ensure stability. Two cameras, i.e.., a
Sony α7 III camera and a Sony Alpha a6300 camera, are used to offer diversity. The ground truth (or
normal-clear) image is captured with a small ISO ∈ [100, 800] in a bright scene (indoor or outdoor).
The corresponding low-noise image is acquired by increasing the ISO ∈ [1000, 20000] and reducing
the exposure time. Due to the constraints of exposure gears in the cameras, shooting in the large
ISO range may produce bright images, which opposes the purpose of capturing low-light and noisy
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Table 1: Comparison between classic LLIE datasets
and our UHD-LL dataset. ‘Number’: the number of
paired images. ‘Resolution’: the average resolution of the
dataset. ‘Noise’: low-light images contain noise. ‘Real’:
both low-light images and GT are acquired in real scenes.

Dataset Number Resolution Noise Real

SID (RAW) 5,094 4240×2832
6000×4000 ✓ ✓

MIT-Adobe FiveK 5,000 4000×2500
Exposure-Errors 24,000 1000×900

LOL 500/789 600×400 ✓ ✓
UHD-LL (Ours) 2,150 3840×2160 ✓ ✓

Figure 5: Samples from the proposed UHD-LL
dataset.

images. Thus, in some cases, we put a neutral-density (ND) filter with different ratios on the camera
lens to capture low-noise images. In this way, we can increase the ISO to generate heavier noises and
simultaneously obtain extremely dark images, enriching the diversity of darkness and noise levels.

The main challenge of collecting paired data is to reduce misalignment caused by camera shakes
and dynamic objects. We take several measures to ameliorate the issue. Apart from using a tripod,
we also use remote control software (Imaging Edge) to adjust the exposure time and ISO value to
avoid any physical contact with the camera. To further reduce subtle misalignments, we adopt an
image alignment algorithm (Evangelidis & Psarakis, 2008) to estimate the affine matrix and align the
low-light image and its ground truth. We improve the alignment method by applying AdaIN (Huang
& Belongie, 2017) before the affine matrix estimation to reduce the intensity gap. Finally, we hire
annotators to check all paired images carefully and discard those that still exhibit misalignments.

We split the UHD-LL dataset into two parts: 2,000 pairs for training and 115 pairs for testing. The
training and test partitions are exclusive in their scene and data. We also ensure consistency in pixel
intensity distribution between the training and test splits. More analysis of this data, e.g.., the pixel
intensity and Signal-to-Noise Ratio (SNR) distributions, can be found in the Appendix.

A comparison between our UHD-LL dataset and existing paired low-light image datasets is pre-
sented in Table 1. The LOL dataset (two versions: LOL-v1: 500 images; LOL-v2: 789 images) is
most related to our UHD-LL dataset as both focus on real low-light images with noise. The LOL-v2
contains all images of the LOL-v1. In contrast to the LOL dataset, our dataset features a more ex-
tensive collection, where diverse darkness and noise levels from rich types of scenes are considered.
Moreover, the images of our dataset have higher resolutions than those from the LOL dataset. As
shown in Figure 1, the models pre-trained on the LOL dataset cannot handle the cases in our UHD-
LL dataset due to its insufficient training data, which are low-resolution and contains mostly mild
noises. Different from SID dataset that focuses on RAW data, our dataset only studies the data with
RGB format. The images in the SID dataset are captured in extremely dark scenes. Its diversity of
darkness levels and scenes is limited. When these RAW data with extremely low intensity are trans-
formed into sRGB images, some information would be truncated due to the bit depth constraints of
8bit sRGB image. In this case, it is challenging to train a network for effectively mapping noise and
low-light images to clear and normal-light images using these sRGB images as training data.

4 EXPERIMENTS

Implementation. We implement our method with PyTorch and train it on six NVIDIA Tesla V100
GPUs. We use an ADAM optimizer for network optimization. The learning rate is set to 0.0001. A
batch size of 6 is applied. We fix the channels of each Conv layer to 16, except for the Conv layers
associated with outputs. We use the Conv layer with stride = 2 and 4×4 kernels to implement the 2×
downsample operation in the encoder and interpolation to implement the 2× upsample operation in
the decoder in the LRNet. Unless otherwise stated, the Conv layer uses stride = 1 and 3×3 kernels.
We use the training data in the UHD-LL dataset to train our model. Images are randomly cropped
into patches of size 512 × 512 for training.

Compared Methods. We include 14 state-of-the-art methods (21 models in total) for our bench-
marking study and performance comparison. These methods includes 12 light enhancement meth-
ods: NPE (TIP’13) (Wang et al., 2013) SRIE (CVPR’16) (Fu et al., 2016), DRBN (CVPR’20)
(Yang et al., 2020a), Zero-DCE (CVPR’20) (Guo et al., 2020), Zero-DCE++ (TPAMI’21) (Li et al.,
2021b), RUAS (CVPR’21) (Liu et al., 2021b), Zhao et al. (ICCV’21) (Zhao et al., 2021), Enlighten-
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Table 2: Benchmarking study on the testing set of our UHD-LL. All models are released from the original
papers and trained on the corresponding datasets. The best and second results are in red and blue, respectively.

Methods PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ NIQE↓ NIMA↑ Training Sets
input 9.926 0.482 0.551 26.779 5.379 2.269 -

NPE (Wang et al., 2013) 18.293 0.587 0.547 35.200 4.916 2.368 -
SRIE (Fu et al., 2016) 16.316 0.652 0.503 31.345 4.927 2.110 -

DRBN (Yang et al., 2020a) 15.455 0.689 0.450 34.925 4.408 2.154 LOL-v2
Zero-DCE (Guo et al., 2020) 17.081 0.664 0.509 35.488 5.006 2.139 SICE

Zero-DCE++ (Li et al., 2021b) 17.648 0.672 0.506 32.520 4.887 2.211 SICE
RUAS-LOL (Liu et al., 2021b) 11.761 0.701 0.514 28.396 5.909 2.565 LOL-v2

RUAS-MIT5K (Liu et al., 2021b) 14.250 0.586 0.553 29.900 5.407 2.270 MIT-Adobe FiveK
RUAS-DarkFace (Liu et al., 2021b) 11.325 0.583 0.596 28.256 6.160 2.561 DarkFace

Zhao et al.-MIT5K (Zhao et al., 2021) 15.177 0.547 0.530 32.127 4.495 2.208 MIT-Adobe FiveK
Zhao et al.-LOL (Zhao et al., 2021) 18.604 0.694 0.479 32.392 4.248 2.183 LOL-v1
EnlightenGAN (Jiang et al., 2021) 17.637 0.767 0.459 27.441 5.497 1.977 Assembled

Afifi et al. (Afifi et al., 2021) 18.212 0.610 0.479 33.970 4.793 2.217 Exposure-Errors
SCI-easy (Ma et al., 2022) 15.536 0.610 0.501 31.848 4.897 2.166 MIT-Adobe FiveK

SCI-medium (Ma et al., 2022) 15.481 0.622 0.528 31.474 4.941 2.211 LOL+LSRW
SCI-difficult (Ma et al., 2022) 17.872 0.578 0.544 36.219 5.218 2.106 DarkFace

SNR-Aware-LOLv1resize (Xu et al., 2022) 15.737 0.802 0.448 20.385 9.591 2.275 LOL-v1
SNR-Aware-LOLv1stitch (Xu et al., 2022) 15.536 0.695 0.468 33.098 3.961 2.387 LOL-v1

SNR-Aware-LOLv2realresize (Xu et al., 2022) 15.954 0.742 0.471 23.494 9.257 2.001 LOL-v2
SNR-Aware-LOLv2realstitch (Xu et al., 2022) 14.616 0.634 0.488 33.477 4.143 2.577 LOL-v2

SNR-Aware-LOLv2syntheticresize (Xu et al., 2022) 16.031 0.748 0.494 20.065 9.963 2.248 LOL-syn
SNR-Aware-LOLv2syntheticstitch (Xu et al., 2022) 15.887 0.675 0.497 31.473 4.460 2.484 LOL-syn

URetinex-Net (Wu et al., 2022) 20.689 0.706 0.457 35.434 4.974 2.181 LOL-v1

GAN (TIP’21) (Jiang et al., 2021), Afifi et al. (CVPR’21) (Afifi et al., 2021), SCI (CVPR’22) (Ma
et al., 2022), SNR-Aware (CVPR’22) (Xu et al., 2022), URetinex-Net (CVPR’22) (Wu et al., 2022)
and 2 Transformers: Uformer (CVPR’22) (Wang et al., 2022) and Restormer (CVPR’22) (Zamir
et al., 2022). We use their released models and also retrain them using the same training data as
our method. Note that some methods provide different models trained using different datasets. Due
to the heavy models used in Restormer (Zamir et al., 2022) and SNR-Aware (Xu et al., 2022), we
cannot infer the full-resolution results of both methods on UHD images, despite using a GPU with
48G memory. Following previous UHD study (Zheng et al., 2021), we resort to two strategies for
this situation: (1) We downsample the input to the largest size that the model can handle and then
resize the result to the original resolution, denoted by the subscript ‘resize’. (2) We split the input
into four patches without overlapping and then stitch the result, denoted by the subscript ‘stitch’.

Evaluation Metrics. We employ full-reference image quality assessment metrics PSNR,
SSIM (Wang et al., 2004), and LPIPS (Alex version) (Zhang et al., 2018) to quantify the perfor-
mance of different methods. We also adopt the non-reference image quality evaluator (NIQE) (Mit-
tal et al., 2013) and the multi-scale image quality Transformer (MUSIQ) (trained on KonIQ-10k
dataset) (Ke et al., 2021) for assessing the restoration quality. We notice that the quantitative re-
sults reported by different papers diverge. For a fair comparison, we adopt the commonly-used IQA
PyTorch Toolbox1 to compute the quantitative results of all compared methods. We also test the
trainable parameters and running time for processing UHD 4K data.

4.1 BENCHMARKING EXISTING MODELS

To validate the performance of existing LLIE methods that were trained using their original training
data, we directly use the released models for evaluation on the UHD low-light images. These origi-
nal training datasets include LOL (Wei et al., 2018), MIT-Adobe-FiveK (Bychkovsky et al., 2011),
Exposure-Errors (Afifi et al., 2021), SICE (Cai et al., 2018), LSRW (Hai et al., 2024), and Dark-
Face (Yang et al., 2020b). EnlightenGAN uses the assemble training data from existing datasets
(Wei et al., 2018; Dang-Nguyen et al., 2015; Kalantari & Ramamoorthi, 2017b; Cai et al., 2018).
In addition, the LOL-v1 and LOL-v2 contain real low-light images while LOL-syn is a synthetic
dataset. Due to the limited space, we only show relatively good results. As shown in Figure 6,
all methods can improve the luminance of the input image. However, they fail to produce visually
pleasing results. DRBN and EnlightenGAN introduce artifacts. RUAS-LOL and RUAS-DarkFace
yield over-exposed results. Color deviation is observed in the results of EnlightenGAN and Afifi et
al. All methods cannot handle the noise well and even amplify noise.

We also summarize the quantitative performance of different methods and verify the effectiveness of
commonly used non-reference metrics for UHD low-light images in Table 2. URetinex-Net achieves
the highest PSNR score while SNR-Aware-LOLv1 is the best performer in terms of SSIM and

1https://github.com/chaofengc/IQA-PyTorch
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Figure 6: Visual comparison between state of the arts for restoring a UHD low-light image. The compared
methods include DRBN (Yang et al., 2020a), Zero-DCE (Guo et al., 2020), RUAS-LOL (Liu et al., 2021b),
RUAS-DarkFace (Liu et al., 2021b), Zhao et al.-LOL (Zhao et al., 2021), EnlightenGAN (Jiang et al., 2021),
Afifi et al. (Afifi et al., 2021), SCI-difficult(Ma et al., 2022), SNR-Aware-LOLv1resize (Xu et al., 2022), and
URetinex-Net(Wu et al., 2022). We use the released model directly in this evaluation. All released models
cannot handle the UHD low-light image well. More results can be found in the Appendix.

LPIPS. For non-reference metrics, SCI-difficult, Zhao et al.-LOL, and RUAS-LOL are the win-
ners under MUSIQ, NIQE, and NIMA, respectively. From Figure 6 and Table 2, we found the
non-reference metrics designed for generic image quality assessment cannot accurately assess the
subjective quality of the enhanced UHD low-light images. For example, RUAS-LOL suffers from
obvious over-exposure in the result while it is the best performer under the NIMA metric.

In summary, the performance of existing released models is unsatisfactory when they are used to
enhance the UHD low-light images. The darkness, noise, and artifacts still exist in the results.
Compared with luminance enhancement, noise is the more significant challenge for these methods.
No method can handle the noise issue well. The joint task of luminance enhancement and noise
removal raises a new challenge for LLIE, especially under limited computational resources. We also
observe a gap between visual results and the scores of non-reference metrics for UHD LLIE. The
gap calls for more specialized non-reference metrics for UHD LLIE.

4.2 COMPARING RETRAINED MODELS

Besides the released models, we also retrain existing methods on our UHD-LL training data and
compare their performance with our method. Due to the limited space, we only compare our method
with several good performers. More results can be found in the Appendix. As shown in Figure 7, our
UHDFour produces a clear and normal-light result close to the ground truth. In comparison, Zero-
DCE++, RUAS, Afifi et al., SCI, and Restormer experience color deviations. Zero-DCE, Zero-
DCE++, RUAS, Zhao et al., Afifi et al., and SCI cannot remove the noise due to the limitations
of their network designs. These methods mainly focus on luminance enhancement. SNR-Aware,
Uformer, and Restormer have strong modeling capability because of the use of Transformer struc-
tures. However, the three methods still leave noise on the results and introduce artifacts.

The quantitative comparison is presented in Table 3. Our UHDFour achieves state-of-the-art perfor-
mance in terms of PSNR, SSIM, and LPIPS scores and outperforms the compared methods with a
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input
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Uformer

Zhao et al. SCI SRN-Aware

Restormer GTUHDFour (Ours)
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Figure 7: Visual comparison between the retrained state of the arts on the UHD-LL dataset. The compared
methods include Zero-DCE (Guo et al., 2020), Zero-DCE++ (Li et al., 2021b), RUAS (Liu et al., 2021b), Zhao
et al. (Zhao et al., 2021), Afifi et al. (Afifi et al., 2021), SCI (Ma et al., 2022), SNR-Aware (Xu et al., 2022),
Uformer (Wang et al., 2022), and Restormer (Zamir et al., 2022). All compared models leave noise, artifacts,
or color deviations in the results. Our method achieves a visually pleasing result.

Table 3: Quantitative comparison of the retrained state of the arts on the UHD-LL dataset. The best result is in
red whereas the second one is in blue. RT: Running time. The training code of URetinex-Net is not released.

Methods PSNR↑ SSIM↑ LPIPS↓ Parameter↓ RT↓
Zero-DCE (Guo et al., 2020) 17.075 0.663 0.513 79.416K 0.353s

Zero-DCE++ (Li et al., 2021b) 16.410 0.630 0.530 10.561K 0.327s
RUAS (Liu et al., 2021b) 13.562 0.749 0.460 3.438K 0.379s

Zhao et al. (Zhao et al., 2021) 21.964 0.870 0.324 11.560M 6.900s
Afifi et al. (Ma et al., 2020) 20.805 0.740 0.440 70.154M 1.631s

SCI (Ma et al., 2022) 16.057 0.625 0.533 0.258K 0.308s
SNR-Awareresize (Xu et al., 2022) 22.717 0.877 0.304 40.084M 0.026s
SNR-Awarestitch (Xu et al., 2022) 22.170 0.866 0.307 40.084M 0.035s

Uformer (Wang et al., 2022) 19.283 0.849 0.356 20.628M 0.235s
Restormerresize (Zamir et al., 2022) 22.597 0.878 0.280 26.112M 0.368s
Restormerstitch (Zamir et al., 2022) 22.252 0.871 0.289 26.112M 0.368s

UHDFour (Ours) 26.226 0.900 0.239 17.537M 0.024s

large margin. The Transformer-based SNR-Aware and Restormer rank the second best. Our method
has the fastest processing speed for UHD images as most computation is conducted in the LR space.

Table 4: Quantitative comparison on the LOL-v1 and LOL-v2
datasets. The best result is in red whereas the second one is in
blue. ‘-’ indicates the pre-trained model is not available.

Methods LOL-v1 LOL-v2
PSNR↑ SSIM↑ PSNR↑ SSIM↑

input 7.77 0.19 9.72 0.21
Retinex-Net (Wei et al., 2018) 16.77 0.54 15.43 0.64
Zero-DCE (Guo et al., 2020) 16.79 0.67 12.84 0.54
AGLLNet (Lv et al., 2021) 17.52 0.77 20.69 0.78

Zhao et al. (Zhao et al., 2021) 21.67 0.87 18.84 0.84
RUAS (Liu et al., 2021b) 16.44 0.70 15.48 0.67

SCI (Ma et al., 2022) 14.78 0.62 16.74 0.62
URetinex-Net (Wu et al., 2022) 19.84 0.87 - -

UHDFour (Ours) 23.09 0.87 21.78 0.87

To further verify the effectiveness of
our network, we compare our ap-
proach with several methods, includ-
ing Retinex-Net Wei et al. (2018),
Zero-DCE (Guo et al., 2020), AGLL-
Net (Lv et al., 2021), Zhao et
al. (Zhao et al., 2021), RUAS (Liu
et al., 2021b), SCI (Ma et al., 2022),
and URetinex-Net (Wu et al., 2022),
that were pre-trained or fine-tuned
on the LOL-v1 and LOL-v2 datasets
(Wei et al., 2018). Due to the mild
noise and low-resolution images in
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the LOL-v1 and LOL-v2 datasets, we change the 8× downsample and upsample operations to 2×
and retrain our network. And such characteristics of LOL-v1 and LOL-v2 datasets prohibit us from
showing the full potential of our method in removing noise and processing high-resolution images.
Even though our goal is not to pursue state-of-the-art performance on the LOL-v1 and LOL-v2
datasets, our method achieves satisfactory performance as presented in Table 4. The visual results
are provided in the Appendix.

4.3 ABLATION STUDY

Table 5: Quantitative comparison of ablated models. FB: Fourier
Branch; SB: Spatial Branch; AM: Amplitude Modulation; PG:
Phase Guidance; and Concat: Concatenation. ×: multiple repeated
modules.

# FouSpa Block Adjustment Block Output Performance
FB SB AM PG SB Concat PSNR/SSIM

1 ✓ ✓ ✓ ✓ ✓ 24.123/0.877
2 ✓ ✓ ✓ ✓ ✓ 24.722/0.874
3 ✓ ✓ ✓ ✓ 24.005/0.853
4 2× ✓ ✓ ✓ ✓ 24.310/0.878
5 ✓ ✓ ✓ ✓ ✓ 25.529/0.883
6 ✓ ✓ ✓ ✓ ✓ 24.828/0.874
7 ✓ ✓ ✓ ✓ ✓ 24.513/0.872
8 ✓ ✓ ✓ ✓ 22.421/0.855
9 ✓ ✓ 3× ✓ 24.366/0.867
10 ✓ ✓ ✓ 24.106/0.863
11 ✓ ✓ ✓ ✓ ✓ 25.616/0.887
12 2× 3× ✓ 23.373/0.851
13 ✓ ✓ ✓ ✓ ✓ ✓ 26.226/0.900

We present ablation studies to
demonstrate the effectiveness of the
main components in our design. For
the FouSpa Block, we remove the
Fourier branch (FB) (#1), remove the
Spatial branch (SB) (#2), and replace
the FouSpa Block (i.e.., without FB
and SB) with the Residual Block of
comparable parameters (#3). We also
replace the FB with the SB (i.e.., us-
ing two SB) (#4). For the Adjustment
Block, we remove the Amplitude
Modulation (AM) (#5), remove the
Phase Guidance (PG) (#6), remove
the SB (#7), and remove both AM
and PG (#8). We also replace the
AM and PG with two SB (#9), and
replace the Adjustment Block with the Residual Block of comparable parameters (#10). For the
final output, we remove the concatenation of the LR normal-clear result (ŷ8), indicated as #11. We
also replace all FB with SB, indicated as #12. Unless otherwise stated, all training settings remain
unchanged as the implementation of full model, denoted as #13.

The quantitative comparison of the ablated models on the UHD-LL testing set is presented in Table
5. We also show the visual comparison of some ablated models in the Appendix. As shown, all
the key designs contribute to the best performance of the full model. Without the Fourier branch
(#1), the quantitative scores significantly drop. The result suggests that processing amplitude and
phase separately improves the performance of luminance enhancement and noise removal. From
the results of #2, the Spatial branch also boosts the performance. However, replacing the FouSpa
Block with the Residual Block (#3) cannot achieve comparable performance with the full model
(#13), indicating the effectiveness of the FouSpa Block. For the Adjustment Block, the Amplitude
Modulation (#5), Phase Guidance (#6), and Spatial branch (#7) jointly verify its effectiveness. Such
a block cannot be replaced by a Residual Block (#10). From the results of #11, we can see that it
is necessary to estimate the LR result. In addition, replacing the Fourier branch with spatial branch
(#4,#9,#12) cannot achieve comparable performance with the full model (#13), showing the efficacy
of Fourier branch.

5 CONCLUSION

The success of our method is inspired by the characteristics of real low-light and noisy images in the
Fourier domain. Thanks to the unique design of our network that handles luminance and noises in
the Fourier domain, it outperforms state-of-the-art methods in UHD LLIE with appealing efficiency.
With the contribution of the first real UHD LLIE dataset, it becomes possible to compare existing
methods with real UHD low-light images. Our experiments are limited to image enhancement; we
have not provided data and benchmarks in the video domain. Our exploration has not considered
adversarial losses due to memory constraints. Moreover, as our data is saved in sRGB format, the
models trained on our data may fail in processing the extreme cases, in which the information is
lost due to the limited bit depth. HDR data may be suitable for these cases. Nevertheless, we
believe our method and the dataset can bring new opportunities and challenges to the community.
The usefulness of Fourier operations may go beyond our work and see potential in areas like image
decomposition and disentanglement. With improved efficiency, it may be adopted for applications
that demand real-time response, e.g.., enhancing the perception of autonomous vehicles in the dark.
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Appendix

In this Appendix, we present the related work and provide additional results and analysis.

A RELATED WORK

Low-Light Image Enhancement Methods. The focus of our work is on deep learning-based LLIE
methods (Li et al., 2021a; Liu et al., 2021a). Wang et al. (2019) proposed a network to enhance the
underexposed photos by estimating an image-to-illumination mapping. EnlightenGAN (Jiang et al.,
2021) proposed an attention-guided network to make the generated results indistinguishable from
real normal-light images. By formulating light enhancement as a task of image-specific curve esti-
mation that can be trained with non-reference losses, Zero-DCE (Guo et al., 2020) and Zero-DCE++
(Li et al., 2021b) obtain good brightness enhancement. Zhao et al. (2021) treated underexposed im-
age enhancement as image feature transformation between the underexposed image and its paired
enhanced version. Liu et al. (2021b) proposed a Retinex model-inspired unrolling method, in which
the network structure is obtained by neural architecture search. Afifi et al. (2021) proposed a coarse-
to-fine network for exposure correction. Ma et al. (2022) proposed a self-calibrated illumination
learning framework using unsupervised losses. Wu et al. (2022) combined the Retinex model with a
deep unfolding network, which unfolds an optimization problem into a learnable network. Xu et al.
(2022) proposed to exploit the Signal-to-Noise Ratio (SNR)-aware Transformer and convolutional
models for LLIE. In this method, long-range attention is used for the low SNR regions while the
short-range attention (convolutional layers) is for other regions.

Different from these works, our network takes the challenging joint luminance enhancement, noise
removal, and high resolution constraint of UHD low-light images into account in the Fourier domain,
endowing new insights on UHD LLIE and achieving better performance.

Low-Light Image Enhancement Datasets. LOL (Wei et al., 2018) dataset contains pairs of low-
/normal-light images saved in RGB format, in which the low-light images are collected by changing
the exposure time and ISO. Due to the small size, it only covers a small fraction of the noise and
darkness levels. MIT-Adobe FiveK (Bychkovsky et al., 2011) dataset includes paired low-/high-
quality images, where the high-quality images are retouched by five experts. The low-quality images
are treated as low-light images in some LLIE methods. However, this dataset is originally collected
for global tone adjustment, and thus, it ignores noise in its collection. Based on the MIT-Adobe
FiveK dataset, a multi-exposure dataset, Exposure-Errors, is rendered to emulate a wide range of
exposure errors (Afifi et al., 2021). Similar to the MIT-Adobe FiveK dataset, the Exposure-Errors
dataset also neglects the noise issue. SID (Chen et al., 2018) is a RAW data dataset.

The images of the SID dataset have two different sensor patterns (i.e.., Bayer pattern and APS-C
X-Trans pattern). Due to the specific data pattern, the deep models trained on this dataset are not
versatile as they require the Raw data with the same pattern as input. Besides, a long-exposure
reference image corresponds to multiple short-exposure images, leading to limited scene diversity.

Unlike existing LLIE datasets that either omit noise, capture limited numbers of images, require
specific sensor patterns, or exclude UHD images, we propose a real UHD LLIE dataset that con-
tains low-noise/normal-clear image pairs with diverse darkness and noise levels captured in different
scenarios. A comprehensive comparison is presented in Sec. 3.

Image Decomposition-based Enhancement. There are some image decomposition-based en-
hancement methods. For LLIE, Xu et al. (2020) proposed a frequency-based decomposition-and-
enhancement model, which suppresses noises in the low-frequency layer and enhances the details in
the high-frequency layer. Yang et al. (2020a) proposed a band representation-based semi-supervised
model. This method consists of two stages: recursive band learning and band recomposition. Wei
et al. (2018) also decomposed a low-light image into an illumination component and a reflectance
component according to the Retinex model and then separately enhance the components. Image
decomposition was also used in shadow removal, in which two networks are used to predict shadow
parameters and matter layer (Le & Samaras, 2019).

In addition, assuming that phase preserves high-level semantics while the amplitude contains low-
level features, (Guo et al., 2022) proposed a FPNet that consists of two stages for image de-raining.
The first state is to restore the amplitude of rainy images. The second state then refines the phase of
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the restored rainy images. To solve the limitations of ResBlock that may overlook the low-frequency
information and fails to model the long-distance information, (Mao et al., 2021) proposed a Residual
Fast Fourier Transform with Convolution Block for image deblurring. The Block contains a spatial
residual stream and a FFT stream. (Pham et al., 2021) proposed a complex valued neural network
with Fourier transform for image denoising. The complex valued network first converts the noisy
image to complex value via Fourier transform, then estimates a complex filter which is applied to
the converted noisy image for approaching the complex value of the ground truth image.

Although these methods decompose an image or use Fourier transform in the networks, our design
has different motivations. Our motivations are inspired by the uniqueness of the Fourier domain
for UHD low-light image enhancement as presented in Figure 2, i.e., luminance and noise can be
‘decomposed’ to a certain extent in the Fourier domain and HR image and its LR versions share
similar amplitude patterns. We also design the specific blocks to use these characteristics and solve
the high-resolution constraint issue, which have not been explored in previous works.

HDR Imaging. There are some high dynamic range (HDR) reconstruction works (Salih et al., 2012;
Wang & Yoon, 2021) that are related to our low-light image enhancement. The HDR reconstruction
also can be grouped into multi-image HDR reconstruction and single-image reconstruction. The
multi-image methods require to fuse the multiple bracketed exposure low dynamic range (LDR)
images. To mitigate artifacts caused by image fusion, several technologies (Srikantha & Sidibe,
2012) have been proposed. For single-image methods, deep learning has achieved impressive per-
formance. In addition to learning end-to-end LDR-to-HDR networks (Kalantari & Ramamoorthi,
2017a; Wu et al., 2018; Yang et al., 2018; Zhang & Lalonde, 2017; Hu et al., 2022b; Eilertsen et al.,
2017) some methods either synthesize multiple LDR images with different exposures (Endo et al.,
2017) or model the inverse process of the image formation pipeline (Liu et al., 2020). Besides, some
works also focus on HDR reconstruction and denoising. For example, (Hu et al., 2022a) proposes a
joint multi-scale denoising and tone-mapping framework, which prevents the tone-mapping operator
from overwhelming the denoising operator. (Chen et al., 2021b) takes the noise and quantization
into consideration for designing the HDR reconstruction network.

B ANALYSIS OF UHD-LL DATASET

We first show the intensity histograms and the SNR distribution of our UHD-LL dataset in Figure
8. The SNR is computed using the same algorithm as the recent LLIE method (Xu et al., 2022). As
shown in Figure 8(a) and Figure 8(b), when splitting the training and testing sets, we make the pixel
intensity distributions of the training and testing sets consistent to guarantee the rationality of the
dataset split. We also plot the SNR distribution of the dataset to show the noise levels in Figure 8(c).
The SNR distribution suggests the wide and challenging SNR ranges of our dataset. We show more
samples and amplify the resolution of our UHD-LL data in Figure 9.

(a) Intensity distribution (train) (b) Intensity distribution (test) (c) SNR (whole)

Figure 8: Distribution analysis of the UHD-LL dataset. Pixel intensity histograms of images for low-noise
(green) and normal-clear (blue) from the training and test partitions are shown in (a) and (b), suggesting their
consistent pixel intensity distributions. (c) The whole dataset covers a wide range of SNR distribution ranging
from 1 to 30 and the SNR values center at the range of [0,10], indicating the challenging noise levels.
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Figure 9: Samples of the UHD-LL dataset. The UHD-LL dataset contains 2,150 pairs of 4K UHD low-
noise/normal-clear data, covering real noises, diverse darkness levels, and a large variety of scenes.

C FURTHER ANALYSIS OF MOTIVATION

Recall that in Sec. 2.1, we discussed two observations that serve as the motivation to design our net-
work. In particular, (a) Swapping the amplitude of a low-noise image with that of its corresponding
normal-clear image produces a normal-noise image and a low-clear image, and (b) The amplitude
patterns of an HR normal-clear image and its LR versions are similar and are different from the
corresponding HR low-noise counterpart.

We first show more motivation cases in Figures 10, 11, and 12. These visual results suggest the
same tendency as the motivations shown in the main paper.
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Figure 10: Examples of our motivations.

To further analyze our first motivation, we compare the luminance and noise of real normal-clear
and low-noise images and compositional low-clear and normal-noise images. To compare the lumi-
nance similarity, we compute the average luminance. For real noise level measurement, there is no
corresponding metric. Thus, we use the recent multi-scale Transformer MUSIQ (Ke et al., 2021) for
image quality assessment. MUSIQ is not sensitive to luminance changes. Moreover, it can be used
to measure the noise level as its training dataset contains noisy data and it shows state-of-the-art
performance for assessing the quality of natural images. A large MUSIQ value reflects better image
quality with less noise and artifacts. We select 50 images from the UHD-LL dataset and compare
the average scores. We present the quantitative results in Table 6.
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Figure 11: Examples of our motivations.
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Figure 12: Examples of our motivations.

Table 6: Quantitative results to support our motivation (a). The measurement metrics are the average luminance
value/MUSIQ value.

Real Compositional
normal-clear low-noise low-clear normal-noise

UHD-LL dataset 147.25/61.22 20.50/32.75 23.25/55.50 125.00/33.55

As presented in Table 6, the real normal-clear images have similar luminance values with the com-
positional normal-noise images while they have similar high MUSIQ values with the compositional
low-clear images. Similarly, the real low-noise images have similar luminance values with the com-
positional low-clear images while they have similar low MUSIQ values with the compositional
normal-noise images. The results further suggest that luminance and noise can be decomposed to
a certain extent in the Fourier domain. Specifically, luminance would manifest as amplitude while
noise is closely related to phase.

For the second motivation, it is difficult to quantify the similarity of amplitude spectrum of different
sizes as it cannot be directly interpolated. The full-reference metrics cannot be used in this situation.
Hence, we show more visual examples in Figure 10(b), Figure 11(b), and Figure 12(b). The extra
examples support our motivation.

D VISUALIZATION IN THE NETWORK

We show the changes of amplitude and phase in our proposed UHDFour network in Figure 13. As
shown, the amplitude and phase of our final result are similar with those of ground truth. Moreover,
the amplitude and phase of the low-resolution output ŷ8 are also similar with those of its corre-
sponding ground truth y8. We wish to emphasize that although noise is related to phase, it cannot be
explicitly represented in phase imagery format as phase represents the initial position of the wave.
Only the combination of amplitude and phase can express a complete image. Moreover, in the fea-
ture domain, such relevance is more difficult to be represented in an imagery format. Thus, we
suggest to see the similarity between the final result and ground truth, instead of the intermediate
features and phase.
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Figure 13: Visualization of the amplitude and phase changes in the proposed UHDFour network. We show
the amplitude and phase components in yellow boxes. For visualization, we show the amplitude and phase in
imagery format with common transformations. Note that phase is periodic and cannot be accurately represented
in imagery format. y is the corresponding ground truth. y8 is the 8× downsampled ground truth.

E MORE RESULTS ON RELEASED MODELS

We present more comparisons between state of the arts for restoring UHD low-light images in Fig-
ures 14, 15, and 16. This is similar to Figure 6 of the main paper where we compare methods using
their original released models. As shown, all existing models cannot handle the UHD low-light
images well. Since we cannot infer the full-resolution results of SNR-Aware Xu et al. (2022) on
UHD images, despite using a GPU with 48G memory, some obvious borders appear in its results
due to the stitching strategy. The phenomenon also indicates the commonly-used stitching strategy
in previous UHD data processing methods is inapplicable to the challenging UHD low-light image
enhancement task.

F MORE RESULTS ON RETRAINED MODELS ON UHD-LL

We provide more visual comparisons of our method with retrained state-of-the-art methods on the
UHD-LL dataset in Figures 17 and 18.

As the results shown, for UHD low-light image enhancement, the retrained models on the UHD-LL
dataset still cannot achieve satisfactory results. Noise and artifacts can still be found in their results.
The results suggest that joint luminance enhancement and noise removal in the spatial domain is
difficult. Our solution effectively handles this challenging problem by embedding Fourier transform
in a cascaded network, in which luminance and noise can be decomposed to a certain extent and are
processed separately.

G MORE RESULTS ON RETRAINED MODELS ON LOL-V1 AND LOL-V2
DATASETS

We also provide more visual comparisons of our method with the models that were pre-trained or
fine-tuned on the LOL-v1 and LOL-v2 datasets in Figures 19, 20, and 21.

As for the low-light images in LOL-v1 and LOL-v2 datasets, even though the mild noise and low-
resolution images prohibit us from showing the full potential of our method in removing noise and
processing high-resolution images, our method still achieves satisfactory performance. The results
suggest the potential of our solution in different circumstances.

H ABLATION STUDY

We show some visual results of the ablated models in Figure 22. Without the Fourier branch (#1),
the ablated model cannot effectively enhance luminance and remove noise. Although the result of
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Table 7: The computational and time costs of FFT/IFFT operations for processing different scales of features.
We compute FLOPs (in M) and running time (in second).

FFT IFFT
Scales FLOPs Running time FLOPs Running time
8× ↓ 35.22 2.62×10−4 35.22 5.46×10−4

16× ↓ 7.77 8.10×10−5 7.77 1.39×10−4

32× ↓ 1.68 6.34×10−5 1.68 1.17×10−4

#2 looks better than #1, the Spatial branch (#2) also affects the final result. Directly replacing the
FouSpa Block with the Residual Block of comparable parameters (#3) cannot obtain a satisfactory
result, suggesting the good performance of the FouSpa Block is not because of the use of more
parameters. Removing the Amplitude Modulation (#5) results in the visually unpleasing result. The
Phase Guidance (#6) and Spatial branch (#7) in the Adjustment Block also contribute to the good
performance of the full model. Directly replacing the Adjustment Block with the Residual Block
of comparable parameters (#10) still cannot obtain a satisfactory result. The introduction of the
estimation of low-resolution result (#11) also leads to a clear result. The visual comparisons further
show the significance of the proposed FouSpa Block and Adjustment Block in dealing with the
intricate issue of joint luminance enhancement and noise removal while remaining efficient.

Additionally, we list the computational and time costs of FFT/IFFT operations for processing differ-
ent scales of features. In our network, we fix the feature channels to 16 and use three different scales
8×, 16×, and 32× downsampled original resolution (i.e., 3840 × 2160). The results are presented
in Table 7. The FFT and IFFT operations have same computational cost. The difference in running
time may be because of the different optimization strategies used in PyTorch.
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Input DRBN Zero-DCE Zero-DCE++

NPE SRIE RUAS-LOL RUAS-MIT5K

RUAS-DarkFace Zhao et al.-MIT5K Zhao et al.-LOL EnlightenGAN

Afifi et al. SCI-easy SCI-medium SCI-difficult

SNR-Aware-LOLv1resize SNR-Aware-LOLv1stitch SNR-Aware-LOLv2resize SNR-Aware-LOLv2stitch

SNR-Aware-Synresize SNR-Aware-Synstitch URetinex-Net GT

Figure 14: Visual comparison of the released state of the arts for restoring a UHD low-light image. The
compared methods include DRBN (Yang et al., 2020a), Zero-DCE (Guo et al., 2020), Zero-DCE++ (Li et al.,
2021b), NPE (Wang et al., 2013), SRIE (Fu et al., 2016), RUAS-LOL (Liu et al., 2021b), RUAS-MIT5K (Liu
et al., 2021b), RUAS-DarkFace (Liu et al., 2021b), Zhao et al.-MIT5K (Zhao et al., 2021), Zhao et al.-LOL
(Zhao et al., 2021), EnlightenGAN (Jiang et al., 2021), Afifi et al. (Afifi et al., 2021), SCI-easy (Ma et al.,
2022), SCI-medium (Ma et al., 2022), SCI-difficult(Ma et al., 2022), SNR-Aware-LOLv1resize (Xu et al.,
2022), SNR-Aware-LOLv1stitch (Xu et al., 2022), SNR-Aware-LOLv2resize (Xu et al., 2022), SNR-Aware-
LOLv2stitch (Xu et al., 2022), SNR-Aware-Synresize (Xu et al., 2022), SNR-Aware-Synstitch (Xu et al., 2022),
and URetinex-Net(Wu et al., 2022).
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Figure 15: Visual comparison of the released state of the arts for restoring a UHD low-light image. The
compared methods include DRBN (Yang et al., 2020a), Zero-DCE (Guo et al., 2020), Zero-DCE++ (Li et al.,
2021b), NPE (Wang et al., 2013), SRIE (Fu et al., 2016), RUAS-LOL (Liu et al., 2021b), RUAS-MIT5K (Liu
et al., 2021b), RUAS-DarkFace (Liu et al., 2021b), Zhao et al.-MIT5K (Zhao et al., 2021), Zhao et al.-LOL
(Zhao et al., 2021), EnlightenGAN (Jiang et al., 2021), Afifi et al. (Afifi et al., 2021), SCI-easy (Ma et al.,
2022), SCI-medium (Ma et al., 2022), SCI-difficult(Ma et al., 2022), SNR-Aware-LOLv1resize (Xu et al.,
2022), SNR-Aware-LOLv1stitch (Xu et al., 2022), SNR-Aware-LOLv2resize (Xu et al., 2022), SNR-Aware-
LOLv2stitch (Xu et al., 2022), SNR-Aware-Synresize (Xu et al., 2022), SNR-Aware-Synstitch (Xu et al., 2022),
and URetinex-Net(Wu et al., 2022).
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Figure 16: Visual comparison of the released state of the arts for restoring a UHD low-light image. The
compared methods include DRBN (Yang et al., 2020a), Zero-DCE (Guo et al., 2020), Zero-DCE++ (Li et al.,
2021b), NPE (Wang et al., 2013), SRIE (Fu et al., 2016), RUAS-LOL (Liu et al., 2021b), RUAS-MIT5K (Liu
et al., 2021b), RUAS-DarkFace (Liu et al., 2021b), Zhao et al.-MIT5K (Zhao et al., 2021), Zhao et al.-LOL
(Zhao et al., 2021), EnlightenGAN (Jiang et al., 2021), Afifi et al. (Afifi et al., 2021), SCI-easy (Ma et al.,
2022), SCI-medium (Ma et al., 2022), SCI-difficult(Ma et al., 2022), SNR-Aware-LOLv1resize (Xu et al.,
2022), SNR-Aware-LOLv1stitch (Xu et al., 2022), SNR-Aware-LOLv2resize (Xu et al., 2022), SNR-Aware-
LOLv2stitch (Xu et al., 2022), SNR-Aware-Synresize (Xu et al., 2022), SNR-Aware-Synstitch (Xu et al., 2022),
and URetinex-Net(Wu et al., 2022).
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Figure 17: Visual comparison of the retrained state of the arts on the UHD-LL dataset. The compared methods
include Zero-DCE (Guo et al., 2020), Zero-DCE++ (Li et al., 2021b), RUAS (Liu et al., 2021b), Zhao et al.
(Zhao et al., 2021), Afifi et al. (Afifi et al., 2021), SCI (Ma et al., 2022), SNR-Aware (Xu et al., 2022), Uformer
(Wang et al., 2022), and Restormer (Zamir et al., 2022).
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Figure 18: Visual comparison of the retrained state of the arts on the UHD-LL dataset. The compared methods
include Zero-DCE (Guo et al., 2020), Zero-DCE++ (Li et al., 2021b), RUAS (Liu et al., 2021b), Zhao et al.
(Zhao et al., 2021), Afifi et al. (Afifi et al., 2021), SCI (Ma et al., 2022), SNR-Aware (Xu et al., 2022), Uformer
(Wang et al., 2022), and Restormer (Zamir et al., 2022).
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Figure 19: Visual comparison on the LOL-v1 dataset. The compared methods include Retinex-Net Wei et al.
(2018), Zero-DCE (Guo et al., 2020), AGLLNet Lv et al. (2021), Zhao et al. (Zhao et al., 2021), RUAS (Liu
et al., 2021b), and URetinex-Net Wu et al. (2022)
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Figure 20: Visual comparison on the LOL-v1 dataset. The compared methods include Retinex-Net Wei et al.
(2018), Zero-DCE (Guo et al., 2020), AGLLNet Lv et al. (2021), Zhao et al. (Zhao et al., 2021), RUAS (Liu
et al., 2021b), and URetinex-Net Wu et al. (2022)
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Figure 21: Visual comparison on the LOL-v2 dataset. The compared methods include Retinex-Net Wei et al.
(2018), Zero-DCE (Guo et al., 2020), AGLLNet Lv et al. (2021), Zhao et al. (Zhao et al., 2021), and RUAS
(Liu et al., 2021b)
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Figure 22: Visual results of ablated models.
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