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Abstract

Neural operators have shown great potential in surrogate modeling. However, training
a well-performing neural operator typically requires a substantial amount of data, which
can pose a major challenge in complex applications. In such scenarios, detailed physical
knowledge can be unavailable or difficult to obtain, and collecting extensive data is often
prohibitively expensive. To mitigate this challenge, we propose the Pseudo Physics-Informed
Neural Operator (PPI-NO) framework. PPI-NO constructs a surrogate physics system for the
target system using partial differential equations (PDEs) derived from simple, rudimentary
physics principles, such as basic differential operators. This surrogate system is coupled with
a neural operator model, using an alternating update and learning process to iteratively
enhance the model’s predictive power. While the physics derived via PPI-NO may not
mirror the ground-truth underlying physical laws — hence the term “pseudo physics” —
this approach significantly improves the accuracy of standard operator learning models in
data-scarce scenarios, which is evidenced by extensive evaluations across five benchmark
tasks and a fatigue modeling application.

1 Introduction

Operator learning, an important area for data-driven surrogate modeling, has made significant strides with
the emergence of neural operators, which leverage the expressive power of neural networks. Notable examples
include Fourier Neural Operators (FNO) (Li et al., 2020b), Deep Operator Net (DONet) (Lu et al., 2021)
and other frameworks such as (Cao, 2021; Hao et al., 2023). FNO employs Fourier transform for global
convolution and function transformation, while DONet introduces two sub-networks, the branch net and
trunk net, to extract representations from the functional space and query locations, respectively, enabling
predictions akin to attention mechanisms (Vaswani et al., 2017).

For trading for model capacity and performance, neural operators typically require a substantial amount
of training data to perform optimally. This demand poses challenges, particularly in complex problems,
where training data is limited and costly to acquire. In response, the field of physics-informed machine
learning, including physics-informed neural networks (PINN) (Raissi et al., 2019), has shown promise by
incorporating physical laws as soft constraints during training. This approach serves as a regularization
technique, embedding a fundamental understanding of physics into the model to lessen its reliance on extensive
data. Building on this idea, the concept of physics-informed neural operators (PINO) has emerged, which
integrates physical laws as soft constraints to enhance operator learning while reducing data quantity. It has
been used in (Wang et al., 2021; Li et al., 2021) for FNO and DONet training.

Despite the success of PINO, the necessity for a thorough understanding of the underlying physics can pose a
significant hurdle, especially in complex applications such as in fracture mechanics and climate modeling. In
those scenarios, the detailed physical knowledge is often unavailable or difficult to identify, and it is often
prohibitively expensive to collect extensive data. To navigate these challenges while retaining the benefits
of physics-informed learning, we propose the Pseudo Physics-Informed Neural Operator (PPI-NO). This
framework bypasses the need for exhaustive physical comprehension by constructing a neural-network-based
partial differential equation (PDE) that characterizes the target system directly from data. The neural PDE
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is then coupled with the neural operator for alternating updates and training, enabling iterative extraction,
refinement and integration of physics knowledge to enhance operator learning. The contribution mainly lies
in the following aspects:

• To our knowledge, PPI-NO is the first work to enhance a standard operator learning pipeline using
physics directly learned from limited data, delivering superior accuracy without the need for in-depth
physical understanding or extensive data collection.

• PPI-NO opens up a new paradigm of physics-informed machine learning where only rudimentary
physics assumptions (in this case, the basic differential operations) are required rather than in-depth
or rigorous expert knowledge, extending the spectrum of the physics-informed learning for experts of
different levels.

• The effectiveness of PPI-NO is validated through extensive evaluations on five commonly used
benchmark operator learning tasks in literature (Li et al., 2020b; Lu et al., 2022), including Darcy
flow, nonlinear diffusion, Eikonal, Poisson and advection equations, as well as one application in
fatigue modeling in fracture mechanics, where the ground-truth holistic PDE system is unknown.

2 Background

Problem Formulation. Operator learning seeks to approximate an operator that maps input parameters
and/or functions to corresponding output functions. In many cases, operator learning rises in the context of
solving partial differential equations (PDEs), where the operator corresponds to the solution operator of the
PDE. Consider a PDE system:

N [u](x) = f(x), x ∈ Ω× [0,∞), (1)

where x is a compact notation for the spatial and temporal coordinates, Ω is the spatial domain, [0,∞)
is the temporal domain, N is a nonlinear differential operator, u(x) is the solution function, and f(x) is
the source term. We aim to learn the solution operator of the PDE system, ψ : F→ U where F and U are
two functional spaces, using a training dataset D = {(fn,un)}N

n=1, which includes different instances of u(·)
and f(·) sampled/discretized at a set of locations. Once the model is trained, it can be used to directly
predict the solution function u for new instances of the input f , offering a much more efficient alternative to
running numerical solvers from scratch. However, the training dataset still needs to be generated offline using
numerical solvers.

Fourier Neural Operator (FNO) (Li et al., 2020b) is a popular neural network architecture for operator
learning, especially in solving PDEs. For a given discretized input function f , FNO first employs a linear layer
on each component of f at its respective sampling location, thereby lifting the input into a higher-dimensional
channel space. The core of FNO is the Fourier layer, which performs a linear transformation followed by
a nonlinear activation within the functional space, h(x)← σ

(
Wh(x) +

∫
κ(x− x′)h(x′)dx′), where h(x) is

the input to the Fourier layer, κ(·) the integration kernel, and σ(·) the activation function. The functional
convolution is computed using the convolution theorem:

∫
κ(x− x′)h(x′)dx′ = F−1[F [κ] · F [h]](x), where

F and F−1 denote the Fourier and inverse Fourier transforms, respectively. FNO performs Fast Fourier
Transform (FFT) on h, multiplies it with the discretized kernel in the frequency domain, and then applies the
inverse FFT. After multiple Fourier layers, FNO employs another linear layer to project the latent channels
to the original space for prediction.

Deep Operator Network (DONet) (Lu et al., 2021) is another prominent work in operator learning.
The architecture of a DONet is structured into two components: a branch net and a trunk net, learning
representations for the input functions and querying locations, respectively. Consider an input function
f(x) ∈ F sampled at m locations {x1,x2, · · · ,xm} and an output function u ∈ U. The branch net receives the
values [f(x1), f(x2), · · · , f(xm)] and outputs a feature representation [b1, b2, · · · , bp]⊤ ∈ Rp. Concurrently,
the trunk network processes a querying location x and outputs another feature vector [t1, t2, · · · , tp]⊤ ∈ Rp.
The output function value at x is predicted as a sum of products of the corresponding elements from the
branch and trunk nets, G[f ](x) ≈

∑p
k=1 bktk, where G is the learned operator mapping f to u.
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Physics-Informed Neural Operator (PINO) (Wang et al., 2021; Li et al., 2021) has recently emerged as
a promising approach to address the data scarcity issue in operator learning. PINO embeds physical laws —
typically governing equations — into the learning process. The incorporation of physics not only enhances
the model’s adherence to ground-truth phenomena but also reduces its dependency on extensive training data.
Mathematically, the integration of physics into the learning process can be viewed as adding a regularization
term in the loss function. Let Ldata represent the standard data-fitting loss term (e.g., the mean squared
error between the predicted and actual outputs), and the physics-informed term Lphysics be the residual of
the governing PDEs evaluated at the neural network’s outputs. The loss function L for a PINO model is
expressed as

L = Ldata + λLphysics,

where λ is a weighting factor that balances the importance of data-fitting versus physics compliance. This
approach encourages the model to learn solutions not only consistent with the provided data but also
physically plausible.

3 Methodology

In the absence of physics knowledge (i.e., PDE system equation 1), it is impossible to construct the physics
loss term as in PINO. To address this challenge, we propose a “pseudo” physics-informed operator learning
framework that extracts useful physics representation from data so as to enhance operator learning. This
framework is motivated by relatively complex applications, where data is often costly and/or limited while
the underlying physics is hard to fully understand.

3.1 Pseudo Physics System Learning

As the first step, we propose a novel approach to learn the physics system using scarce training data. Our key
observation is that, although the mapping from f to u can be intricate and may necessitate global information
across the entire domain (e.g., in linear PDEs, u is an integration of the Green’s function multiplied with
f over the domain), the underlying PDE system equation 1 simplifies to a local combination of u and its
derivatives. We therefore design a neural network ϕ to approximate the general form of N ,

N [u](x) ≈ ϕ (x, u(x), S1(u)(x), . . . , SQ(u)(x)) , (2)

where {Sj}Q
j=1 are Q derivative operators that we believe should be present in the system, such as ∂tu, ∂ttu,

∂x1u, ∂x2u, ∂x1x1u, ∂x1x2u, ∂x2x2u, and more.

The inherent local combinatorial nature of the PDE representation decouples the values of u and its derivatives
across different sampling locations, thereby significantly reducing the learning complexity and the amount
of training data required. For instance, consider sampling the input function f and output function u on
a 128 × 128 grid. A single pair of discretized input and output functions, denoted as (f ,u), is typically
insufficient for training a neural operator, because learning the mapping f → u requires abundant global
information. However, this pair can be decomposed into 128 × 128 = 16, 384 training data points across
various (spatial and temporal) locations to train ϕ as outlined in equation 3.In other words, We treat every
point of one grid as one sample to train the ϕ, after adding derivitives as features, each points can contribute
as one valuable sample to our learning systems. This decomposition provides rich information about the local
relationships between those derivatives. Therefore, even with a small number of (f ,u) pairs, we hypothesize
that the learning of the PDE system N through our formulation in equation 3 can still yield promising
accuracy in predicting f(·) as in equation 1.

We use an L2 loss to estimate the parameters of ϕ, which is defined as

Lϕ =
N∑

n=1

M∑
j=1

[
ϕ(xj , un(xj), S1(un)(xj), . . . , SQ(un)(xj))

− fn(xj)
]2
, (3)
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Figure 1: The illustration of “pseudo” physics representation network ϕ. The input consists of u and its finite
difference derivative approximations ({Ŝ1(u), . . . , ŜQ(u)}) across different sampling locations. The top row shows a
convolution layer that aggregates local neighborhood to compensate the information loss caused by finite difference.
The bottom row shows that ϕ uses fully connected layers at each sampling location to combine u and its derivatives
locally to predict f at the same location.

Figure 2: PPI-NO learning framework.

where fn(·) and un(·) are the input and output functions in n-th training example, and {x1, . . .xM} are the
locations at which we sample fn and un.

We use finite difference to obtain the derivatives of each un, namely, Sk(un) (1 ≤ k ≤ Q), and then pass these
inputs to the network ϕ to compute the prediction. Since finite difference introduces numerical errors, the
computed derivatives are not exact.Specifically, we employs centered finite differences to approximate the
derivatives of u, a classical scheme with well-established accuracy and sample complexity. The approximation
error scales as O(h2) for all derivative orders, where h is the grid spacing. To achieve an error ≤ ϵ, the
required number of grid points is n = Θ(ϵ−d/2), where d is the input dimension.

For the neural network that approximates the PDE form, the sample complexity m(ϵ, δ) is the smallest
number of samples m ensuring, with probability at least 1− δ,

|R(h)− R̂(h)| ≤ ϵ, ∀h ∈ H,
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where R(h) and R̂(h) denote generalization and training errors, respectively. From computational learning
theory,

m(ϵ, δ) = O

(
dV C + log(1/δ)

ϵ2

)
,

where dV C is the VC dimension of the network. For a network with W parameters and piecewise-linear
activations (e.g., ReLU), dV C = O(W logW ); for smooth activations, dV C = O(W 2).

To compensate for such information loss, we propose incorporating a convolution layer to integrate and
leverage the neighborhood information (see Fig. 1 top). Since we know that the function values on the grids
are not independent; thus, the effective sample size (ESS) for training our ϕ-network is smaller than the total
number of grid points. Therefore, it is necessary to use convolutional layers to aggregate information from
neighboring grid points, capturing spatial correlations and improving representation quality. Specifically, let
Ŝk(un) represents the finite difference approximation of Sk(un) (1 ≤ k ≤ Q); for k = 0, we define Ŝk(un) = un.
Each Ŝk(un) is treated as an input channel. After applying the convolution, the output at each sampling
location xj for channel k is given by

Sk(xj) =
Q∑

c=0

∑
xi∈nei(xj)

wc(∆ij)Ŝc(xj), (4)

where nei(·) denotes the neighborhood sampling locations defined in the convolution filter, ∆ij is the relative
distance between xi and xj , and wc(∆ij) is the corresponding filter weight. Each Sk(xj) can be viewed
as an interpolation, providing a new approximation of Sk(xj) by incorporating all neighborhood values of
un(xj) and their finite difference derivative approximations. The convolution results are then passed into
subsequent layers. The interpolation (filter) weights are jointly learned from data. This design allows us
to integrate additional information into the inputs to facilitate the learning of ϕ. Empirical results confirm
that incorporating this convolution layer improves the prediction accuracy; refer to the ablation study in
Section 5.2 and Table 7a. Next, at each sampling location xj , we employ fully connected layers (i.e., MLP) to
combine all {Sk(xj)}Q

k=0 in an arbitrarily flexible way to predict f(xj); see Fig. 1 bottom. In this way, the
learned neural network mapping ϕ : u→ f , although black-box in nature, is expressive enough to encapsulate
valuable physics knowledge inherent in the data employed for operator learning.

In general, the ϕ-network, as a neural network, has sufficient representation power to approximate any PDE
operator of the form

L(x, u(x), S1(u)(x), . . . , SQ(u)(x)),

where Si denotes derivatives, e.g., L = uxx + uux + u2 − 1 + cos(u). Because real PDEs are smooth analytic
functions of (u) and its derivatives, the universal approximation theorem guarantees that such mappings can
be accurately approximated by neural networks:

f(x) =
N∑

i=1
ai, σ(w⊤

i x+ bi),

for any continuous f : Rn → R, given sufficient neurons and a non-polynomial activation (Cybenko,
1989) (Hornik, 1991)

Our method can be readily adapted to other numerical approaches for derivative approximation. For instance,
when functions are irregularly sampled, smooth function estimators such as kernel interpolation (Long et al.,
2024), the RBF-FD method (Fornberg et al., 2013; Fornberg & Flyer, 2015), or Bayesian B-splines (Sun et al.,
2022) can be used to estimate gradient information directly from data. These estimated gradients can then
serve as inputs to our PDE neural network ϕ for further training.

3.2 Coupling Neural Operator with Pseudo Physics

Next, we leverage the pseudo physics laws embedded in the learned mapping ϕ : u→ f to enhance neural
operator learning. Specifically, we use ϕ to reconstruct f from the u predicted by the neural operator. In this
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way, our approach uses the physics learned in the previous step to incorporate a reconstruction error into the
learning of the neural operator parameters; see Fig. 2 for an illustration.

Initially, we train the neural operator ψ : f → u using the available training data, creating a preliminary
model. This model is developed using FNO or DONet or other neural operators. The focus is to first establish
a basic understanding of the relationship between f and u from the limited data. Next, the loss function for
ψ is augmented using the physics laws learned in the first step,

L =
N∑

n=1
L2(ψ(fn), un) + λ · Ep(f ′) [L2(f ′, ϕ(ψ(f ′)))] ,

where the first term is the L2 loss for data fitting (as in the standard neural operator training), and the
second term is the expected reconstruction error for the input function. The second term incorporates the
physics laws embedded in ϕ(·), and λ is a weighting factor that balances the training data loss against the
reconstruction error.

In practice, the expected reconstruction error does not have a closed form. One can sample a collection of f ′

from the underlying distribution of the input function p(·), e.g., a Gauss random field or Gaussian process,
and then employ a Monte-Carlo approximation,

L =
N∑

n=1
L2(ψ(fn), un) + λ

1
N ′

N ′∑
n=1
L2(f ′

n, ϕ(ψ(f ′
n))), (5)

where N ′ is the number of input function samples.

To enhance the operator learning process, the model is iteratively refined. In each iteration, we first fine-tune
the neural operator ψ with the pseudo physics ϕ fixed, and then fix ψ, fine-tune ϕ to refine the physics
representation. This fine-tuning loop is carried out for multiple iterations, allowing for continuous improvement
of the neural operator based on the refined physics representation. Our method is summarized in Algorithm 1.

Algorithm 1 Pseudo-Physics-Informed NO
1: Train a preliminary NO ψ with standard NO loss.
2: Train a preliminary psuedo physics network ϕ with loss Lϕ in equation 3.
3: repeat
4: Sample N ′ instances from the input function space.
5: Fix pseudo physics network ϕ, fine tune NO ψ with the loss equation 5.
6: Fix NO ψ, fine tune the pseudo physics network ϕ with the loss equation 5.
7: until Maximum iterations are done or convergence

Conceptually, in equation 5, the PDE network ϕ does not generate additional training data. Instead, ϕ serves
to regularize the prediction of ψ—the neural operator (FNO or DeepONet). The first term in equation 5
represents the standard neural-operator loss for ψ on the original training samples. In the second term, a new
input function f ′

n is sampled, and its corresponding neural-operator prediction u′
n = ψ(f ′

n) is passed to the
PDE network ϕ to evaluate its consistency with the PDE structure. Specifically, the L2 loss L2(f ′

n, ϕ(u′
n))

encourages the neural-operator prediction u′
n, together with its input f ′

n, to conform to the PDE constraints
embedded in ϕ. In other words, ϕ never explicitly generates input–output pairs for training the neural
operator.

3.3 Conditioned pseudo-PDE: incorporating parameters, sources, and IC/BC

We believe our framework can naturally extend to more general settings where operator learning involves
mapping from parameters and/or initial and/or boundary conditions to solutions.

Specifically, when f serves as a parameter function in the PDE, our ϕ-network can be trained to learn
equations of the form
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L(x, u(x), S1(u)(x), . . . , SQ(u)(x), f(x), S1(f)(x), . . . , SQ(f)(x)) = 0,

where Si denotes derivative operators (e.g., ut +∇(f(x) · u(x)) = uxx). The training loss can be constructed
analogously, ensuring that the ϕ-network’s predictions approach zero on valid training examples. However, to
prevent the network from collapsing to a trivial zero output, we additionally sample a large number of random
input functions and encourage ϕ to produce non-zero predictions when the PDE constraint is violated.

For cases involving mappings from initial conditions to solutions, the PDE can be written as

∂u

∂t
= g(u, t, x, S1(u), . . . , SQ(u)).

When trajectory data are available, ∂u
∂t can be estimated directly from data, and g can then be learned via

the ϕ-network. The mapping from f to u at a target time T can be represented as uT = f +
∫ T

0 g dt, where
numerical integration provides an approximate PDE representation.

When f represents Dirichlet boundary conditions, the PDE surrogate can be modeled as

u(x) = f(x) + α(x)ϕ(x, u, S1(u), . . . , SQ(u)),

where f enforces the boundary condition and α(x) is a composite distance function that vanishes on the
boundaries. Incorporating more general boundary conditions into the PDE surrogate learning, however,
remains an open research question.

4 Related Work

Operator learning is a rapidly evolving research field, with a variety of methods categorized as neural operators.
Alongside FNO, several notable approaches have been introduced, such as low-rank neural operator (LNO) (Li
et al., 2020b), multipole graph neural operator (MGNO) (Li et al., 2020a), multiwavelet-based NO (Gupta
et al., 2021), and convolutional NOs (CNO) (Raonic et al., 2023). Deep Operator Net (DON) (Lu et al.,
2021) is another popular approach, consisting of a branch network applied to input function values and a
trunk network applied to sampling locations. The final prediction is obtained through the dot product of
the outputs from the two networks. To enhance stability and efficiency, Lu et al. (2022) proposed replacing
the trunk network with POD (PCA) bases. Recently, transformer architectures have also been employed to
design neural operators, e.g., (Cao, 2021; Li et al., 2022; Hao et al., 2023).

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) mark a significant advancement in scientific
machine learning. PINNs integrate physical laws directly into the learning process, making them effective for
solving differential equations and understanding complex physical systems. This methodology is particularly
beneficial in scenarios where data is limited or expensive to obtain. Li et al. (2021) introduced a dual-resolution
approach that combines low-resolution empirical data with high-resolution PDE constraints. This method
achieves precise emulation of solution operators across various PDE classes. In parallel, physics-informed
DONet by Wang et al. (2021) incorporate regularization strategies enforcing physical law adherence into
the training of DONets. Zanardi et al. (2023) presented an approach using PINO for simulations in non-
equilibrium reacting flows. Lee et al. (2023) proposed opPINN, a framework combining physics-informed
neural networks with operator learning for solving the Fokker-Planck-Landau (FPL) equation. Rosofsky
et al. (2023) provided a review of applications of physics-informed neural operators. However, existing
methods demand one must know the physics laws beforehand, which might not be feasible in many practical
applications or complex systems. Our method offers a simple and effective framework, enabling the extraction
of implicit physics laws directly from data, even when the data is scarce. Empirically, these pseudo physics
laws have proven to be highly beneficial in enhancing the performance of operator learning, as demonstrated
in Section 5. Many methods have been developed specifically for discovering differential equations from data,
including SINDy (Brunton et al., 2016) and its variants (Schaeffer, 2017; Zhang & Ma, 2020; Lagergren et al.,
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J. Merrell et al.

Fig. 1. (a) Crack parameters with a being the crack depth and 2c being the surface crack length. (b) � is defined by the angle to the inscribed circle projected
to the ellipse. l is defined as the distance perpendicular to the tangent line from the point of interest to the nearest axis.(c) Model geometry plate height, h,
plate width, 2b, plate thickness, t, and far field stress �.

The function g is sinusoidal, having a value of 1 at � = ⇡_2. This methodical mechanics-based approach of breaking down the
problem into sub-functions that each account for a different aspect of the (boundary value problem) BVP geometry allowed Raju
and Newman to develop accurate equations that build upon the explainability from the analytical solution of the embedded ellipse.

2. Methods

2.1. Computational fracture mechanics

The SIFs used in this research were extracted from displacement fields computed by FEA with Abaqus using the fracture
mechanics code FRANC3D [16,17]. Abaqus served as the primary tool for creating the geometry, initial mesh discretization,
application of BCs, and solution. FRANC3D was employed for tasks related to modifying geometry and mesh for crack insertion
and SIF computation. Abaqus’ Python interface was used to generate the model geometries.

A global–local sub-modeling approach was employed within FRANC3D, which involved dividing the geometry into two
components: the global model, which encompassed the boundary conditions, and the local model, which contained the region
where the crack would be inserted. The local model is used for crack insertion. The crack front mesh is built from a crack front
template consisting of rings of hexagonal elements and an inner ring of quarter-point elements surrounding the crack front, enabling
very accurate SIF computations, Fig. 2. After crack insertion, the local model was re-meshed, preserving the nodal locations on the
cut faces (i.e., global–local boundary) for coherency with the global model. The FE fields for the complete model, with the inserted
crack, were subsequently solved using Abaqus.

Energy methods are more accurate than methods that rely only on crack tip opening displacement, such as displacement
correlation for SIF calculation. The J-integral, developed by Rice [18], is a commonly used method for SIF calculation. However, it
has a limitation: it cannot separate the SIFs into the three cracking modes, except for very simplified crack geometries, as noted by
Banks-Sillset al. [19]. The M-integral formulation developed by Yauet al. [20] allows for all three cracking models to be separated.
FRANC3D uses the M-integral for SIF calculation. Banks-Sillset al. verified the M-integral implementation in FRANC3D [21] by
comparing a through crack in a thick plate (a/W = 15) to analytical solutions of KI = �

˘
⇡a. They found that the value of

KI calculated with FRANC3D approached the analytical solution at the center of the thick plate. Additionally, they prescribe
displacements that would result in KI = 1 and calculate the required stresses using FEA. These stresses were then used to calculate
KI using the M-integral formulation. When using 2 rings the calculated KI for an isotropic material was 0.997 a difference of 0.3%.
The FE models in this work only use simple uniaxial mode I loading, resulting in the SIFs from M-integral being equivalent to
J-integral.

2.2. Genetic programming based symbolic regression

Symbolic Regression (SR) is a machine learning technique to discover free-form analytical equations from training data and
known physics [11,22]. Presently, the most effective optimization approach for SR in terms of balancing exploration and exploitation
is genetic programming (GP) [23]. The implementation of genetic programming-based symbolic regression (GPSR) employed in this
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Figure 3: Example of semi-elliptic surface crack on a plates (Merrell et al., 2024).

2020), PINN-SR (Chen et al., 2021), Bayesian spline learning (Sun et al., 2022), and kernel-based equation
discovery (Long et al., 2024). To ensure interpretability, these approaches typically assume a specific equation
form and perform sparse selection from a set of candidate operators. In contrast to these methods, which
prioritize interpretability, our approach focuses on enhancing the prediction accuracy of operator learning
under limited data. To this end, we utilize a black-box neural network to represent PDEs. While this offers
greater flexibility, it comes at the cost of reduced interpretability. Our method employs an alternating update
strategy to jointly refine the PDE representation and improve operator learning.

Our work is also related to the cycle consistence framework (Zhu et al., 2017) for image-to-image translation.
A critical difference is that cycle-consistence performs unpaired image-to-image translation, while our method
aims for accurate paired translation (mapping). In cycle-consistence, the translation is viewed successfully
as long as the translated images follow the target distribution. Hence, cycle-consistence has a much more
relaxed objective. Another key difference is that our method aims to improve the learning of a function-to-
function mapping with very limited data— that motivates us to learn a “pseudo” physics representation. The
cycle-consistence framework relies on adversarial training which typically requires a large amount of data to
obtain successful learning outcomes.

5 Experiments

We tested on five commonly used benchmark operator learning problems in the literature (Li et al., 2020b;
Lu et al., 2022), including Darcy Flow, Nonlinear Diffusion, Eikonal, Poisson and Advection. In addition,
we examined our method in an application of fatigue modeling. The task is to predict the stress intensity
factor (SIF) for semi-elliptical surface cracks on plates, given three geometric parameters that characterize the
cracks (Merrell et al., 2024); see Fig. 3. The SIF plays a critical role in modeling crack growth by quantifying
the stress state near the tip of a crack, and hence SIF computation and analysis are extremely important in
fatigue modeling and fracture mechanics (Anderson & Anderson, 2005). The SIF computation is expensive,
because it typically needs to run finite element method (FEM) or extended FEM with very fine meshes (Kuna,
2013). Due to the complex sequence of computational steps involved in SIF calculation, there is no holistic
PDE that directly models the relationship between the geometric features and the SIF function. Instead, SIF
computation typically relies on numerical methods and the extraction of local stress fields near the crack tip.
The details about all the datasets are given in Section A of the Appendix.

We evaluated our method based on two widely used NO models, FNO and DONet. Note that our method is
straightforward to implement on other NO models, such as attention based models.

For each operator learning benchmark, we simulated 100 examples for testing, and varied the number of
training examples from {5, 10, 20, 30}, except for Advection, we ran with {20, 30, 50, 80} training examples.
For SIF prediction, which is much more challenging, we experimented with training size from {400, 500, 600},
and employed 200 test examples. We repeated the evaluation for five times, each time we randomly sampled
a different training set. The input to the pseudo physics networks ϕ includes all the partial derivatives up to

8



Under review as submission to TMLR

the 2nd order. For the pseudo physics neural network ϕ — see equation 3 — we tuned the kernel size from
{(3, 3), (5, 5), (7, 7), (9, 9)}. The stride was set to 1 and padding was set to “same” to ensure the output
shape does not change. In the subsequent fully connected layers, we chose the number of layers from {3, 4, 5,
6}, and the layer width from {16, 32, 64}. We used GeLU activation. For FNO, we set the number of modes
to 12 and channels to 32 (in the lifted space). We varied the number of Fourier layers from {2, 3, 4}. For
DONet, in all the cases except Darcy Flow, the trunk net and branch net were constructed as fully connected
layers. We varied the number of layers from {2, 3, 4} and the layer width was chosen from {30, 40, 50, 60},
with ReLU activation. For the case of Darcy flow, we found that DONet with only fully connected layers
exhibited inferior performance. To address this, we introduced convolution layers into the branch net. We
selected the number of convolution layers from {3,5,7}, and employed batch normalization and leaky ReLU
after each convolution layer. To incorporate the learned pseudo physics representation into the training of
FNO or DONet, we randomly sampled 200 input functions to construct the second loss term in equation 5.
We set the maximum number of iterations to 10 and selected the weight λ from [10−1, 102]. All the models
were implemented by PyTorch (Paszke et al., 2019), and optimized with ADAM (Kingma & Ba, 2014). The
learning rate was selected from {10−4, 5 × 10−4, 10−3}. The number of epochs for training or fine-tuning
FNO, DONet and pseudo physics network ϕ was set to 500 to ensure convergence.

5.1 Predictive Performance

We reported the average relative L2 error and the standard deviation (with and without using pseudo physics
informed learning) in Table 1 and Table 2. The model trained with the pseudo physics network (see equation 5)
is denoted as PPI-FNO or PPI-DONet, short for Pseudo Physics Informed FNO/DONet. As shown, across
all the cases, with our pseudo physics informed approach, the prediction error of both FNO and DONet
undergoes a large reduction. For instance, across all training sizes in Darcy Flow and nonlinear diffusion,
PPI-FNO reduces the relative L2 error of the ordinary FNO by over 60% and 93%, respectively. In Darcy
Flow with training sizes 10 to 30, PPI-DONet reduces the error of the ordinary DONet by over 50%. In SIF
prediction, our method applied to both FNO and DONet reduced the error by over 30% for training sizes of
400 and 500. Even the minimum reduction across all cases achieves 14.12% (PPI-DONet over DONet on
Poisson with training size 5).

Together these results demonstrate the strong positive impact of the learned physics by our neural network
model ϕ specified in Section 3.1. Although it remains opaque and non-interpretable, it encapsulates valuable
knowledge that substantially enhances the performance of operator learning with limited data.

Next, we assessed the accuracy of the learned physics laws by examining the relative L2 error in predicting
the source functions f from ϕ (see equation 3). We tested on Darcy Flow, nonlinear diffusion, and Eikonal.
We compared a baseline method that removes the convolution layer of ϕ, leaving only the fully connected
layers, namely MLP (see Fig 1 bottom). The results are reported in Table 3. It can be observed that in nearly
every case, adding a convolution layer indeed significantly improves the accuracy of ϕ. This improvement
might be attributed to the convolution layer’s ability to integrate neighboring information and compensate for
the information loss introduced by finite difference in approximating the derivatives. We also experimented
with multiple convolution layers, but the improvement was found to be marginal.

In addition, we found the operator learning improvement is relatively robust to the accuracy of our physics
representation ϕ. For instance, on Darcy Flow with training size 5 and 10, the relative L2 error of ϕ network
is 0.2285 and 0.1392, which is significantly bigger than with training size 30 where the relative L2 error is
0.0688. Yet the error reduction upon FNO (see Table 1a) under all the three training sizes is above 60%. The
error reduction upon DONet is 40% for training size 5 and over 50% for training size 10 and 30. The results
imply that even roughly capturing the underlying physics (with ϕ) can substantially boost the operator
learning performance.

For a further assessment, we conducted a fine-grained evaluation by visualizing the predictions and point-wise
errors made by each method. In Fig. 4a and 4b, we showcased the predictions and point-wise errors using
PPI-DONet for Darcy Flow, PPI-FNO for nonlinear diffusion, respectively. Additional examples of predictions
and point-wise errors are provided in Fig. 5a, 5b, 6a, 6b, and 7.
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Table 1: Relative L2 error in five operator learning benchmarks, where “PPI” is short for “Pseudo-Physics Informed”.
The results were averaged from five runs.

(a) Darcy flow

Training size 5 10 20 30
FNO 0.4915 ± 0.0210 0.3870 ± 0.0118 0.2783 ± 0.0212 0.1645 ± 0.0071

PPI-FNO 0.1716 ± 0.0048 0.0956 ± 0.0084 0.0680 ± 0.0031 0.0642 ± 0.0010
Error Reduction 65.08% 75.29% 75.56% 60.97%

DONet 0.8678 ± 0.0089 0.6854 ± 0.0363 0.5841 ± 0.0279 0.5672 ± 0.0172
PPI-DONet 0.5214 ± 0.0543 0.3408 ± 0.0209 0.2775 ± 0.0224 0.2611 ± 0.0084

Error Reduction 39.91% 50.27% 52.49% 53.96%
(b) Nonlinear diffusion

Training size 5 10 20 30
FNO 0.2004 ± 0.0083 0.1242 ± 0.0046 0.0876 ± 0.0061 0.0551 ± 0.0021

PPI-FNO 0.0105 ± 0.0016 0.0066 ± 0.00023 0.0049 ± 0.00037 0.0038 ± 0.00039
Error Reduction 94.76% 94.68% 94.40% 93.10%

DONet 0.3010 ± 0.0119 0.2505 ± 0.0057 0.1726 ± 0.0076 0.1430 ± 0.0036
PPI-DONet 0.1478± 0.0126 0.1161 ± 0.0124 0.1032 ± 0.0059 0.0842 ± 0.0041

Error Reduction 50.89% 53.65% 40.20 % 41.11%
(c) Eikonal

Training size 5 10 20 30
FNO 0.2102 ± 0.0133 0.1562 ± 0.0098 0.0981 ± 0.0022 0.0843 ± 0.0020

PPI-FNO 0.0678 ± 0.0026 0.0582 ± 0.0043 0.0493 ± 0.0023 0.0459 ± 0.0010
Error Reduction 67.74% 62.74% 49.74% 45.55%

DONet 0.3374 ± 0.0944 0.1759 ± 0.0065 0.1191 ± 0.0047 0.1096 ± 0.0037
PPI-DONet 0.1302± 0.0127 0.0907 ± 0.0093 0.0714 ± 0.0011 0.0700 ± 0.0007

Error Reduction 61.41% 48.43% 40.05% 36.13%
(d) Poisson

Training size 5 10 20 30
FNO 0.2340 ± 0.0083 0.1390 ± 0.0007 0.0895 ± 0.0008 0.0698 ± 0.0014

PPI-FNO 0.1437 ± 0.0062 0.0771 ± 0.0018 0.0544 ± 0.0009 0.0458 ± 0.0003
Error Reduction 38.59% 44.53% 39.22% 34.38%

DONet 0.6142 ± 0.0046 0.5839 ± 0.0090 0.5320 ± 0.0028 0.5195 ± 0.0040
PPI-DONet 0.5275 ± 0.0037 0.5001 ± 0.0042 0.4450 ± 0.0010 0.4258 ± 0.0040

Error Reduction 14.12% 14.35% 16.35% 18.04%
(e) Advection

Training size 20 30 50 80
FNO 0.4872 ± 0.0097 0.4035 ± 0.0086 0.3019 ± 0.0085 0.2482 ± 0.0059

PPI-FNO 0.3693 ± 0.0099 0.3224 ± 0.0123 0.2236 ± 0.0075 0.1698 ± 0.0075
Error Reduction 24.20% 20.10% 25.94% 31.59%

DONet 0.5795 ± 0.0045 0.4810 ± 0.0092 0.3882 ± 0.0086 0.3164 ± 0.0072
PPI-DONet 0.3630 ± 0.0112 0.2897 ± 0.0097 0.2629 ± 0.0053 0.2120 ± 0.0065

Error Reduction 37.36% 39.77% 32.28% 33.00%

Table 2: SIF prediction error for plate surface cracks in fatigue modeling.

Training size 400 500 600
FNO 0.1776 ± 0.0150 0.1695 ± 0.0090 0.1122 ± 0.0094

PPI-FNO 0.1166 ± 0.0064 0.1151 ± 0.0093 0.0850±0.0060
Error Reduction 34.35% 32.09% 24.24%

DONet 0.5318 ± 0.0095 0.5155 ± 0.0200 0.4037 ± 0.0331
PPI-DONet 0.3490 ± 0.0034 0.3468 ± 0.0074 0.3299 ± 0.0066

Error Reduction 34.37% 32.73% 18.28%
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Table 3: Relative L2 error of using the learned back-box PDE network equation 3 to predict the input function f .

(a) Training size=10

Benchmark MLP Ours
Darcy Flow 0.1819±0.0026 0.1392± 0.0080

Nonlinear Diffusion 0.0660±0.0069 0.0233±0.0005
Eikonal 0.0144±0.0009 0.0108 ± 0.0006

(b) Training size=30

Benchmark MLP Ours
Darcy Flow 0.1413±0.0013 0.0688± 0.0032

Nonlinear Diffusion 0.0463±0.0022 0.0163±0.0002
Eikonal 0.0070±0.00005 0.0052 ± 0.0002

Table 4: Relative L2 error in five operator learning benchmarks with richer data, where “PPI” is short for “Pseudo-
Physics Informed”. The results were averaged from five runs.

(a) Darcy flow

Training size 600 1000
FNO 0.0093 ± 0.00015 0.0079 ± 0.00018

PPI-FNO 0.0087 ± 0.00040 0.0082 ± 0.00039
DONet 0.0540 ± 0.00064 0.0446 ± 0.00023

PPI-DONet 0.0415 ± 0.00077 0.0362 ± 0.00049
(b) Nonlinear diffusion

Training size 600 1000
FNO 0.0035 ± 0.0007 0.0028 ± 0.0004

PPI-FNO 0.0047 ± 0.00102 0.0042 ± 0.00096
DONet 0.0222 ± 0.00020 0.0187 ± 0.00023

PPI-DONet 0.0379± 0.00088 0.0368 ± 0.00093
(c) Eikonal

Training size 600 1000
FNO 0.0193 ± 0.00017 0.0148 ± 0.00009

PPI-FNO 0.0199 ± 0.00016 0.0160 ± 0.00009
DONet 0.0460 ± 0.00021 0.0411 ± 0.00038

PPI-DONet 0.0475± 0.00047 0.0436 ± 0.00034
(d) Poisson

Training size 600 1000
FNO 0.0045 ± 0.00006 0.0037 ± 0.00005

PPI-FNO 0.0046 ± 0.00005 0.0040 ± 0.00006
DONet 0.1786 ± 0.00398 0.1719 ± 0.00643

PPI-DONet 0.1409 ± 0.00292 0.1373 ± 0.00136
(e) Advection

Training size 600 1000
FNO 0.0943 ± 0.00177 0.0768 ± 0.00182

PPI-FNO 0.0819 ± 0.00092 0.0695 ± 0.00092
DONet 0.0913 ± 0.00074 0.0748 ± 0.00098

PPI-DONet 0.0732 ± 0.00143 0.0626 ± 0.00107

It is evident that without the assistance of the pseudo physics laws learned by our method, the ordinary DONet
and FNO frequently missed crucial local structures, sometimes even learning entirely incorrect structures.
For example, In Fig. 4a the first row, DONet missed one mode, while in the second and third row of Fig. 4a,
DONet failed to capture all the local modes. After incorporating the learned physics, DONet (now denoted
as PPI-DONet; see the third column) successfully captures all the local modes, including their shapes and
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Table 5: Relative L2 error in Poisson and Advection operator learning benchmarks, where “PPI” is short for
“Pseudo-Physics Informed” and “PI” is truly “Physics Informed”. The results were averaged from five runs.

(a) Poisson

Training size 5 10 20 30
FNO 0.2340 ± 0.0083 0.1390 ± 0.0007 0.0895 ± 0.0008 0.0698 ± 0.0014

PPI-FNO 0.1437 ± 0.0062 0.0771 ± 0.0018 0.0544 ± 0.0009 0.0458 ± 0.0003
PI-FNO 0.1433 ± 0.0104 0.0718 ± 0.0015 0.0504 ± 0.0009 0.0429 ± 0.0004

(b) Advection

Training size 20 30 50 80
FNO 0.4872 ± 0.0097 0.4035 ± 0.0086 0.3019 ± 0.0085 0.2482 ± 0.0059

PPI-FNO 0.3693 ± 0.0099 0.3224 ± 0.0123 0.2236 ± 0.0075 0.1698 ± 0.0075
PI-FNO 0.3628 ± 0.0082 0.3205 ± 0.0121 0.2222 ± 0.0074 0.1668 ± 0.0057

positions. Although not all the details are exactly recovered, the point-wise error is substantially reduced,
particularly in those high error regions of the ordinary DONet; see the fourth column of Fig. 4a. In another
instance, as shown in Fig. 4b, where the ordinary FNO (second column) captured the global shape of the
solution, but the mis-specification of many local details led to large point-wise errors across many regions
(fourth column). In contrast, PPI-FNO (third column) not only identified the structures within the solution
but also successfully recovered the details. As a result, the point-wise error (fifth column) was close to zero
everywhere. Additional instances can be found in Fig. 5a, the first three rows illustrate that ordinary FNO
(trained with 5, 10, and 20 examples, respectively) estimates an entirely incorrect structure of the solution,
indicating that the training data is insufficient for FNO to capture even the basic structure of the solution. In
contrast, after joint training with our physics network from the same sparse data, PPI-FNO accurately figured
out the solution structures and yielded a substantial reduction in point-wise error across nearly everywhere.
The point-wise error became uniformly close to zero. With 30 examples, the ordinary FNO was then able to
capture the global structure of the solution, but the details in the bottom left, bottom right, and top right
corners were incorrectly predicted. In comparison, PPI-FNO further recovered these details accurately.

Collectively, these results demonstrate that the pseudo physics extracted by our method not only substantially
boosts the overall prediction accuracy but also better recovers the local structures and details of the solution.

5.2 Ablation Studies

Alternative pipeline baseline: system-identification–then–neural-operator

In PDE learning, system identification methods targeting interpretability typically require stronger as-
sumptions and more prior knowledge than our black-box PDE learner. For instance, the widely used
SINDy framework (Brunton et al., 2016) assumes a linear structure and depends on a predefined operator
dictionary—whose choice is crucial and can easily cause model misspecification.

In contrast, our black-box PDE representation is more flexible and assumption-light: we only specify a set of
basic derivatives, while their nonlinear combinations (e.g., sin(u), uux, u2

xx, uxuy) are learned by a neural
network. This design inevitably sacrifices interpretability—there is no free lunch. Furthermore, our joint
training of the neural operator and the PDE representation ϕ,allows both components to mutually enhance
each other’s performance.

To evaluate the “system-identification–then–neural-operator” alternative, we ran SINDy to first identify an
approximate governing equation, used it to generate paired synthetic data, and then trained the FNO on the
combined real and synthetic samples. The operator dictionary matched the derivative set used in our method.
For comparison, we also ran our black-box ϕ-network to generate 200 synthetic examples. The resulting test
errors of the neural operator under varying training data sizes are reported in Table 6.

We can observe that applying SINDy before training FNO improves prediction accuracy only in the Darcy
flow task with 5, 10 and 20 training examples; in all other cases, performance actually deteriorates compared
to training FNO alone. This likely occurs because SINDy cannot precisely recover the true governing
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(a) PPI-DONet: Darcy Flow
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(b) PPI-FNO: nonlinear diffusion

Figure 4: Examples of the prediction and point-wise error of PPI-DONet and PPI-FNO on Darcy Flow and nonlinear
diffusion, respectively. From top to bottom, the models were trained with 5, 10, 20, 30 examples.

equations—its learned forms may be interpretable yet imperfect, producing synthetic samples that degrade
FNO performance.

In contrast, the "ϕ-network → FNO pipeline"—where our ϕ-network first generates synthetic data, followed
by FNO training—consistently improves results. Although the ϕ-network is a black-box model, it can more
accurately approximate the underlying PDE structure, leading to more useful synthetic samples. Nevertheless,
this sequential approach still underperforms our "jointly trained ϕ + FNO" model, demonstrating that mutual
optimization between the two components further enhances FNO’s predictive accuracy.

Table 6: The relative L2 error with using system-identification–then–neural-operator on Darcy flow and Nonlinear
Diffusion benchmarks.

(a) Predicting u via different architectures on Darcy flow.

Training size 5 10 20 30
SINDy → FNO 0.4624±0.0147 0.3382±0.0113 0.2725±0.0115 0.2222±0.0033

ϕ-network → FNO 0.4492±0.0196 0.2638±0.0132 0.1646±0.0168 0.1013±0.0023
FNO 0.4915±0.0210 0.3870±0.0118 0.2783±0.0212 0.1645±0.0071
Ours 0.1716±0.0048 0.0956±0.0084 0.0680±0.0031 0.0642±0.0010

(b) Predicting u via different architectures on Nonlinear Diffusion.

Training size 5 10 20 30
SINDy → FNO 0.2703±0.0048 0.2400±0.0059 0.1908±0.0123 0.1213±0.0034

ϕ-network → FNO 0.1603±0.0109 0.0943±0.0037 0.0540±0.0043 0.0361±0.0013
FNO 0.2004±0.0083 0.1242±0.0046 0.0876±0.0061 0.0551±0.0021
Ours 0.0105±0.0016 0.0066±0.00023 0.0049±0.00037 0.0038±0.00039
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(b) PPI-DONet: Eikonal

Figure 5: Examples of the prediction and point-wise error of PPI-FNO and PPI-DONet on Eikonal. From top to
bottom, the models were trained with 5, 10, 20, 30 examples.

Training with rich data. Although our method is designed to enhance operator learning with limited data,
we also evaluated its performance when the training data is abundant. Specifically, we increased the training
size of the five operator learning benchmarks to 600 and 1000 examples. The results, presented in Table 4,
show that the accuracy of the standard NO and our method, PPI-NO, becomes comparable. For Darcy
flow and Advection, our method achieves a slight improvement, whereas for Eikonal and Nonlinear diffusion,
it performs slightly worse. This may be because, with sufficiently rich data, the standard NO can already
utilize the data effectively to achieve good performance, leaving little room for the added value of the learned
physics to further improve the results. In such cases, the benefit of incorporating physics knowledge becomes
marginal. Furthermore, our alternating updating mechanism brings additional optimization workload, which
may introduce additional complexity to the learning process.

Comparison with NO training using ground-truth physics. Our work is motivated by scenarios where
the underlying physics is unknown. It is therefore insightful to compare our approach with training NO using
the ground-truth physics, as done in PINO. This comparison allows us to examine how our learned “pseudo”
physics differs from the true physics in facilitating operator learning. To this end, we tested PINO on the
Poisson and Advection cases, using finite difference approximations to compute the derivatives. We used
FNO as the baseline. The PDE residual was incorporated into the training loss. As shown in Table 5, while
PINO consistently achieves even better results, the performance of our method is close to PINO’s. This
demonstrates that our learned black-box representation, despite lacking interpretability, can provide a similar
benefit in improving operator learning performance.

Learning behavior. We examined the learning behavior of our method, which conducts an iterative,
alternatingly fine-tuning process. We employed one Darcy Flow, one nonlinear diffusion and one Eikonal
dataset, each with 30 examples. We show the test relative L2 error along with the iterations in Fig. 8. As we
can see, the predictive performance of our algorithm kept improving and tended to converge at last, affirming
the efficacy of our learning process.
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(b) PPI-DONet: Nonlinear Diffusion

Figure 6: Examples of the prediction and point-wise error of PPI-FNO and PPI-DONet on Darcy Flow and Nonlinear
diffusion, respectively. From top to bottom, the models were trained with 5, 10, 20, 30 examples.
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Figure 7: Examples of SIF prediction of FNO and PPI-FNO trained with 600 examples.

Ablation study on the weight λ. We examined the effect of the weight λ of our “pseudo physics”; see
equation 5. To this end, we employed Darcy Flow, nonlinear diffusion, and Eikonal, each with 30 examples
for training. We varied λ from [0.5, 102], and run PPI-FNO and PPI-DONet on these datasets. From Fig. 9,
we can see that across a wide range of λ values, PPI-FNO and PPI-DONet can consistently outperform the
standard FNO and DONet respectively by a large margin. However, the choice of λ does have a significant
influence on the operator learning performance, and the best choice is often in between.

Ablation study on pseudo physics network ϕ. To confirm the efficacy of our designed network ϕ in
facilitating operator learning, we considered alternative designs for ϕ: (1) using standard FNO to predict f
directly from u; no derivative information is included in the input; (2) removing the convolution layer in our
model, and just keeping the fully-connected layers, namely MLP; the derivative information is not included
in the input. With different designs of ϕ, we evaluated the PPI learning performance on the Darcy Flow
benchmark. The relative L2 errors in predicting f via ϕ and predicting u are reported in Table 7. It can be
seen that our design of ϕ consistently outperforms alternative architectures by a notable margin, showing the
effectiveness of learning a (black-box) PDE representation and improving the operator learning.
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Table 7: The relative L2 error with using different architectures of ϕ in pseudo-physics-informed (PPI) learning on
Darcy flow benchmark.

(a) Predicting f via ϕ with different architectures.

Training size 5 10 20 30
FNO 0.7229±0.0318 0.5759± 0.0126 0.4257± 0.0106 0.3160± 0.0037
MLP 0.7169±0.0160 0.6598± 0.0056 0.6464± 0.0029 0.6277± 0.0032
Ours 0.2285 ± 0.0147 0.1392 ± 0.0080 0.0898 ± 0.0046 0.0688 ± 0.0032

(b) Predicting u.

Training size 5 10 20 30
PPI-FNO with FNO as ϕ 0.5853±0.0153 0.3871± 0.0124 0.2613± 0.0190 0.1629± 0.0064
PPI-FNO with MLP as ϕ 0.7262±0.0920 0.5516± 0.0699 0.4568± 0.0857 0.3983± 0.1051

Standard FNO 0.4915 ± 0.0210 0.3870 ± 0.0118 0.2783 ± 0.0212 0.1645 ± 0.0071
Ours 0.1716 ± 0.0048 0.0956 ± 0.0084 0.0680 ± 0.0031 0.0642 ± 0.0010

Table 8: The relative L2 error of PPI learning by incorporating different orders of derivatives. During the comparison
with other operator learning methods, we used derivative orders up to 2 to run our method.

(a) Predicting f via ϕ.

Training size 5 10 20 30
order 0 0.7126±0.0131 0.5733±0.0208 0.4812±0.0399 0.3445±0.0182

order ≤ 1 0.2926±0.0118 0.2006±0.0047 0.1379±0.0051 0.1084±0.0053
order ≤ 2 0.2285±0.0147 0.1392±0.0080 0.0898±0.0046 0.0688±0.0032
order ≤ 3 0.2058±0.0192 0.1123±0.0039 0.0712±0.0021 0.0585±0.0030

(b) Predicting u.

Training size 5 10 20 30
order 0 0.6352±0.0673 0.4523±0.0621 0.3570±0.0658 0.2737±0.0643

order ≤ 1 0.3386±0.0259 0.2161±0.0083 0.1645±0.0114 0.1197±0.0132
order ≤ 2 0.1716±0.0048 0.0956±0.0084 0.0680±0.0031 0.0642±0.0010
order ≤ 3 0.2959±0.0381 0.1719±0.0213 0.1193±0.0158 0.0828±0.0054

Ablation study on the choice of derivatives. We further investigated the PPI learning performance
with respect to the choice of derivatives used in our pseudo physics network. Specifically, we tested PPI-FNO
on the Darcy-flow benchmark and varied the order of derivatives up to 0, 1, 2, and 3. The performance is
reported in Table 8. We can see that although the accuracy of ϕ with derivatives up to the third order is
slightly better than with derivatives up to the second order, the best operator learning performance was
still achieved using derivatives up to the second order (which was used in our evaluations). This might be
because higher-order derivative information can cause overfitting in the pseudo physics network ϕ to a certain
degree. Such higher-order information may not be critical to the actual mechanism of the physical system and
can therefore impede the improvement of operator learning performance. In addition, our framework is not
fundamentally limited to second-order derivatives. The use of up to second-order terms in our benchmarks
was motivated by the nature of those PDEs and validated by ablation results in Table 8, which showed this
was sufficient. However, the surrogate ϕ-network is highly flexible—for higher-order PDEs, the input set can
be easily extended to include third- or higher-order derivatives without modifying the core algorithm.

Ablation study on the out-of-distribution. We study OOD robustness at two levels: (i) the pseudo
physics network ϕ, and (ii) the end-to-end PPI-FNO (comparison to FNO under identical OOD splits and
training budgets). We construct OOD test sets by shifting the input distribution: for Advection we use
squared–exponential (SE) Gaussian kernels with test length scale 0.15 (training 0.25); for Nonlinear Diffusion
we use test length scale 0.10 (training 0.20).

Rather than interpreting internal weights, we validate the learned surrogate by its input–output behavior.
We compare ϕ’s predicted dynamic responses against ground truth under challenging initial conditions for
both in-distribution (ID) and OOD test fields, and we quantify alignment with physical principles. Across
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Figure 8: Predictive performance vs. alternatingly fine-tuning iterations.
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Figure 9: Predictive performance vs. weight λ.
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Table 9: The relative L2 error with using different distribution in ϕ network learning on Nonlinear Diffusion and
Advection benchmark.

(a) testing f via ϕ on different distribution of Nonlinear Diffusion benchmark.

Training size 5 10 20 30
ϕ-network test out of distribution 0.0092±0.0006 0.0071±0.0002 0.0060±0.0003 0.0047±0.0005

ϕ-network test in distribution 0.0047±0.0004 0.0034±0.0004 0.0028±0.0002 0.0023±0.0003
(b) testing f via ϕ on different distribution of Advection benchmark.

Training size 20 30 50 80
ϕ-network test out of distribution 0.0556±0.0077 0.0485±0.0072 0.0461±0.0057 0.0432±0.0059

ϕ-network test in distribution 0.0467±0.0065 0.0423±0.0049 0.0397±0.0033 0.0365±0.0043

Table 10: The relative L2 error with using different distribution in pseudo-physics-informed (PPI) learning on
Nonlinear Diffusion and Advection benchmark.

(a) Predict u on different distribution of Nonlinear Diffusion benchmark.

Training size 5 10 20 30
FNO 0.1669±0.0084 0.1009±0.0012 0.0837±0.0016 0.0626±0.0009
Ours 0.0229 ± 0.0088 0.0179 ± 0.0013 0.0135 ± 0.0010 0.0103 ± 0.0003

(b) Predict u on different distribution of Advection benchmark.

Training size 20 30 50 80
FNO 0.7339±0.0176 0.7086±0.0076 0.6838±0.0258 0.6484±0.0027
Ours 0.6175 ± 0.0354 0.6099 ± 0.0227 0.6231 ± 0.0206 0.6471 ± 0.0148

training sizes (Advection: N ∈ {20, 30, 50, 80}; Nonlinear Diffusion: N ∈ {5, 10, 20, 30}), ϕ remains closely
aligned with the reference solutions on ID data and shows robust performance under moderate OOD shifts
reported in Table 9 and heatmaps Figure 10 and Figure 11, supporting the claim that the surrogate captures
physically plausible behavior even as a black box.

We then evaluate PPI-FNO and FNO on the OOD splits with matched optimization settings. On Nonlinear
Diffusion, both methods experience only mild degradation relative to ID, while PPI-FNO consistently
outperforms FNO across N . On Advection, a larger length–scale shift induces substantial degradation for
all models; PPI-FNO remains competitive and typically stronger than FNO, but—as expected for operator
extrapolation—cannot fully recover accuracy far outside the training range. The performance is reported
in Table 10. These results indicate that coupling with ϕ improves sample efficiency and robustness under
moderate shifts, but does not eliminate the fundamental difficulty of strong-range extrapolation

Ablation study on the noise data. In this paper, we target the challenge of limited data availability—that
is, a small number of solution snapshots (N)—rather than low spatial resolution. The use of high-resolution
(128×128), noise-free data in our benchmarks was intentional: it provides a controlled and stringent testbed
to evaluate our method’s ability to learn a generalizable physical model from few examples. If the data were
coarse or noisy, it would be difficult to disentangle the effect of data quality from the method’s intrinsic
performance.

Table 11: Parameter counts for FNO and DONet with PPI variations across different problems. The training size is
30.

Parameter count FNO PPI-FNO (increase) DONet PPI-DONet (increase)
Darcy-flow 1,188,353 1,229,476 (+3.46%) 2,084,704 2,125,827 (+1.97%)

Nonlinear-diffusion 1,188,353 1,197,220 (+0.75%) 824,501 833,368 (+1.08%)
Eikonal 1,188,353 1,197,220 (+0.75%) 824,501 833,368 (+1.08%)
Poisson 1,188,353 1,197,220 (+0.75%) 824,501 833,368 (+1.08%)

Advection 1,188,353 1,197,220 (+0.75%) 210,101 218,968 (+4.22%)
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Table 12: running time cost of FNO and PPI-FNO on darcy-flow and Poisson benchmark.

(a) running time cost of standard FNO

Training size 5 10 20 30
darcy-flow 14 14 14 15

poisson 13 13 14 14
(b) running time cost of PPI-FNO

Training size 5 10 20 30
darcy-flow 984 1001 1036 1064

poisson 869 881 908 935

Figure 10: Advection heatmap (ID / OOD).

Moreover, high-fidelity data is typically expensive and thus limited in quantity, whereas low-fidelity data is
easy to acquire and rarely scarce. Hence, our setting—with few high-fidelity samples—accurately reflects the
intended use case of the proposed framework.

we still evaluated the robustness of our framework to data sparsity and noise using the nonlinear diffusion
benchmark. Each training input–output pair, originally sampled on a 128× 128 noise-free grid, was randomly
subsampled to 400 function values, to which we added 5% Gaussian noise. These noisy samples were then
denoised and interpolated back to the 128×128 grid using Gaussian process interpolation (since FNO requires
gridded data). We subsequently trained our PPI-NO model under this setting.

As shown in the Table 13, our method consistently outperforms FNO across all training sizes, even in the
presence of noise, though with the expected performance degradation compared to the clean-data experiments.

Memory and Time Cost. Our PPI-NO is more costly than standard NO since we need to train an
additional “pseudo” physics network ϕ along with the NO model. However, the network ϕ is small as
compared to the NO component — ϕ is simply a pixel-wise MLP coupled with one convolution filter, resulting
in a marginal increase in memory cost. Table 11 shows the parameter count of FNO, DONet and their
pseudo-physics-informed versions. On average, PPI-FNO increases the number of parameters over FNO by
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Figure 11: Nonlinear diffusion heatmap (ID / OOD).

Table 13: The relative L2 error training with noise data in pseudo-physics-informed (PPI) learning on Nonlinear
Diffusion benchmark.

Training size 5 10 20 30
FNO 0.2037±0.0114 0.1217±0.0056 0.0891±0.0060 0.0606±0.0020
Ours 0.1465±0.0062 0.0848±0.0041 0.0593±0.0023 0.0504±0.0026

1.29% while PPI-DONet over DONet by 1.89%. For training time, our alternating optimization between the
solution operator and the pseudo-physics surrogate is by design: it lets the two components co-evolve. This
schedule introduces extra wall-clock relative to single-network baselines, with growth that is approximately
linear in the number of alternations (and the per-iteration epoch budget). In return, we observe consistent
accuracy gains in the low-data regime. To make costs transparent, we report end-to-end wall-clock times on
the Darcy Flow and Poisson benchmarks in Table 12; all measurements were taken on a Linux workstation
with an NVIDIA GeForce RTX 4090 (24 GB).

6 Conclusion

We have presented a Pseudo Physics-Informed Neural Operator (PPI-NO) learning framework. PPI-NO is
based on our observation that a PDE system is often characterized by a local combination of the solution
and its derivatives. This property makes it feasible to learn an effective representation of the PDE system,
even with limited data. While the physics delineated by PPI-NO might not precisely reflect true physical
phenomena, our findings reveal that this method significantly enhances the efficiency of operator learning
with limited data quantity.

However, our current method cannot learn PDE representations for which the input function f is the initial
condition. In such cases, the mapping from the solution function to the initial condition requires a reversed
integration over time, hence we cannot decouple the derivatives. To address this problem, we plan to explicitly
model the temporal dependencies in the PDE representation, such as via the neural ODE design (Chen et al.,
2018).
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7 Limitations

We acknowledge that our Pseudo Physics-Informed Neural Operator (PPI-NO) learning framework has several
limitations.

First, our empirical validation concentrates on standard operator-learning benchmarks and does not cover
highly nonlinear, multi-scale PDEs (e.g., Navier–Stokes, Euler). These regimes exhibit strong stiffness,
intermittent structures, and scale separation that can destabilize training, alter inductive biases, and
invalidate assumptions implicit in our datasets. As a result, the reported gains should not be interpreted as
evidence of effectiveness in these harder settings. The methodology, loss balancing, and data priors used here
may interact unfavorably with multi-scale dynamics, making generalization uncertain even when numerical
resolution is increased.

Second, because the surrogate physics network ϕ is trained from limited examples, it can overfit spurious
regularities in the training distribution and internalize artifacts of discretization or preprocessing. Such
overfitting may not be apparent from aggregate errors yet can surface as unstable extrapolation, biased fluxes,
or residual patterns that mimic physics without reflecting underlying conservation or constitutive structure.
The risk grows when the training inputs have narrow support (e.g., restricted length scales or amplitudes),
when measurement noise is structured, or when the training loss inadvertently rewards easy-to-fit nonphysical
correlations. In these cases, ϕ can act as a powerful but misleading prior on the operator learner, tightening
training loss while harming reliability, like we showed in the ablation study on the choice of derivatives.

Third, the framework validates ϕ primarily by its input–output behavior, not by interpretability of its internal
form. Consequently, apparent agreement with test data can be driven by correlations specific to the sampling
protocol, interpolation scheme, or solver discretization, rather than by genuine physical invariants. This
ambiguity is amplified under PDE range shift: improvements in in-distribution metrics do not guarantee
preservation of causal structure when inputs depart from the training manifold. Without direct identifiability
of operators or invariants, it is difficult to determine when ϕ captures a true governing relation versus a
dataset-dependent proxy. Hence, conclusions about “learned physics” must be treated cautiously, especially
when the ground-truth PDE is unknown.

Fourth, grid-based function values are strongly correlated, so the effective sample size for training the surrogate
physics network is much smaller than the raw number of grid points. Although our design uses convolutional
layers to aggregate local neighborhoods—thereby exploiting spatial correlation and improving representation
quality relative to a pointwise MLP, this aggregation does not create independent evidence. In practice, it
can lead to underestimated uncertainty and overconfident losses when many nearby pixels convey redundant
information. Moreover, the degree and structure of correlation are resolution-dependent: a fixed receptive
field in pixels corresponds to different physical extents across meshes, and discretization choices (stencil
width, padding, interpolation) imprint resolution-specific artifacts. Under resolution shifts—or for PDEs with
longer correlation lengths, anisotropy, or nonlocal couplings—these effects can induce systematic bias in the
learned surrogate, degrade cross-resolution generalization, and blur the distinction between genuine physical
dependencies and grid-induced regularities. Consequently, improvements observed at a single resolution
should not be interpreted as evidence of resolution invariance.

Finally, ϕ trades interpretability for predictive flexibility. This black-box character constrains the framework’s
role in scientific workflows that require explicit, human-readable laws, term-level attribution, or formal
guarantees. Even when predictions are accurate, the absence of transparent structure impedes scrutiny,
reproducibility across laboratories with different preprocessing pipelines, and integration with analytical
theory or established numerical methods. Moreover, the coupling between ϕ and the operator learner can
obscure the source of errors: performance degradations may arise from ϕ, the operator model, or their
interaction, complicating diagnosis. As a result, the method is better viewed as a predictive surrogate within
well-specified data regimes than as a tool for definitive law discovery.
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Appendix

A Experimental Details

A.1 Darcy Flow

We considered a steady-state 2D Darcy Flow equation (Li et al., 2020b),

−∇ · (a(x)∇u(x)) = f(x) x ∈ (0, 1)2,

u(x) = 0 x ∈ ∂(0, 1)2, (6)

where u(x) is the velocity of the flow, a(x) characterizes the conductivity of the media, and f(x) is the source
function that can represent flow sources or sinks within the domain. In the experiment, our goal is to predict
the solution u given the external source f . To this end, we fixed the conductivity a, which is generated by
first sampling a Gauss random field α in the domain and then applying a thresholding rule: a(x) = 4 if
α(x) < 0, otherwise a(x) = 12. We then used another Gauss random field to generate samples of f . We
followed (Li et al., 2020b) to solve the PDE using a second-order finite difference solver and collected the
source and solution at a 128× 128 grid.

A.2 Nonlinear Diffusion PDE

We next considered a nonlinear diffusion PDE,

∂tu(x, t) = 10−2∂xxu(x, t) + 10−2u2(x, t) + f(x, t),
u(−1, t) = u(1, t) = 0, u(x, 0) = 0, (7)

where (x, t) ∈ [−1, 1]× [0, 1]. Our objective is to predict the solution function u given the source function f .
We used the solver provided in (Lu et al., 2022), and discretized both the input and output functions at a
128× 128 grid. The source f was sampled from a Gaussian process with an isotropic square exponential (SE)
kernel for which the length scale was set to 0.2.

A.3 Eikonal Equation

Third, we employed the Eikonal equation, widely used in geometric optics and wave modeling. It describes
given a wave source, the propagation of wavefront across the given media where the wave speed can vary at
different locations. The equation is as follows,

|∇u(x)| = 1
f(x) , x ∈ [0, 256]× [0, 256], (8)

where u(x) is the travel time of the wavefront from the source to location x, | · | denotes the Euclidean norm,
and f(x) > 0 is the speed of the wave at x.

In the experiment, we set the wave source at (0, 10). The goal is to predict the travel time u given the
heterogeneous wave speed f . We sampled an instance of f using the expression:

f(x) = max(g(x), 0) + 1.0,

where g(·) is sampled from a Gaussian process using the isotropic SE kernel with length-scale 0.1. We employed
the eikonalfm library (https://github.com/kevinganster/eikonalfm/tree/master) that implements the
Fast Marching method Sethian (1999) to compute the solution u.

A.4 Poisson Equation

Fourth, we considered a 2D Poisson Equation,

−∆u = f, in Ω = [0, 1]2, u|∂D = 0. (9)
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where ∆ is the Laplace operator. The solution is designed to take the form, u(x1, x2) = 1
πK2

∑K
i=1

∑K
j=1 aij(i2+

j2)r sin(iπx1) cos(jπx2), and f(x1, x2) is correspondingly computed via the equation. To generate the dataset,
we set K = 5 and r = 0.5, and independently sampled each element aij from a uniform distribution on [0, 1].

A.5 Advection Equation

Fifth, we considered a wave advection equation,

∂u

∂t
+ ∂u

∂x
= f, x ∈ [0, 1], t ∈ [0, 1]. (10)

The solution is represented by a kernel regressor, u(x) =
∑M

j=1 wjk(x, zj), and the source f is computed via
the equation. To collect instances of (f, u), we used the square exponential (SE) kernel with length-scale
0.25. We randomly sampled the locations zj from the domain and the weights wj from a standard normal
distribution.

A.6 Fatigue Modeling

We considered predicting the SIF values along semi-elliptic surface cracks on plates, as shown in Fig 3. The
SIF value can be viewed as a function of the angle ϕ ∈ [0, π], which decides the location of each point on
the crack surface. The geometry parameters that characterize the crack shape and position were used as
the input, including a/c, a/t and c/b. In the operator learning framework, the input can be viewed as a
function with three constant outputs. The dataset was produced via a high-fidelity FE model under Mode I
tension (Merrell et al., 2024). Each data instance includes 128 samples of the SIF values drawn uniformly
across the range of ϕ.
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