
HyILR: Hyperbolic Instance-Specific Local Relationships for Hierarchical
Text Classification

Anonymous ACL submission

Abstract
Recent approaches to Hierarchical Text Clas-001
sification (HTC) rely on capturing the global002
label hierarchy, which contains static and often003
redundant relationships. Instead, the hierarchi-004
cal relationships within the instance-specific005
set of positive labels are more important, as006
they focus on the relevant parts of the hierar-007
chy. These localized relationships can be mod-008
eled as a semantic alignment between the text009
and its positive labels within the embedding010
space. However, without explicitly encoding011
the global hierarchy, achieving this alignment012
directly in Euclidean space is challenging, as013
its flat geometry does not naturally support hier-014
archical relationships. To address this, we pro-015
pose Hyperbolic Instance-Specific Local Re-016
lationships (HyILR), which models instance-017
specific relationships using the Lorentz model018
of hyperbolic space. Text and label features are019
projected into hyperbolic space, where a con-020
trastive loss aligns text with its labels. This loss021
is guided by a hierarchy-aware negative sam-022
pling strategy, ensuring the selection of struc-023
turally and semantically relevant negatives. By024
leveraging hyperbolic geometry for this align-025
ment, our approach inherently captures hier-026
archical relationships and eliminates the need027
for global hierarchy encoding. Experimental028
results on four benchmark datasets validate the029
superior performance of HyILR over baseline030
methods.1031

1 Introduction032

Hierarchical Text Classification (HTC) is a sub-task033

of multi-label classification where text is assigned034

to one or more labels, organized hierarchically to035

reflect relationships among them. HTC is particu-036

larly useful in domains where labels are naturally037

structured, such as news categorization (Sandhaus,038

2008), product categorization (Shen et al., 2021),039

and medical diagnosis (Yan et al., 2023).040

1Code is available at:https://anonymous.4open.
science/r/HyILR-3042/

A common approach in dual-encoder-based 041

HTC methods is to model the global label hier- 042

archy to learn label representations (Zhou et al., 043

2020; Chen et al., 2021; Wang et al., 2022a; Zhu 044

et al., 2023, 2024). While the global hierarchy 045

provides important structural information, model- 046

ing this static structure introduces redundancy and 047

complexity into the classification framework. In 048

contrast, the hierarchical structure associated with 049

the instance-specific positive labels represents dy- 050

namic and localized relationships, capturing the 051

dependencies between labels that are relevant to 052

each instance. Modeling these local relationships 053

enables more precise and context-aware classifica- 054

tion by focusing on labels relevant to the instance 055

and avoiding irrelevant parts of the global hierar- 056

chy. 057

In this paper, we address this limitation by mod- 058

eling instance-specific local relationships as a se- 059

mantic alignment task. By bringing the text closer 060

to its positive labels in the embedding space, the 061

alignment ensures the capture of these relation- 062

ships. However, without explicit global hierarchy 063

encoding, achieving alignment in Euclidean space 064

is challenging because its flat, zero-curvature ge- 065

ometry lacks the capacity to naturally represent 066

hierarchical structures. Hyperbolic space, charac- 067

terized by a negative curvature, can naturally rep- 068

resent hierarchical structures due to its geometry, 069

which supports the exponential growth of distances 070

and volumes. The inherent hierarchical nature of 071

hyperbolic space embeds the labels hierarchically, 072

and semantic alignment in this space ensures the 073

capture of relationships by aligning the labels ac- 074

cording to the instance-specific local hierarchy. We 075

use the Lorentz model for hyperbolic space, as it 076

ensures numerical stability and reduces geometric 077

distortions compared to other hyperbolic models. 078

(Nickel and Kiela, 2018; Chen et al., 2022). 079

We introduce Hyperbolic Instance-Specific Lo- 080

cal Relationships (HyILR), a method designed 081
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to model instance-specific relationships using the082

Lorentz model of hyperbolic space. During train-083

ing, both text and label features are projected into084

hyperbolic space, where a contrastive loss function085

aligns the text with its associated positive labels.086

The loss incorporates a hierarchy-aware negative087

sampling strategy, that uses structural information088

from the global hierarchy. For each positive la-089

bel, the closest negative labels are selected from090

both its descendants and siblings within the hier-091

archy, as these represent different aspects of the092

same category. This ensures the sampled negatives093

are both structurally and semantically relevant, en-094

abling the contrastive loss to effectively capture095

instance-specific relationships based on the local096

hierarchy. Our approach improves the represen-097

tation of all features. Predictions are then made098

using the text-label-aware composite features in099

Euclidean space. The contributions of our work100

are:101

• We propose modeling instance-specific local102

relationships in hyperbolic space, leveraging103

its geometric properties to capture hierarchi-104

cal relationships. Unlike prior dual-encoder105

HTC methods, our approach does not require106

explicit encoding of the global label hierarchy,107

thereby simplifying the overall architecture.108

• We introduce HyILR, which models instance-109

specific local relationships as a semantic align-110

ment task, achieved through contrastive learn-111

ing with hierarchy-aware negative sampling112

in the Lorentz model of hyperbolic space. To113

the best of our knowledge, no existing work114

in HTC has utilized Lorentzian geometry for115

this purpose.116

• Experimental results across four distinct117

datasets demonstrate the superiority of HyILR118

in improving classification performance.119

2 Related Work120

HTC approaches are divided into local and global121

methods. Local methods train separate classifiers122

for different sections of the hierarchy but rely123

on localized context, often leading to inconsisten-124

cies (Kowsari et al., 2017; Wehrmann et al., 2018;125

Shimura et al., 2018). In contrast, global methods126

use a single classifier that incorporates the entire127

label hierarchy, making them more efficient and128

the focus of recent research. Several methods that129

constrain the classifier using hierarchical path in- 130

formation, such as reinforcement learning (Mao 131

et al., 2019), meta-learning (Wu et al., 2019), and 132

capsule networks (Aly et al., 2019), have been ex- 133

plored for global HTC. (Zhou et al., 2020) proposed 134

a graph encoder to explicitly model the entire la- 135

bel hierarchy and introduced two variants for text 136

and label feature interaction. Building on this, sev- 137

eral methods based on dual-encoder frameworks 138

have been proposed. (Deng et al., 2021) integrates 139

an information maximization module to link text 140

samples with target labels while reducing the in- 141

fluence of irrelevant labels. (Chen et al., 2021) 142

projects text and labels into a shared embedding 143

space, using a semantic matching function to re- 144

late text to its corresponding labels. (Wang et al., 145

2022a) employs contrastive learning to embed la- 146

bel information into the text encoder. (Wang et al., 147

2022b) injects hierarchical label knowledge into 148

soft prompts and reformulates HTC as a masked 149

language modeling task. (Zhu et al., 2023) builds a 150

coding tree by minimizing structural entropy and 151

uses a lightweight graph encoder for hierarchy- 152

aware feature extraction. (Zhu et al., 2024) intro- 153

duces an information-lossless framework for gener- 154

ating contrastive samples while preserving seman- 155

tic and syntactic information from the input. Dis- 156

tinct from dual-encoder approaches, some methods 157

adopt a generative framework, formulating HTC as 158

a label sequence generation task based on level and 159

path dependencies (Huang et al., 2022; Yu et al., 160

2022). 161

The application of hyperbolic methods for HTC 162

remains underexplored. Existing approaches (Chen 163

et al., 2020; Chatterjee et al., 2021) that use hyper- 164

bolic space rely on the Poincaré ball model for pro- 165

jection, which distorts distances near the boundary 166

and can introduce numerical instabilities (Nickel 167

and Kiela, 2018; Desai et al., 2023). In contrast, our 168

method utilizes the Lorentz model and incorporates 169

dynamic instance-specific label information. 170

3 Preliminaries 171

A Riemannian manifold (M, g) is a smooth man- 172

ifold M equipped with a Riemannian metric g, 173

which assigns an inner product gp to the tangent 174

space TpM at each point p ∈ M in a differentiable 175

manner. The tangent space TpM , consisting of all 176

tangent vectors at p, is a vector space that provides 177

a linear approximation of M near p; the metric gp 178

equips TpM with an inner product structure, mak- 179
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ing it locally resemble a Euclidean space.180

Hyperbolic space, a type of Riemannian mani-181

fold with constant negative curvature, differs fun-182

damentally from Euclidean space, which has zero183

curvature. Due to their incompatible curvatures184

an n-dimensional hyperbolic space cannot be per-185

fectly represented in Euclidean space Rn without186

distorting angles, distances, or both (e.g., Poincaré187

model, Klein model). In our study, we use the188

Lorentz model, which represents hyperbolic space189

as a submanifold in Rn+1.190

3.1 Lorentz Model191

We represent the n-dimensional hyperbolic space192

Hn using the Lorentz model, which embeds the hy-193

perbolic space as a sub-manifold within the higher-194

dimensional ambient space Rn+1. Geometrically,195

this corresponds to the upper sheet of a two-sheeted196

hyperboloid as shown in Figure 1. Formally, any197

vector u ∈ Rn+1 has the form u = [us, ut], where198

us ∈ Rn represents the space-like component, and199

ut ∈ R is the time-like component. This termi-200

nology of space and time-like components origi-201

nates from special relativity theory, where the hy-202

perboloid’s axis of symmetry is associated with203

the time-like component, while all other axes are204

referred to as space components (Nickel and Kiela,205

2017). The Lorentzian inner product ⟨·, ·⟩L for two206

vectors u,v ∈ Rn+1 is given as:207

⟨u,v⟩L = ⟨us,vs⟩ − utvt (1)208

where ⟨us,vs⟩ is the standard Euclidean dot209

product and the Lorentzian norm is given as:210

∥u∥L =
√

⟨u,u⟩L.211

The Lorentz model Hn, characterized by curva-212

ture −k (where k > 0), is defined as the set:213

Hn = {u ∈ Rn+1 : ⟨u,u⟩L = −1/k} (2)214

where all vectors in Hn satisfy the constraint :215

ut =
√

1/k + ∥us∥2 (3)216

Geodesics. In the Lorentz model, geodesics217

are curves formed by the intersection of the hy-218

perboloid with hyperplanes that pass through the219

origin of the ambient space Rn+1. These curves220

represent the shortest paths between points in hy-221

perbolic space, analogous to straight lines in Eu-222

clidean geometry, but they appear as hyperbolas223

when viewed in the ambient space. The geodesic224

distance in the Lorentz space is given by:225

d(u,v) =
√

1/k cosh−1 (−k⟨u,v⟩L) (4)226

Tangent Space. The tangent space at a point 227

p ∈ Hn is the set of all vectors orthogonal to p 228

under the Lorentzian inner product: 229

TpHn = {q ∈ Rn+1 : ⟨p,q⟩L = 0} (5) 230

Given a vector z ∈ Rn+1, it can be projected 231

onto the tangent space TpHn using the projection 232

formula: 233

q = projp(z) = z+ k p ⟨p, z⟩L (6) 234

Exponential Map. The exponential map 235

projects a vector q ∈ TpHn from the tangent space 236

at point p ∈ Hn back onto the hyperboloid Hn: 237

x = expp(q) = cosh(
√
k∥q∥L)p+

sinh(
√
k∥q∥L)√

k∥q∥L
q (7) 238

In this study, we consider these maps by fixing 239

p at the origin of the hyperboloid, O = [0,
√
1/k], 240

where all spatial components are zero and the time 241

component is
√
1/k. 242

4 Methodology 243

In this section, we explain the components of Hy- 244

ILR, including text-label-aware feature generation, 245

projection into hyperbolic space, and the loss func- 246

tions used. Figure 1 illustrates the overall architec- 247

ture of our model. 248

4.1 Text-Label-Aware Features 249

We use BERT for encoding the text, as it has been 250

widely used in previous HTC studies (Wang et al., 251

2022a,b; Zhu et al., 2023, 2024). For an input docu- 252

ment D, the encoded text representation is given as: 253

X = fbert(D), where X ∈ Rs×h, with s represent- 254

ing the token sequence length and h denoting the 255

feature size. To compute text-label-aware features, 256

we apply a label-text attention mechanism using a 257

learnable parameter matrix WL ∈ Rh×c, where c 258

is the number of labels: 259

A = XWL; F = softmax(AT )X (8) 260

This process helps the model capture the seman- 261

tic relationships between the text and labels, al- 262

lowing it to focus on the most relevant tokens for 263

each label. The resulting feature matrix F ∈ Rc×h 264

is vectorized to obtain F ′ ∈ Rch×1 and fed into a 265

classifier. Finally, we obtain the logit vector ℓ ∈ Rc 266

as: 267

F ′ = vectorize(F ); ℓ = WT
c F ′ + b (9) 268
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Figure 1: (a) Illustration of hyperbolic space H2 in Euclidean space R3 (b) For the focused positive label (blue dot),
one negative label each is selected from its descendants and siblings based on their distance to the text. This is
repeated for all positive labels to form the complete negative label set (c) Architecture of HyILR: The forward pass
computes text-label-aware features, which are passed through a classifier to generate predictions. During training,
features are projected into hyperbolic space, where contrastive loss captures instance-specific relationships.

where Wc ∈ Rch×c and b ∈ Rc represent the269

weights and bias of the classifier. The predicted270

labels are obtained by applying the sigmoid(.) on271

the logit vector as: ŷ = sigmoid(ℓ)272

4.2 Projection onto the Lorentz Hyperboloid273

Let eenc ∈ Rh be the encoded text/label vector.274

To project it onto the Lorentz hyperboloid Hh em-275

bedded in Rh+1, we transform it into e = [es, et],276

where the space component es = eenc and the277

time-like component et = 0. Thus, the extended278

vector e ∈ Rh+1 is given as e = [eenc, 0]. The279

vector e is orthogonal to the hyperboloid origin280

O = [0,
√
1/k] under the Lorentzian inner prod-281

uct, i.e., ⟨e,O⟩L = 0, and thus lies in the tangent282

space at O. Since the time-like component is ini-283

tially set to zero, the exponential map can be used284

to parameterize only the space component es, while285

the time-like component can be recomputed later to286

satisfy the hyperboloid constraint as given in Eqn287

3. Thus, the exponential map can be derived from288

the generalized formulation in Eqn. 7 as:289

exp0(es) = cosh(
√
k∥e∥L)0+

sinh(
√
k∥e∥L)√

k∥e∥L
es (10)290

where the first term is zero. Additionally, the291

Lorentzian norm ∥e∥2L = ⟨e, e⟩L simplifies to292

the Euclidean norm of the space components, i.e.,293

∥e∥2L = ⟨e, e⟩L = ⟨es, es⟩ − 0 = ∥es∥2. The final294

form for exponential map after all substitutions is:295

ϕ(es) = exp0(es) =
sinh(

√
k∥es∥)√

k∥es∥
es (11)296

This approach efficiently embeds Euclidean vec- 297

tors into hyperbolic space while maintaining the 298

geometric properties of the Lorentz model. 299

4.3 Loss Functions 300

4.3.1 Contrastive Loss 301

We apply contrastive loss in hyperbolic space to 302

align labels based on instance-specific local rela- 303

tionships. To achieve this, we utilize structural in- 304

formation from the global label hierarchy tree H in 305

our negative label selection, ensuring that negative 306

labels are not just arbitrarily close in embedding 307

space but also structurally meaningful. Specifically, 308

we select negative labels from both descendants 309

and siblings of each positive label. Negative de- 310

scendants, which represent more fine-grained sub- 311

categories, prevent the assignment of overly spe- 312

cific labels when the context does not warrant them. 313

Negative siblings, which belong to the same hier- 314

archical level but denote distinct categories, help 315

differentiate between closely related but concep- 316

tually distinct labels. The following outlines the 317

overall steps in our contrastive loss formulation. 318

Exponential Map Transformation. For a batch 319

of m samples, let T ∈ Rm×s×h denote the con- 320

textualized token embeddings obtained from the 321

BERT encoder. The embedding of the [CLS] to- 322

ken, T[CLS] ∈ Rm×h, aggregates the sequence’s 323

information and serves as the text feature. Label 324

features are derived from the transpose of learnable 325

parameter matrix as W⊤
L ∈ Rc×h. The text and 326

label features are then projected into hyperbolic 327
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space using the exponential map (Eqn. 11), as:328

TH = ϕ(αtT[CLS]); LH = ϕ(αlW
⊤
L ) (12)329

where αt and αl are learnable scalars used to scale330

the text and label features, respectively, ensuring331

unit norm before projection.332

Hierarchy-aware negative sampling. Given a333

sample i with a positive label set P (i), for each334

positive label p ∈ P (i), we select the negative de-335

scendant label with the smallest geodesic distance336

to the text as:337

N1 = { argmin
j∈Desc(p,H)

d(THi , LHj ) | p ∈ P (i)} (13)338

where d(., .) represents the geodesic distance as339

defined in Eqn. 4, and THi and LHj denote the340

hyperbolic embeddings of the text i and label j,341

respectively. Desc(p,H) denotes the negative de-342

scendant set, which consists of all nodes in the343

subtree rooted at p within the global hierarchy tree344

H that are not part of the positive label set. Simi-345

larly, we select the negative sibling label with the346

smallest geodesic distance to the text as:347

N2 = { argmin
j∈Sib(p,H)

d(THi , LHj ) | j /∈ N1, p ∈ P (i)} (14)348

where the negative sibling set, denoted as349

Sib(p,H), consists of all nodes at the same level as350

p, excluding positive labels. Due to specific hierar-351

chical constraints, a negative label may be selected352

multiple times—for example, when all but one la-353

bel at a level are positive, leading all positive labels354

to choose the same remaining label as their nega-355

tive sibling. We ensure that only unique negative356

labels are selected. The overall negative label set357

for sample i is obtained as: N(i) = N1 ∪N2. For358

each positive label, one negative label is selected359

from each of the sets Desc(p,H) and Sib(p,H),360

provided they are non-empty; no negative label is361

chosen when both sets are empty. However, as362

the contrastive loss utilizes the complete negative363

set N(i) across all positive labels, the absence of364

negatives for some labels does not hinder learning.365

Loss Formulation. For a sample i, a positive366

pair (THi , LHp) consists of its hyperbolic embed-367

ding and that of its positive label p. Similarly, a368

negative pair (THi , LHn) consists of its hyperbolic369

embedding and that of a negative label n ∈ N(i).370

The contrastive loss is defined as:371

LossCL =
1

m

m∑
i=1

1

|P (i)|
∑

p∈P (i)

− log

 e
−d(THi

,LHp
)/τ∑

s∈S(i) e
−d(THi

,LHs
)/τ


(15)372

where |P (i)| denotes the size of P (i), and S(i) =373

N(i) ∪ P (i). τ is the temperature hyperparameter.374

Name Levels Label Count Train Val Test Mean-|L|

WOS 2 141 30070 7518 9397 2.0
RCV1-V2 4 103 20833 2316 781265 3.3

BGC 4 146 58715 14785 18394 3.01
NYT 8 166 23345 5834 7292 7.6

Table 1: Statistical details for the datasets. Levels indi-
cates the number of hierarchy levels, Label count repre-
sents the total number of labels, and Mean-|L| denotes
the mean number of labels per sample.

4.3.2 Total Loss 375

The overall loss for HyILR is the sum of Binary 376

Cross Entropy (BCE) and contrastive loss, ex- 377

pressed as: LossHyILR = LossBCE + λLossCL 378

where LossBCE is calculated from the logit vector 379

obtained in Eqn 9, and λ controls the weight of the 380

contrastive loss LossCL. 381

5 Experiment 382

5.1 Experiment Setup 383

5.1.1 Datasets and Evaluation Metrics 384

We used four widely recognized benchmark 385

datasets for HTC in our experiments: WOS 386

(Kowsari et al., 2017), RCV1-V2 (Lewis et al., 387

2004), NYT (Sandhaus, 2008), and BGC 2 (Aly 388

et al., 2019). The statistics for all datasets are pre- 389

sented in Table 1. While each sample in WOS 390

follows a single label path, the other datasets allow 391

for multiple label paths. Similar to previous works 392

(Wang et al., 2022a; Zhu et al., 2023, 2024), we 393

adopt the label taxonomy structure and data prepro- 394

cessing steps as described in (Zhou et al., 2020). 395

For evaluation, we use the Micro-F1 and Macro-F1 396

scores, consistent with the existing HTC studies 397

(Chen et al., 2021; Wang et al., 2022a; Zhu et al., 398

2023, 2024). 399

5.1.2 Implementation Details 400

We conduct the experiments using an NVIDIA 401

Tesla V100 GPU with 16 GB of memory on a 402

system equipped with an Intel Xeon Gold 6248 403

processor (40 cores) and 192 GB of RAM. We use 404

the pretrained bert-base-uncased 3 as the text en- 405

coder. Text and label features have dimension h, 406

set to 768. The curvature k is a scalar initialized as 407

1, and the scalars αt and αl are initialized as 1/
√
h. 408

We learn all the scalars in the logarithmic space as: 409

log(k), log(αt), and log(αl). The weight λ of the 410

2https://www.inf.uni-hamburg.de/en/inst/ab/lt/
resources/data/blurb-genre-collection.html

3https://huggingface.co/google-bert/
bert-base-uncased
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Model WoS RCV1-V2 BGC NYT
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT (Wang et al., 2022a) 85.63 79.07 85.65 67.02 - - 78.24 66.08
HiAGM (Wang et al., 2022a) 86.04 80.19 85.58 67.93 - - 78.64 66.76
HTCInfoMax (Wang et al., 2022a) 86.30 79.97 85.53 67.09 - - 78.75 67.31
HiMatch (Chen et al., 2021) 86.70 81.06 86.33 68.66 78.89 63.19 76.79 63.89
Seq2Tree (Yu et al., 2022) 87.20 82.50 86.88 70.01 79.72 63.96 - -
PAAM-HiA-T5 (Huang et al., 2022) 90.36 81.64 87.22 70.02 - - 77.52 65.97
HGCLR (Wang et al., 2022a) 87.11 81.20 86.49 68.31 - - 78.86 67.96
HPT (Wang et al., 2022b) 87.16 81.93 87.26 69.53 - - 80.42 70.42
HiTIN (Zhu et al., 2023) 87.19 81.57 86.71 69.95 - - 79.65 69.31
HiLL (Zhu et al., 2024) 87.28 81.77 87.31 70.12 - - 80.47 69.96
HyILR (Ours) 87.48 81.96 87.41 71.20 81.52 67.85 81.26 70.71
Our Implementation
HGCLR 87.09±0.26 81.08±0.28 86.27±0.27 68.09±0.30 79.86±0.31 64.10±0.34 78.53±0.28 67.20±0.35
HILL 86.51±0.23 80.93±0.30 86.76±0.27 69.15±0.36 80.12±0.30 64.82±0.37 79.74±0.30 69.05±0.35
HyILR (Ours) 87.48±0.19 81.96±0.22 87.41±0.23 71.20±0.30 81.52±0.24 67.85±0.28 81.26±0.23 70.71±0.28

Table 2: Comparison of results. The original studies of HiAGM and HTCInfoMax do not use a BERT encoder; we
compare results from (Wang et al., 2022a), which implements their BERT-based version. The results for HiMatch
on BGC and NYT are reported by (Yu et al., 2022) and (Huang et al., 2022), respectively. For our implemented
models, we report the average scores over 8 runs with random seeds, in addition to the results from their respective
source papers. Second-best results are underlined in both parts of table. ± denotes standard deviation.

contrastive loss is set to 0.3 for WOS, 0.4 for RCV1-411

V2 and BGC, and 0.6 for NYT, determined via grid412

search with λ ∈ {0.1, 0.2, . . . , 1.0}. τ is fixed at413

0.07 for all datasets. During training, the batch size414

is set to 10, and the Adam optimizer is used with415

the learning rate fixed at 1e-5. We train the model416

end-to-end using PyTorch. Training stops if neither417

Macro-F1 nor the Micro-F1 score improves on the418

validation set over six consecutive epochs.419

5.1.3 Baselines420

We compare HyILR against recent dual-encoder421

HTC methods that model the global label hierarchy.422

HiAGM (Zhou et al., 2020) constructs a graph en-423

coder to model the global hierarchy and proposes a424

bi-encoder framework for classification. HTCInfo-425

Max (Deng et al., 2021) introduces an information426

maximization module between the text and its pos-427

itive labels to enhance HiAGM. HiMatch (Chen428

et al., 2021) proposes a semantics matching net-429

work by projecting text and labels in a joint embed-430

ding space. HGCLR (Wang et al., 2022a) incorpo-431

rates hierarchical information into the text encoder432

by performing contrastive learning between the text433

and positive samples constructed under hierarchy434

guidance. HPT (Wang et al., 2022b) uses prompt435

tuning to align the downstream task with the pre-436

training objective by adding hierarchy-aware soft437

prompts. HiTIN (Zhu et al., 2023) constructs a438

coding tree using structural entropy and integrates439

its hierarchical information into text features with a440

graph encoder. HILL (Zhu et al., 2024) employs an441

information lossless strategy, generating positive442

samples for contrastive learning directly through 443

the graph encoder. In contrast to the encoder-based 444

approaches, Seq2Tree (Yu et al., 2022) and PAAM- 445

HiA-T5 (Huang et al., 2022) are generative models 446

that utilize the T5 (Raffel et al., 2020) architec- 447

ture. Seq2Tree formulates a constrained decoding 448

strategy with a dynamic vocabulary, while PAAM- 449

HiA-T5 employs path-adaptive attention to capture 450

path dependencies. Apart from these generative 451

models, all other baselines use BERT as the text en- 452

coder. We did not compare with the two hyperbolic 453

methods (Chen et al., 2020; Chatterjee et al., 2021) 454

based on the Poincaré ball model due to unclear 455

code details in their repositories but evaluated a 456

variant of our model using the Poincaré ball trans- 457

formation in the ablation study. 458

5.2 Main Results 459

The experimental results are presented in Table 2. 460

The first part of the table compares HyILR with 461

results reported in prior studies. Our method out- 462

performs existing approaches on all datasets except 463

WOS, where methods with a generative framework, 464

PAAM-HiA-T5 and Seq2Tree, performed better, 465

and HyILR achieved the second-best results. Hy- 466

ILR learns instance-specific relationships by align- 467

ing text with multiple positive labels. However, in 468

WOS, where each sample has only two positive 469

labels, this limited alignment reduces performance 470

gains compared to other datasets. 471

For comparison and analysis, we implemented 472

two existing contrastive learning-based approaches, 473
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HGCLR and HILL, alongside our model, as shown474

in the second part of the table. HGCLR constructs475

contrastive samples with hierarchy guidance but476

relies on a masking-based approach that may intro-477

duce noise, whereas HILL improves upon this by478

deriving positive samples directly from graph en-479

coder representations, avoiding data augmentation.480

To evaluate statistical significance, we performed481

paired t-tests comparing HyILR against each base-482

line. At a confidence level of 0.05, HyILR demon-483

strates statistically significant improvements in per-484

formance measures. Details of the statistical tests485

and results are provided in the Appendix A.486

Among our implemented models, the second-487

best results are achieved by HGCLR on WOS and488

by HILL on the remaining datasets. In terms of489

Macro-F1 score, HyILR outperforms HGCLR by490

0.9% on WOS and surpasses HILL by 2%, 3%, and491

1.7% on RCV1-V2, BGC, and NYT, respectively.492

Similarly, for Micro-F1 score, HyILR improves493

upon HGCLR by 0.4% on WOS and exceeds HILL494

by 0.6%, 1.4%, and 1.5% on RCV1-V2, BGC, and495

NYT, respectively. While HGCLR and HILL rely496

on modeling the static global hierarchy, HyILR497

focuses on local hierarchical relationships, avoid-498

ing the complexity and redundancy associated with499

encoding the entire hierarchy. Moreover, their con-500

trastive loss formulation relies on batch-based im-501

plicit negatives, whereas HyILR uses hierarchy-502

aware negative sampling for more challenging con-503

trasts.504

5.3 Hierarchy-consistent evaluation505

We perform a hierarchy-consistent evaluation,506

where the hierarchical structure of labels is based507

on the predefined global label hierarchy. In this508

stricter evaluation, a label is considered correct509

only if all its ancestor labels are also predicted cor-510

rectly. Table 3 presents the Hierarchy-consistent511

Micro-F1 (Hi-MiF1) and Macro-F1 (Hi-MaF1)512

scores for our implemented models on datasets with513

deeper hierarchies (RCV1-V2, BGC, and NYT).514

HyILR demonstrates an increase in Hi-MaF1 by515

1.6%, 2.6%, and 1.7% on RCV1-V2, BGC, and516

NYT, respectively, compared to the second-best517

score. In contrast to graph encoder-based meth-518

ods that explicitly encode the global hierarchical519

structure, HyILR only utilizes hierarchical infor-520

mation during negative sampling to enhance con-521

trastive learning in hyperbolic space. This enables522

it to implicitly capture instance-specific hierarchi-523

cal label dependencies, resulting in better hierarchy-524

consistent predictions. 525

Model RCV1-V2 BGC NYT
Hi-MiF1 Hi-MaF1 Hi-MiF1 Hi-MaF1 Hi-MiF1 Hi-MaF1

HGCLR 85.94 67.51 79.43 63.60 78.04 66.27
HILL 86.46 68.54 79.92 63.86 78.64 67.34
HyILR (Ours) 87.13 70.18 80.76 66.50 80.55 69.06

Table 3: Comparison of Hierarchy-consistent scores.
The second best results have been underlined

5.4 Ablation Study 526

We conducted five ablation studies (Table 4). First, 527

we removed the contrastive loss (w/o CL) and 528

trained the model only with BCE loss. The sig- 529

nificant drop in performance highlights the impor- 530

tance of contrastive learning in modeling instance- 531

specific relationships. Next, we removed the projec- 532

tion of features into hyperbolic space (Eqn. 12) and 533

applied contrastive loss directly in Euclidean space, 534

using Euclidean distance as the similarity measure 535

(CL-Euclidean (Distance)). However, alignment 536

in Euclidean space is less effective, as its geome- 537

try does not naturally capture hierarchical relation- 538

ships, explaining its underperformance compared 539

to HyILR. A similar performance drop was ob- 540

served when using cosine similarity in Euclidean 541

space. 542

We also replaced the Lorentz model with the 543

Poincaré ball model for hyperbolic contrastive 544

learning (CL-Poincaré). While the Poincaré vari- 545

ant outperforms the Euclidean-based variant, it still 546

lags behind HyILR. We further ablated the label- 547

text attention module by replacing it with elemen- 548

twise multiplication between the text feature of 549

the sample X[CLS] ∈ Rh and the label features 550

W⊤
L ∈ Rc×h, yielding F ∈ Rc×h (w/o label- 551

text att.). The performance drop highlights the 552

importance of label-text attention, which computes 553

text-label-aware features using weighted attention 554

scores over the token representations. Finally, we 555

validate the effectiveness of our Hierarchy-aware 556

Negative Sampling (HNS) by replacing it with a 557

random negative sampling strategy in the Lorentz 558

model (CL-Lorentz w/o HNS), which results in re- 559

duced performance. By focusing on semantically 560

and structurally relevant negative labels, the neg- 561

ative sampling strategy in HyILR enables more 562

effective contrastive learning in hyperbolic space. 563

We did not ablate the BCE loss, as it optimizes 564

independent label predictions, which is essential 565

in multi-label classification. While the contrastive 566

loss aligns texts with relevant labels, it does not pro- 567

vide supervision for individual label predictions; 568
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Model WoS RCV1-V2 BGC NYT
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

w/o CL 86.10 80.18 85.90 67.33 79.10 63.42 78.70 66.95
CL-Euclidean (Distance) 86.32 80.54 86.23 68.20 79.58 63.84 78.97 68.10
CL-Poincaré 87.03 81.05 86.92 69.74 80.10 66.06 79.95 69.42
w/o Label-text att. 86.55 80.62 86.70 68.82 79.72 64.33 79.20 68.74
w/o HNS CL-Lorentz 86.80 80.73 86.55 68.96 79.90 64.57 79.16 68.95
HyILR (Ours) 87.48 81.96 87.41 71.20 81.52 67.85 81.26 70.71

Table 4: Ablation study results for HyILR

removing BCE slowed convergence in our experi-569

ments due to the absence of this supervision.570

5.5 Performance under imbalanced hierarchy571

We analyze model performance under hierarchical572

imbalance, considering two key aspects: (1) the573

uneven distribution of labels across hierarchy levels574

and (2) the long-tail effect caused by varying label575

frequencies. Figure 2 presents the performance576

on the RCV1-V2 and NYT datasets, which have577

four and eight hierarchy levels, respectively, with578

the ratio of samples between the most and least579

frequent labels exceeding 100 in both. A similar580

analysis for the WOS and BGC datasets is provided581

in the Appendix B.582

Figure 2 (a-b) illustrates the performance of our583

implemented models across various hierarchy lev-584

els. The mid-levels have a larger number of labels,585

whereas the deeper levels, which are increasingly586

fine-grained, contain fewer labels. HyILR shows587

improvements in performance, especially at mid588

and deeper levels, where labels become increas-589

ingly specific and fine-grained. To analyze the590

long-tail effect, we sort the labels in descending591

order by document count and divide them into four592

equal-sized groups (C1–C4). C1 and C2 represent593

frequent labels, while C3 and C4 correspond to594

increasingly sparse labels. Figure 2 (c-d) shows595

model performance across these categories, with a596

decline as sparsity increases in categories C3 and597

C4. However, HyILR consistently outperforms598

the others, demonstrating its ability to mitigate the599

long-tail effect. Overall, its instance-specific mod-600

eling allows it to focus on each label regardless601

of granularity or frequency, leading to improved602

performance across all hierarchy levels and label603

categories.604

Due to space constraints, performance under605

label path complexity, computational complexity,606

and hyperparameter selection results are not cov-607

ered in the main paper but are provided in Appen-608

dices C, D, and E, respectively.609

(a) RCV1-V2 (b) NYT

(c) RCV1-V2 (d) NYT

Figure 2: Performance under imbalanced hierarchy :
(a-b) Level-wise, (c-d) Label frequency categories

6 Conclusion 610

In this paper, we introduced HyILR, a method for 611

modeling instance-specific local relationships in hy- 612

perbolic space. By leveraging the Lorentz model, 613

our approach frames the problem as a semantic 614

alignment task in hyperbolic space, aligning text 615

with its positive labels based on their local hierar- 616

chical relationships. This alignment is achieved 617

through contrastive loss, which is equipped with 618

a hierarchy-aware negative sampling strategy to 619

incorporate both structural and semantic informa- 620

tion while selecting negative labels. Our approach 621

removes the need for global hierarchy encoding, 622

thereby simplifying the classification framework. 623

Comparisons with existing baselines demonstrate 624

that HyILR outperforms state-of-the-art methods 625

and achieves better hierarchical consistency, even 626

without modeling the redundant global structure. 627

7 Limitations 628

HyILR is sensitive to the hyperparameter λ, which 629

controls the weight of the contrastive loss, and re- 630

quires tuning for each dataset. Additionally, the 631

smaller gains in Micro-F1 suggest that HyILR 632

provides limited improvement for dominant (high- 633
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frequency) labels. This is also evident in Figure634

2, which illustrates performance under an imbal-635

anced hierarchy, where deeper levels and less fre-636

quent categories show more improvement, while637

higher-level and frequent labels see smaller gains.638

Furthermore, HyILR relies on the hierarchy struc-639

ture to obtain challenging negatives, but in some640

cases, no negative labels may be available for a641

given positive label. This can happen, for example,642

when a leaf label node has no siblings or when a643

label’s only negative sibling has already been se-644

lected as a negative descendant for another label.645

While the model currently utilizes the complete646

negative set across all positive labels to mitigate647

this issue, exploring new strategies to obtain neg-648

ative labels in such cases could further improve649

contrastive learning.650
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A Details of statistical test 824

We used Micro-F1 and Macro-F1 scores to eval- 825

uate our model’s performance. Each experiment 826

was run eight times with random seeds, and the 827

average scores were reported. To determine the sta- 828

tistical significance of the observed improvements, 829

we performed one-sided paired t-tests, comparing 830

our model’s performance with that of other imple- 831

mented models, as shown in Table 5. Except for the 832

Micro-F1 score in the HyILR vs. HGCLR compar- 833

ison on the WOS dataset, all p-values were below 834

0.05, confirming the statistical significance of our 835

model’s improvements. 836

Dataset Metrics Model Pair p-value (t-test)

WOS

Micro-F1
HyILR vs. HILL 1.1e-5

HyILR vs. HGCLR 2e-4

Macro-F1
HyILR vs. HILL 2e-4

HyILR vs. HGCLR 0.06

RCV1-V2

Micro-F1
HyILR vs. HILL 5.9e-5

HyILR vs. HGCLR 1.7e-5

Macro-F1
HyILR vs. HILL 2.9e-5

HyILR vs. HGCLR 3.2e-8

BGC

Micro-F1
HyILR vs. HILL 1.4e-5

HyILR vs. HGCLR 8.1e-6

Macro-F1
HyILR vs. HILL 9.7e-7

HyILR vs. HGCLR 2.1e-7

NYT

Micro-F1
HyILR vs. HILL 4.1e-7

HyILR vs. HGCLR 2.7e-7

Macro-F1
HyILR vs. HILL 2.6e-7

HyILR vs. HGCLR 2.6e-7

Table 5: One-sided t-test results for model comparisons
on different datasets
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B Performance under imbalanced837

hierarchy for WOS and BGC838

We present the results under an imbalanced hier-839

archy for the WOS and BGC datasets in this sec-840

tion. While WOS has a shallow two-level hierar-841

chy, BGC has a deeper four-level hierarchy. More-842

over, both datasets exhibit varying label frequen-843

cies, with the ratio of samples between the most844

and least frequent labels exceeding 1,000. Figure 3845

(a-b) illustrates the performance across hierarchy846

levels, showing a consistent improvement for Hy-847

ILR at all levels. Similarly, Figure 3 (c-d) presents848

the results under label frequency categories, where849

HyILR performs better, particularly for sparse la-850

bels in categories C3 and C4.

(a) WOS (b) BGC

(c) WOS (d) BGC

Figure 3: Performance under imbalanced hierarchy :
(a-b) Level-wise, (c-d) Label frequency categories

851

C Model Performance in Relation to852

Label Path Complexity853

In HTC, labels for each sample can belong to one854

or multiple paths in the label hierarchy, reflect-855

ing the multi-label and hierarchical nature of the856

task. Analyzing model performance across differ-857

ent numbers of label paths provides insights into858

how well models handle varying levels of label859

path complexity. Figure 4 illustrates model per-860

formance across samples grouped by the number861

of label paths they belong to, for the RCV1-V2,862

BGC, and NYT datasets, all of which include mul-863

tiple label paths. Across all datasets, our proposed864

model, HyILR, consistently outperforms as label865

path complexity increases, demonstrating its ability866

to effectively navigate and classify within complex867

hierarchical structures.868

(a) RCV1-V2 (b) BGC

(c) NYT

Figure 4: Performance comparison across label paths

D Analysis of Computational Complexity 869

We conducted our experiments on an NVIDIA 870

Tesla V100 GPU. The total GPU hours utilized 871

were approximately 7.2, 12.5, 24, and 12.5 for the 872

WOS, RCV1-V2, BGC, and NYT datasets, respec- 873

tively. In Table 6, we compare the computational 874

complexities of HyILR with two existing baselines 875

on the RCV1-V2 dataset. Although all methods are 876

based on contrastive learning, HyILR demonstrates 877

a lower training computation time and faster infer- 878

ence. Furthermore, the parameter count of HyILR 879

is comparable to that of the existing methods. 880

Model #Params Training time Inference
(M) (min/epoch) (ms/sample)

HGCLR 119 20.08 10.55
HILL 116 14.33 11.03
HyILR (Ours) 117 10.11 10.29

Table 6: Computational complexity comparison on
RCV1-V2 dataset

E Hyperparameter sensitivity 881

The performance of our proposed approach is sen- 882

sitive to the value of λ, which controls the weight 883

of the contrastive loss in the overall loss function of 884

the model. We conducted a grid search on λ values 885

ranging from 0.1 to 1 (in increments of 0.1) to find 886

the optimal value for each dataset. Table 7 shows 887

the results on the validation set for the NYT dataset 888

with different values of λ. Similarly, we obtained 889

the optimal value of λ for the other datasets. 890
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λ Micro-F1 Macro-F1
0.1 68.94 79.96
0.2 69.23 79.72
0.3 69.33 79.64
0.4 71.40 81.36
0.5 70.16 80.52
0.6 71.73 81.64
0.7 69.98 79.90
0.8 71.12 80.83
0.9 69.84 80.10
1.0 70.92 80.73

Table 7: Performance of HyILR on the NYT validation
set for varying values of λ.

F Dataset details891

All datasets used in this study are publicly avail-892

able. The WOS4 dataset contains scientific paper893

abstracts sourced from the Web of Science, with894

labels organized in a two-level hierarchy.895

The RCV1-V25 dataset consists of news articles896

published by Reuters, with labels across a four-897

level hierarchy. The BGC dataset6 consists of book898

blurbs crawled from the Penguin Random House899

website, with labels organized in a four-level hier-900

archy. The NYT7 dataset comprises articles from901

the New York Times, with labels in an eight-level902

hierarchy.903

Most existing works (Chen et al., 2021; Wang904

et al., 2022a; Zhu et al., 2023, 2024) on HTC use905

three datasets—WOS, RCV1-V2, and NYT—and906

adopt the train-val-test splits described in (Zhou907

et al., 2020). We also use the same splits for these908

datasets to be consistent with these studies. For909

BGC, we use the train-val-test splits described in910

(Yu et al., 2022).911

G Dataset Licenses and Compliance912

The WOS dataset is released under the CC BY913

4.0 license. The RCV1 dataset is available un-914

der a restricted, non-commercial, research-only915

agreement that prohibits redistribution. The BGC916

dataset is released under a CC BY-NC license. The917

NYT dataset is released under a non-commercial918

research license, restricting redistribution and com-919

mercial use.920

All the datasets used in this work are benchmark921

datasets widely utilized for research in hierarchi-922

4https://github.com/kk7nc/HDLTex
5https://trec.nist.gov/data/reuters/reuters.

html
6https://www.inf.uni-hamburg.de/en/inst/ab/lt/

resources/data/blurb-genre-collection.html
7https://catalog.ldc.upenn.edu/LDC2008T19

cal text classification, making our usage consistent 923

with their intended purpose. 924

H Code availability 925

Our code with tokenized versions of the dataset 926

is available at: https://anonymous.4open. 927

science/r/HyILR-ECDE/ 928
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