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Abstract— Recently, the field of hyperspectral image (HSI)
classification has witnessed advancements with the emergence
of deep learning models. Promising approaches, such as
self-supervised strategies and domain adaptation, have effectively
tackled the overfitting challenges posed by limited labeled sam-
ples in HSI classification. To extract comprehensive semantic
information from different types of auxiliary tasks, which view
the problem from multiple perspectives, and efficiently integrate
multiple tasks into a single network, this article proposes a hybrid
multitask learning (MTL) framework (HyMuT) by sharing repre-
sentations across multiple tasks. Based on the similarity between
the data and the target classification task, we construct three
auxiliary tasks that are similar, related, and weakly correlated
to the target task, while three corresponding MTL methods are
integrated. The framework establishes a backbone network with
a hard parameter sharing mechanism, which handles the main
task and a similar spatial mask classification task. Subsequently,
a hierarchical transfer MTL approach is introduced to transfer
the knowledge of a spatial-spectral joint mask reconstruction task
from the autoencoder to the backbone network. Furthermore,
a new source domain HSI dataset is introduced as an auxiliary
task weakly correlated. To solve the source domain classification
task and assist the hard parameter sharing mechanism, a dual
adversarial classifier based on adversarial learning is employed.
This classifier effectively extracts domain and task invariance.
Extensive experiments are conducted on four benchmark HSI
datasets to evaluate the performance. The results demonstrate
that HyMuT outperforms state-of-the-art methods. This code
will be available from the website: https://github.com/HaoLiu-
XDU/HyMuT.

Index Terms— Domain adaptation, hyperspectral image (HSI)
classification, multitask learning (MTL), self-supervised strategy.

I. INTRODUCTION

HYPERSPECTRAL image classification technology uti-
lizes the rich spectral and spatial information of
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hyperspectral images (HSI) to classify each pixel and finds
crucial applications in agriculture, forestry, mining, and other
fields [1], [2], [3].

Traditional methods for HSI classification often rely on
shallow feature engineering [4], [5] or simple classifiers [6],
[7]. But these approaches tend to focus solely on pixel-level
features, overlooking the spatial–spectral joint relationships
between adjacent pixels. In recent years, the development
of deep learning methods [8], [9] is rapid and they can
directly learn feature representations based on terminal tasks,
thereby improving the shortcomings of feature engineering
and classifiers. Zhang et al. [10] proposed a spatial–logical
aggregation network (SLA-NET) with morphological trans-
formation for tree species classification and Fang et al. [11]
employed instance segmentation into HSI interpretation. The
application and advancement of deep learning techniques
in remote sensing field have led to the development of
deep and wide networks [12], [13], [14]. These networks
have the capability to capture deep spatial–spectral features
based on classification task, enabling more comprehensive
and accurate classification. However, the strong generalization
ability of these large-scale networks often relies on a large
number of high-quality labeled samples. Acquiring valuable
labels for HSI datasets is time-consuming, laborious, and,
in some cases, even infeasible due to inaccessible imag-
ing areas. The growing gap between the increasing amount
of HSI data and the scarcity of valuable labels necessi-
tates techniques to address the problem of limited labels in
datasets. Designing strategies to enhance the generalization
ability of models based on limited data remains an ongoing
challenge.

The conventional mainstream approach to tackle this
challenge is to leverage semisupervised learning methods,
which extract information from unlabeled samples to enhance
classification performance. These methods include active
learning [15], self-training models [16], and cotraining mod-
els [17], [18]. However, a single wrong pseudo label sample
with high confidence can significantly degrade the overall
model performance, which is particularly problematic for HSI
classification with only a few labeled samples.

In recent years, two emerging approaches, domain adap-
tation and few-shot learning (FSL) techniques, have gained
attention in addressing the problem of sample insufficiency.
Domain adaptation [19], [20], [21], [22] utilizes a large
amount of source domain data and prior knowledge to support
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target domain tasks. However, public HSI datasets are often
targeted at specific areas, and the common categories across
datasets are limited. To enhance the rapid learning capability
of the HSI data through meta-learning, and make effective
use of the existing labeled samples, several typical few-shot
learning methods, including siamese networks [23], prototyp-
ical networks [24], [25], and relation networks [26], were
continuously proposed for HSI classification. Besides, some
advanced multisource classification methods [27], [28], [29],
[30] were also proposed to leverage data from other source
domains. These methods rely on similarity measures to achieve
efficient classification with limited samples.

In order to further solve the classification problem of
few samples, numerous studies have focused on combining
few-shot learning and domain adaptation for HSI, which
have made significant progress. Li et al. [31] introduced
the deep cross-domain few-shot learning method (DCFSL),
Zhang et al. [20] proposed a topological structure and semantic
information transfer network, and Xi et al. [32] proposed
an FSL framework with a class-covariance metric (CMFSL).
Additionally, Zhang et al. [33] presented the graph informa-
tion aggregation cross-domain few-shot learning (Gia-CFSL)
framework, and Zhang et al. [34] proposed the cross-domain
self-taught network (CDSTN). These works have achieved
significant progress in HSI classification. However, the afore-
mentioned methods paid attention to take use of advanced
semantic information related to classification, ignoring the
possibility to extract more information from the redundant data
of HSI.

To extract features from multiple perspectives of multiple
auxiliary tasks, we employ multitask learning (MTL) to build
a unified framework. MTL prompts the model to generalize
better in terms of the initial task through the sharing represen-
tations between various related or similar tasks, which may
mutually reinforce each other. MTL excels at transferring the
knowledge between tasks, resulting in an improved diversity
of knowledge extracted from the network. There are two
main implementations of MTL: feature-based and parameter-
based approaches [35]. In the context of neural networks, deep
relationship networks [36], fully-adaptive feature sharing [37],
cross-stitch networks [38], weight losses with uncertainty [39],
and tensor factorization [40] received significant attention.
However, these methods typically emphasize algorithmic opti-
mization processes for MTL or seek other datasets to construct
tasks.

Self-supervised learning gives us inspiration for auxiliary
tasks construction. Self-supervised learning is a data-driven
methodology by learning data representations without human
annotation. Existing self-supervised methods can be broadly
categorized into three groups: generative, predictive, and con-
trastive methods. Generative self-supervised methods learn
representations by reconstructing or generating input data. For
instance, Mou et al. [41] proposed a fully conv–deconv net-
work for spectral–spatial feature learning, while He et al. [42]
reconstructed randomly masked patches using a vision trans-
former. Predictive methods introduce new label prediction
tasks based on spatial, spectral, or other characteristics.
Singh et al. [43] utilized image inpainting as a pretext task,

and Vincenzi et al. [44] provided an initial attempt to lever-
age spectral context for self-supervised learning. Contrastive
methods train models by contrasting semantically similar
inputs and pushing them to be close in the representation
space. Zhao et al. [45] employed a self-supervised model
based on siamese networks to extract features, and Guan
and Lam [46] proposed cross-domain contrastive learning
for unsupervised representation learning of HSI. Inspired
by self-supervised strategy, numerous auxiliary tasks were
designed to enhance image representation. While there have
been numerous studies on two-dimensional (2-D) remote
sensing images due to their similarity to red, green, blue
(RGB) images [47], [48], [49], the scenario changes when
dealing with three-dimensional (3-D) HSI. In the case
of HSI, many conventional and well-established auxiliary
tasks fail due to the unique spectral continuity of the
data.

In the field of HSI processing, several MTL methods
based on the self-supervised strategy were proposed to con-
struct various auxiliary tasks tailored to the primary task
of HSI processing, such as reconstruction task [50], [51],
[52], superpixel-based feature cubes [53], RGB images super-
resolution [54], and graph information task [55]. However,
these methods typically focus on building a single pretext task,
often at the pixel-level, patch-level, or image-level, resulting in
a lack of capturing multiple types of information. Additionally,
some multiple auxiliary tasks often lack efficient knowledge
transfer methods, and cannot efficiently integrate tasks into
a single network. In general, although the aforementioned
methods improved HSI classification, they still have certain
limitations.

1) The self-supervised strategy-based method constructs a
limited number of auxiliary tasks, resulting in a lack of
diversity in effective information and tasks.

2) There is a lack of inappropriate auxiliary tasks that cater
to the unique characteristics of HSI, making it difficult
to utilize features extracted from auxiliary tasks.

3) Traditional MTL frameworks rely on a single MTL
approach, limiting the flexibility to set different methods
for various tasks.

To meet these challenges, this article proposes a novel
approach that combines three MTL methods capable of han-
dling tasks with varying degrees of similarity between the data.
Suitable tasks are constructed for each method. First, the target
classification and a spatial mask prediction tasks are con-
structed. Two task-specific layers follow behind the backbone
network, enabling an MTL approach with hard parameter shar-
ing. Additionally, a spatial–spectral joint mask reconstruction
task is designed to feed a symmetric autoencoder for the target
domain data. This task facilitates the transfer of knowledge
adaptively from the weakly shared encoder to the backbone
network through hierarchical transfer MTL. Moreover, the
source domain data is treated as a separate task, and the shared
backbone network is trained through adversarial-based MTL.
Finally, a dual adversarial classifier is introduced after the
backbone network to extract invariant features across different
domains and tasks using gradient reversal layer [56]. The
contributions of this article are as follows.
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1) We present a hybrid MTL approach that combines
three distinct methods to effectively leverage the diverse
characteristics of pretext tasks in parallel.

2) We propose a novel end-to-end framework that inte-
grates self-supervised strategy-based and domain adapta-
tion auxiliary tasks, enabling the extraction of high-level
semantic information from various auxiliary tasks, each
offering different perspectives.

3) Based on the concept of self-supervised strategy,
we construct two mask auxiliary tasks tailored to the
characteristics of HSI data, facilitating the extraction of
highly redundant information from HSI.

The remainder of this article is organized as follows.
In Section II, we provide background knowledge and discuss
the motivation behind HyMuT. Section III presents a detailed
description of the proposed method. In Section IV, we val-
idate the effectiveness of the proposed method on four real
datasets and analyze the hyperparameters involved. Finally,
in Section V, we conclude this article with final remarks.

II. PRELIMINARIES AND MOTIVATION

A. Multitask Learning

Focusing solely on a single task may lead to overlooking
valuable information that could enhance the performance of
desired metrics. This valuable information can be derived from
training related or similar tasks. By sharing representations
across multiple tasks, a model can achieve better generaliza-
tion on the original task, known as MTL. In MTL, we consider
a set of m related learning tasks {Ti }

m
i=1, with the objective of

jointly learning these tasks to improve the performance of each
task by leveraging the knowledge contained in the other tasks.
Each task Ti typically has its own dataset Di consisting of
ni training samples X i

= (x i
1, x i

2, . . . , x i
ni

) along with their
corresponding labels Y i

= (yi
1, yi

2, . . . , yi
ni
).

Previous research on MTL for HSI interpretation has pre-
dominantly focused on sparse representation methods [57],
[58], [59]. However, more recent studies have emerged
that combine MTL with auxiliary tasks for HSI process-
ing. For instance, Liu et al. [50] simultaneously performed
classification and reconstruction tasks to aid in classifying
unknown classes, Hang et al. [51] designed a generator net-
work to handle both reconstruction and classification tasks,
Tu et al. [53] introduced a superpixel-based auxiliary MTL
approach using auxiliary feature cubes, Li et al. [54] improved
HSI super-resolution using RGB images as an auxiliary task,
and Li et al. [55] proposed incorporating graph information to
learn intrinsic relationships among samples. Song et al. [52]
proposed perturbations, masked feature reconstruction, and
spectral clip order prediction tasks to perform MTL. These
methods contributed to the application of MTL in the field of
HSI.

However, these methods typically rely on a single auxiliary
task, such as data reconstruction or the utilization of unlabeled
data. While these auxiliary tasks are undoubtedly beneficial
for the main task, they have limitations when dealing with real
classification scenarios with very few labeled samples. Further-
more, existing multitask knowledge transfer frameworks often

adjust the losses of multiple tasks simultaneously using the
backpropagation algorithm. This structure resembles a multi-
objective optimization problem and introduces additional chal-
lenges in parameter settings and adjustments. To address these
limitations, we propose three auxiliary tasks within a hybrid
MTL framework (HyMuT) that employs adaptive hierarchical
transfer MTL for a data reconstruction task, a hard parameter
sharing mechanism for prediction tasks, and an adversarial
learning-based classifier for domain adaptation task.

B. Self-Supervised Strategy Task

Using a related task as an auxiliary task in MTL is a
classical approach. While leveraging related or similar tasks
can enhance the performance of the main task, constructing
suitable auxiliary tasks remains a significant challenge when
dealing with the complex data of HSI.

Self-supervised strategy offers a solution by providing a
predefined pretext task to train the model. The learned visual
features can then be transferred to downstream tasks. Gener-
ally, shallow layers capture general low-level features such as
edges, corners, and textures, while deep layers capture task-
specific high-level features. This mechanism can improve the
model in terms of data and feature representation. Inspired by
self-supervised learning, we aim to generate additional data
from the existing data itself, rather than relying on unlabeled
samples, human annotations, or other datasets, in order to
construct new auxiliary tasks.

However, commonly used self-supervised strategy-based
tasks are typically designed based on RGB images. Remote
sensing images, on the other hand, have different shooting
angles, and their fine-grained nature implies that each pixel
represents a distinct object. Feature extraction becomes more
complex and challenging. Tasks like rotation angle prediction,
jigsaw puzzles, and relative position prediction are not as
effective in this context. Additionally, due to the complex
spectral dimension of HSI, many tasks based on patch cutting
fail to preserve the spectral information. Effectively defining
self-supervised strategy-based tasks and coordinating their
relationships to efficiently transfer knowledge pose further
challenges.

Inspired by masked autoencoders (MAE) [42], we randomly
apply some masks to the data during each iteration, follow-
ing the training method of multiple iterations on few-shot
learning. This approach enables the network model to capture
features from all pixel positions. The mask mechanism filters
out redundant information while accelerating the learning of
image details. Considering the structural characteristics of
HSI, we introduce a spatial–spectral joint mask reconstruction
task and a spatial mask prediction task, which collectively
establish an MTL framework based on self-supervised strategy.

C. Domain Adaptation Auxiliary Task

Domain adaptation is a widely used approach in trans-
fer learning. It involves utilizing source data with abundant
labeled samples and target data with limited labeled samples.
In this scenario, we have a source domain Ds and a target
domain Dt with respective joint distributions Ps and Pt ,
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Fig. 1. Flowchart of the proposed HyMuT approach: HyMuT is composed of a similar mask prediction task, a related spatial–spectral joint mask reconstruction
task, and a weakly correlated domain adaptation task. Correspondingly, it includes three MTL strategies: hierarchical transfer MTL for similar tasks, hard
parameter sharing for related tasks, and dual adversarial-based MTL for weakly correlated tasks.

where Ps ̸= Pt , and the labeled categories Ys are different
from Yt . The source domain Ds contains more categories Cs

and labeled samples compared to the target domain Ct [60],
allowing knowledge transfer from the source to the target
domain.

From an MTL perspective, domain adaptation plays a
significant role. Adversarial learning is employed, alternating
between source domain task Ts and target domain task Tt ,
to train the feature backbone network in mapping Ds and Dt

to a shared feature space. This adversarial multitask model
typically comprises three networks: a feature network, a clas-
sification network, and a domain network. The classification
network minimizes the training loss for all tasks based on the
feature network, while the domain network aims to discern the
task of each data instance.

In response to the lack of diversity in auxiliary tasks in our
MTL framework and enable the shared feature backbone net-
work to acquire additional knowledge, we introduce an extra
HSI dataset as the source domain. By employing adversarial
learning methods, this model effectively incorporates a domain
adaptation task, resulting in improved and stable performance.

III. METHODOLOGY

The HyMuT framework is designed to empower the
few-shot learning network with a holistic comprehension
of HSI data. Fig. 1 illustrates the components of HyMuT,
which consist of a similar mask prediction task, a related
spatial–spectral joint mask reconstruction task, and a weakly
correlated domain adaptation task. These task designs are
guided by the similarity of the tasks. Furthermore, it comprises
three corresponding MTL strategies: hierarchical transfer MTL
for similar tasks, hard parameter sharing for related tasks,
and dual adversarial-based MTL for weakly correlated tasks.

Different colored arrows indicate data flows corresponding to
various tasks.

In Sections III-B–III-D, each MTL strategy of the HyMuT
framework is described in detail, providing insights into their
functionalities and interactions.

A. Auxiliary Tasks Construction

Unlike conventional RGB images, HSI contains rich redun-
dant information that can potentially enhance performance.
Motivated by the concept of self-supervised strategy, we pro-
pose three auxiliary tasks specifically designed for HSI images
without requiring additional human annotations.

To prepare the HSI data, we perform data preprocessing to
divide it into small patches, forming a dataset for network
training. Inspired by MAE [42], we randomly incorporate
masks of a specific size into each patch, thereby introducing
new tasks based on the original data. Considering the HSI
data, we propose a mask processing with two operations.

1) Adding a single spatial mask block to the original data
to obstruct a specific spatial pixel block along with its
spectral information.

2) Adding a spatial–spectral joint mask block of a certain
size, where a single mask block only covers part of the
spatial–spectral data. For example, in the case of the
Indian Pines (IP) dataset with a size of 145×145×200,
it is processed into patch blocks of size 9×9×200. The
individual mask sizes M1 and M2 corresponding to the
two tasks are 1 × 1 × 200 and 2 × 2 × 50, respectively.

Due to the small size of the data patch, a single pixel already
contains a significant amount of HSI information. Hence, the
size of the mask block should not be excessively large, and a
large number of small mask blocks are beneficial for extracting
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redundant information. Additionally, the spatial–spectral rela-
tionship is preserved. Therefore, we adopt small mask sizes
and high mask ratios. Furthermore, different tasks employ
different mask ratios R1 and R2. For the similar task involving
mask task prediction, a higher mask ratio of 75% is necessary
to extract valuable information from redundant data. For the
related reconstruction task, a mask ratio of 25% is sufficient to
extract the classification effect while preserving the feasibility
of classification tasks. Excessively high mask ratios could
increase task difficulty. Further details on mask ratio parameter
experimentation are described in Section IV-E.

For the target classification task Tt and the dataset Dt con-
sisting of nt training samples X t

= (x t
1, . . . , x t

nt
) along with

their corresponding labels Y t
= (yt

1, . . . , yt
nt
), we construct

two mask tasks Tspa and Tss. The labels of the original data
are retained as the labels for the new tasks (Y t

= Y spa). The
data augmented by the mask is denoted as X spa and X ss

X spa
= Random

(
X t , R1, M1

)
X ss

= Random
(
X t , R2, M2

)
(1)

where Random(·) indicates masking operation based on
random sampling strategy. Ultimately, new self-supervised
strategy auxiliary datasets Dspa and Dss are formed.

To augment the task diversity, we incorporate a weakly cor-
related domain adaptation approach. Following the principle of
domain adaptation [60], we select the Chikusei dataset as the
source domain Ds , which contains a larger number of classes
compared to other datasets. The source domain task Ts is a
classification task similar to the target domain.

Based on the above auxiliary tasks Tspa, Tss, and Ts ,
we adopt distinct network structures and training strategies
for each task, as detailed in the subsequent sections.

B. Hard Parameter Sharing

The auxiliary task Tspa shares similar classification tasks
with the target task Tt , and only a small portion of information
is lost without significantly damaging the data. To achieve
MTL for these similar tasks, we employ the hard parameter
sharing mechanism, which is a widely used approach in neural
networks for MTL [61]. This approach involves sharing the
hidden layers among all tasks and maintaining task-specific
output layers. In our approach, we construct a shared backbone
network for the three prediction tasks and assign task-specific
layers to each task. The backbone network consists of a 2-D
convolution layer for dimension reduction and two groups of
3-D residual convolutions and 3-D maxpooling operations to
extract spatial–spectral joint features. The task-specific layer
for the three tasks is a 3-D convolution. The network structure
is illustrated in Fig. 2.

During a training episode of hard parameter sharing, the
patch data from Tt and Tspa is simultaneously fed into the
network structure, generating the classification loss through
the few-shot learning module.

In the few-shot learning stage, support sets and query sets
are formed by sampling K and N samples for each of the
C categories in the target domain, resulting in support sets
of size C × K and query sets of size N × K . The support

Fig. 2. Illustration framework of the proposed embedded feature extractor.

set data undergoes network feature extraction, resulting in C
prototypes. The query set is then classified by comparing the
distance between the features extracted from the query data
and the prototypes. Taking the target task Tt as an example,
the classification probability of x t

i is calculated as follows:

P
(
ŷt

i |x
t
i

)
= Softmax

(
−ED

(
F t(x t

i
)
, ct

k
))

(2)

where ŷt
i is the predicted label for the sample. Softmax(·) is the

softmax function, ED(·) is the Euclidean distance, F t (·) is the
backbone network for the target task, and ct

k is the prototype
of the kth category.

Using the probabilities obtained from the query set in the
target task, we can compute the loss of the target classification
by cross-entropy loss, which is expressed as follows:

L t
CE = −

1
nt

nt∑
i=1

yt
i log P

(
ŷt

i |x
t
i

)
(3)

where nt is the number of samples in the query set from the
target task, yt

i and ŷt
i are the true label and predicted label,

respectively, for the sample xt
i .

Therefore, the features vector can be inputted into the
few-shot learning module, and the backbone network can be
trained using the labeled samples. Similarly, the losses for the
other auxiliary tasks Ts and Tspa are denoted as Ls

CE and Lspa
CE ,

respectively.

C. Hierarchical Transfer MTL

When dealing with spatial–spectral joint mask data, where
numerous small mask blocks obstruct the original data, the
spatial–spectral relationship is damaged seriously. In such
cases, employing the aforementioned hard parameter shar-
ing mechanism may introduce more negative impacts than
benefits, while also posing a challenge to the network
architecture. Specifically, as the tasks become more diffi-
cult, achieving a proper balance between shared layers and
task-specific layers becomes increasingly challenging. Moti-
vated by Misra et al. [38], we propose a hierarchical transfer
method to achieve the efficient knowledge transfer between
the auxiliary tasks and the main task. This MTL method is
specifically designed for transferring knowledge from auxiliary
tasks, particularly for complex but related tasks in deep neural
networks.
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To tackle the data damage in task Tss while paying more
attention to redundant and secondary information, we employ
a symmetric autoencoder for data reconstruction. By recon-
structing the patch data from the masked data, the network
can infer the covered spatial pixels and spectral curves from
the surrounding pixels and spectra. Through iterative training,
the autoencoder ensures that all pixels and spectra of the
few labeled samples are adequately covered. Consequently,
the reconstruction task provides the network with a better
understanding of the HSI data.

The autoencoder Fauto consists of a weakly parameter shar-
ing encoder Fen and a symmetrical decoder Fde. The encoder
employs a weak parameter sharing mechanism, sharing the
same network structure but with different parameters and
objective functions. This mechanism enhances the fusion of
features from related tasks, facilitating effective knowledge
transfer. On the other hand, the decoder has a symmet-
rical network structure and operation positions to that of
the encoder. The 3-D maxpooling operation corresponds to
upsample, while the 3-D convolution operation corresponds
to 3-D transposed convolution operation. For the task Tss with
data X ss

= (xss
1 , . . . , xss

nt
), the output of Fauto with parameter

θ is as follows:

X̂ ss
= Fauto

(
X ss, θ

)
(4)

and the loss of reconstruction task is expressed as follows:

Lss
recon =

1
nt

nt∑
i=1

(
x̂ss

− xss)2
. (5)

The loss of the reconstruction task adopts the mean square
error, and the loss is minimized to train the autoencoder to
achieve data reconstruction efficiently.

To transfer knowledge from the autoencoder hierarchically,
we establish two trainable connections to the backbone from
different levels. Simultaneously, the features from the autoen-
coder are multiplied by the trainable parameters and forwarded
to the backbone network with weakly shared parameters.
Specifically, F ss

1 and F ss
2 represent the feature extraction

networks from two residual blocks of Fen, respectively. Cor-
respondingly, the network structures in the backbone network
for the target classification are denoted as F t

1 and F t
2 . With

the hierarchical transfer method, the output features of F t
1 and

F t
2 for the target classification task are obtained as follows:

f t
1 = F t

1

(
x t)

+ αF ss
1

(
xss)

f t
2 = F t

2

(
f t
1
)
+ βF ss

2

(
F ss

1

(
xss)) (6)

where xss and x t represent the inputs from tasks Tss and
Tt , respectively, and α and β are the trainable parameters
mentioned above.

D. Dual Adversarial Classifier

Adversarial-based MTL is a commonly used method for
handling auxiliary tasks with significant differences. It effec-
tively extracts the invariance between tasks, facilitating
knowledge transfer. In the case of HSI data, there exists a
substantial domain gap due to variations in sensors, weather
conditions, and target categories. Among the auxiliary tasks,

the source domain task Ts poses the greatest challenge. Fur-
thermore, the prediction tasks with hard parameter sharing
still require effective extraction of task-invariant features.
To address these challenges, we propose the integration of
a dual adversarial classifier. This classifier aims to handle
the more difficult source domain task and assists the hard
parameter sharing mechanism in extracting features across
prediction tasks.

The purpose of a dual adversarial classifier is to extract
domain invariant features from the source and target domains,
as well as task-invariant features from the target domain
classification task and spatial mask classification task. The
source domain classification task is processed by the same
backbone network used for the target domain classification
task, and the resulting features are marked with tags 0 and 1,
respectively. Similarly, the features generated by the auxiliary
classification task and the target domain classification task
receive different labels. These features and their corresponding
labels are then fed into the dual adversarial classifier, which
employs adversarial strategies to make it indistinguishable
from which domain or task the features originate, thus achiev-
ing the extraction of invariant features. Unlike conventional
gradient propagation algorithms, we introduce a gradient inver-
sion layer [56] to update parameters. In order to speed up
the confusion of domain discriminators, we add the posterior
probability information of the classifier to the feature vector.

Considering that both prediction tasks and domain adaptive
tasks share the same strategy, we use the domain task as an
example. Let θst represent the parameters of the backbone
network and the target-specific layer F st. θd means the param-
eters of the classifier D. The objective function is defined as
follows:

Lst
D = max

θst
min
θd

Lst
D(θst , θd). (7)

Among them, Lst
D(θst , θd) can be expressed in detail as

follows:

Lst
D(θst , θd)

=
1
nt

nt∑
i=1

L D
(
D

((
F

(
xst

i , θst
)
, gst

i
)
; θd

)
, dst

i

)
(8)

where L D is the loss of domain classification and nt is the total
number of samples. gst

i and dst
i are the posterior probability and

the label of task corresponding to the sample xst
i , respectively.

Notably, gst
i could accelerate the alignment of tasks.

Same as (7), we can define the objective function for the
prediction task as follows:

L p
D = max

2
min
θd

L p
D(2, θd) (9)

where 2 presents the parameters of backbone and task-specific
layers for the three prediction tasks. By combining (7) and (9),
we could formulate the objective of the dual adversarial
classifier as follows:

max
2

min
θd

L D(2, θd)

= max
2

min
θd

(
Lst

D(θst , θd) + L p
D(2, θd)

)
. (10)
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Fig. 3. Flowchart of the overall simple framework.

It is important to note that the parameter 2 includes θst ,
representing the parameters of the backbone network with the
target-specific layer.

E. Overall Objective

To summarize, the proposed HyMuT method involves four
tasks and employs three MTL methods. Through alternating
training of two domains, we train the backbone network using
source classification task and then train the whole network
with the rest target tasks simultaneously. Without loss of
generality, the framework foundation we proposed can be
expressed as Fig. 3.

On the one hand, the tasks in the figure can be freely
set with appropriate auxiliary tasks, such as self-supervised-
based tasks and other homogeneous image tasks. Besides, the
feature extraction network can also be modified according to
the characteristics of the data, and it is possible to employ
attention mechanisms and potential network structure. Conse-
quently, a possible task could choose different MTL methods
for knowledge transfer.

On the other hand, our model could establish more task
branches according to increasing workload. The network
achieves adversarial learning through alternating iterations
with task classifier, hard parameter is achieved through task-
specific layers, and knowledge transfer from F2 to F1.
Therefore, more alternating iterations, task-specific layers, and
similar autoencoders could be added easily to handle more
tasks.

It is important to note that appropriate experiments and
methods need to be used to evaluate the similarity between
tasks, in order to fill in appropriate MTL methods. The loss
function for the source iteration is given by the sum of the
source classification loss and the domain classification loss

Ls
CE + Lst

D. (11)

In the target iteration, in addition to similar target classi-
fication loss and the domain classification loss, the function
consists of reconstruction loss, mask prediction loss, and task
classification loss

L t
CE + Lst

D + λLspa
CE + ηL p

D + ωLss
recon. (12)

Fig. 4. Chikusei. (a) Pseudo color image (bands 12, 41, and 55). (b) Ground
truth map.

Here, Lss
recon represents the loss from the spatial–spectral

reconstruction task in (1). The target classification loss L t
CE

and spatial mask classification Lspa
CE are from (3). Additionally,

the domain classification loss Lst
D and the task classification

loss L p
D are included in the overall loss. Furthermore, we intro-

duce trade-off factors λ, η, and ω to control the importance
of these auxiliary tasks. The parameters’ aspect is elaborated
in Section IV-C.

IV. EXPERIMENTAL RESULT AND DISCUSSION

HyMuT is an MTL method designed for few-shot HSI
classification. In terms of data requirements, HyMuT only
requires two datasets: one serving as the source domain and
the other as the target domain. Therefore, for our experiments,
we selected four widely used hyperspectral remote sensing
datasets as the target domain: IP, Salinas (SA), Houston, and
Pavia Center (PC). As for the source domain, we selected the
Chikusei dataset for its diversity.

We select several state-of-the-art few-shot HSI classifica-
tion methods for comparison with our proposed HyMuT.
These include three classical methods: support vector machine
(SVM) [6], 3-D CNN [62], and self-supervised deep metric
model (DMM) [63]. Additionally, we include five cross-
domain methods: Two-CNN [64], relation network few-shot
classification (RN-FSC) [26], DCFSL [31], Gia-CFSL [33],
and CMFSL [32]. These benchmark methods provide a basis
for performance comparison with our proposed approach.

A. Experimental Datasets Description

1) Source Domain: The Chikusei is an airborne HSI dataset
collected using the Headwall Hyperspec-VNIR-C imaging
sensor. It covers agricultural and urban areas in the Chiku-
sei region. The dataset consists of 19 classes and has a
spatial resolution of 2.5 m per pixel, with dimensions of
2517 by 2335 pixels. It comprises 128 spectral bands ranging
from 363 to 1018 nm. In Fig. 4, we present a pseudo color
image created by selecting the 12th, 41st, and 55th bands,
along with the corresponding ground truth map. Table I
provides an overview of the samples in the Chikusei dataset.

2) Target Domain: The IP dataset is a widely used HSI
dataset obtained using the Airborne Visible and InfraRed
Imaging Spectrometer (AVIRIS) sensor. It was collected over
an agricultural area in Indiana. The dataset contains 145 ×

145 pixels and consists of 220 spectral bands covering a
range from 0.4 to 2.5 µm. To facilitate classification modeling,
20 bands affected by water vapor were removed, leaving
200 spectral bands. The IP dataset includes 16 landscape types
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TABLE I
NUMBERS OF PIXELS AND LAND COVER CLASSES IN THE CHIKUSEI

Fig. 5. IP. (a) Pseudo color image (bands 11, 21, and 43). (b) Ground truth
map.

such as crops, trees, and bare soil. Table II provides the pixel
counts for each landscape class. In Fig. 5, we showcase a
pseudo color image created using the 11th, 21st, and 43rd
bands, along with the corresponding ground truth map.

The PC dataset, also acquired using Reflective Optics Spec-
trographic Imaging System (ROSIS) over Pavia, comprises
1906 × 715 pixels and 102 spectral bands. After removing
noisy bands, the wavelength range spans from 0.43 to 0.86
µm. Table III provides an overview of the nine categories
present in the dataset and their quantities. Fig. 6 displays a
pseudo color image created using the 12th, 41st, and 55th
bands, along with the ground truth map.

The Houston dataset was acquired by the ITRES CASI-1500
sensor over the University of Houston and its surroundings
in Texas, USA. The spatial resolution is 2.5 m. There are
15 labeled categories in the Houston dataset as shown in
Table IV. There are 349 × 1905 pixels and 144 spectral bands
after absorption bands were removed in the wavelength range

TABLE II
NUMBERS OF PIXELS AND LAND COVER CLASSES IN THE IP

Fig. 6. PC. (a) Pseudo color image (bands 12, 41, and 55). (b) Ground truth
map.

TABLE III
NUMBERS OF PIXELS AND LAND COVER CLASSES IN THE PC

from 0.36 to 1.05 µm. Fig. 7 is a pseudo color image using
the 12th, 41st, and 55th bands, with the ground truth map.

The SA dataset represents the Salinas Valley in California
and was captured using the AVIRIS sensor. It consists of
512 × 127 pixels and encompasses 224 bands. Similar to the
IP dataset, 20 bands affected by water vapor were removed,
resulting in 204 remaining spectral bands ranging from 0.4 to
2.5 µm. The ground truth map and a pseudo color image
created using the 11th, 21st, and 43rd bands are presented
in Fig. 8. For more detailed information on pixel counts and
landscape types, please refer to Table V.
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Fig. 7. Houston. (a) Pseudo color image (bands 12, 41, and 55). (b) Ground
truth map.

TABLE IV
NUMBERS OF PIXELS AND LAND COVER CLASSES IN THE HOUSTON

In our experiment, we employ four metrics to quantitatively
evaluate the classification performance: class-specific accu-
racy, overall accuracy (OA), average accuracy (AA), and kappa

Fig. 8. SA. (a) Pseudo color image (bands 11, 21, and 43). (b) Ground truth
map.

TABLE V
NUMBERS OF PIXELS AND LAND COVER CLASSES IN THE SA

coefficient (Kappa). These metrics provide comprehensive
measures of the classification accuracy.

B. Ablation Study
The design of the three auxiliary tasks is a crucial aspect

of HyMuT, and the three MTL methods support these tasks.
To assess the contribution of these auxiliary tasks and their cor-
responding learning strategies, ablation studies are conducted
on each task using the four datasets in this section.

1) Hard Parameter Sharing: The primary target classifica-
tion task and the auxiliary mask prediction task employ the
hard parameter sharing mechanism to enhance performance.
To analyze the contribution of these two auxiliary tasks,
we design experiments by removing each task individually.
Specifically, we refer to the experiments without the auxiliary
spatial prediction task as “no Tspa.”

2) Hierarchical Transfer MTL: The reconstruction task Tss
is closely related to the target classification task and plays
a crucial role in hierarchical transfer MTL. In this module,
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TABLE VI
ABLATION STUDY (%) ON THE OA INDEX FOR DATASETS

TABLE VII
RESULTS (%) WITH DIFFERENT PARAMETERS FOR R1 AND R2

we conduct experiments by removing the reconstruction task
to assess the performance of their combination. We denote
these experiments as “no Tss.”

3) Dual Adversarial Classifier: The dual adversarial clas-
sifier is based on adversarial learning in MTL and is applied
to both the domain adaptation task and the three prediction
tasks. To demonstrate the effect of this classifier, we design
experiments to remove both types of tasks separately. We refer
to the experiments without any tasks as “no task” and the
experiments without any domain-related tasks as “no domain.”

The results of these experiments are shown in Table VI.
It can be seen that the spatial mask prediction task has the
highest contribution to the target classification, while the dual
adversarial classifier and the corresponding tasks have a mod-
erate contribution. Due to the complexity of the autoencoder,
spatial–spectral joint mask reconstruction task has the smallest
effect, but when these modules are combined, HyMuT works
best.

C. Parameter Tuning

HyMuT involves several hyperparameters that require
adjustment. Therefore, we conducted a series of comparative
experiments to explore the impact of these parameters on the
model. Specifically, we focused on the mask ratios R1 and
R2, as well as the trade-off parameters λ and ω. We selected
two sets of hyperparameter values from the sets {0.05, 0.1,
0.2} and {25%, 50%, 75%}, respectively. Notably, η is used
to assist in the hard parameter sharing mechanism, and {0.01,
0.05, 0.1} are suitable to control the weight.

The mask ratio indicates the degree of damage to the
HSI. A higher mask ratio corresponds to a stronger focus
of the network on a single small data block, making it
more challenging to perform multiple tasks simultaneously.
Balancing the difficulty of the auxiliary tasks and the level of
assistance is a key aspect of MTL.

Table VII illustrates the influence of mask ratios on model
performance. It is worth noting that the mask tasks operate
within the overall network, and the parameters can impact
the model’s overall effectiveness. In the parameter tuning
experiments, we set 0.1 for λ, ω, and η, respectively. From
Fig. 9, higher mask ratios for the prediction mask tasks lead to

Fig. 9. Parameter tuning of R1 and R2.

TABLE VIII
RESULTS (%) WITH DIFFERENT PARAMETERS FOR λ AND ω

WHEN η = 0.01

TABLE IX
RESULTS (%) WITH DIFFERENT PARAMETERS FOR λ AND ω

WHEN η = 0.05

TABLE X
RESULTS (%) WITH DIFFERENT PARAMETERS FOR λ AND ω

WHEN η = 0.1

improved model performance, while the reconstruction mask
task shows worse performance at a 50% mask rate generally.
Consequently, we select the mask rates of 75% for R1 and
25% for R2, which yields the most significant improvements
in performance.

Furthermore, the trade-off parameters determine the weight
of the auxiliary prediction tasks, which affect the learning
efficiency and optimization direction of the target iteration
MTL. The spatial mask task Tspa is determined by the value
of λ since they involve similar auxiliary tasks. On the other
hand, ω is used to control the reconstruction task Tss. And η

is to control the task classifier. We designed experiments with
different combinations of these parameters assuming R1 is
75% and R2 is 25%, as shown in Tables VIII–X. From the
tables, it can be seen that when the values of λ and ω are
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Fig. 10. OA (%) with different λ, ω, and η parameters on SA. (a) η = 0.01. (b) η = 0.05. (c) η = 0.1.

TABLE XI
CLASSIFICATION RESULTS (%) ON IP DATASET WITH FIVE LABELED SAMPLE EACH CLASS

equal, the better the model’s performance, which also means
that auxiliary tasks provide more assistance for the main task.
The visualization diagram of the parameter tuning experiments
is shown in Fig. 10. The red dot represents the maximum value
of this set of parameter experiments

All experiments are conducted using the PyTorch frame-
work, and the evaluations are performed on an NVIDIA
GeForce RTX 3090 24 GB graphics card. The input is set to a
patch size of 9×9×Bands. The optimization scheme employed
is adaptive moment estimation (Adam) with a learning rate of
1 × 10−3. The convolutional kernel weights and linear layers
are initialized using Xavier normalization.

Additionally, the trade-off factors λ, η, and ω are set to
0.2, 0.01, and 0.2 to balance the different loss terms. Each
iteration of the process involves performing the N -way K -
shot task. Following the principles of meta-learning, we set
K to 1, indicating one labeled sample per category, and the
number of query sets is set to 19 for each category.

D. Classification Results
To demonstrate the effectiveness of HyMuT in the few-

shot scenario, we compare it with several well-established
HSI classification models. These models encompass vari-
ous domains, including classical machine learning SVM,
deep learning 3-D CNN, self-supervised learning DMM,
transfer learning Two-CNN, and four different cross-domain
few-shot learning algorithms RN-FSC, DCFSL, Gia-CFSL,

and CMFSL. By evaluating HyMuT against these diverse
approaches, we aim to highlight its superiority in handling
limited labeled samples.

Given the focus of HyMuT on few-shot HSI classification,
we randomly select the five labeled samples from the target
domain. It is worth mentioning that Two-CNN, being a semisu-
pervised method, utilizes both labeled and unlabeled samples.
Moreover, in the case of DCFSL, Gia-CFSL, and CMFSL,
the Chikusei dataset is utilized as the source domain for the
classification task. Additionally, RN-FSC additionally employs
Botswana and Kennedy Space Center to form a larger source
domain.

Specifically, SVM solves linear separable problems by map-
ping data to a high-dimensional space. 3-D CNN effectively
extracts spatial–spectral features from HSI data using 3-D
convolution kernels. Two-CNN learns joint spectral–spatial
features through a two-branch architecture, while the source
domain and target domain data are supposed to be from the
same sensor; as a result, PC and Pavia University (PU) are
the source domain and target domain of each other, which
is the same as IP and SA. DMM is a supervised FSL
method that maps the data to the metric space, and then
selects pairs of samples for similarity learning. And RN-FSC
introduces the cross-domain idea on the basis of FSL. DCFSL
learns a common feature space for the source and target
domains. Gia-CFSL introduces a domain adaptation strategy
based on graph information. CMFSL transforms samples into
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TABLE XII
CLASSIFICATION RESULTS (%) ON SA DATASET WITH FIVE LABELED SAMPLE EACH CLASS

TABLE XIII
CLASSIFICATION RESULTS (%) ON HOUSTON DATASET WITH FIVE LABELED SAMPLE EACH CLASS

TABLE XIV
CLASSIFICATION RESULTS (%) ON PC DATASET WITH FIVE LABELED SAMPLE EACH CLASS

a class-covariance metric embedded space. Parameter settings
for DCFSL, Gia-CFSL, and CMFSL are consistent with
HyMuT.

The classification performance of the aforementioned
methods, measured by OA, AA, kappa coefficient, and
class-specific accuracy, is summarized in Tables XI–XIV.
To facilitate visual comparison, the corresponding classifica-
tion maps are provided in Figs. 11–14. Based on these results,
the following conclusions can be made.

1) In the case of few labeled samples, deep learning models
exhibit stronger feature extraction capabilities compared
to the classic machine learning model SVM. When
measured by the OA index, these models outperform
SVM by at least 2.92%, 0.81%, 6.05%, and 7.38% on
the four datasets.

2) Few-shot learning models demonstrate excellent classifi-
cation performance compared to deep learning methods.
3-D CNN and Two-CNN could extract spatial–spectral

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on May 26,2024 at 13:26:57 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: HYBRID MULTITASK LEARNING NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION 5505816

TABLE XV
TIME (S), FLOPS (M, MILLION), AND NUMBER OF PARAMETERS (M, MILLION) OF DIFFERENT METHODS

Fig. 11. IP. (a) Ground truth map. (b) SVM (38.72%). (c) 3-D
CNN (45.30%). (d) Two-CNN (41.64%). (e) RN-FSC (50.04%). (f) DMM
(60.33%). (g) DCFSL (66.10%). (h) Gia-CFSL (67.42%). (i) CMFSL
(67.32%). (j) HyMuT (70.57%).

Fig. 12. SA. (a) Ground truth map. (b) SVM (68.92%). (c) 3-D
CNN (69.73%). (d) Two-CNN (71.45%). (e) RN-FSC (87.84%). (f) DMM
(89.02%). (g) DCFSL (89.23%). (h) Gia-CFSL (89.66%). (i) CMFSL
(90.26%). (j) HyMuT (91.11%).

joint features, and on this basis, the few-shot learn-
ing methods further utilize the advanced semantic
information of classification through relation network,

Fig. 13. PC. (a) Ground truth map. (b) SVM (83.40%). (c) 3-D
CNN (90.78%). (d) Two-CNN (91.13%). (e) RN-FSC (92.88%). (f) DMM
(95.69%). (g) DCFSL (97.41%). (h) Gia-CFSL (96.69%). (i) CMFSL
(97.07%). (j) HyMuT (97.70%).

contrastive learning, and prototype network. Few-shot
learning-based models outperform previous deep learn-
ing models by at least 8.4%, 16.39%, 4.89%, and 1.75%
in terms of the OA index.

3) Methods DCFSL, Gia-CFSL, and CMFSL, which fully
combine few-shot learning and domain adaptation,
exhibit superior performance compared to few-shot
learning models alone. By leveraging source domain
data, cross-domain few-shot learning methods demon-
strate improved performance on target domain tasks.
DCFSL achieves classification results that are 5.77%,
0.21%, 5%, and 1.72% higher than DMM in terms
of OA. Building upon this, Gia-CFSL and CMFSL
models prioritize intraclass similarity and interclass
differences, incorporating superior cross-domain tech-
niques and achieving optimal AA metrics for specific
datasets.

4) Furthermore, HyMuT combines three auxiliary tasks and
the corresponding MTL methods to fully mine redun-
dant information from multiple perspectives. HyMuT
achieves the highest OA, AA, and kappa scores, surpass-
ing the previous best model by 3.25%, 0.85%, 0.36%,
and 0.29% on the OA index.
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Fig. 14. Houston. (a) Ground truth map. (b) SVM (48.55%). (c) 3-D
CNN (54.60%). (d) Two-CNN (56.88%). (e) RN-FSC (61.77%). (f) DMM
(70.24%). (g) DCFSL (75.24%). (h) Gia-CFSL (72.47%). (i) CMFSL
(78.25%). (j) HyMuT (78.61%).

E. Analysis of the Computational Complexity

Time complexity analysis is a fundamental approach for
assessing the computational efficiency of algorithms. In this
study, we evaluate the time complexity of our model using
metrics such as floating-point operations per second (FLOPs),
parameters, and the overall training time (TIME).

Table XV presents the computational complexity of HyMuT
compared to other methods. Although HyMuT exhibits higher
computational complexity, the indexes remains comparable
to other methods. One of the major drawbacks is the high
computational complexity of the model, and the increased
complexity is primarily attributed to the inclusion of additional

network modules in our model, resulting in a higher number of
parameters and FLOPs. However, considering the superior per-
formance achieved by HyMuT, the associated computational
burden remains acceptable.

V. CONCLUSION

In this article, we propose HyMuT, a hybrid multitask
learning framework, to address the challenge of limited labeled
samples in HSI classification. HyMuT incorporates three
auxiliary tasks and integrates three MTL methods to effec-
tively transfer and leverage information. Specifically, a hard
parameter sharing backbone network is employed to handle
the primary target classification task along with a similar
spatial mask prediction task. Furthermore, we introduce a
weakly parameter sharing autoencoder to address the related
spatial–spectral mask reconstruction task and facilitate adap-
tive feature transfer. Additionally, a weakly correlated domain
adaptation task is introduced to enhance task diversity. A dual
adversarial classifier is utilized to extract task invariance
and domain invariance for improved performance. Extensive
experiments conducted on four benchmark datasets demon-
strate the superiority of HyMuT over other classical models.
Ablation studies further validate the effectiveness of different
components.

On the other hand, the model has some shortcomings that
need to be noted. The main issue is how to select appropriate
auxiliary tasks for the original target task without causing
damage to the model. Besides, the autoencoder constructed
through soft parameter sharing results in unsatisfactory model
parameters and TIME, and further research is needed to
optimize this deficiency. HyMuT serves as a fundamental
framework for MTL without the need for excessive amounts of
datasets. Potential research directions will focus on refining the
self-supervised strategy-based auxiliary tasks and enhancing
the optimization of MTL. Additionally, we will explore more
concise and elegant approaches to multitask coupling.
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