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Abstract—Modern computer designs support composite
prefetching, where multiple individual prefetcher components
are used to target different memory access patterns. However,
multiple prefetchers competing for resources can drastically
hurt performance, especially in many-core systems where cache
and other resources are shared and very limited. Prior work
has proposed mitigating this issue by selectively enabling and
disabling prefetcher components during runtime. Traditional
approaches proposed heuristics that are hard to scale with
increasing core and prefetcher component counts. More recently,
deep reinforcement learning was proposed. However, it is too
expensive to deploy in real-world many-core systems. In this
work, we propose a new phase-based methodology for training
a lightweight supervised learning model to manage composite
prefetchers at runtime. Our approach improves the performance
of a state-of-the-art many-core system by up to 25% and by 2.7 %
on average over its default prefetcher configuration.

I. INTRODUCTION

Hardware data prefetching can reduce memory latency and
significantly improve the performance of many applications,
provided it accurately and promptly detects their memory
access patterns. However, individual prefetchers typically tar-
get specific or limited sets of patterns [12]]. To address this
limitation, modern processors combine multiple prefetcher
components, thus covering a wider range of access patterns
than monolithic prefetchers [12]. Increasing the number of
prefetches in the system can lead to higher contention and
pollution of shared resources like memory bandwidth and
cache space [9], [14]. Furthermore, in multi-core systems, en-
abling prefetching can sometimes hurt performance depending
on the workload [10]. Consequently, modern processors offer
users the ability to adjust prefetcher components through regis-
ters [7]], [14], but selecting when to enable or disable prefetcher
components for any program application is a challenging task.

The variety of dynamic workload behaviors in program
applications is very large, and the best prefetcher selection
may change depending on the workload behavior. For exam-
ple, Fig. [T] shows the execution time of 10 programs from
the SPEC CPU Int Rate 2017 multi-programmed benchmark
suite [18] running on a many-core hardware platform with
three different prefetcher configurations: ON, OFF, and Def.
ON enables all prefetcher components; OFF disables all
prefetcher components; and, Def sets the default configuration,
which enables one prefetcher. The figure depicts that the best
selection is different for each program. While this example
only compares three configurations, modern systems offer
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Fig. 1. Speedup (higher is better) of SPEC CPU Int Rate 2017 benchmarks
with all prefetchers disabled (OFF) and all prefetchers enabled (ON) compared
to the default config (Def). The best configuration depends on the workload.

more options, increasing the complexity of runtime decisions
that map workload behaviors to prefetcher selection.

Previous research has explored various techniques for tuning
prefetcher components at runtime to maximize performance, a
task commonly known as runtime adaptive prefetching. Some
studies use heuristics and explore all or a subset of configura-
tions during program execution to make decisions [[11]], [[14],
[15]. However, exploring configurations during runtime misses
performance opportunities and does not scale with increasing
configurations and core counts. More recent works have used
machine learning (ML) models to train a policy offline and
evaluate it online [7], [9]. However, they do not provide
sufficient proof that their models are generalized enough to
handle unseen workloads, and their proposed models are too
expensive to implement on a real-world platform. Furthermore,
none of these runtime adaptive prefetching studies have inves-
tigated many-core platforms, which present unique challenges
that do not manifest at lower core counts.

In this work, we propose a runtime prefetcher selection
approach that uses a low-overhead machine learning model
to enable or disable prefetcher components based on their ex-
pected performance improvement on a state-of-the-art many-
core platform. We collect hardware counter data to monitor the
system workload and propose a new methodology that uses
phase classification [[1] and supervised learning to correlate
workload phases with the best selection of prefetcher com-
ponents. We demonstrate the effectiveness of our approach
by deploying a software-based version on a state-of-the-art
cloud-scale hardware platform. Our approach can also be
implemented in hardware on future processor designs.

We summarize the contributions of this paper as follows:
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1) We propose phase classification to group similar work-
load behaviors and find the best prefetcher selection for
each phase using a supervised learning formulation.

2) We implement a decision tree model that is lightweight,
requiring only 42 bytes of storage, yet accurate enough
to improve the execution time of cloud workloads run-
ning on a 160-core AmpereOne, a state-of-the-art many-
core platform.

3) We demonstrate our model’s ability to generalize and
improve the performance of workloads that were not
seen during training. Our evaluation includes data
collected from diverse multi-programmed and multi-
threaded workloads. Our results show that our model
can improve the performance of new workloads by up
to 25% over the platform’s default prefetcher and by
2.7% on average.

II. RELATED WORK

Prior work has proposed numerous approaches to reduce
the contention generated by prefetchers in multi-core sys-
tems. Some work is concerned with extending the design of
prefetchers [3]-[6], [13]], [16], [19]] while others have proposed
prefetcher-aware cache insertion and eviction policies to man-
age cache contention [8], [19]. While these solutions focus
on tuning an individual prefetcher, our approach is concerned
with managing the components of composite prefetchers.

Various studies in composite prefetching management pro-
pose heuristics to select prefetchers at runtime [[11], [[14], [15].
These approaches study different metrics to rank prefetcher
configurations based on performance [[11], [[15]] or other heuris-
tics [14]. The ranking is obtained during execution time by
performing an exhaustive search that executes every prefetcher
configuration for one sample. The best-ranked configuration
is selected for a pre-determined period of time. This pro-
cess is repeated after either a fixed time window [14] or
a phase change, defined by a fixed percentage change in
system performance [[11] or annotated in code [[15]. However,
exhaustively searching multiple configurations during runtime
is not scalable as the number of prefetchers and applications
increases. Additionally, the time spent searching necessarily
misses optimization opportunities. Lastly, ranking prefetcher
configurations based on the performance of a single sam-
ple fails to acknowledge short-term performance variations
in workloads [1], which may lead to selecting the wrong
configuration.

More recent work has introduced ML-based composite
prefetcher management approaches. These models eliminate
the need to search the configuration space exhaustively by
learning to generalize from fewer samples. In [7]], the authors
proposed formulating the problem with contextual bandits.
They train one model per prefetcher component while other
prefetchers are always on. However, they do not evaluate
the coordination of prefetchers, since the models are not
enabled simultaneously. Additionally, they found that they
never need to disable some prefetchers in their quad-core
system. This is not the case in many-core systems, where it is
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Fig. 2. Prefetcher selection overview.

sometimes beneficial to disable all prefetchers, as was shown
in Fig.|l| In [9], the authors propose using deep reinforcement
learning (RL) to coordinate multiple prefetchers. However,
deploying deep RL models on real-world systems is very
expensive in terms of training, power, storage, and latency
costs. In contrast, we propose a supervised learning model
with minimal costs that can be either implemented in existing
runtime management systems or easily deployed in hardware.
Moreover, these studies [7]], [9] only considered multi-
programmed workloads and did not investigate whether their
models can improve the performance of unseen (i.e., not used
for training) program applications. Our work demonstrates that
our proposed lightweight runtime prefetcher selection model
can generalize its predictions to unseen and multi-threaded
workloads.

III. PREFETCHER SELECTION MODEL DESIGN

The task of selecting a prefetcher configuration during
runtime with a model is represented in Fig.[2] The model aims
to map a vector of hardware counter values into a prefetcher
selection decision. We collect hardware counters by accessing
the performance monitoring units (PMU) of the system and
set the prefetcher decision through a model-specific register
(MSR). This section outlines our proposed method for de-
signing and training such a model. We start by introducing
the problem formulation, followed by an explanation of our
approach, which involves both offline analysis and online
implementation.

A. Problem Formulation

The goal of a prefetcher selection policy is to minimize the
execution time of a workload, which we define as GG. The
execution of a workload is represented by a trace of hardware
counters, U € RT*C  where T is the number of samples and C'
is the number of collected hardware counters. An observation
of U at time ¢ is represented as U;. The hardware counters
are transformed into features X; = Q(U;), X; € R, where
M is the number of features. For example, this transformation
Q includes calculating the IPC with the instructions and cpu-
cycles hardware counters. We use p; to represent the IPC of a
sample at time ¢, p; € X;. We partition the goal of minimizing
the execution time into smaller goals that maximize the IPC
of each sample, p;, based on the observation that the average
IPC is inversely proportional to the execution time.
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Fig. 3. Proposed analysis to generate our runtime prefetcher selection model.

TABLE I
LISTS OF COLLECTED HARDWARE COUNTERS AND FEATURES.

Features (X = Q(U)) l

Instructions per cycle (IPC)

Memory accesses per kilo instructions
Branch misses per kilo instructions

Cache misses per kilo instructions

Cache misses to memory accesses ratio
L2 data cache refills to cache miss ratio
L2 instruction cache refills to branch
misses ratio

Hardware counters (U) ||

Instructions

Memory accesses

Branch misses

Cache misses

CPU cycles

L2 data cache refills

L2 instruction cache refills

At each time step ¢, a machine learning model, f, predicts
an output, y;1 based on the features X, with the goal of
maximizing pyy1. The output is a one-hot encoded vector,
y: € {0,1}Y, where N is the number of prefetchers, and
each element in the vector indicates whether the prefetcher
should be enabled or disabled.

B. Data Analysis and Model Training

After partitioning our goal of minimizing a workload’s
execution time into smaller goals that maximize the IPC of
each sample of the workload, we need to define a ground
truth in order to train a supervised learning model. We propose
a method that analyzes data and generates labels to train a
runtime prefetcher selection model in an offline fashion. Our
method is depicted in Fig. 3] comprising five stages detailed
below.

1) Data Collection: We periodically collected hardware
counter data from different workloads to later train our model.
For each workload, we collected one trace of hardware coun-
ters per prefetcher configuration.

2) Clustering: In order to compare the samples of different
prefetcher configurations, we propose clustering similar PMU
behaviors together to find phases within the workloads. Our
methodology involves training a clustering model with data
from only one prefetcher configuration. We chose OFF as
our baseline since it shows workload behaviors without the
effects of prefetching. We scaled all features to a range
between 0 and 1 using a min-max scaler and clustered all the
workload traces of the baseline configuration using k-means.
This produces a table of cluster centers, which is then used
for phase classification.

3) Phase Classification: Once the cluster centers have been
generated using data from the baseline configuration, we use

them to classify the phases of data samples in all traces.
Next, we group all samples in the same phase and prefetcher
configuration and calculate the average IPC per phase. This
allows us to compare the performance of different prefetcher
configurations across workload phases.

4) Training Set Generation: We use the phase classification
labels to determine the best prefetcher configuration for each
sample, which we define as the configuration that yields
the highest average IPC for the corresponding phase. We
consider this definition as our ground truth. Associating each
sample and its phase classification with the best prefetcher
configuration generates a supervised training set that assigns
each sample’s features X, to the ground truth prefetcher
selection, ;.

5) Model Training: We use our generated data set to train
a decision tree model. We found that it only needs four input
features instead of seven while maintaining high prediction
accuracy. This reduces the number of hardware counters that
we need to collect during runtime.

C. Runtime Implementation

We implemented our prefetcher selection model as a pro-
gram with a thread that is invoked every 100 ms. The thread
accesses hardware counter values using perf’s system call.
Then, it transforms the counters into features and performs
inference on the decision tree. Finally, it writes the decision
tree output to the corresponding fields in the prefetcher MSR.

IV. EXPERIMENTAL RESULTS

We collected data from one multi-programmed benchmark
suite, SPEC CPU Int Rate 2017 [18]], and two multi-threaded
Java benchmark suites, DaCapo [2] and Renaissance [17],
to evaluate our approach. We use SPEC CPU workloads
for training and validation and DaCapo and Renaissance for
testing. All workloads run on AmpereOne, a cloud-scale many-
core platform with 160 ARMv8.6+ ISA cores, 2MB of L2
cache per core, 64MB of system-level cache, and 256GB of
DDRS5-4800 memory running Fedora Linux 36. The platform
has 12 different prefetcher configurations, which can be tuned
with a hardware register. For each prefetcher configuration,
we collected one trace of hardware counters per workload,
resulting in a total of 120 traces (12 prefetcher options x 10
workloads). Each trace consisted of C' = 7 hardware counters
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Fig. 4. Performance improvement (execution time reduction) of different deci-
sion tree model depths over the default prefetcher on SPEC CPU benchmarks.
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Fig. 5. Performance improvement (execution time reduction) of different deci-
sion tree model depths over the default prefetcher on SPEC CPU benchmarks
compiled with gee-12.

collected periodically every 100 ms with Linux’s perf tool.
The hardware counters were transformed into M = 7 features.
See Table lll for the lists of hardware counters and features.

Fig. [ shows the speedup of all SPEC CPU benchmarks
when prefetcher selection is enabled and exploring the deci-
sion tree depth hyperparameter with depths of 1, 2, and 4. The
results are normalized to the system’s default prefetcher. The
geomean is shown on the right side of the plot. On average,
enabling system-wide runtime adaptive prefetching improves
the performance of SPEC workloads by 1.9% and up to 5.5%
in the best scenario.

We want to measure the ability of the model to improve per-
formance even with system changes. For this test, we evaluated
our models on the same programs but with different binaries.
Specifically, we recompiled SPEC CPU benchmarks with a
different compiler, gcc-12, which introduces several new code
optimizations when compared to previous versions, such as
improved vectorization and structure splitting. So although the
same work is completed, the data access patterns may vary
widely as in the case of 505.mcf. Then, we enabled prefetcher
selection with the same models that were previously trained on
SPEC programs compiled with gcc-10. The results are shown
in Fig. 5] The best-performing decision tree has a depth of 4.
We observe a similar performance improvement trend between
the gcc-10 and gee-12 experiments and demonstrate that the
model still improves performance even when presented with
different binary files.

We further test the performance of our model by presenting
it with completely new workloads (not used for training).
We ran workloads from the DaCapo and Renaissance suites.
Note that in addition to being new workloads, they are multi-
threaded instead of multi-programmed, written in a different
language (Java), and compared to SPEC CPU they spend
more time in operating system code, network stack, and
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Fig. 6. Performance improvement (execution time reduction) of a runtime
prefetcher selection tree of depth 4 trained on SPEC CPU over the default
prefetcher on DaCapo benchmarks.
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Fig. 7. Performance improvement (execution time reduction) of a runtime
prefetcher selection tree of depth 4 trained on SPEC CPU over the default
prefetcher on Renaissance benchmarks.

synchronization (locking and snooping). We tested our best-
performing decision tree with depth 4 on each suite and show
our results in Fig. [ and Fig. [7] For most of the workloads,
dynamic prefetcher selection reduces the execution time, with
the best scenario being 25%. However, as opposed to SPEC
CPU results, some programs lose performance. Nonetheless,
the geomean performance improvements for DaCapo and Re-
naissance suites are 1.7% and 3%, respectively. The improved
performance of all these unseen workloads together is 2.7%.

A major benefit of our proposed model, as opposed to prior
work, is the lightweight implementation. The decision tree has
a maximum depth of 4. It requires storing 15 nodes with two
parameters each: the feature ID (in our case, 2 bits for four
features) and the compare value (we use 16 bits but can be
reduced to 8 bits). Additionally, the eight leaf nodes require
storing the prefetcher selection when true or false (4 bits in
our case). The total size of our model is only 42 bytes, which
makes it easy to fit on any embedded firmware or hardware
deployment.

V. CONCLUSION AND FUTURE WORK

We proposed a lightweight model for runtime prefetcher
selection for many-core platforms. It can improve the perfor-
mance of unseen workloads by up to 25% and 2.7% on average
over the default prefetcher.

These early results suggest that runtime prefetcher selection
can be formulated as a workload-agnostic offline supervised
learning problem; however, further investigation is required to



determine why it performed poorly in a few benchmarks. The
investigation should determine whether the problem is training
coverage, i.e., the input features are in a different distribution
from the training set, or the problem is workload specific,
i.e., for the same set of input features, the best prefetcher
selection is different depending on the running program. Our
proposed approach estimates the best prefetcher selection for
all the cores in the system. Future work includes investigating
lightweight runtime prefetcher selection that is more practical
for per-core decisions.
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