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Abstract

The dynamical formulation of the optimal transport can be extended through var-
ious choices of the underlying geometry (kinetic energy), and the regularization
of density paths (potential energy). These combinations yield different variational
problems (Lagrangians), encompassing many variations of the optimal transport
problem such as the Schrödinger bridge, unbalanced optimal transport, and op-
timal transport with physical constraints, among others. In general, the optimal
density path is unknown, and solving these variational problems can be compu-
tationally challenging. Leveraging the dual formulation of the Lagrangians, we
propose a novel deep learning based framework approaching all of these problems
from a unified perspective. Our method does not require simulating or backprop-
agating through the trajectories of the learned dynamics, and does not need access
to optimal couplings. We showcase the versatility of the proposed framework by
outperforming previous approaches for the single-cell trajectory inference, where
incorporating prior knowledge into the dynamics is crucial for correct predictions.

1 Introduction

The problem of trajectory inference, or recovering the population dynamics of a system from sam-
ples of its temporal marginal distributions, is a problem arising throughout the natural sciences
[25, 29]. A particularly important application is analysis of single-cell RNA-sequencing data
[58, 57, 55], which provides a heterogeneous snapshot of a cell population at a high resolution,
allowing high-throughput observation over tens of thousands of genes [43]. However, since the
measurement process ultimately leads to cell death, we can only observe temporal changes of the
marginal or population distributions of cells as they undergo treatment, differentiation, or develop-
mental processes of interest. To understand these processes and make future predictions, we are
interested in both (i) interpolating the evolution of marginal cell distributions between observed
timepoints and (ii) modeling the full trajectories at the individual cell level.

However, when inferring trajectories over cell distributions, there exist multiple cell dynamics that
yield the same population marginals. This presents an ill-posed problem, which highlights the need
for trajectory inference methods to be able to flexibly incorporate different types of prior informa-
tion on the cell dynamics. Commonly, such prior information is specified via posing a variational
problem on the space of marginal distributions, where previous work on measure-valued splines
[14, 8, 16, 20, 13] are examples which seek minimize the acceleration of particles.

We propose a general framework for using deep neural networks to infer dynamics and solve
marginal interpolation problems, using Lagrangian action functionals on manifolds of probability
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Figure 1: Our Wasserstein Lagrangian Flows are action-minimizing curves for various choices of
Lagrangian Li[ρt, ρ̇t, t] on the space of densities, which each translate to optimal state-space dynam-
ics. Toy examples of dynamics resulting from various potential or kinetic energy terms are given in
(a)-(d). We may also constrain Wasserstein Lagrangian flows to match intermediate data marginals
ρti = µti and combine energy terms to define a suitable notion of interpolation between given µti .

densities that can flexibly incorporate various types of prior information. We consider Lagrangians
of the form L[ρt, ρ̇t, t] = K[ρt, ρ̇t, t]−U [ρt, t], referring to the first term as a kinetic energy and the
second as a potential energy. Our methods can be used to solve a diverse family of problems defined
by the choice of these energies and constraints on the evolution of ρt. More explicitly, we specify

• A kinetic energy which, in the primary examples considered in this paper, corresponds to
a geometry on the space of probability measures. We primarily consider the Riemannian
structures corresponding to the Wasserstein-2 and Wasserstein Fisher-Rao metrics.

• A potential energy, which is a functional of the density, for example the expectation of a
physical potential encoding prior knowledge or even a nonlinear functional.

• A collection of marginal constraints which are inspired by the availability of data in the
problem of interest. For optimal transport (OT), Schrödinger Bridge (SB), or generative
modeling tasks, we are often interested in interpolating between two endpoint marginals
given by a data distribution and/or a tractable prior distribution. For applications in tra-
jectory inference, we may incorporate multiple constraints to match the observed temporal
marginals, given via data samples. Notably, in the limit of data sampled infinitely densely
in time, we recover the Action Matching (AM) framework of Neklyudov et al. [47].

Within our Wasserstein Lagrangian Flows framework, we propose tractable dual objectives to solve
(i) standard Wasserstein-2 OT (Ex. 4.1, Benamou & Brenier [7], Villani [66]), (ii) entropy regular-
ized OT or Schrödinger Bridge (Ex. 4.4, Léonard [31], Chen et al. [15], (iii) physically constrained
OT (Ex. 4.3, Tong et al. [61], Koshizuka & Sato [28]), and (iv) unbalanced OT (Ex. 4.2, Chizat et al.
[17]) (Sec. 4). Our framework also allows for combining energy terms to incorporate features of the
above problems as inductive biases for trajectory inference. In Sec. 5, we showcase the ability of our
methods to accurately solve Wasserstein Lagrangian flow optimizations, and highlight how testing
different Lagrangians can improve results in single-cell RNA-sequencing applications. We discuss
benefits of our approach compared to related work in Sec. 6.

2 Background
2.1 Wasserstein-2 Geometry
For two given densities with finite second moments µ0, µ1 ∈ P2(X ), the Wasserstein-2 OT problem
is defined, in the Kantorovich formulation, as a cost-minimization problem over joint distributions
or ‘couplings’ π ∈ Π(µ0, µ1) = {π(x0, x1) |

∫
π(x0, x1)dx1 = µ0,

∫
π(x0, x1)dx0 = µ1}, i.e.

W2(µ0, µ1)
2 := inf

π∈Π(µ0,µ1)

∫
∥x0 − x1∥2π(x0, x1)dx0dx1 . (1)

The dynamical formulation of Benamou & Brenier [7] gives an alternative perspective on the W2
OT problem as an optimization over a vector field vt that transports samples according to an ODE
ẋt = vt. The evolution of the samples’ density ρt, under transport by vt, is governed by the
continuity equation ρ̇t = −∇ · (ρtvt) (Figalli & Glaudo [23] Lemma 4.1.1), and we have

W2(µ0, µ1)
2 = inf

ρt
inf
vt

∫ 1

0

∫
1

2
∥vt∥2 ρt dxtdt s.t. ρ̇t = −∇ · (ρtvt), ρ0 = µ0, ρ1 = µ1, (2)

where ∇·() is the divergence operator. TheW2 transport cost can be viewed as providing a Rieman-
nian manifold structure on P2(X ) (Otto [48], Ambrosio et al. [3], see also Figalli & Glaudo [23] Ch.
4). Introducing Lagrange multipliers st to enforce the constraints in Eq. (2), we obtain the condition

2



vt = ∇st (see App. B.1), which is suggestive of the result from Ambrosio et al. [3] characterizing
the tangent space TW2

ρ P2 = {ρ̇ |
∫
ρ̇ dxt = 0} via the continuity equation,

TW2
ρ P2(X ) = {ρ̇ | ρ̇ = −∇ · (ρ∇s)}. (3)

We also write the cotangent space as T ∗W2
ρ P2(X ) = {[s] | s ∈ C∞(X )}, where C∞(X ) denotes

smooth functions and [s] is an equivalence class up to addition by a constant. For two curves µt, ρt :
[−ϵ, ϵ] 7→ P2(X ) passing through ρ := ρ0 = µ0, the Otto metric is defined

⟨µ̇t, ρ̇t⟩W2
Tρ

= ⟨sµ̇t , sρ̇t⟩
W2
T∗
ρ

=

∫
⟨∇sµ̇t ,∇sρ̇t⟩ρ dx. (4)

2.2 Wasserstein Fisher-Rao Geometry
Building from the dynamical formulation in Eq. (2), Chizat et al. [17, 18], Kondratyev et al.
[26], Liero et al. [33, 34] consider additional terms allowing for birth and death of particles, or tele-
portation of probability mass. In particular, consider extending the continuity equation to include a
‘growth term’ gt : X → R whose norm is regularized in the cost,

WFRλ(µ0, µ1)
2 = inf

ρt
inf
vt,gt

∫ 1

0

∫ (
1

2
∥vt∥2 +

λ

2
g2t

)
ρt dxtdt, (5)

subject to ρ̇t = −∇ · (ρtvt) + λρtgt, ρ0 = µ0, ρ1 = µ1. We call this the Wasserstein Fisher-Rao
(WFR) distance, since considering only the growth terms recovers the non-parametric Fisher-Rao
metric [17, 6]. We also refer to Eq. (5) as the unbalanced OT problem on the space of unnormalized
densities M(X ), since the growth terms need not preserve normalization

∫
ρ̇tdxt =

∫
λgtρtdxt ̸=

0 without further modifications (see e.g. Lu et al. [42]).

Kondratyev et al. [26] define a Riemannian structure on M(X ) via the WFR distance. Introducing
Lagrange multipliers st and eliminating vt, gt in Eq. (5) yields the optimality conditions vt = ∇st
and gt = st. In analogy with Sec. 2.1, this suggests characterizing the tangent space via the tuple
(st,∇st) and defining the metric as a characterization of the tangent space

TWFRλ
ρ M(X ) = {ρ̇ | ρ̇ = −∇ · (ρ∇s) + λρs} (6)

⟨µ̇t, ρ̇t⟩WFRλ
Tρ

= ⟨sµ̇t , sρ̇t⟩
WFRλ
T∗
ρ

=

∫ (
⟨∇sµ̇t ,∇sρ̇t⟩+ λ sµ̇tsρ̇t

)
ρ dx. (7)

2.3 Action Matching
Finally, Action Matching (AM) [47] considers only the inner optimizations in Eq. (2) or Eq. (5) as
a function of vt or (vt, gt), assuming a distributional path µt is given via samples. In the W2 case,
to solve for the velocity vt = ∇sµ̇t which corresponds to µt via the continuity equation or Eq. (3),
Neklyudov et al. [47] optimize the objective

A[µt] = sup
st

∫
s1µ1 dx1 −

∫
s0µ0 dx0 −

∫ 1

0

∫ (
∂st
∂t

+
1

2
∥∇st∥2

)
µt dxtdt, (8)

over st : X × [0, 1] → R parameterized by a neural network, with similar objectives for WFRλ.
To foreshadow our exposition in Sec. 3, we view Action Matching as maximizing a lower bound on
the action A[µt] or kinetic energy of the curve µt : [0, 1] → P2(X ) of densities. In particular, at the
optimal sµ̇t satisfying µ̇t = −∇ · (µt∇sµ̇t), the value of Eq. (8) becomes

A[µt] =

∫ 1

0

1

2
⟨µ̇t, µ̇t⟩W2

Tµt
dt =

∫ 1

0

1

2
⟨sµ̇t , sµ̇t⟩

W2
T∗
µt
dt =

∫ 1

0

∫
1

2
∥∇st∥2µt dxtdt. (9)

Our proposed framework for Wasserstein Lagrangian Flows considers minimizing the action func-
tional over distributional paths, and our computational approach will include AM as a component.

3 Wasserstein Lagrangian Flows
In this section, we develop computational methods for optimizing Lagrangian action functionals
on the space of (unnormalized) densities P(X ).2 Lagrangian actions are commonly used to de-
fine a cost function on the ground space X , which is then ‘lifted’ to the space of densities via an
optimal transport distance (Villani [66] Ch. 7). We propose to formulate Lagrangians L[ρt, ρ̇t, t]
directly in the density space, which includes OT with ground-space Lagrangian costs as a special
case (App. B.1.2), but also allows us to consider kinetic and potential energies which depend on the
density and thus cannot be expressed using a ground-space Lagrangian. In particular, we consider
kinetic energies capturing space-dependent birth-death terms (as in WFRλ, Ex. 4.2) and potential
energies capturing information about the distribution of particles (as in the SB problem, Ex. 4.4).

2For convenience, we describe our methods using a genericP(X ) (which may representP2(X ) orM(X )).
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Figure 2: For different definitions of Lagrangian L[ρt, ρ̇t, t] or Hamiltonian H[ρt, st, t] on the space
of densities, we obtain different action functionals A[ρt]. Here, we show state-space velocity and
optimal density paths for theW2 geometry and OT problem. (a) The action functional for each curve
can be evaluated using Action Matching (inner optimization in Thm. 1), which is performed in the
state-space. (b,c) Minimization of the action functional (outer optimization in Thm. 1) is performed
on the space of densities satisfying two endpoint constraints and possible intermediate constraints.

3.1 Wasserstein Lagrangian and Hamiltonian Flows
We consider Lagrangian action functionals on the space of densities, defined in terms of a kinetic
energy K[ρt, ρ̇t, t], which captures any dependence on the velocity of a curve ρ̇t, and a potential
energy U [ρt, t] which depends only on the position ρt,

L[ρt, ρ̇t, t] = K[ρt, ρ̇t, t]− U [ρt, t]. (10)
Throughout, we will assume L[ρt, ρ̇t, t] is lower semi-continuous (lsc) and strictly convex in ρ̇t.

Our goal is to solve for Wasserstein Lagrangian Flows, by optimizing the given Lagrangian over
curves of densities ρt : [0, 1] → P(X ) which are constrained to pass through M given points
µti ∈ P(X ) at times ti. We define the action of a curve AL[ρt] =

∫ 1

0
L[ρt, ρ̇t, t]dt as the time-

integral of the Lagrangian and seek the action-minimizing curve subject to the constraints

SL({µti}M−1
i=0 ) := inf

ρt∈Γ({µti
})
AL[ρt] := inf

ρt

∫ 1

0

L[ρt, ρ̇t, t]dt s.t. ρti = µti ∀ 0 ≤ i ≤M − 1

(11)

where Γ({µti}) = {ρt : [0, 1] → P(X ) | ρ0 = µ0, ρ1 = µ1, ρti = µti (∀ 1 ≤ i ≤ M − 2)}
indicates the set of curves matching given constraints. We note M = 2 as an important special case.

Our objectives for solving Eq. (11) are based on the Hamiltonian H associated with the chosen
Lagrangian. In particular, consider a cotangent vector st ∈ T ∗P2(X ) or st ∈ T ∗M(X ), which
is identified with a linear functional on the tangent space st[·] : ρ̇t 7→

∫
stρ̇tdxt via the canonical

duality bracket. We define the Hamiltonian H[ρt, st, t] via the Legendre transform

H[ρt, st, t] = sup
ρ̇t∈TρtP

∫
stρ̇t dxt − L[ρt, ρ̇t, t] = K∗[ρt, st, t] + U [ρt, t], (12)

where the sign of U [ρt, t] changes and K∗[ρt, st, t] translates the kinetic energy to the dual space. A
primary example is when K[ρt, ρ̇t, t] =

1
2 ⟨ρ̇t, ρ̇t⟩Tρt

is given by a Riemannian metric in the tangent
space (such as for W2 or WFRλ), then K∗[ρt, st, t] =

1
2 ⟨st, st⟩T∗

ρt
is the same metric written in the

cotangent space (see App. B.1 for detailed derivations for all examples considered in this work).

Finally, under our assumptions, L[ρt, ρ̇t, t] can also be written using the Legendre transform,
L[ρt, ρ̇t, t] = supst∈T∗

ρt
P
∫
stρ̇t dxt − H[ρt, st, t]. The following theorem forms the basis for

our computational approach, and can be derived using the Legendre transform and integration by
parts in time (see App. A for proof and Fig. 2 for visualization).

Theorem 1. For a Lagrangian L[ρt, ρ̇t, t] which is lsc and strictly convex in ρ̇t, the optimization

S = inf
ρt∈Γ({µti

})
AL[ρt] = inf

ρt∈Γ({µti
})

∫ 1

0

L[ρt, ρ̇t, t]dt

is equivalent to the following dual

S = inf
ρt∈Γ({µti

})
sup
st

∫
s1µ1 dx1 −

∫
s0µ0 dx0 −

∫ 1

0

(∫
∂st
∂t
ρtdxt +H[ρt, st, t]

)
dt (13)
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where, for st ∈ T ∗
ρt
P , the Hamiltonian H[ρt, st, t] is the Legendre transform of L[ρt, ρ̇t, t] (Eq 12).

In particular, the action AL[ρt] of a given curve is the solution to the inner optimization,

AL[ρt] = sup
st

∫
s1µ1 dx1 −

∫
s0µ0 dx0 −

∫ 1

0

(∫
∂st
∂t
ρtdxt +H[ρt, st, t]

)
dt. (14)

In line with our goal of defining Lagrangian actions directly on P(X ) instead of via X , Thm. 1
operates only in the abstract space of densities. See App. C for a detailed discussion.

Finally, the solution to Eq. (11) can also be expressed as a Wasserstein Hamiltonian flow [19], with
the optimality conditions ∂ρt

∂t = δ
δst

H[ρt, st, t] and ∂st
∂t = − δ

δρt
H[ρt, st, t] (see Sec. 6).

To further analyze Thm. 1 and set the stage for our computational approach in Sec. 3.2, we consider
the two optimizations in Eq. (13) as (i) evaluating the action functional AL[ρt] for a given curve ρt,
and (ii) optimizing the action over curves ρt ∈ Γ({µti}) satisfying the desired constraints.

3.1.1 Inner Optimization: Evaluating AL[ρt] using Action Matching
We immediately recognize the similarity of Eq. (14) to the AM objective in Eq. (8) for H[ρt, st, t] =∫

1
2∥∇st∥

2ρtdxt, which suggests a generalized notion of Action Matching as an inner loop to eval-
uate AL[ρt] for a given ρt ∈ Γ({µti}) in Thm. 1. For all t, the optimal cotangent vector sρ̇t

corresponds to the tangent vector ρ̇t of the given curve via the Legendre transform or Eq. (14).

Neklyudov et al. [47] assume access to samples from a continuous curve of densities µt which, from
our perspective, corresponds to the limit as the number of constraintsM → ∞. Since ρt ∈ Γ({µti})
has no remaining degrees of freedom in this case, the outer optimization over ρt can be ignored and
expectations in Eq. (8) are written directly under µt. However, this assumption is often unreasonable
in applications such as trajectory inference, where data is sampled discretely in time.

3.1.2 Outer Optimization over Constrained Distributional Paths
In our settings of interest, the outer optimization over curves SL({µti}) = infρt∈Γ({µti

}) AL[ρt]
is thus necessary to interpolate between M given marginals using the inductive bias encoded in
the Lagrangian L[ρt, ρ̇t, t]. Crucially, our parameterization of ρt in Sec. 3.2.2 will enforce ρt ∈
Γ({µti}) by design, given access to samples from µti . Nevertheless, upon reaching an optimal ρt,
our primary object of interest is the dynamics model corresponding to ρ̇t and parameterized by the
optimal sρ̇t in Eq. (14), which may be used to transport particles or predict individual trajectories.

3.2 Computational Approach for Solving Wasserstein Lagrangian Flows

In this section, we describe our computational approach to solving for a class of Wasserstein La-
grangian Flows, which is summarized in Alg. 1.

3.2.1 Linearizable Kinetic and Potential Energies
Despite the generality of Thm. 1, we restrict attention to Lagrangians with the following property.

Definition 3.1 ((Dual) Linearizability). A Lagrangian L[ρt, ρ̇t, t] is dual linearizable if the corre-
sponding Hamiltonian H[ρt, st, t] can be written as a linear functional of the density ρt. In other
words, H[ρt, st, t] is linearizable if there exist functions K∗(xt, st, t), and U(xt, st, t) such that

H[ρt, st, t] =

∫ (
K∗(xt, st, t) + U(xt, st, t)

)
ρtdxt. (15)

This property suggests that we only need to draw samples from ρt and need not evaluate its density,
which allows us to derive an efficient parameterization of curves satisfying ρt ∈ Γ({µti}) below. 3

As examples, note that the WFRλ or W2 metrics as the Lagrangian yield a linear Hamiltonian
H[ρt, st, t] = K∗[ρt, st, t] = 1

2 ⟨st, st⟩
WFRλ

T∗
ρt

=
∫
( 12∥∇st∥

2 + λ
2 s

2
t )ρtdxt, with λ = 0 for W2.

Potential energies U [ρt, t] =
∫
Vt(xt)ρtdxt which are linear in ρt (Ex. 4.3) clearly satisfy Def. 3.1.

However, nonlinear potential energies as in Ex. 4.4 require reparameterization to be linearizable.
3In App. B.3, we highlight the Schrödinger Equation as a special case of our framework which does not

appear to admit a linear dual problem. In this case, optimization of Eq. (13) may require explicit modeling of
the density ρt corresponding to a given set of particles xt (e.g. see Pfau et al. [51]).
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Algorithm 1 Learning Wasserstein Lagrangian Flows

Require: samples from the marginals µ0, µ1, parametric model st(x; θ), generator from ρt(x; η)
for learning iterations do

sample from marginals {xi
0}ni=1 ∼ µ0, {xi

1}ni=1 ∼ µ1, sample time {ti}ni=1 ∼ UNIFORM[0, 1]
xi
t = (1− ti)xi

0 + tixi
1 + ti(1− ti)NNET(ti, xi

0, x
i
1; η)

−GRADη = ∇η
1
n

∑n
i=1

[
∂s

ti

∂t
(xi

t(η); θ) +K∗(xi
t(η), sti(x

i
t(η); θ), t

i
)
+ U

(
xi
t(η), sti(x

i
t(η); θ), t

i
)]

for Wasserstein gradient steps do
xi
t ← xi

t + α · ti(1− ti)∇x

[
∂s

ti

∂t
(xi

t; θ) +K∗(xi
t, sti(x

i
t; θ), t

i
)
+ U

(
xi
t, sti(x

i
t; θ), t

i
)]

end for
GRADθ = ∇θ

1
n

∑n
i=1

[
s1(x

i
1; θ)− s0(x

i
0; θ)−

∂s
ti

∂t
(xi

t; θ)−K∗(xi
t, sti(x

i
t; θ), t

i
)
− U

(
xi
t, sti(x

i
t; θ), t

i
)]

update parameters using gradients GRADη, GRADθ

end for
return cotangent vectors st(x; θ)

3.2.2 Parameterization and Optimization
For any Lagrangian optimization with a linearizable dual objective as in Def. 3.1, we consider pa-
rameterizing the cotangent vectors st and the distributional path ρt. We parameterize st as a neural
network st(x; θ) which takes t and x as inputs with parameters θ, and outputs a scalar. Inspired
by the fact that we only need to draw samples from ρt for these problems, we parameterize the
distribution path ρt(x; η) as a generative model, where the samples are generated as follows

xt = (1− t)x0 + tx1 + t(1− t)NNET(t, x0, x1; η), x0 ∼ µ0, x1 ∼ µ1. (16)

Notably, this preserves the endpoint marginals µ0, µ1. For multiple constraints, we can modify our
sampling procedure to interpolate between two intermediate dataset marginals, with neural network
parameters η shared across timesteps

xt =
ti+1 − t

ti+1 − ti
xti +

t− ti
ti+1 − ti

xti+1 +

(
1−

(
ti+1 − t

ti+1 − ti

)2

−
(

t− ti
ti+1 − ti

)2
)

NNET(t, xti , xti+1 ; η) .

For linearizable dual objectives as in Eq. (13) and Eq. (15), we optimize

LOSS(θ, η) = min
η

max
θ

∫
s1(x1; θ)µ1 dx1 −

∫
s0(x0; θ)µ0 dx0 (17)

−
∫ 1

0

∫ (
∂st
∂t

(xt; θ) +K∗(xt, st(xt; θ), t
)
+ U

(
xt, st(xt; θ), t

))
ρt(xt; η)dxtdt,

where the optimization w.r.t. η is performed via the re-parameterization trick. An alternative to
parametrizing the distributional path ρt is to perform minimization of Eq. (17) via the Wasserstein
gradient flow, i.e. the samples xt from the initial path ρt are updated as follows

x′
t = xt + α · t(1− t)∇x

[
∂st
∂t

(xt; θ) +K∗(xt, st(xt; θ), t
)
+ U

(
xt, st(xt; θ), t

)]
, (18)

where α is a hyperparameter regulating the step-size, and the coefficient t(1 − t) guarantees the
preservation of the endpoints. In practice, we find that combining both the parametric and nonpara-
metric approaches works best. The pseudo-code for the resulting algorithm is given in Alg. 1.
Discontinuous Interpolation The support of the optimal distribution path ρt might be discon-
nected, as in Fig. 1a. Thus, it may be impossible to interpolate continuously between independent
samples from the marginals while staying in the support of the optimal path. To allow for a discon-
tinuous interpolation, we pass a discontinuous indicator variable 1[t < 0.5] to the model ρt(x; η).
This indicator is crucial to ensure our parameterization is expressive enough to approximate any
suitable distributional path including, for example, the optimal OT path (see proof in App. D).
Proposition 2. For any absolutely-continuous distributional path ρt : [0, 1] 7→ P2(X ) on the W2

manifold, there exists a function NNET∗(t, x0, x1,1[t < 0.5]; η) such that Eq. (16) samples from ρt.

4 Examples of Wasserstein Lagrangian Flows
We now analyze the Lagrangians, dual objectives, and Hamiltonian optimality conditions corre-
sponding to several important examples of Wasserstein Lagrangian flows. We present various ki-
netic and potential energy terms using their motivating examples and M = 2 endpoint constraints.
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However, note that we may combine various energy terms to construct Lagrangians L[ρt, ρ̇t, t], and
optimize subject to multiple constraints, as we consider in our experiments in Sec. 5.
Example 4.1 (W2 Optimal Transport). The Benamou-Brenier formulation of W2 optimal trans-
port in Eq. (2) is the simplest example of our framework, with no potential energy and the kinetic
energy defined by the Otto metric L[ρt, ρ̇t, t] = 1

2 ⟨ρ̇t, ρ̇t⟩
W2

Tρt
= H[ρt, sρ̇t , t] =

1
2

∫
∥∇sρ̇t∥2ρtdxt.

In contrast to Eq. (2), note that our Lagrangian optimization in Eq. (11) is over ρt only, while solving
the dual objective introduces the second optimization to identify sρ̇t

such that ρ̇t = −∇ · (ρt∇sρ̇t
).

Our dual objective for solving the standard optimal transport problem with quadratic cost becomes

SOT = inf
ρt∈Γ(µ0,µ1)

sup
st

∫
s1dµ1 −

∫
s0dµ0 −

∫ 1

0

∫ (
∂st
∂t

+
1

2
∥∇st∥2

)
ρtdxtdt, (19)

where the Hamiltonian optimality conditions ∂ρt

∂t = δ
δst

H[ρt, st, t], ∂st
∂t = − δ

δρt
H[ρt, st, t] [19]

recover the characterization of W2 geodesics via the continuity and Hamilton-Jacobi equations [7],

ρ̇t = −∇ · (ρt∇st)
∂st
∂t

+
1

2
∥∇st∥2 = 0. (20)

It is well known that optimal transport plans (or Wasserstein-2 geodesics) are ‘straight-paths’ in the
Euclidean space [66]. For the flow induced by a vector field ∇st, we calculate the acceleration, or
second derivative with respect to time, as

Ẍt = ∇
[
∂st
∂t

+
1

2
∥∇st∥2

]
= 0, (21)

where zero acceleration is achieved if ∂st
∂t + 1

2∥∇st∥
2 = c,∀t, as occurs at optimality in Eq. (20).

Example 4.2 (Unbalanced Optimal Transport). The unbalanced OT problem arises from the
WFRλ geometry, and is useful for modeling mass teleportation and changes in total probability
mass when cell birth and death occur as part of the underlying dynamics [58, 42]. Viewing the
dynamical formulation of WFR in Eq. (5) as a Lagrangian optimization,

WFRλ(µ0, µ1)
2 = inf

ρt∈Γ(µ0,µ1)

∫ 1

0

L[ρt, ρ̇t, t]dt =
∫ 1

0

1

2
⟨ρ̇t, ρ̇t⟩WFRλ

Tρt
dt s.t. ρ0 = µ0, ρ1 = µ1.

Compared to Eq. (5), our Lagrangian formulation again optimizes over ρt only, and solving the dual
requires finding sρ̇t such that ρ̇t = −∇· (ρt∇sρ̇t)+λρtsρ̇t as in Eq. (6). We optimize the objective

SuOT = inf
ρt∈Γ(µ0,µ1)

sup
st

∫
s1dµ1 −

∫
s0dµ0 −

∫ 1

0

∫ (
∂st
∂t

+
1

2
∥∇st∥2 +

λ

2
s2t

)
ρtdxtdt,

where we recognize the WFRλ cotangent metric from Eq. (7) in the final term, H[ρt, st, t] =

K∗[ρt, st, t] =
1
2 ⟨st, st⟩

WFRλ

T∗
ρt

= 1
2

∫ (
∥∇st∥2 + λ s2t

)
ρt dxt.

Example 4.3 (Physically Constrained Optimal Transport). A popular technique for incorporating
inductive bias from biological or geometric prior information into trajectory inference methods is
to consider spatial potentials U [ρt, t] =

∫
Vt(xt)ρtdxt [61, 28, 53], which are already linear in the

density. In this case, we may consider any linearizable kinetic energy (see App. B.1). For the W2
transport case, our objective is

SpOT = inf
ρt∈Γ(µ0,µ1)

sup
st

∫
s1dµ1 −

∫
s0dµ0 −

∫ 1

0

∫ (
∂st
∂t

+
1

2
∥∇st∥2 + Vt

)
ρtdxtdt,

with the optimality conditions

ρ̇t = −∇ · (ρt∇st),
∂st
∂t

+
1

2
∥∇st∥2 + Vt = 0, Ẍt = ∇

[
∂st
∂t

+
1

2
∥∇st∥2

]
= −∇Vt. (22)

As in Eq. (21), the latter condition implies that the acceleration is given by the gradient of the spatial
potential Vt(xt). We describe the potentials used in our experiments on scRNA datasets in Sec. 5.
Example 4.4 (Schrödinger Bridge). For many problems of interest, such as scRNA sequenc-
ing [58], it may be useful to incorporate stochasticity into the dynamics as prior knowledge. For
Brownian-motion diffusion processes with known coefficient σ, the dynamical Schrödinger Bridge
(SB) problem [45, 31, 15] is given by

SSB = inf
ρt,vt

∫ 1

0

∫
1

2
∥vt∥2ρtdxtdt s.t. ρ̇t = −∇ · (ρtvt) +

σ2

2
∆ρt, ρ0 = µ0, ρ1 = µ1. (23)

7



Table 1: Results for high-dim PCA representation of single-cell data for corresponding datasets.
We report Wasserstein-1 distance averaged over left-out marginals. All results are averaged over 5
independent runs. Results with citations are taken from corresponding papers.

dim=5 dim=50 dim=100
Method EB Cite Multi Cite Multi

exact OT 0.822 37.569 47.084 42.974 53.271
WLF-OT (ours) 0.814± 0.002 38.253± 0.071 47.736± 0.110 44.769± 0.054 55.313± 0.754
OT-CFM (more parameters) 0.822± 3.0e-4 37.821± 0.010 47.268± 0.017 44.013± 0.010 54.253± 0.012
OT-CFM [63] 0.790± 0.068 38.756± 0.398 47.576± 6.622 45.393± 0.416 54.814± 5.858
I-CFM [63] 0.872± 0.087 41.834± 3.284 49.779± 4.430 48.276± 3.281 57.262± 3.855

WLF-UOT (λ = 1, ours) 0.800± 0.002 37.035± 0.079 45.903± 0.161 43.530± 0.067 53.403± 0.168
WLF-SB (ours) 0.816± 7.7e-4 39.240± 0.068 47.788± 0.111 46.177± 0.083 55.716± 0.058
[SF]2 M-Geo [62] 1.221± 0.38 38.524± 0.293 44.795± 1.911 44.498± 0.416 52.203± 1.957
[SF]2 M-Exact [62] 0.793± 0.066 40.009± 0.783 45.337± 2.833 46.530± 0.426 52.888± 1.986

WLF-(OT + potential, ours) 0.651± 0.002 36.167± 0.031 38.743± 0.060 42.857± 0.045 47.365± 0.051
WLF-(UOT + potential, λ = 1, ours) 0.634± 0.001 34.160± 0.041 36.131± 0.023 41.084± 0.043 45.231± 0.010

To model the SB problem, we consider the following potential energy with the W2 kinetic energy,

U [ρt, t] = −
σ4

8

∫ ∥∥∇ log ρt
∥∥2ρtdxt, (24)

which arises from the entropy F [ρt] = −H[ρt] =
∫
(log ρt − 1) ρtdxt via ∇ δ

δρt
F [ρt] = ∇ log ρt.

We assume time-independent σ to simplify U [ρt, t], but consider time-varying σt in Ex. B.2.

To transform the potential energy term into a dual-linearizable form for the SB problem, we consider
the reparameterization Φt = st +

σ2

2 log ρt, which translates between the drift ∇st of the proba-
bility flow ODE and the drift ∇Φt of the Fokker-Planck equation [60]. With detailed derivations in
App. B.2, the dual objective becomes

SSB = inf
ρt∈Γ(µ0,µ1)

sup
Φt

∫
Φ1dµ1 −

∫
Φ0dµ0 −

∫ 1

0

∫ (
∂Φt

∂t
+

1

2

∥∥∇Φt

∥∥2 + σ2

2
∆Φt

)
ρtdxtdt. (25)

5 Experiments
We apply our methods for trajectory inference of single-cell RNA sequencing data, including
the Embryoid body (EB) dataset [46], CITE-seq (Cite) and Multiome (Multi) datasets [11], and
melanoma treatment dataset of [9, 49].
Potential for Physically-Constrained OT For all tasks, we consider the simplest possible model
of the physical potential accelerating the cells. For each marginal except the first and the last ones,
we estimate the acceleration of its mean using finite differences. The potential for the corresponding
time interval is then Vt(x) = −⟨x, at⟩, where at is the estimated acceleration of the mean value. For
leave-one-out tasks, we include the mean of the left out marginal since the considered data contains
too few marginals (4 for Cite and Multi) for learning a meaningful model of the acceleration.

Leave-One-Out Marginal Task To test the ability of our approaches to approximate interpolating
marginal distributions, we follow [61] and evaluate models using a leave-one-timepoint-out strategy.
In particular, we train on all marginals except at time ti, and evaluate by computing the Wasserstein-
1 distance between the predicted marginal ρti and the left-out marginal µti . For preprocessing and
baselines, we follow Tong et al. [62, 63] (see App. E.1 for details).

In Table 1, we report results on EB, Cite, and Multi datasets. First, we see that our proposed WLF-
OT method achieves comparable results to related approaches: OT-CFM and I-CFM [63], which use
minibatch OT couplings or independent samples of the marginals, respectively. For OT-CFM, we
reproduce the results using a larger model to match the performance of the exact OT solver [24].
These models represent dynamics with minimal prior knowledge, and thus serve as a baseline when
compared against dynamics incorporating additional priors.

Next, we consider Lagrangians encoding various prior information. WLF-SB (ours), [SF]2 M-Exact
[62], and SB-CFM [63] incorporate stochasticity into the dynamics by solving the SB problem;
[SF]2 M-Geo takes advantage of the data manifold geometry by learning from OT couplings gener-
ated with the approximate geodesic cost; our WLF-UOT incorporates probability mass teleportation
using the WFR kinetic energy. In Table 1, we see that WLF-UOT yields consistent performance
improvements across datasets. Finally, we observe that a good model of the potential function can
drastically improve performance, using either W2 or WFR kinetic energy.
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Table 2: Results for train/test splits of 5-dim PCA
on EB dataset, with the setting and baseline re-
sults taken from Koshizuka & Sato [28, Table 1].
We report W1 distance between test µti and ρti
obtained by running dynamics from µti−1

.
Model t1 t2 t3 t4 Mean

Neural SDE [32] 0.69 0.91 0.85 0.81 0.82
TrajectoryNet [61] 0.73 1.06 0.90 1.01 0.93
IPF (GP) [65] 0.70 1.04 0.94 0.98 0.92
IPF (NN) [21] 0.73 0.89 0.84 0.83 0.82
SB-FBSDE [12] 0.56 0.80 1.00 1.00 0.84
NLSB [28] 0.68 0.84 0.81 0.79 0.78

WLF-OT 0.65 0.78 0.76 0.75 0.74
WLF-SB 0.63 0.79 0.77 0.74 0.73
WLF-(OT + potential) 0.64 0.77 0.76 0.76 0.73
WLF-UOT (λ = 0.1) 0.64 0.84 0.80 0.81 0.77
WLF-(UOT + potential, λ = 0.1) 0.67 0.80 0.78 0.78 0.76

Table 3: Results in the setting of Pariset et al.
[49, Table 1] (uDSB) for melanoma treatment
data with 3 marginals and train/test splits. We
report test MMD and W2 distance between µ1

and ρ1 obtained by running dynamics from µ0.

Model MMD W2

SB-FBSDE [12] 1.86e-2 6.23
uDSB (no growth) [49] 1.86e-2 6.27
uDSB (w/growth) [49] 1.75e-2 6.11

WLF-OT (no growth) 5.04e-3 5.20
WLF-UOT (λ = 0.1) 9.16e-3 5.01

Comparison with SB Baselines on EB Dataset To compare against a broader class of baselines
for the SB problem, we consider the setting of Koshizuka & Sato [28, Table 1] on the EB dataset.
Instead of leaving out one marginal, we divide the data using a train/test split and evaluate the W1
distance between the test µti and ρti obtained by running dynamics from the previous test µti−1

. In
Table 2, we find that WLF-SB outperforms several SB baselines from recent literature (see Sec. 6).

Comparison with UOT Baseline on Melanoma Dataset To test the ability of our WLF-OT ap-
proach to account for cell birth and death, we consider the 50-dim. setting of Pariset et al. [49, Table
1] for melanoma cells undergoing treatment with a cancer drug. In Table 3, we show that WLF-OT
and WLF-UOT can outperform the unbalanced baseline (uDSB) from Pariset et al. [49].

6 Related Work
Wasserstein Hamiltonian Flows Chow et al. [19] develop the notion of a Hamiltonian flow on the
Wasserstein manifold and consider several of the same examples discussed here. While the Hamil-
tonian and Lagrangian formalisms describe the same integral flow through optimality conditions for
(ρt, ρ̇t) and (ρt, st), Chow et al. [19], Wu et al. [67] emphasize solving the Cauchy problem sug-
gested by the Hamiltonian perspective. Our approach recovers the Hamiltonian flow (ρt, st) in the
cotangent bundle at optimality, but does so by solving a variational problem.
Flow Matching and Diffusion Schrödinger Bridge Methods Flow Matching methods [38, 35, 1,
2, 63, 62] learn a marginal vector field corresponding to a mixture-of-bridges process parameterized
by a coupling and interpolating bridge [59]. When samples from the endpoint marginals are coupled
via an OT plan, Flow Matching solves a dynamical optimal transport problem [52]. Rectified Flow
obtains couplings using ODE simulation with the goal of straight-path trajectories for generative
modeling [38, 40], which is extended to SDEs in bridge matching methods [59, 50]. Diffusion
Schrödinger Bridge (DSB) methods [21, 12] also update the couplings iteratively based on learned
forward and backward SDEs, and have recently been adapted to solve the unbalanced OT problem in
Pariset et al. [49]. Finally, Liu et al. [36, 37] consider extending DSB or bridge matching methods to
solve physically-constrained SB problems. Unlike the above methods, our approach does not require
optimal couplings to sample from the intermediate marginals, and thus avoids both simulating ODEs
or SDEs and running minibatch (regularized) OT solvers.

Optimal Transport with Lagrangian Cost Input-convex neural networks [4] provide an efficient
approach to static OT [44, 27, 9, 10] but are limited to Euclidean cost. Several works extend to
other costs using static [22, 53, 64] or dynamical formulations [39, 28]. The most general way to
define a transport cost is using a Lagrangian action in the state-space (Villani [66] Ch. 7). While we
focus on lifted Lagrangians in density space, our framework also encompasses OT with state-space
Lagrangian costs (App. B.1.2).

7 Conclusion
In this work, we demonstrated that many variations of optimal transport, such as Schrödinger bridge,
unbalanced OT, or OT with physical constraints can be formulated as Lagrangian action minimization
on the density manifold. We proposed a computational framework for this minimization by deriving
a dual objective in terms of cotangent vectors, which correspond to a vector field on the state-space
and can be parameterized via a neural network. We studied the problem of trajectory inference in
biological systems, and showed that we can incorporate prior knowledge of the dynamics while
respecting marginal constraints on observed data, resulting in significant improvement in several
benchmarks. We expect our approach can extend to other natural science domains such as quantum
mechanics and social sciences by incorporating new priors for learning the underlying dynamics.
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A General Dual Objectives for Wasserstein Lagrangian Flows

In this section, we derive the general forms for the Hamiltonian dual objectives arising from Wasser-
stein Lagrangian Flows. We prove Thm. 1 and derive the general dual objective in Eq. (13) of the
main text, before considering the effect of multiple marginal constraints in App. A.1. We defer
explicit calculation of Hamiltonians for important special cases to App. B.
Theorem 1. For a Lagrangian L[ρt, ρ̇t, t] which is lsc and strictly convex in ρ̇t, the optimization

S = inf
ρt∈Γ({µti

})
AL[ρt] = inf

ρt∈Γ({µti
})

∫ 1

0

L[ρt, ρ̇t, t]dt

is equivalent to the following dual

S = inf
ρt∈Γ({µti

})
sup
st

∫
s1µ1 dx1 −

∫
s0µ0 dx0 −

∫ 1

0

(∫
∂st
∂t
ρtdxt +H[ρt, st, t]

)
dt (13)

where, for st ∈ T ∗
ρt
P , the Hamiltonian H[ρt, st, t] is the Legendre transform of L[ρt, ρ̇t, t] (Eq 12).

In particular, the action AL[ρt] of a given curve is the solution to the inner optimization,

AL[ρt] = sup
st

∫
s1µ1 dx1 −

∫
s0µ0 dx0 −

∫ 1

0

(∫
∂st
∂t
ρtdxt +H[ρt, st, t]

)
dt. (14)

Recall the definition of the Legendre transform for L[ρt, ρ̇t, t] strictly convex in ρ̇t,

H[ρt, st, t] = sup
ρ̇t∈TρtP

∫
stρ̇t dxt − L[ρt, ρ̇t, t] (26)

L[ρt, ρ̇t, t] = sup
st∈T ∗

ρt
P

∫
stρ̇t dxt −H[ρt, st, t] (27)

Proof. We prove the case of M = 2 here and the case of M > 2 below in App. A.1.

Denote the set of curves of marginal densities ρt with the prescribed endpoint marginals as
Γ(µ0, µ1) = {ρt| ρt ∈ P(X ) ∀t, ρ0 = µ0, ρ1 = µ1}. The result follows directly from the def-
inition of the Legendre transform in Eq. (26) and integration by parts in time in step (i),

SL({µ0,1}) = inf
ρt

∫ 1

0

L[ρt, ρ̇t, t]dt s.t. ρ0 = µ0, ρ1 = µ1 (28)

= inf
ρt∈Γ(µ0,µ1)

∫ 1

0

L[ρt, ρ̇t, t]dt

= inf
ρt∈Γ(µ0,µ1)

sup
st∈T ∗

ρt
P

∫ 1

0

(∫
stρ̇t dxt −H[ρt, st, t]

)
dt

(i)
= inf

ρt∈Γ(µ0,µ1)
sup
st

∫
s1ρ1dx1 −

∫
s0ρ0dx0 −

∫ 1

0

(∫
∂st
∂t
ρt dxt +H[ρt, st, t]

)
dt

(ii)
= inf

ρt∈Γ(µ0,µ1)
sup
st

∫
s1µ1dx1 −

∫
s0µ0dx0 −

∫ 1

0

(∫
∂st
∂t
ρt dxt +H[ρt, st, t]

)
dt

which is the desired result. In (ii), we use the fact that ρ0 = µ0, ρ1 = µ1 for ρt ∈ Γ(µ0, µ1). Finally,
note that st ∈ T ∗

ρt
P simply identifies st as a cotangent vector and does not impose meaningful

constraints on the form of st ∈ C∞(X ), so we drop this from the optimization in step (i).

A.1 Multiple Marginal Constraints

Consider multiple marginal constraints in the Lagrangian action minimization problem for
L[ρt, ρ̇t, t] strictly convex in ρ̇t,

SL({µti}M−1
i=0 ) = inf

ρt

∫ 1

0

L[ρt, ρ̇t, t]dt s.t. ρti = µti (∀ 0 ≤ i ≤M − 1) (29)

= inf
ρt∈Γ({µti

})

∫ 1

0

L[ρt, ρ̇t, t]dt
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As in the proof of Thm. 1, the dual becomes

SL({µti}M−1
i=0 ) = inf

ρt∈Γ({µti
})

sup
st∈T ∗

ρt
P

∫ 1

0

(∫
stρ̇t dxt −H[ρt, st, t]

)
dt

= inf
ρt∈Γ({µti

})
sup
st

∫
s1ρ1dx1 −

∫
s0ρ0dx0 −

∫ 1

0

(∫
∂st
∂t
ρt dxt +H[ρt, st, t]

)
dt

= inf
ρt∈Γ({µti

})
sup
st

∫
s1µ1dx1 −

∫
s0µ0dx0 −

∫ 1

0

(∫
∂st
∂t
ρt dxt +H[ρt, st, t]

)
dt

where the intermediate marginal constraints do not affect the result. Crucially, as discussed in
Sec. 3.2.2, our sampling approach satisfies the marginal constraints ρti(xti) = µti(xti) by design.

Piecewise Lagrangian Optimization Note that the concatenation of dual objectives for M = 3,
or action-minimization problems between {µ0,t1} and {µt1,1} yields the following dual objective
SL({µ0,t1}) + SL({µt1,1}) (30)

= inf
ρt∈Γ({µ0,µt1

})
sup
st

∫
st1µt1dxt1 −

∫
s0µ0dx0 +

∫ t1

0

(∫
∂st
∂t

ρt dxt +H[ρt, st, t]
)
dt

+ inf
ρt∈Γ({µt1

,µ1})
sup
st

∫
s1µ1dx1 −

∫
st1µt1dxt1 +

∫ 1

t1

(∫
∂st
∂t

ρt dxt +H[ρt, st, t]
)
dt

After telescoping cancellation and taking the union of the constraints, we see that our computa-
tional approach yields a piece-wise solution to the multi-marginal problem, with SL({µti}M−1

i=0 ) =∑M−2
i=0 SL({µti,ti+1

}).

B Tractable Objectives for Special Cases

In this section, we calculate Hamiltonians and explicit dual objectives for important special cases of
Wasserstein Lagrangian Flows, including those in Sec. 4.

We consider several important kinetic energies in App. B.1, including the W2 and WFRλ metrics
(App. B.1.1) and the case of OT costs defined by general ground-space Lagrangians (App. B.1.2).
In App. B.2, we provide further derivations to obtain a linear dual objective for the Schrödinger
Bridge problem. Finally, we highlight the lack of dual linearizability for the case of the Schrödinger
Equation App. B.3 Ex. B.3.

B.1 Dual Kinetic Energy from W2, WFR, or Ground-Space Lagrangian Costs

Thm. 1 makes progress toward a dual objective without considering the continuity equation or dy-
namics in the ground space, by instead invoking the Legendre transform H[ρt, st, t] of a given
Lagrangian L[ρt, ρ̇t, t] which is strictly convex in ρ̇t. However, to derive H[ρt, st, t] and optimize
objectives of the form Eq. (13), we will need to represent the tangent vector on the space of densities
ρ̇t, for example using a vector field vt and growth term gt as in Eq. (5).

Given a Lagrangian L[ρt, ρ̇t, t], we seek to solve the optimization

H[ρt, st, t] = sup
ρ̇t∈TρtP

∫
stρ̇t dxt − L[ρt, ρ̇t, t] = sup

ρ̇t∈TρtP

∫
stρ̇t dxt −K[ρt, ρ̇t, t] + U [ρt, t]

(31)

Since the potential energy does not depend on ρ̇t, we focus on kinetic energies K[ρt, ρ̇t, t] which
are linear in the density (see Def. 3.1). We consider two primary examples, the WFRλ metric
K[ρt, ρ̇t, t] using the continuity equation with growth term dynamics, and kinetic energies defined
by expectations of ground-space Lagrangian costs under ρt (see App. B.1.2, Villani [66] Ch. 7,
Ex. B.1 below),

WFRλ : K[ρt, ρ̇t, t] =

∫ (
1

2
∥vt∥2 +

λ

2
g2t

)
ρtdxt, ρ̇t = −∇ · (ρtvt) + λρtgt (32)

L(γt, γ̇t, t) : K[ρt, ρ̇t, t] =

∫
L(xt, vt, t)ρtdxt, ρ̇t = −∇ · (ρtvt) (33)
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where (xt, vt) = (γt, γ̇t) and we recover the W2 kinetic energy for L[xt, vt, t] = 1
2∥vt∥

2 or λ = 0.

We proceed with common derivations, writing K[ρt, ρ̇t, t] =
∫
K(xt, vt, gt, t)ρtdxt and simplifying

Eq. (31) using the more general dynamics in Eq. (32)

H[ρt, st, t] = sup
ρ̇t∈TρtP

∫
stρ̇t dxt −K[ρt, ρ̇t, t] + U [ρt, t] (34)

= sup
(vt,gt)

∫
st
(
−∇ · (ρtvt) + λρtgt

)
dxt −K[ρt, ρ̇t, t] + U [ρt, t] (35)

Integrating by parts, we have

= sup
(vt,gt)

∫ (
⟨∇st, vt⟩ρt + λρtstgt

)
dxt −K[ρt, ρ̇t, t] + U [ρt, t]. (36)

We now focus on the special cases in Eq. (32) and Eq. (33).

B.1.1 Wasserstein Fisher-Rao and W2

For K[ρt, ρ̇t, t] =
∫ (

1
2∥vt∥

2 + λ
2 g

2
t

)
ρtdxt, we proceed from Eq. (36),

H[ρt, st, t] = sup
(vt,gt)

∫ (
⟨∇st, vt⟩ρt + λρtstgt

)
dxt −

∫ (
1

2
∥vt∥2 +

λ

2
g2t

)
ρtdxt + U [ρt, t] (37)

Eliminating vt and gt implies

vt = ∇st gt = st (38)

where vt = ∇st also holds for the W2 case with λ = 0. Substituting into Eq. (37), we obtain a
Hamiltonian with a dual kinetic energy K∗[ρt, ρ̇t, t] below that is linear in ρt and matches the metric
expressed in the cotangent space 1

2 ⟨st, st⟩
WFRλ

Tρt
,

H[ρt, st, t] =

∫ (1
2
∥∇st∥2 +

λ

2
s2t

)
ρt dxt + U [ρt, t] =

1

2
⟨st, st⟩WFRλ

Tρt
+ U [ρt, t]. (39)

We make a similar conclusion for the W2 metric with λ = 0, where the dual kinetic energy is
K∗[ρt, ρ̇t, t] =

1
2 ⟨st, st⟩

W2

Tρt
= 1

2

∫
∥∇st∥2ρt dxt.

B.1.2 Lifting Ground-Space Lagrangian Costs to Kinetic Energies

We first consider using Lagrangians in the ground space to define costs associated with action-
minimizing curves γ∗(x0, x1). As in Villani [66] Thm. 7.21, we can consider using this cost to de-
fine an optimal transport costs between densities. We show that this corresponds to a special case of
our Wasserstein Lagrangian Flows framework with kinetic energy K[ρt, ρ̇t, t] =

∫
L(xt, vt, t)ρtdxt

as in Eq. (33). However, as discussed in Sec. 3, defining our Lagrangians L[ρt, ρ̇t, t] directly on the
space of densities allows for more generality using kinetic energies which include growth terms or
potential energies which depend on the density.

Lagrangian and Hamiltonian Mechanics in the Ground-Space We begin by reviewing action-
minimizing curves in the ground space, which forms the basis the Lagrangian formulation of clas-
sical mechanics [5]. For curves γ(t) : [0, 1] → X with velocity γ̇t ∈ Tγ(t)X , we consider eval-
uating a Lagrangian function L(γt, γ̇t, t) along the curve to define the action as the time integral
A(γ) =

∫ 1

0
L(γt, γ̇t, t)dt. Given two endpoints x0, x1 ∈ X , we consider minimizing the action

along all curves with the appropriate endpoints γ ∈ Π(x0, x1),

c(x0, x1) = inf
γ∈Π(x0,x1)

A(γ) = inf
γt

∫ 1

0

L(γt, γ̇t, t)dt s.t. γ0 = x0, γ1 = x1 (40)

We refer to the optimizing curves γ∗(x0, x1) as Lagrangian flows in the ground-space, which satisfy
the Euler-Lagrange equation d

dt
∂

∂γ̇t
L(γt, γ̇t, t) =

d
dγt
L(γt, γ̇t, t) as a stationarity condition.
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We will assume that L(γt, γ̇t, t) is strictly convex in the velocity γ̇t, in which case we can obtain an
equivalent, Hamiltonian perspective via convex duality. Considering momentum variables pt, we
define the Hamiltonian H(γt, pt, t) as the Legendre transform of L with respect to γ̇t,

H(γt, pt, t) = sup
γ̇t

⟨γ̇t, pt⟩ − L(γt, γ̇t, t) (41)

The Euler-Lagrange equations can be written as Hamilton’s equations in the phase space

γ̇t =
∂

∂pt
H(γt, pt, t) ṗt = − ∂

∂γt
H(γt, pt, t). (42)

We proceed to consider Lagrangian actions in the ground-space as a way to construct optimal trans-
port costs over distributions.
Example B.1 (Ground-Space Lagrangians as OT Costs). The cost function c(x0, x1) is a degree
of freedom in specifying an optimal transport distance between probability densities µ0, µ1 ∈ P(X )
in Eq. (1). Beyond c(x0, x1) = ∥x0−x1∥2, one might consider defining the OT problem using a cost
c(x0, x1) induced by a Lagrangian L(γt, γ̇t, t) in the ground space γt ∈ X , as in Eq. (40) (Villani
[66] Ch. 7). In particular, a coupling π(x0, x1) should assign mass to endpoints (x0, x1) based
on the Lagrangian cost of their action-minimizing curves γ∗(x0, x1) Translating to a dynamical
formulation (Villani [66] Thm. 7.21) and using notation (γt, γ̇t) = (xt, vt), the OT problem is

WL(µ0, µ1) = inf
(xt,vt)

∫ 1

0

∫
L(xt, vt, t)ρtdxtdt s.t. law(xt) = ρt, law(x0) = µ0, law(x1) = µ1.

(43)
which we may also view as an optimization over the distribution of marginals ρt under which xt is
evaluated (see, e.g. Schachter [56] Def. 3.4.1)

WL(µ0, µ1) = inf
ρt

inf
vt

∫ 1

0

∫
L(xt, vt, t)ρtdxtdt s.t. ρ̇t = −∇ · (ρtvt), ρ0 = µ0, ρ1 = µ1. (44)

We can thus view the OT problem as ‘lifting’ the Lagrangian cost on the ground space X to a distance
in the space of probability densities P2(X ) via the kinetic energy K[ρt, ρ̇t, t] =

∫
L(xt, vt, t)ρtdxt

(see below). Of course, the Benamou-Brenier dynamical formulation of W2-OT in Eq. (2) may be
viewed as a special case with L(γt, γ̇t, t) = L(xt, vt, t) =

1
2∥vt∥

2.

Wasserstein Lagrangian and Hamiltonian Perspective Recognizing the similarity with the
Benamou-Brenier formulation in Ex. 4.1, we consider the Wasserstein Lagrangian optimization with
two endpoint marginal constraints,

SL({µ0,1}) = inf
ρt∈Γ(µ0,µ1)

∫ 1

0

K[ρt, ρ̇t, t]− U [ρt, t]dt (45)

= inf
ρt

∫ 1

0

(∫
L(xt, vt, t)ρtdxt − U [ρt, t]

)
dt s.t. ρ0 = µ0, ρ1 = µ1

Parameterizing the tangent space using the continuity equation as in Eq. (33) or Eq. (44), we can
derive the Wasserstein Hamiltonian from Eq. (36) with λ = 0 (no growth dynamics). Including a
potential energy U [ρt, t], we have

H[ρt, st, t] = sup
vt

∫
⟨∇st, vt⟩ρt dxt −K[ρt, ρ̇t, t] + U [ρt, t]. (46)

= sup
vt

∫
⟨∇st, vt⟩ρt dxt −

∫
L(xt, vt, t)ρtdxt + U [ρt, t] (47)

=

∫ (
sup
vt

⟨∇st, vt⟩ − L(xt, vt, t)

)
ρt dxt + U [ρt, t] (48)

which is simply a Legendre transform between velocity and momentum variables in the ground
space (Eq. (41)). We can finally write,

H[ρt, st, t] =

∫
H(xt,∇st, t)ρtdxt + U [ρt, t] (49)

which implies the dual kinetic energy is simply the expectation of the Hamiltonian K∗[ρt, st, t] =∫
H(xt,∇st, t)ρtdxt and is clearly linear in the density ρt.

We leave empirical exploration of various Lagrangian costs for future work, but note that
H(xt,∇st, t) in Eq. (49) must be known or optimized using Eq. (48) to obtain a tractable objective.
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B.2 Schrödinger Bridge

In this section, we derive potential energies and tractable objectives corresponding to the
Schrödinger Bridge problem

SSB = inf
ρt,vt

∫ 1

0

∫
1

2
∥vt∥2ρtdxtdt s.t. ρ̇t = −∇ · (ρtvt)−

σ2

2
∆ρt ρ0 = µ0, ρ1 = µ1. (50)

which we will solve using the following (linear in ρt) dual objective from Eq. (25)

SSB = inf
ρt∈Γ(µ0,µ1)

sup
Φt

∫
Φ1µ1dx1 −

∫
Φ0µ0dx0 −

∫ 1

0

∫ (
∂Φt

∂t
+

1

2

∥∥∇Φt

∥∥2 + σ2

2
∆Φt

)
ρtdxtdt.

Lagrangian and Hamiltonian for SB We consider a potential energy of the form,

U [ρt, t] = −σ
4

8

∫
∥∇ log ρt∥2ρtdxt (51)

which, alongside the W2 kinetic energy, yields the full Lagrangian

L[ρt, ρ̇t, t] =
1

2
⟨ρ̇t, ρ̇t⟩W2

Tρt
+
σ4

8

∫
∥∇ log ρt∥2ρtdxt. (52)

As in Eq. (34)-(37), we parameterize the tangent space using the continuity equation ρ̇t = −∇ ·
(ρtvt) and vector field vt in solving for the Hamiltonian,

H[ρt, st, t] = sup
ρ̇t

∫
stρ̇tdxt − L[ρt, ρ̇t, t] (53)

= sup
vt

∫
⟨∇st, vt⟩ρtdxt −

1

2

∫
∥vt∥2ρtdxt −

σ4
t

8

∫
∥∇ log ρt∥2ρtdxt +

∫ (
∂

∂t

σ2
t

2

)
log ρt ρtdxt

which implies vt = ∇st as before. Substituting into the above, the Hamiltonian becomes

H[ρt, st, t] =
1

2

∫
∥∇st∥2ρtdxt −

σ4

8

∫
∥∇ log ρt∥2ρtdxt. (54)

which is of the form H[ρt, st, t] = K∗[ρt, st, t] +U [ρt, t] and matches Léger & Li [30] Eq. 8. As in
Thm. 1, the dual for the Wasserstein Lagrangian Flow with the Lagrangian in Eq. (52) involves the
Hamiltonian in Eq. (54),

SL = inf
ρt∈Γ(µ0,µ1)

sup
st

∫
s1µ1dx1 −

∫
s0µ0dx0 −

∫ 1

0

∫ (
∂st
∂t

+
1

2
∥∇st∥2 −

σ4

8

∫
∥∇ log ρt∥2

)
ρt dxt

(55)

However, this objective is nonlinear in ρt and requires access to ∇ log ρt. To linearize the dual
objective, we proceed using a reparameterization in terms of the Fokker-Planck equation, or using
the Hopf-Cole transform, in the following proposition.

Proposition 3. The solution to the Wasserstein Lagrangian flow

SL({µ0,1}) = inf
ρt

∫ 1

0

L[ρt, ρ̇t, t]dt s.t. ρ0 = µ0, ρ1 = µ1 (56)

where K[ρt, ρ̇t, t] =
1

2
⟨ρ̇t, ρ̇t⟩W2

Tρt
, U [ρt, t] = −σ

4

8
∥∇ log ρt∥2TW2

ρt

matches the solution to the SB problem in Eq. (50), S = SSB({µ0,1}) = SL({µ0,1}) + c({µ0,1})
up to a constant c({µ0,1}) wrt ρt.

Further, S is the solution to the (dual) optimization

S = inf
ρt∈Γ(µ0,µ1)

sup
Φt

∫
Φ1µ1dx1 −

∫
Φ0µ0dx0 −

∫ 1

0

∫ (
∂Φt

∂t
+

1

2

∥∥∇Φt

∥∥2 + σ2

2
∆Φt

)
ρtdxtdt. (57)

Thus, we obtain a dual objective for the SB problem, or WLF in Eq. (56), which is linear in ρt.
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Proof. We consider the following reparameterization [30]

st = Φt −
σ2

2
log ρt, ∇st = ∇Φt −

σ2

2
∇ log ρt. (58)

Note that st is the drift for the continuity equation in Eq. (53), ρ̇t = −∇ · (ρt∇st). Via the above
reparameterization, we see that ∇Φt corresponds to the drift in the Fokker-Planck dynamics ρ̇t =

−∇ · (ρt∇Φt) +
σ2

2 ∇ · (ρt∇ log ρt) = −∇ · (ρt∇Φt) +
σ2

2 ∆ρt.

Wasserstein Lagrangian Dual Objective after Reparameterization: Starting from the dual objective
in Eq. (55), we perform the reparameterization in Eq. (58), st = Φt − σ2

2 log ρt,

SL = inf
ρt∈Γ(µ0,µ1)

sup
Φt

∫
Φ1µ1dx1 −

σ2

2

∫
log ρ1 µ1dx1 −

∫
Φ0µ0dx0 +

σ2

2

∫
log ρ0 µ0dx0 (59)

−
∫ 1

0

∫ (
∂Φt

∂t
+

∂

∂t

(
σ2

2
log ρt

)
+

1

2

〈
∇Φt −

σ2

2
∇ log ρt,∇Φt −

σ2

2
∇ log ρt

〉
−

σ4

8
∥∇ log ρt∥2

)
ρt dxtdt

Noting that the
∫ σ2

2 ( ∂
∂t log ρt) ρtdxt cancels since ∂

∂t

∫
ρtdxt = 0, we simplify to obtain

SL = inf
ρt∈Γ(µ0,µ1)

sup
Φt

∫
Φ1µ1dx1 −

σ2

2

∫
log ρ1 µ1dx1 −

∫
Φ0µ0dx0 +

σ2

2

∫
log ρ0µ0dx0

−
∫ 1

0

∫ (
∂Φt

∂t
+

1

2

∥∥∇Φt

∥∥2 − σ2

2

〈
∇Φt,∇ log ρt

〉)
ρtdxtdt

where the Hamiltonian now matches Eq. 7 in Léger & Li [30]. Taking ∇ log ρt = 1
ρt
∇ρt and

integrating by parts, the final term becomes

SL = inf
ρt∈Γ(µ0,µ1)

sup
Φt

∫
Φ1µ1dx1 −

σ2

2

∫
log ρ1 µ1dx1 −

∫
Φ0µ0dx0 +

σ2

2

∫
log ρ0µ0dx0

−
∫ 1

0

∫ (
∂Φt

∂t
+

1

2

∥∥∇Φt

∥∥2 + σ2

2
∆Φt

)
ρtdxtdt

Finally, we consider adding terms c({µ0,1}) = σ2

2

∫
logµ1 µ1dx1 − σ2

2

∫
logµ0 µ0dx0 which are

constant with respect to ρ0,1,

SL({µ0,1}) + c({µ0,1}) = inf
ρt∈Γ(µ0,µ1)

sup
Φt

∫
Φ1µ1dx1 +

σ2
1

2

∫
(logµ1 − log ρ1)µ1dx1 (60)

−
∫

Φ0µ0dx0 −
σ2
0

2

∫
(logµ0 − log ρ0)µ0dx0

−
∫ 1

0

∫ (
∂Φt

∂t
+

1

2

∥∥∇Φt

∥∥2 + σ2
t

2
∆Φt

)
ρtdxtdt

Finally, the endpoint terms vanish for ρt ∈ Γ(µ0, µ1) satisfying the endpoint constraints,

SL({µ0,1}) + c({µ0,1}) (61)

= inf
ρt∈Γ(µ0,µ1)

sup
Φt

∫
Φ1µ1dx1 −

∫
Φ0µ0dx0 −

∫ 1

0

∫ (
∂Φt

∂t
+

1

2

∥∥∇Φt

∥∥2 + σ2

2
∆Φt

)
ρtdxtdt

which matches the dual in Eq. (57). We now show that this is also the dual for the SB problem.

Schrödinger Bridge Dual Objective: Consider the optimization in Eq. (50) (here, t may be time-
dependent)

SSB({µ0,1}) = inf
ρt,vt

∫ 1

0

1

2
∥vt∥2ρtdxt s.t. ρ̇t = −∇ · (ρtvt) +

σ2
t

2
∇ · (ρt ∇ log ρt), ρ0 = µ0, ρ1 = µ1

(62)

We treat the optimization over ρt as an optimization over a vector space of functions, which is later
constrained be normalized via the ρ0 = µ0, ρ1 = µ1 constraints and continuity equation (which
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preserves normalization). It is also constrained to be nonnegative, but we omit explicit constraints
for simplicity of notation. The optimization over vt is also over a vector space of functions. See
App. C for additional discussion.

Given these considerations, we may now introduce Lagrange multipliers λ0, λ1 to enforce the end-
point constraints and Φt to enforce the dynamics constraint,

SSB({µ0,1}) = inf
ρt,vt

sup
Φt,λ0,1

∫ 1

0

1

2
∥vt∥2ρtdxt +

∫
Φt

(
ρ̇t +∇ · (ρtvt)−

σ2
t

2
∇ · (ρt ∇ log ρt)

)
dxt (63)

+

∫
λ1(ρ1 − µ1)dx1 +

∫
λ0(ρ0 − µ0)dx0

= inf
ρt,vt

sup
Φt,λ0,1

∫ 1

0

1

2
∥vt∥2ρtdxt +

∫
Φ1ρ1dx1 −

∫
Φ0ρ0dx0 −

∫ 1

0

∫
∂Φt

∂t
ρtdxtdt (64)

−
∫ 1

0

∫ 〈
∇Φt, vt −

σ2
t

2
∇ log ρt

〉
ρtdxtdt+

∫
λ1(ρ1 − µ1)dx1 +

∫
λ0(ρ0 − µ0)dx0

Note that we can freely we can swap the order of the optimizations since the SB optimization in
Eq. (62) is convex in ρt, vt, while the dual optimization is linear in Φt, λ.

Swapping the order of the optimizations and eliminating ρ0 and ρ1 implies λ1 = Φ1 and λ0 = Φ0,
while eliminating vt implies vt = ∇Φt. Finally, we obtain

SSB({µ0,1}) = sup
Φt

inf
ρt

∫
Φ1µ1dx1 −

∫
Φ0µ0dx0 −

∫ 1

0

(
∂Φt

∂t
+

1

2
∥Φt∥2 −

σ2
t

2
⟨∇Φt,∇ log ρt⟩

)
ρtdxt

= inf
ρt

sup
Φt

∫
Φ1µ1dx1 −

∫
Φ0µ0dx0 −

∫ 1

0

(
∂Φt

∂t
+

1

2
∥Φt∥2 +

σ2
t

2
∆Φt

)
ρtdxt (65)

where we swap the order of optimization again in the second line. This matches the dual in Eq. (60)
for SL({µ0,1}) + c({µ0,1}) if σ2

2 is independent of time, albeit without the endpoint constraints.
However, we have shown above that the optimal λ∗0 = Φ∗

0, λ∗1 = Φ∗
1 will indeed enforce the endpoint

constraints. This is the desired result in Proposition 3.

Example B.2 (Schrödinger Bridge with Time-Dependent Diffusion Coefficient). To incorporate
a time-dependent diffusion coefficient for the classical SB problem, we modify the potential energy
with an additional term

U [ρt, t] = −σ
4
t

8

∫
∥∇ log ρt∥2ρtdxt +

∫ (
∂

∂t

σ2
t

2

)
log ρt ρtdxt (66)

This potential energy term is chosen carefully to cancel with the term appearing after reparameteri-
zation using st = Φt − σ2

t

2 log ρt in Eq. (59). In this case,∫
∂st
∂t
ρtdxt =

∫ (
∂Φt

∂t
− ∂

∂t

(σ2
t

2
log ρt

))
ρt dxt (67)

=

∫ (
∂Φt

∂t
−
( ∂
∂t

σ2
t

2

)
log ρt +

σ2
t

2

( ∂
∂t

log ρt

))
ρtdxt (68)

=

∫ (
∂Φt

∂t
−
( ∂
∂t

σ2
t

2

)
log ρt

)
ρtdxt (69)

where the score term cancels as before. The additional potential energy term is chosen to cancel the
remaining term. All other derivations proceed as above, which yields an identical dual objective

SSB = inf
ρt∈Γ(µ0,µ1)

sup
Φt

∫
Φ1dµ1 −

∫
Φ0dµ0 −

∫ 1

0

∫ (
∂Φt

∂t
+

1

2

∥∥∇Φt

∥∥2 + σ2
t

2
∆Φt

)
ρtdxtdt

B.3 Schrödinger Equation

Example B.3 (Schrödinger Equation). Intriguingly, we obtain the Schrödinger Equation via a sim-
ple change of sign in the potential energy U [ρt, t] = σ4

t

8

∫
∥∇ log ρt∥2ρtdxt compared to Eq. (51)
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or, in other words, an imaginary weighting iσt of the gradient norm of the Shannon entropy,

L[ρt, ρ̇t, t] =
1

2
⟨ρ̇t, ρ̇t⟩W2

Tρt
−
∫ [

1

8
∥∇ log ρt∥2 + Vt(xt)

]
ρt dxt (70)

This Lagrangian corresponds to a Hamiltonian H[ρt, st, t] = 1
2 ⟨st, st⟩

W2

T∗
ρt

+∫ [
1
8∥∇ log ρt∥2 + Vt(xt)

]
ρt dxt, which leads to the dual objective

SSE = sup
st

inf
ρt

∫
s1dµ1 −

∫
s0dµ0

−
∫ 1

0

∫ (
∂st
∂t

+
1

2
∥∇st∥2 +

1

8
∥∇ log ρt∥2 + Vt(xt)

)
ρtdxtdt.

(71)

Unlike the Schrödinger Bridge problem, the Hopf-Cole transform does not linearize the dual objec-
tive in density. Thus, we cannot approximate the dual using only the Monte Carlo estimate.

The first-order optimality conditions for Eq. (71) are

ρ̇t = −∇ · (ρt∇st),
∂st
∂t

+
1

2
∥∇st∥2 =

1

8
∥∇ log ρt∥2 +

1

4
∆ log ρt − Vt(xt) (72)

Note, that Eq. (72) is the Madelung transform of the Schrödinger equation, i.e. for the equation

∂

∂t
ψt(x) = −iĤψt(x), where Ĥ = −1

2
∆ + Vt(x), (73)

the wave function ψt(x) can be written in terms ψt(x) =
√
ρt(x) exp(ist(x)). Then the real and

imaginary part of the Schrödinger equation yield Eq. (72).

C Lagrange Multiplier Approach

Our Thm. 1 is framed completely in the abstract space of densities and the Legendre transform
between functionals of ρ̇t ∈ Tρt

P and sρ̇t
∈ T ∗

ρt
P . We contrast this approach with optimizations

such as the Benamou-Brenier formulation in Eq. (2), which are formulated in terms of the state space
dynamics such as the continuity equation ρ̇t = −∇·(ρtvt). In this appendix, we claim that the latter
approaches require a potential energy U [ρt, t] which is concave or linear in ρt. We restrict attention
to continuity equation dynamics in this section, although similar reasoning holds with growth terms.

In particular, consider optimizing ρt, vt over a topological vector space of functions. The notable
difference here is that ρt : X → R is a function, which we later constrain to be a normalized
probability density using ρ0 = µ0, ρ1 = µ1, the continuity equation ρ̇t = −∇ · (ρtvt) (which pre-
serves normalization), and nonnegativity constraints. Omitting the latter for simplicity of notation,
we consider the W2 kinetic energy with an arbitrary potential energy,

S = inf
ρt,vt

∫ 1

0

∫
L(xt, vt, t)ρtdxtdt−

∫ 1

0

U [ρt, t]dt s.t. ρ̇t = −∇ · (ρtvt) ρ0 = µ0, ρ1 = µ1

(74)

Since we are now optimizing ρt over a vector space, we introduce Lagrange multipliers λ0,1 to
enforce the endpoint constraints and st to enforce the continuity equation. Integrating by parts in t
and x, we have

S = inf
ρt,vt

sup
λ0,1,st

∫ 1

0

∫
L(xt, vt, t)ρtdxtdt−

∫ 1

0

U [ρt, t]dt+
∫ 1

0

∫
stρ̇tdxt +

∫ 1

0

∫
st ∇ · (ρtvt)dxtdt

+

∫
λ0(ρ0 − µ0)dx0 +

∫
λ1(ρ1 − µ1)dx1 (75)

= inf
ρt,vt

sup
λ0,1,st

∫ 1

0

∫
L(xt, vt, t)ρtdxtdt−

∫ 1

0

U [ρt, t]dt−
∫ 1

0

∫
∂st
∂t

ρtdxt −
∫ 1

0

∫
⟨∇st, vt⟩ρt dxtdt

+

∫
λ1ρ1dx1 −

∫
λ0ρ0dx0 +

∫
λ0ρ0dx0 −

∫
λ0µ0 dx0 +

∫
λ1ρ1 dx1 −

∫
λ1µ1 dx1

(76)
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To make further progress by swapping the order of the optimizations, we require that Eq. (76)
is convex in ρt, vt and concave in λ0,1, st. However, to facilitate this, we require that U [ρt, t] is
concave in ρt, which is an additional constraint which was not necessary in the proof of Thm. 1.

By swapping the order of optimization to eliminate ρ0, ρ1 and vt, we obtain the optimality conditions

λ0 = s0, λ1 = s1 vt = ∇pH(xt,∇st, t) (77)

where the gradient is with respect to the second argument. Swapping the order of optimizations
again, the dual becomes

S = inf
ρt

sup
st

∫
s1µ1 dx1 −

∫
s0µ0 dx0 −

∫ 1

0

(∫ (∂st
∂t

+H(xt,∇st, t)
)
ρtdxt + U [ρt, t]

)
dt.

which is analogous to Eq. (13) in Thm. 1 for the W2 kinetic energy. While the dual above does not
explicitly enforce the endpoint marginals on ρt, the conditions λ∗0 = s∗0, λ

∗
1 = s∗1 serve to enforce

the constraint at optimality.

D Expressivity of Parameterization

Proposition 2. For any absolutely-continuous distributional path ρt : [0, 1] 7→ P2(X ) on the W2

manifold, there exists a function NNET∗(t, x0, x1,1[t < 0.5]; η) such that Eq. (16) samples from ρt.

Proof. For every absolutely-continuous distributional path ρt, we have a unique gradient flow
∇s∗t (xt) satisfying the continuity equation (Ambrosio et al. [3] Thm. 8.3.1),

ρ̇t = −∇ · (ρt∇s∗t (xt)) . (78)

Consider the function

φt(x0, x1) =

{
x0 +

∫ t

0
∇s∗τ (xτ )dτ, t ≤ 1/2 ,

x1 +
∫ t

1
∇s∗τ (xτ )dτ, t > 1/2 ,

(79)

which integrates the ODE dx/dt = ∇s∗t (xt) forward starting from x0 for t ≤ 1/2, and integrates
the same ODE backwards starting from x1 otherwise.

Clearly, for t ≤ 1/2 the designed function serves as a push-forward map for the samples x0 ∼ ρ0,
and produces samples from ρt by Eq. (78). The same applies for t > 1/2. Thus, φt samples from
the correct marginals, i.e.∫

δ(xt − φt(x0, x1))ρ0(x0)ρ1(x1)dx0dx1 = ρt(xt), ∀t ∈ [0, 1]. (80)

We now show that φt(x0, x1) can be expressed using the parameterization in Eq. (16), which con-
structs xt as

xt = (1− t)x0 + tx1 + t(1− t)NNET∗(t, x0, x1,1[t < 0.5]; η), x0 ∼ µ0, x1 ∼ µ1. (81)

Then taking the function NNET∗(t, x0, x1,1[t < 0.5]; η) as follows

NNET∗(t, x0, x1,1[t < 0.5]; η) =


1

1−t

(
x0 − x1 +

1
t

∫ t

0
∇s∗τ (xτ )dτ

)
, t ≤ 1/2 ,

1
t

(
x1 − x0 +

1
1−t

∫ t

1
∇s∗τ (xτ )dτ

)
, t > 1/2 ,

(82)

we have

(1− t)x0 + tx1 + t(1− t)NNET∗(t, x0, x1;1[t < 0.5]; η) = φt(x0, x1), (83)

which samples from the correct marginals by construction.
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E Details of Experiments

E.1 Single-cell Experiments

We consider low dimensional (Table 2) and high dimensional (Table 1) single-cell experiments fol-
lowing the experimental setups in Tong et al. [63, 62]. The Embryoid body (EB) dataset Moon et al.
[46] and the CITE-seq (Cite) and Multiome (Multi) datasets [11] are repurposed and preprocessed
by Tong et al. [63, 62] for the task of trajectory inference.

The EB dataset is a scRNA-seq dataset of human embryonic stem cells used to observe differentia-
tion of cell lineages [46]. It contains approximately 16,000 cells (examples) after filtering, of which
the first 100 principle components over the feature space (gene space) are used. For the low di-
mensional (5-dim) experiments, we consider only the first 5 principle components. The EB dataset
comprises a collection of 5 timepoints sampled over a period of 30 days.

The Cite and Multi datasets are taken from the Multimodal Single-cell Integration challenge at
NeurIPS 2022 [11]. Both datasets contain single-cell measurements from CD4+ hematopoietic stem
and progenitor cells (HSPCs) for 1000 highly variables genes and over 4 timepoints collected on
days 2, 3, 4, and 7. We use the Cite and Multi datasets for both low dimensional (5-dim) and
high dimensional (50-dim, 100-dim) experiments. We use 100 computed principle components for
the 100-dim experiments, then select the first 50 and first 5 principle components for the 50-dim
and 5-dim experiments, respectively. Further details regarding the raw dataset can be found at the
competition website. 4

For all experiments, we train k independent models over k partitions of the single-cell datasets. The
training data partition is determined by a left out intermediary timepoint. We then average test per-
formance over the k independent model predictions computed on the respective left-out marginals.
For experiments using the EB dataset, we train 3 independent models using marginals from time-
point partitions [1, 3, 4, 5], [1, 2, 4, 5], [1, 2, 3, 5] and evaluate each model using the respective left-
out marginals at timepoints [2], [3], [4]. Likewise, for experiments using Cite and Multi datasets, we
train 2 independent models using marginals from timepoint partitions [2, 4, 7], [2, 3, 7] and evaluate
each model using the respective left-out marginals at timepoints [3], [4].

For both st(x, θ) and ρt(x, η), we consider Multi-Layer Perceptron (MLP) architectures and a com-
mon optimizer [41]. For detailed description of the architectures and hyperparameters we refer the
reader to the code supplemented.

E.2 Single-step Image Generation via Optimal Transport

Learning the vector field that corresponds to the optimal transport map between some prior distri-
bution (e.g. Gaussian) and the target data allows to generate data samples evaluating the vector field
only once. Indeed, the optimality condition (Hamilton-Jacobi equation) for the dynamical optimal
transport yields

Ẍt = ∇
[
∂st(xt)

∂t
+

1

2
∥∇st(xt)∥2

]
= 0 , (84)

hence, the acceleration along every trajectory is zero. This implies that the learned vector field can
be trivially integrated, i.e.

X1 = X0 +∇s0(X0) . (85)

Thus, X1 is generated with a single evaluation of ∇s0(·).
For the image generation experiments, we follow common practices of training the diffusion models
[60], i.e. the vector field model st(x, θ) uses the U-net architecture [54] with the time embedding
and hyperparameters from [60]. For the distribution path model ρt(x, η), we found that the U-net
architectures works best as well. For detailed description of the architectures and hyperparameters
we refer the reader to the code supplemented.

4https://www.kaggle.com/competitions/open-problems-multimodal/data
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Figure 3: MNIST 32x32 image generation. Every top row is the integration of the corresponding
ODE via Dormand-Prince’s 5/4 method, which makes 108 function evaluations. Every bottom row
corresponds to single function evaluation approximation.
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Figure 4: CIFAR-10 image generation. Every top row is the integration of the corresponding ODE
via Dormand-Prince’s 5/4 method, which makes 78 function evaluations. Every bottom row corre-
sponds to single function evaluation approximation.
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