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Abstract

Machine learning systems are notoriously prone to biased
predictions about certain demographic groups, leading to al-
gorithmic fairness issues. Due to concerns about patient pri-
vacy and social inequity, some demographic information may
not be available for training a clinical algorithm. Moreover,
the complex interaction of different demographics can lead to
a lot of unknown minority subpopulations. These challenges
greatly limit the applicability of existing group fairness al-
gorithms. To improve the fairness-without-demographics al-
gorithm in the clinical regime, we argue that the gradients of
clinical models can provide insights for alleviating inequities.
In this paper, we adopt an adversarial weighting architecture
and leverage the correlation between model gradients and de-
mographic groups to improve identification and increase ex-
posure of underrepresented groups. We learn the weights of
different samples by constructing a graph where samples with
similar gradients are connected. Unlike the surrogate group-
ing methods that cluster groups by proxy sensitive attributes
like features and labels, which can be inaccurate, our method
provides a soft grouping mechanism that is more robust. The
results show that our method can significantly improve fair-
ness without sacrificing too much of the overall accuracy.

Introduction
Fairness in machine learning has become an urgent con-
cern, as machine learning systems can be biased against
certain demographic groups, which contributes to socioeco-
nomic disparities in many areas such as healthcare (Gian-
francesco et al. 2018), finance (Hajian, Bonchi, and Castillo
2016), etc. For example, when learning the risk of patients
with different races, due to certain biases, the model pre-
diction can be inaccurate for certain protected groups, such
as minorities. To address this issue, most existing methods
(Hashimoto et al. 2018; Sagawa et al. 2019; Lahoti et al.
2020; Creager, Jacobsen, and Zemel 2021; Rahman and Pu-
rushotham 2022; Chai, Jang, and Wang 2022) require sen-
sitive attributes, such as race, gender, etc., to identify which
group is discriminated against by machine learning models.
However, due to privacy concerns, these sensitive attributes
are not always accessible. For example, regulations like the
HIPAA privacy rule have established safeguards to protect
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the privacy of health information. In addition, the interac-
tion between various demographic factors can be complex,
and the potential protected groups increase exponentially as
the number of sensitive attributes increases. This, in turn, es-
calates the difficulty of identifying the most disadvantaged
group. Consequently, it is crucial to advocate for machine
learning fairness that does not rely on demographic infor-
mation.

To ensure fairness without demographics, many existing
methods with proxy sensitive attributes (Yan, Kao, and Fer-
rara 2020; Grari, Lamprier, and Detyniecki 2021; Du et al.
2021; Zhao et al. 2022) assume the correlation between sen-
sitive attributes (groups) and nonsensitive attributes (fea-
tures), perform clustering to obtain surrogate groups, and en-
force group fairness. The problem with these methods, how-
ever, is the difficulty in guaranteeing a large overlap with
the real protected groups, especially when many protected
groups are unknown and the distributional discrepancies be-
tween sensitive attributes are large (Chai, Jang, and Wang
2022). Other methods such as ARL (Lahoti et al. 2020) gen-
erate weights for different samples, but they can be suscep-
tible to noise (e.g., mislabelling) when outliers are given su-
perior weights due to their rarity in the data and thus may
lead to severe degradation of fairness metrics.

In this paper, we develop an innovative adversarial learn-
ing framework that comprises a main-task learner and an ad-
versary component tasked with generating sample weights
to maximize the learner network’s loss. These weights are
subsequently utilized in the minimization of the learner’s
loss. Our approach harnesses the gradients of the learner
to categorize samples based on demographics, forming a
”Graph of Gradients” (GoG). In this graph, each sample is
linked to its K-nearest counterparts exhibiting similar gradi-
ent profiles. This method enables the computation of each
sample’s weight through the aggregation of weights from
neighboring samples in the GoG. This soft-grouping mech-
anism effectively identifies similar samples, while avoiding
the imposition of rigid demarcation lines between different
demographic groups and preventing the undue influence of
noises. Through comprehensive experimental evaluations,
we demonstrate that our methodology not only markedly
enhances fairness, but also optimizes the balance between
fairness and accuracy.

In summary, our contributions are listed as follows.



• We propose a fairness-without-demographics algorithm
for clinical models to mitigate the machine learning un-
fairness issue, which can scale up to large datasets of di-
verse complexities and structures.

• We show that the gradients of a machine learning clinical
model are more effective in representing demographic
groups under mild assumption that model accuracy and
input features are strongly correlated, which holds true if
the deep learning learner is better than random guess. We
also show that the last-layer gradients are sufficient.

• We propose to identify demographic subgroups by a soft-
grouping method, i.e., graph of gradients (GoG). The
proposed method can address the issues with surrogate
groups and noisy outliers.

• Extensive experiments on three public datasets and five
baselines show that our method outperforms other rep-
resentative fairness algorithms significantly in terms of
both fairness and accuracy.

Related Work
Group fairness for classification
Group fairness is a concept that aims to ensure that the out-
comes of an algorithm are equitable across different subpop-
ulations defined by sensitive attributes, such as race, gender,
etc. To alleviate the group disparity (Jiang et al. 2022), Equal
Opportunity (Hardt, Price, and Srebro 2016) hopes that the
true positive rates should be the same for all subpopula-
tions, and Predictive Equality (Chouldechova 2017) requires
the equality of false positive rates. Preprocessing methods
(Chen, Johansson, and Sontag 2018; Jang, Zheng, and Wang
2021) ensure that the data used for training are unbiased and
representative of different subgroups by resampling, feature
selection, etc. In-processing methods (Madras et al. 2018;
Iosifidis and Ntoutsi 2019; Roh et al. 2021; Chai, Jang, and
Wang 2022; Chai and Wang 2022) regularize the training
process with fair constraints, sample reweighting, and adver-
sarial training. Post-processing methods (Pleiss et al. 2017;
Kim et al. 2022; Jang, Shi, and Wang 2022) focus on ad-
justing the model prediction after training by threshold ad-
justment, calibration, etc., which are usually very efficient.
However, to guarantee group fairness, the availability of sen-
sitive information is a necessity. Some papers (Celis et al.
2021; Celis, Mehrotra, and Vishnoi 2021; Giguere et al.
2022) also address fairness concerns by using techniques
that are robust to noisy or shifting sensitive attributes.

Fairness without demographics
To resolve challenges to discovering the worst-off groups
due to both the regulatory limitations and the complex
interaction of many demographic variables (Shui et al.
2022), increasing methods are proposed in recent years to
achieve fairness without demographics. Some methods fol-
low the Rawlsian Max-Min fairness (Rawls 2004) to min-
imize the empirical risk of the group with the least utility.
For example, Distributionally Robust Optimization (DRO)
(Hashimoto et al. 2018) proposes to use χ2-divergence to
discover and minimize the worst-case distribution repeat-
edly, which essentially only focuses on the learning of the

worst-off group. Adversarial Reweighted Learning (ARL)
(Lahoti et al. 2020) uses an adversary network to generate
sample weights that maximize the empirical risk and per-
forms weighted learning for the learner model. Based on the
concept of computational identifiability, ARL hypothesizes
that it can learn demographic information from data features
and labels. Surrogate grouping methods (Zhao et al. 2022)
are also proposed to minimize the correlation between data
features and model prediction, or directly predict surrogate
demographic groups (Yan, Kao, and Ferrara 2020) and then
perform group fairness algorithms (Sagawa et al. 2019; Rah-
man and Purushotham 2022). Some debiasing methods pro-
pose to identify the group disparities based on clustering in-
formation and upsample the minority groups to balance the
distribution (Chai, Jang, and Wang 2022; Kim et al. 2022).

Theoretical Foundation
Problem Formulation
Consider data (x, y, a) with n samples, where x represents
the non-sensitive features, y represents the labels, and a rep-
resents the sensitive attributes. Then, given x, we need to
predict y without the knowledge of a while satisfying cer-
tain fairness criteria with respect to a. For multi-class classi-
fication, y ∈ {M} where M denotes the number of classes.

Correlation between gradients and demographics
Since we do not have true demographics a as the label, we do
not know a as an estimated function of x and U(h) a priori.
Therefore, we propose to use gradients to represent demo-
graphic groups. Gradients provide not only the data bias but
also the model bias. As long as the model prediction error
differs in different groups, U(h) and a must be correlated.

Consider a neural network model h parametrized by θ
as h(x; θ) = ŷ, where θ = (W,V ). We have W =
(W1, ...,Wd)

⊤ ∈ RD×M as the weight of the last layer,
where D denotes the dimensionality of the last latent rep-
resentation. V is the weight of all the previous layers.
h(x; θ) = σ(W × z(x;V )), where σ(z)j = ezj/

∑D
d=1 e

zd .
The last-layer gradient w.r.t. the cross entropy loss is calcu-
lated as

∂

∂W
L(h(x; θ), y) = z(x;V )× (ŷ − y), (1)

where

L(h(x; θ), y) = −
∑
d

yd · log(h(x; θ)) (2)

= log

(
D∑

d=1

eWd·z(x;V )

)
−Wy · z(x;V ).

(3)

Note that ŷ − y is the bias of the model prediction, which
can have a positive/negative value. We define the undirected
gradient g ∈ RD×M of the last layer of h by

gd,j = z(x)d|ŷj − yj | = zdUj , (4)

which is the latent representation multiplication of non-
sensitive feature and prediction error. Here, yj denotes the
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Figure 1: The proposed Graph of Gradients framework.

true value of the j-th class on the label. We show that us-
ing the undirected gradient to estimate sensitive attributes is
more accurate than using only x by Theorem 1.

Theorem 1. The distribution of gradients has a closer dis-
tance to sensitive attributes than input features. If we denote
sensitive demographics as Z, model prediction error as Y ,
and input features as X , I(XY |Z) > I(X|Z).

Lemma 1. If we denote sensitive demographics as Z, model
prediction error as Y , and input features as X , Corr(XY,Z)

Corr(X,Z)

increases when Corr(X,Y ) increases.

Proposition 1. The last-layer gradient of the deep learning
prediction model can have a stronger correlation to sensi-
tive attributes than non-sensitive input features. If we denote
input features as x, model prediction error as U , last-layer
representation as z, and sensitive attribute classes as s, we
have Corr(zU, s) > Corr(x, s).

The proofs of Theorem 1, Lemma 1 and Proposition 1 are
presented in Appendix. By Proposition 1, we show that the
last-layer gradient of a deep learning model is more effective
in identifying the demographic groups than the commonly
used non-sensitive input features. Based on this property, we
develop an architecture in the next section to improve fair-
ness without demographics.

Methodology
In the literature (Lahoti et al. 2020), it is proven that the
Rawlsian Max-Min fairness objective (Rawls 2004) can be
formulated as

h∗ = argmin
θ

max
λ

n∑
i=1

λsiL(h(xi; θ), yi). (5)

where n denotes the number of samples. The optimal hy-
pothesis h∗ is replaced by a model, and the demographic
group s that minimizes the utility is replaced by reweight-
ing each group with a learning weight λs. When the demo-
graphic groups are unknown to us, people learn to predict
s(x, y), or simply assign weights λi to each sample.

In this paper, we propose a novel learning framework to
address the deficiencies of existing approaches. The over-
all framework is shown in Figure 1. As hard boundaries for
group partition can be intractable, we propose a method that
mimics the grouping effect to alleviate the noises. In detail,

our method can reformulate Eq. 7 as follows

J(θ, ϕ) = min
θ

max
ϕ

n∑
i=1

λi(x, y, g;ϕ) · L(hθ(xi), yi), (6)

where λ is an adversary network powered by graph convo-
lutional network and g is the undirected last-layer gradients
of all samples. L is the cross-entropy loss as introduced in
Eq.3. x = [x1, ..., xn], y = [y1, ..., yn]. For g = [g1, ..., gn],
the calculation of gi ∈ RDM for each sample i ∈ {n} is

gi = Flatten (z(xi)× |h(xi)− yi|) , (7)

where h(xi) ∈ RM denotes the prediction of the learner
model and yi ∈ RM denotes the true label. z(xi) ∈ RD

denotes the latent representation of the learner model before
the last layer. The calculation of λ is

λ′(x, y, g) = fϕ(H,A) ∈ Rn, (8)

λi(x, y, g) =
n · λ′

i∑n
j=1 λ

′
j

, (9)

where H = Eg+Ex. Here, Eg = W (0)g ∈ Rn×r is the em-
bedding of gradients, with W (0) ∈ RDM×r. Ex = W (1)x ∈
Rn×r is the data embedding, with W (1) ∈ Rt′×r where t′

denotes the number of dimensions of x. We use λi ∈ λ to
represent the weight for sample i, which is normalized ac-
cording to Eq. 11. On the other hand, A ∈ Rn×n is the adja-
cency matrix for constructing the Graph of Gradients (GoG),
which is calculated as follows for a certain entry Au,i

Au,i =

{
1 if dist(gu, gi) ≥ dist(gu)k
0 if dist(gu, gi) < dist(gu)k

, (10)

where dist(·, ·) is the Euclidean distance between the gradi-
ents of two samples, dist(·)k denotes the distance between
the gradient of the sample and the gradient of its K-th nearest
neighbors among the gradients of other samples.

The calculation of fϕ can be represented as

f(H,A) = σ(AHW (2)) ∈ Rn×1, (11)

which is a one-layer graph convolutional network (GCN)
that takes each sample’s data as input and outputs the sam-
ple weight. Therefore, ϕ = [W (0),W (1),W (2)]. To generate
the weights, each sample, which is a node in the graph, ag-
gregates the information of similar samples with K-nearest
gradients. Here, W (2) ∈ Rr×1 allows the graph network to
learn the importance of neighboring samples for aggrega-
tion, and σ denotes the activation function.

The learning of GoG is a grouping mechanism without
knowing the demographic groups a priori. The overall algo-
rithm is shown in Algorithm 1 in Appendix.

Experiments
In this section, we conduct extensive experiments to verify
the effectiveness of our method.



Experimental Setup
We randomly divide each dataset by samples into the train-
ing, validation, and testing sets in a 0.75:0.1:0.15 ratio. Dif-
ferent from previous works such as (Lahoti et al. 2020) that
only consider race and gender, we consider more subpop-
ulation groups to test the fairness of models under a more
severe environment. We tune all the hyperparameters with
an appropriate range to obtain the optimal evaluation on the
validation set for each model. The range of learning rate is
{1e-2, 3e-3, 1e-3}, batch size is {16, 32, 64, 128}, hidden
dimension is {16, 32, 64}, dropout rate is {0,1, 0.5}. The
algorithm will stop if the accuracy of the worst group vali-
dation metrics does not increase in twenty epochs, and the
test performance will be recorded. All results are averaged
under five random seeds. More experimental details are pre-
sented in Appendix.

Datasets
We evaluate our proposed method on the following real-
world datasets: MIMIC-III, MIMIC-IV.

• MIMIC-III Dataset The Medical Information Mart for
Intensive Care database1 (Johnson et al. 2016) contains
the information of patients who stayed in the critical
care units of the Beth Israel Deaconess Medical Center
between 2001 and 2012. There are 53423 patients and
651048 diagnosis codes recorded in the dataset. The goal
is to predict future diagnoses for multi-class classifica-
tion. Religion, sex, age, and race are protected attributes.

• MIMIC-IV Dataset The MIMIC-IV dataset2 contains
patients who stayed in the critical care units of the
Beth Israel Deaconess Medical Center between 2008 and
2019. Patients who had less than three admission records
are excluded. The average number of visits for the 10023
selected patients is 4.64, the average number of codes in
a visit is 14.12, the total number of unique ICD-9 codes
in diagnoses/procedures is 6274/1973.

Performance Comparison
Overall, Table 1 show that our algorithm can significantly
improve the fairness of machine learning diagnosis predic-
tion models significantly. The relative increases of Worst-
Group Accuracy to the second-best approach by our algo-
rithm are 2.904% on MIMIC-III dataset and 3.769% on
MIMIC-IV dataset. In Equalized Odds, the relative improve-
ments by our algorithm are 27.36% on MIMIC-III dataset
and 26.93% on MIMIC-IV dataset. In disparate impact,
the relative improvements by our algorithm are 25.90% on
MIMIC-III dataset and 28.22% on MIMIC-IV dataset. We
observe that FairRF generally performs worse than DRO
and ARL in Worst-Group Accuracy, but outperforms them
in Equalized Odds and Disparate Impact. Compare to our
model, DRO and ARL are much less effective in promoting
fairness without demographics. It should be noted that group
disparity focuses on minimizing the discrepancies between

1https://physionet.org/content/mimiciii/1.4/
2https://physionet.org/content/mimiciv/0.4/

Table 1: Performances of fairness algorithms on the MIMIC-
III and MIMIC-IV datasets, evaluated by Acc@20 of the
worst group, Equalized Odds, and Disparate Impact. Each
result is averaged over ten random seeds.

Approach MIMIC-III Dataset
W. Acc(↑) E. Odds(↓) D. Impact(↓)

RETAIN 0.2102± 0.014 29.28± 0.45% 23.89± 0.59%
+DRO 0.2188± 0.034 27.75± 0.91% 23.02± 0.75%
+ARL 0.2187± 0.030 27.14± 0.90% 22.90± 0.77%

+FairRF 0.2169± 0.024 26.05± 0.70% 22.76± 0.66%
+Ours 0.2226 ± 0.034 18.99 ± 0.72% 17.35 ± 0.61%

Dipole 0.1943± 0.032 30.09± 0.66% 24.03± 0.45%
+DRO 0.1979± 0.040 28.10± 0.87% 23.02± 0.72%
+ARL 0.1988± 0.049 27.60± 0.85% 23.11± 0.60%

+FairRF 0.1970± 0.037 26.63± 0.65% 22.79± 0.53%
+Ours 0.2095 ± 0.035 19.32 ± 0.72% 16.84 ± 0.55%

Stagenet 0.2086± 0.012 29.53± 0.22% 23.16± 0.27%
+DRO 0.2127± 0.022 27.99± 0.49% 22.63± 0.43%
+ARL 0.2136± 0.026 27.89± 0.49% 22.77± 0.59%

+FairRF 0.2111± 0.015 26.36± 0.19% 22.32± 0.24%
+Ours 0.2170 ± 0.011 19.10 ± 0.27% 16.11 ± 0.37%

Approach MIMIC-IV Dataset
W. Acc(↑) E. Odds(↓) D. Impact(↓)

RETAIN 0.3102±0.018 25.64±0.23% 23.39±0.33%
+DRO 0.3153±0.046 23.33±0.58% 21.27±0.62%
+ARL 0.3147±0.043 23.00±0.51% 21.55±0.45%

+FairRF 0.3126±0.020 22.20±0.10% 20.97±0.28%
+Ours 0.3299±0.044 16.95±0.67% 15.32±0.44%

Dipole 0.3051±0.032 29.11±0.36% 24.75±0.21%
+DRO 0.3077±0.040 25.45±0.38% 22.23±0.20%
+ARL 0.3093±0.049 25.19±0.52% 22.11±0.39%

+FairRF 0.3047±0.037 24.30±0.38% 21.45±0.24%
+Ours 0.3212±0.035 17.61±0.49% 15.27±0.33%

Stagenet 0.3048±0.032 28.19±0.17% 22.95±0.21%
+DRO 0.3089±0.040 24.48±0.33% 22.14±0.39%
+ARL 0.3112±0.049 24.22±0.28% 22.04±0.40%

+FairRF 0.3079±0.037 22.40±0.11% 21.37±0.21%
+Ours 0.3200±0.025 15.77±0.14% 15.19±0.14%

groups when making predictions, while the worst group ac-
curacy focuses on ensuring that the model is accurate even
for the worst-off group.

Conclusion
In this study, we address fairness concerns in machine learn-
ing models for electronic health records, focusing on the
challenges posed by the complex interplay of demographic
variables and regulatory constraints, which often render de-
mographic information unknown. We present a novel ap-
proach to tackle the limitations of existing methods. Specif-
ically, we highlight the importance of gradients to identify
subpopulations, and propose to create a graph of gradients
by connecting each sample to its K-nearest neighbors. Graph
neural networks are adopted to identify demographic groups
and generate sample weights. Experimental results reveal
that our method significantly enhances the machine learning
fairness on electronic health records data.
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Appendix

Algorithm 1: Fairness without demographics with the graph
of gradients.

Require: The labelled data x = [x1, x2, ..., xt] and y =
[y1, y2, ..., yt], the demographic sensitive attributes a =
[a1, a2, ..., at]; the learner model hθ , the adversary model λϕ.

1: while not convergence do
2: for i=0:n do
3: Compute and record hθ(xi), z(xi) and gi by Eq.9;
4: Compute and record L(h(xi; θ), yi) by Eq.3;
5: end for
6: Compute H , A and λϕ(x, y, g) by Eqs.(10-14);
7: Compute J(θ, ϕ) =

∑n
i=0 λ(x, y, g;ϕ)i · L(h(xi; θ), yi);

8: Fix θ and optimize ϕ by maximizing J(θ, ϕ);
9: Fix ϕ and optimize θ by minimizing J(θ, ϕ);

10: end while
11: return hθ , which will be a fair model.

Experimental Setup Details

Baseline Models

• RETAIN: (Choi et al. 2016) A two-level neural model
based on reverse time attention for healthcare.

• Dipole: (Ma et al. 2017) An attention-based bidirectional
recurrent neural network for healthcare.

• StageNet: (Gao et al. 2020) A deep learning model with
stage-aware LSTM and convolutional modules for health
risk prediction.

For each baseline model, we incorporate it with several fair-
ness algorithms, denoted as +(FairModel).

We compare our method that uses the graph of gradients
with the following fairness-without-demographics models
that use features for weight generation or clustering.

• DRO: (Hashimoto et al. 2018) A fair algorithm that uses
χ2-divergence to discover and minimize the worst-case
distribution repeatedly.

• ARL: (Lahoti et al. 2020) A fair algorithm that leverages
computational identifiability to learn the demographics
from features/labels for the Max-Min fairness objective.

• FairRF: (Zhao et al. 2022) A fair algorithm that min-
imizes the correlation between data features and model
predictions with importance weighting.

Evaluation Metrics

Worst-Group Accuracy We adopt the top-k accuracy of
the worst subpopulation group (W. Acc.), which indicates
the model performance under the worst case. Accuracy@k
is the same as used in previous works (Ma et al. 2017; Choi
et al. 2017) is defined as the correct medical ICD-9 codes
ranked in the top k divided by min(k, |yt|), where |yt| is the
number of ICD-9 codes in the (t+1)-th visit. Here we use
k = 20.

Table A1: Ablation study of our model, evaluated by Worst-
Group Acc@20, Equalized Odds, and Disparate Impact.

Dataset Baseline Approach W. Acc(↑) E. Odds(↓) D. Impact(↓)

MIMIC-III RETAIN Ours 0.2226±0.0034 18.99±0.72% 17.35±0.61%
MIMIC-III RETAIN -Graph 0.2193±0.0025 24.67±0.56% 20.28±0.27%
MIMIC-III RETAIN -Grad 0.2211±0.0021 20.68±0.42% 19.14±0.26%

MIMIC-III Dipole Ours 0.2095±0.0035 19.32±0.72% 16.84±0.55%
MIMIC-III Dipole -Graph 0.1993±0.0031 19.67±0.41% 14.28±0.35%
MIMIC-III Dipole -Grad 0.2058±0.0024 19.68±0.29% 13.62±0.27%

Equalized Odds We use the equalized odds (E. Odds),
which requires the probability of instances with any two
protected attributes i, j being assigned to an outcome k are
equal, given the label. As there are as many as M different
labels, we simply cluster labels into eighteen diagnosis cate-
gories based on the ICD-9 code categories3. Since there are
different demographic groups S, we calculate

△EO =
∑
i,j

|E(ŷ|S = i, y = k) = E(ŷ|S = j, y = k)|.

(12)

Disparate Impact We use the disparate impact (D. Im-
pact), which requires the prediction to be fair across differ-
ent groups. This metric may not make sense for medicine
and should use with caution, since the prevalence of a dis-
ease can indeed be affected by the demographics

△DP =
∑
i,j

|E(ŷ|S = i) = E(ŷ|S = j)|. (13)

Experimental Ablation Study
We conduct an ablation study in Table A1 to fully under-
stand the effectiveness of different parts in our method. In
total, our method consists at least of 1) the construction and
learning of the EHR patient graph and 2) the use of gradients
to replace features in representing unknown demographics.
We report the fairness metrics when we deduct a certain part
from the proposed model to evaluate whether it is impor-
tant. It can be concluded that both parts are useful, as the
model without graph or without gradients can both outper-
form other fairness algorithms. The graph learning plays a
more important role in improving fairness.

Effectiveness of Gradients
In this section, we discuss and theoretically analyze the ef-
fectiveness of gradients to represent sensitive demographics.
We first generally demonstrate, through the lens of informa-
tion theory and as articulated in Theorem 1, that the distri-
bution of gradients is more closely aligned with sensitive
demographic attributes compared to input features, if input
features are not perfect solutions for identifying demograph-
ics. Furthermore, we explore under the condition of linear
relationships, as outlined in Lemma 1, that model gradients
are more effective than input features in a larger correlation
between input features and model prediction error.

3https://en.wikipedia.org/wiki/List of ICD-9 codes



Theorem 1. The distribution of gradients has a closer dis-
tance to sensitive attributes than input features. If we denote
sensitive demographics as Z, model prediction error as Y ,
and input features as X , I(XY |Z) > I(X|Z).

Proof. To calculate the mutual information I(XY |Z) be-
tween XY and Z, where XY is the undirected gradient as
shown in Eq. 4, we have

I(XY |Z) = H(XY )−H(XY |Z). (14)

Similarly, we can calculate the mutual information I(X|Z)
between X and Z as

I(X|Z) = H(X)−H(X|Z). (15)

Subtracting the above two equations, as long as X and Z are
not perfectly dependent with each other, we have

I(XY |Z)− I(X|Z)

= (H(XY )−H(X))− (H(XY |Z)−H(X|Z))

= H(Y |X)−H(Y |XZ)

> 0. (16)

Lemma 1. If we denote sensitive demographics as Z, model
prediction error as Y , and input features as X , Corr(XY,Z)

Corr(X,Z)

increases when Corr(X,Y ) increases.

Proof. Here, we assume the linearity of the data pattern for
simplicity of explanation. We hypothesize that there is a cor-
relation between X and Z, and also a correlation between Y
and Z. For simplicity, we assume Z = aX + ϵa, where ϵa
is a noise term that represents the part of Z that is uncorre-
lated to X . For simplicity, we can assume ϵa ∼ N(µa, σ

2
a).

Similarly, we have Z = bY + ϵb where ϵb ∼ N(µb, σ
2
b ). We

regard a and b as two constants, while the two noise terms
ϵa and ϵb are unknown and statistically independent. We as-
sume that X follows the standard normal distribution after
preprocessing, thus µX = 0, σ2

X = 1.
Note that we can rearrange the given equalities as follows:
Y = Z−ϵb

b and X = Z−ϵa
a → Y = Z−ϵb

b = a
bX + ϵa−ϵb

b

and XY = a
bX

2 + ϵa−ϵb
b X.

The covariance between X and Z is

Cov(X,Z) = Cov(X, aX + ϵa) (17)
= a · Cov(X,X) + Cov(X, ϵa) (18)
= a · V ar(X) + 0 (19)
= a, (20)

where Cov(X, ϵa) = 0 when the noise term is independent
of the feature.

The correlation coefficient between X and Z is

Corr(X,Z) =
Cov(X,Z)√

V ar(X)
√

V ar(Z)
(21)

=
a√

a2 + σ2
a

. (22)

Similarly, we can calculate

Cov(X,Y ) = E[X(
a

b
X +

ϵa − ϵb
b

)]− 0 =
a

b
, (23)

Corr(X,Y ) =
a√

a2 + σ2
a + σ2

b

, (24)

V ar(Z) = V ar(aX + ϵa) = a2 + σ2
a, (25)

Cov(Y,Z) = Cov((1/b)(Z − ϵb), Z) =
a2 + σ2

a

b
, (26)

V ar(Y ) = V ar(
a

b
X) + V ar(

ϵa − ϵb
b

) (27)

=
a2 + σ2

a + σ2
b

b2
, (28)

Corr(Y,Z) =
Cov(Y, Z)√

V ar(Y )
√
V ar(Z)

(29)

=

√
a2 + σ2

a√
a2 + σ2

a + σ2
b

. (30)

From observation, we find that when σ2
a + σ2

b = 0,
Corr(X,Y ) = Corr(X,Z) = Corr(Y, Z) = 1, regard-
less of the value of a, b, µa, µb. Since we regard a as a con-
stant that is not subject to change, we can conclude that σ2

a
and σ2

b can directly determine the correlation.

We have the correlation between XY and Z as

Cov(XY,Z) = Cov

(
a

b
X2 +

ϵa − ϵb
b

X,Z

)
(31)

=
a

b
Cov(X2, aX + ϵa)

+
1

b
Cov((ϵa − ϵb)X, aX + ϵa) (32)

=
a2

b
Cov(X2, X) +

1

b
Cov((ϵa − ϵb)X, ϵa)

+
1

b
Cov((ϵa − ϵb)X, aX) (33)

=
a2

b
(E[X3]− E[X]E[X2])

+
aE(ϵa − ϵb)E(X2)

b
(34)

=
a(µa − µb)

b
, (35)

where, by the moments of standard normal distribution,
E(X4) = 3, E(X3) = 0, and E(X2) = 1.



Then, we compute

V ar(XY ) = V ar

(
a

b
X2 +

ϵa − ϵb
b

X

)
(36)

=
a2

b2
V ar(X2) +

1

b2
Var(ϵa − ϵb)Var(X)

(37)

=
a2

b2
V ar(X2)

+
1

b2
(Var(ϵa) + Var(ϵb)− 2Cov(ϵa, ϵb))

(38)

=
2a2 + σ2

a + σ2
b

b2
(39)

where V ar(X2) = E(X4)− E(X2)2 = 3− 1 = 2.
Therefore, the correlation coefficient between XY and Z

is

Corr(XY,Z) =
Cov(XY,Z)√

V ar(XY )
√

V ar(Z)
(40)

=
a(µa − µb)

b
√
a2 + σ2

a

√
2a2+σ2

a+σ2
b

b2

, (41)

Comparing Corr(X,Z) and Corr(XY,Z), we have

Ratio =
Corr(XY,Z)

Corr(X,Z)
=

µa − µb√
2a2 + σ2

a + σ2
b

. (42)

We can tell that both Corr(X,Y ) and Ratio are di-
rectly dependent on and decrease in σ2

a + σ2
b . Therefore,

Corr(XY,Z)
Corr(X,Z) increases in Corr(X,Y ).

Here, linear correlation is used as an example to illustrate
our point, since nonlinear correlation is much harder to
measure and analyze. In particular, without further assump-
tions or knowledge about the data, there could be many
possible nonlinear relationships (e.g., logarithmic, polyno-
mial, exponential) and nonlinear correlation measurements
(e.g., Hilbert-Schmidt Independence Criterion, Mutual
Information, Maximal Information Coefficient).

Effectiveness of Last-Layer Gradients
Then, we extend it to Proposition 1 to show that when the
model is a neural network, as a special case of Theorem 1,
using the last-layer gradient is sufficient.
Proposition 1. The last-layer gradient of the deep learning
prediction model can have a stronger correlation to sensi-
tive attributes than non-sensitive input features. If we denote
input features as x, model prediction error as U , last-layer
representation as z, and sensitive attribute classes as s, we
have Corr(zU, s) > Corr(x, s).

Proof. Proposition 1 simply extends Theorem 1 to the set-
ting of a neural network. We consider a neural network h
parametrized by θ as h(x; θ) = ŷ, where θ = (W,V ). Thus,
we have W = (W1, ...,Wd)

⊤ ∈ RD×M as the weight of

the last layer where D denotes the dimensionality of the last
latent representation. V is the weight of all previous layers.
h(x; θ) = σ(W × z(x;V )), where σ(z)j = ezj/

∑D
d=1 e

zd .
The last-layer gradient w.r.t. the cross entropy loss is calcu-
lated as

∂

∂W
L(h(x; θ), y) = z(x;V )× (ŷ − y), (43)

where

L(h(x; θ), y) = −
∑
d

yd · log(h(x; θ)) (44)

= log

(
D∑

d=1

eWd·z(x;V )

)
−Wy · z(x;V ).

(45)

Note that ŷ − y is the bias of the model prediction, which
can have a positive/negative value. We define the undirected
gradient g ∈ RD×M of the last layer of h by

gd,j = z(x)d|ŷj − yj | = zdUj , (46)

which is the multiplication of the last-layer representation
and the prediction error (alternative to model prediction er-
ror U ) of the label class. Here yj denotes the true value of
the j-th class in the label.

We can assume that the correlation between the last-layer
representation and the label is larger than the correlation be-
tween the input features and the label, i.e., Corr(z, s) >
Corr(x, s). This assumption is also likely to hold in prac-
tice because the purpose of a neural network is to learn a
representation to make it easier to predict the label. As long
as the neural network is effectively learning representations,
this assumption holds. According to Lemma 1, we have

Corr(zU, s)

Corr(x, s)
>

Corr(xU, s)

Corr(x, s)
, (47)

which means Corr(zU, s) > Corr(xU, s). According to
Theorem 1, in general, I(xU |s) > I(x|s). If it works for
linear relationships, we have Corr(xU, s) > Corr(x, s). In
this case, Corr(zU, s) > Corr(x, s).
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