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Abstract

Recent advancements in image understanding have benefited from the extensive use
of web image-text pairs. However, video understanding remains a challenge despite
the availability of substantial web video-text data. This difficulty primarily arises
from the inherent complexity of videos and the inefficient language supervision
in recent web-collected video-text datasets. In this paper, we introduce Text-Only
Pre-Alignment (TOPA), a novel approach to extend large language models (LLMs)
for video understanding, without the need for pre-training on real video data.
Specifically, we first employ an advanced LLM to automatically generate Textual
Videos comprising continuous textual frames, along with corresponding annotations
to simulate real video-text pairs. Then, these annotated textual videos are used to
pre-align language-only LLMs with the video modality. To bridge the gap between
textual and real videos, we employ the CLIP model as the feature extractor to align
image and text modalities. During text-only pre-alignment, the continuous textual
frames, encoded as a sequence of CLIP text features, are analogous to continuous
CLIP image features, thus aligning the LLM with real video representation.
Extensive experiments, including zero-shot evaluation and finetuning on various
video understanding tasks, demonstrate that TOPA is an effective and efficient
framework for aligning video modality with LLMs. In particular, without training
on any video data, the TOPA-Llama2-13B model achieves a Top-1 accuracy of
51.0% on the challenging long-form video understanding benchmark, EgoSchema.
This performance surpasses previous video-text pre-training approaches and is
competitive with recent GPT-3.5-based video agents.

1 Introduction
Image-language understanding has made large advancements in both image-language alignment [26,
48] and Multimodal Large Language Models (MLLMs) [1, 27, 34, 89], aided by pre-training on
large-scale noise-paired image-text data collected from the web [6, 19, 51, 53, 52]. This raises a
question: Can we mirror this success in video-language understanding? Research [45, 64, 77, 86] has
explored pretraining video-language models on millions of web video-text data [3, 40, 65], achieving
promising results in basic video tasks such as video-text retrieval, video captioning, and video question
answering across conventional video benchmarks. However, recent research reveals that these models
struggle with a challenging long-form video understanding benchmark, i.e., EgoSchema [39], which
requires intrinsic temporal understanding capabilities. This highlights the gap in adapting web
video-text pretrained models to more comprehensive video understanding tasks.
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We attribute this gap to two primary factors: 1) The intrinsic complexity of the video modality. Videos
introduce intrinsic complexities in both spatial and temporal dimensions, which are not present in
static images. These complexities require extensive training on larger-scale data to effectively capture
video dynamics. Furthermore, representing videos typically involves processing multiple frames,
significantly increasing computational demands compared to image modeling. The dual challenges
of large-scale training and increased computational requirements make video-language modeling
particularly challenging. 2) The limitations of web language supervision. The language supervision
in recent web video-text datasets primarily comes from subtitles or descriptions associated with the
videos [3, 40]. However, subtitles often suffer from the issues of visual-textual misalignment [33, 17].
Moreover, the form of descriptive supervision is inefficient in building robust video reasoning
capabilities, especially in terms of temporal reasoning. This mismatch between the complex video
content and the limited supervision hinders effective video-language modeling.

In this paper, we propose an innovative approach to develop video understanding capabilities by
using LLMs to simulate and understand video dynamics. Instead of directly aligning LLMs with real
video representation, we first introduce a textual video representation — a sequence of textual frames
designed to mimic real visual dynamics. This textual video can be readily generated by advanced
LLMs and effectively simulates various video dynamics by describing them in text. Specifically, we
present a Textual Video (TextVid) dataset, automatically generated by LLMs. TextVid includes: 1)
Textual videos (hereinafter referred to as “Tideo”), which consist of a sequence of textual frames
crafted to mimic the keyframes of real videos, and 2) Tideo annotations, including comprehensive
Tideo-level dense descriptions and varied question-answer (QA) pairs. These annotations are of high
quality and closely align with the Tideo content, by virtue of the powerful capability of LLM in
language generation.

Building on the proposed TextVid dataset, we introduce the Text-Only Pre-Alignment (TOPA)
framework, to effectively and efficiently pre-align LLMs with the video modality, reducing the
need for costly video-text pre-training. We introduce three tasks for video-LLM pre-alignment:
Tideo summarization, Tideo QA and multi-choice Tideo QA. To bridge the gap between textual
Tideos and visual videos, we leverage the CLIP [48] model for feature extraction. Specifically,
we employ the CLIP text encoder to extract frame-level representations for Tideos, and the CLIP
visual encoder for real videos. During the text-only pre-alignment phase, the LLM learns to process
continuous CLIP text features of Tideos. In the real video inference phase, it transitions to handling
continuous CLIP image features of real video. Due to the aligned CLIP image-text feature space,
the LLM can adapt to real video inputs despite being trained on textual representations. Our main
contributions include:

(1) We propose a novel Text-Only Pre-Alignment (TOPA) framework to extend Large Language
Models (LLMs) for video understanding. TOPA aligns LLMs with the video modality efficiently and
effectively without the need for training on real videos, reducing the costs for video-text pre-training.

(2) We introduce TextVid, a textual video dataset automatically generated by advanced LLMs. TextVid
dataset comprises 721K diverse Tideos along with associated high-quality annotations, which include
detailed Tideo descriptions and a variety of question-answer pairs.

(3) Extensive experiments demonstrate TOPA’s effectiveness across various video understanding
tasks. Particularly, the TOPA-Llama2-13B model achieves 51.0% Top-1 accuracy in the challenging
EgoSchema benchmark, outperforming previous video-text pretraining methods and competitive with
recent GPT-3.5-based video agents.

2 Related Work
Vision-language alignment. CLIP [48] aligns the vision and language modalities in a common
feature space via contrastive learning with large-scale web image-text data. MLLMs [1, 27, 34, 89]
align the visual model with LLM via training on image-caption pairs and interleaved image-text data.
Video-LLMs [7, 23, 32, 83] explore modeling video sequences within LLM spaces, leveraging LLM
for video-language understanding. In this paper, we focus on video-LLM alignment. Rather than
using multimodal data for vision-language alignment, we introduce a novel text-only pre-alignment
framework to extend LLMs for video understanding without pre-training on real video-text data.

LLMs for multimodal data augmentation. Recent research explores the use of LLMs to enhance
the multimodal data. A line of work [5, 12, 34] use LLMs for refining captions or extending the
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Frame 1:
A mid-age female 

with long   

blonde hair …

Can you assist me with creating a textual video 

about “Register a House Cleaning Business” ?

Frame 1: {
 Frame Caption: “A mid-age female with long 

blonde hair is sitting in the living room.”

 Woman: “A mid-age woman with long blonde 

hair is sitting on the couch. She wears a red dress, 

reading a book.”

 Couch:  “The couch is brown with leather. 

Several pillows are placed on the couch.”

}

Frame 2: ….

….

Detailed Video Description: 
“The video demonstrates the steps of starting a house 

cleaning business …”

QA Pairs:
Question: 

 What color is the woman's hair?

Options:

 A: Red.  B: Black. C: Blonde. D: Green.

Answer:

 Blonde. (C)

….

CLIP Text 

Encoder

CLIP Image 

Encoder

Frame N:
The woman 

stares at the 

computer and …

...

Large Language Model

Linear Projector 

Question: What color is the woman's hair?

Answer: It’s Blonde.

Cross-modal Project (Eq. 2)

Zero-Shot

Inference

Text-Only 

Pre-Alignment
Supervised

Finetuning

… …

….

Text-Only Pre-Alignment Real Videos InferenceTextVid Generation

Adapter

CLIP text feature

CLIP image feature Learnable

Frozen
User:

LLM Assistant:

Aligned

Figure 1: Overview of the proposed Text-Only Pre-Alignment (TOPA) framework. Left: The pipeline
used for generating the TextVid dataset. Right: The video-LLM alignment framework. During
text-only pre-alignment, the LLM learns to process continuous CLIP text features. In zero-shot
inference, the LLM uses projected CLIP visual features as input. Additionally, TOPA supports
supervised fine-tuning on downstream video datasets to further improve the performance.

image caption pairs to diverse visual tasks like visual conversation and image editing. Another line
of work [28, 37, 38, 47] further employ advanced LLM to enrich web video supervision for video
instruction tuning. In this paper, rather than enhancing multimodal datasets, we propose generating
text-only data consisting of "textual videos" and diverse language supervision, which aims to simulate
real videos and their corresponding annotations.

Long-form video understanding. Long-form video understanding [39, 61, 71] presents significant
challenges due to the intricate spatial and temporal dynamics. Conventional video-text pretraining
approaches [4, 45, 65, 66, 77, 90] utilize extensive web video-caption data for video-language alignment.
Recent research [28, 66, 83, 88] employ video instruction-tuning for video-LLM alignment to enhance
video-language understanding. Another line of research [22, 54, 81, 49] seeks to adapt recent image
MLLMs to video understanding. A parallel line of research [9, 42, 55, 60, 63, 13, 78, 82, 67, 21]
combine the LLM with various VLM tools as video agents to perform video-understanding tasks. In
this paper, we propose a novel text-only pre-alignment framework to efficiently and effectively align
LLMs with videos without pre-training on real videos.

3 Method

In this section, we detail the TOPA framework. We first introduce the data generation pipeline
of TextVid Dataset (Section 3.1). Next, we describe how to align the Tideo representation with
LLM (Section 3.2). Finally, we discuss adapting the text-only aligned video-LLM model for real
video inference (Section 3.3). An overview is illustrated in Figure 1.

3.1 TextVid Dataset

This dataset, comprising textual videos (Tideos) and associated annotations, is generated by an
advanced LLM (i.e., Gemini Pro 1.0 [56]). The data generation pipeline is detailed in Appendix D.
Each Tideo is presented in a textual format and contains 5-15 sequential frames. Each frame includes
a frame caption that describes the scene and multiple object captions. To enhance understanding and
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interaction with these Tideos, the dataset features a dense description summarizing the Tideo, as well
as a set of multiple-choice questions and answers related to the Tideo content. The structure of each
element is as follows:

Dataset Element:
Tideo: Sequence of textual frames {T1, T2, . . . , Tn}, 5 ≤ n ≤ 15

For each frame Ti:
Frame caption: Ci

Object captions: Di,j for main objects in Ti

Annotations:
Global Dense Description of the Tideo: DV

Set of Questions-Options-Answers: {(Qk, Ok, Ak)}

There are two major advantages of the TextVid dataset. (1) The large-scale and diverse Tideos. As
the dataset is text-only and fully generated by an LLM, the size of TextVid is practically unlimited.
Moreover, the Tideos can cover a broad range of domains by simply prompting the language model
with appropriate conditions. It is distinctly different from previous web video-text dataset like
Howto100M [40] that are limited to specific human-centric instructional videos. In practice, we
enhance the diversity of TextVid by randomly sampling video captions from WebVid-2M [3], video
titles from Howto100m [40], video tasks from Ego4D [15] and object names with descriptions from
WordNet [41] as a condition of prompts. These varied prompts enable the language model to generate
a diverse dataset. (2) The high-quality, consistent and free-form language supervision. The
language supervisions are generated along with Tideos. The advanced capabilities of LLM ensure
the quality of these supervisions, making them less noisy than web video-text data. Moreover, both
the Tideo and the supervision are in textual format, making the supervision closely aligned with the
Tideo’s content. Additionally, the format of the language supervision is unrestricted. For example, we
prompt the LLM to generate dense descriptions and multi-choice QA pairs as language supervision.

3.2 Text-Only Pre-Alignment

Preliminary: Video-LLM alignment. The goal of video-LLM alignment is to extend pre-trained
LLMs for processing video inputs. Given a video sampled with n frames {I1, I2, . . . , In}, Recent
work [23, 77] uses a frozen CLIP model to extract the frame-level visual feature, formulated as
fvi = Eimage(Ii), where Eimage denotes CLIP image encoder. The CLIP features are then projected
into the LLM space via a simple linear layer, denoted as G(P (fv1 ), ..., P (fvn)), where G denotes a
language model and P denotes a projection layer that projects the CLIP feature to LLM space.

Tideo representation. In this work, we leverage Tideos (c.f. Section 3.1) for video-LLM pre-alignment
instead of training on real videos. Specifically, given the textual frame Ti, we employ CLIP text
encoder to extract the frame representation from frame caption Ci and detailed object captions Di,
represented as f ti = Ffusion(Etext(Ci), Etext(Di,1), ..., Etext(Di,j)), where Ffusion is a fusion function
such as simple average pooling, and Etext denotes the CLIP text encoder. A Tideo with n textual
frames is represented as Vt = {f t1, ..., f tn}.

Text-only pre-alignment. Given the Tideo T , dense Tideo-level description DV , and QA pairs
with multiple choices {(Qk, Ok, Ak)}, we introduce the following tasks for Tideo-LLM alignment:
(1) Tideo Summarization: Given the Tideo, generate a detailed description to summarize the Tideo;
(2) Tideo QA: Given the Tideo and question, predict the answer; (3) Multi-choice Tideo QA: Given
the Tideo, question and multiple choices, choose the correct answer from the candidates. We employ
a unified auto-regressive Language Modeling (LM) objective for these three tasks:

LLM(θG, θP ) = − 1

|t|

|t|∑
i=1

logG
(
ti|P (Vt), Z, t<i

)
, (1)

where Vt denotes the Tideo representation, and Vt = {f t1, ..., f tn} during the text-only training, Z
denotes the task specific condition tokens and ti denotes the ith target token. θG and θP denote the
learnable parameters of the LLM adapter and the projection layer P , respectively. In practice, we use
the following format as the LLM input: {Task Instruction}. Video:{f t1, ..., f tn}. {Task Conditions}.
Answer: {Predict Targets}. For the Tideo summarization task, the target is detailed Tideo descriptions.
For Tideo QA task, the target is the answer and the condition is the question. For multi-choice Tideo
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QA task, the target is the correct option and the condition consists with question and options. The
details of the task-specific prompts are included in Appendix F.1.

3.3 Adapting to Real Video Understanding

Section 3.2 introduces the text-only pre-alignment using the TextVid dataset. In this section, we
detail how to adapt this text-only pre-aligned LLM for real video understanding. We introduce two
approaches: one is zero-shot inference, which directly infers with real video data. And the other is
supervised finetuning, where the pre-aligned model is further finetuned on downstream video data.

Zero-shot inference. During pre-alignment, we leverage the textual representation Vt = {f t1, ..., f tn}
as the Tideo representation. During inference, we take real videos features as input, i.e., Vv =
{fv1 , ..., fvn}, where fvi = Eimage(Ii). These two modality features f t and fv that come from CLIP
image encoder and CLIP text encoder are aligned via CLIP pre-training. This aligned image-text
representation makes it possible to perform zero-shot inference without additional finetuning. However,
the modality gap phenomenon [16, 30, 31, 44, 85], i.e., CLIP image feature and CLIP text feature
are located in two completely separate regions of the feature space, prevents us from directly taking
the visual feature fv as the textual feature f t. To bridge this modality gap, we follow DeCap [30] to
employ a support memory to project the CLIP visual feature into the CLIP text feature space. This
training-free projection process is formulated as:

fv→t =

N∑
i=1

wi ∗mi =

N∑
i=1

exp((m⊤
i f

v)/τ)∑N
k=1 exp((m

⊤
k f

v)/τ)
∗mi, (2)

where mi denotes CLIP text feature from a pre-constructed memory of size N , fv denotes input
frame feature of real video and fv→t denotes the projected feature. During zero-shot inference, we
take the Vv→t = {fv→t

1 , ..., fv→t
n } as the real video’s representation.

Supervised finetuning. On the other hand, the text-only pre-alignment can be viewed as a pretraining
stage. Following the pretraining-finetuning paradigm, the pre-aligned LLMs can then be fine-tuned
on real video data for improved downstream task performance. The finetuning process is similar to
the text-only pre-alignment as detailed in Section 3.2, except that the LLM receives a sequence of
CLIP visual features as input instead of CLIP textual features.

3.4 Implementation Details

We leverage Llama2-7B, Llama2-13B [57] and Llama3-8B as the LLM backbone. Additionally, we
employ the Llama-adapter [84] with an adaptation embedding length of 50. We utilize CLIP-ViT-L as
the multimodal encoder. We employ a simple linear layer to project the CLIP feature into the LLM
feature space. During training, the CLIP model and LLM backbone are frozen. The projection layer
and additional Llama-adapter are trainable. For text-only pre-alignment, we uniformly sample the
Tideos into 10 frames. We train the model on a mixture of tasks comprising Tideo summarization,
Tideo QA, multi-choice Tideo QA with the ratio of 1:1:2. For zero-shot inference, we construct a
memory for cross-modal projection, consisting of 2M CLIP text features sampled from captions in
the TextVid dataset. TOPA-Llama2-7B and TOPA-Llama3-8B are trained on four 40G-A100 GPUs
in one day. TOPA-Llama2-13B is trained in two days. More training details of TOPA and baselines
are included in Appendix E.2.

4 Experiments
TOPA enables the LLM to perform various video understanding tasks as shown in Figure 2. In
this section, we evaluate TOPA on multi-choice video QA and video captioning tasks. Section 4.1
evaluates TOPA on NeXT-QA [72], STAR [70], TVQA [24], recent challenging EgoSchema [39] and
MVBench[29] benchmarks with the zero-shot setting. We further evaluate TOPA on multi-choice
video QA with the finetuning setting (Section 4.2) and zero-shot video captioning task (Section 4.3).
In Section 4.4, we conduct ablation study on the LLM prior and input video frames. We report
Top-1 accuracy on multi-choice video QA benchmarks and CIDEr [58] score on video captioning
benchmarks. We mainly compare TOPA with the following categories of video understanding
approaches:
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The video first shows a person holding a bird of prey on her left arm. The bird of prey is perched on her 
fist. The person then holds the bird of prey up to her face and shows it to the camera. The bird of prey is a 
white goshawk. It has a black beak and black eyes. The person then shows the bird of prey to the camera 

again. The bird of prey is perched on her fist and is looking around.

Describe the video in detail.

The bird is perched on the handler's fist. A close-up of the bird's face is shown. The bird is looking around.

What is the final scene of the video?

What is the relationship between the woman and the bird in the video?

The woman is the owner of the bird.

… … …

Figure 2: Examples of TOPA-LLama2-13B for video-language understanding. Given a video, TOPA
is able to summarize the video content and answer the questions.

(1) Web video pre-training approaches [4, 45, 64, 66, 77]. This line of work aims to develop general
video-language models by leveraging extensive web videos, using associated video captions or audio
as weak supervision signals.

(2) Adapting image MLLMs for video understanding [22, 81, 49]. These approaches aim to
extend the image understanding capabilities of recent vision-language models (VLMs) to video
understanding. Specifically, SeViLa [81] utilizes BLIP-2 for localizing and understanding key frames
of a video. IG-VLM [22] converts video into a composite image by arranging the video frames into a
grid layout.

(3) LLM-based video agents [42, 59, 60, 63, 82, 13, 21, 67]. This line of work leverages LLMs like
GPT-3.5 and GPT-4 as an agent to understand a video by designing and executing a series of actions.
The language-only agents perceive visual information via recent foundation VLMs (e.g., CLIP [48],
BLIP-2 [27], LaViLa [87] and PALI [8]).

(4) Our text-only pre-alignment. Different from the above works, TOPA leverages the proposed
TextVid dataset for video-LLM pre-alignment, enabling the LLM to process continuous features.
Thus, it can enable performing video understanding tasks.

4.1 Zero-Shot Evaluation on Multi-Choice Video QA

4.1.1 Zero-shot Results on EgoSchema

Table 1 shows the results on EgoSchema full set. We compare our method against a range of recent
approaches in video understanding. Our proposed text-only pre-alignment framework, despite training
without real videos, shows impressive results on the EgoSchema benchmark. TOPA outperforms
previous image-based adaptation approach IG-VLM and video agents LLoVi and Vamos with the
same scale LLM (Llama2-7B and Llama2-13B). Moreover, TOPA shows consistent improvements
when scaled up with a larger LLM backbone, indicating the effectiveness of LLMs in complex video
understanding tasks.

Discussion 1: The necessity of high-quality language supervision for video understanding.
Recent video pre-training approaches like LongViVit [45] and InternVideo [64], despite training on
million-level web video-text data, show inferior performance on EgoSchema evaluation. These results
highlight the inefficacy and inefficiency of conventional contrastive pre-training in understanding
long-form videos, primarily due to noisy and simplistic language supervision. In contrast, our
TOPA, trained on 721K Tideoswith high-quality language supervision, shows impressive results on
EgoSchema. It indicates that, unlike image understanding which significantly benefits from leveraging
web language as supervision, video understanding may require more precise and accurate language
supervision to better capture the complex visual dynamics.
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Table 1: Zero-shot results on EgoSchema [39] full set. Methods that leverage closed-source LLMs are
marked in gray. † denotes the model is trained with in-domain egocentric videos from Ego4D [15].
∗ denotes results on EgoSchema subset. Results of InternVideo and FrozenBiLM are sourced from
[39]. Results of SeViLA are sourced from [45].

Core VLMs Core LLMs Acc@1
Human Eval [39][NeurIPS 2023] - - 75.0

Gemini-1.5-Pro [50][arXiv 2024.2 ] - Gemini-1.5-Pro 63.2
(Pre-train on web video-text data)

FrozenBiLM [77][NeurIPS 2022] - - 26.9
InternVideo [64][arXiv 2022.12] - - 32.1
LongViViT [45][CVPR 2024 ] - - 33.3

MC-ViT-L† [4][ICML 2024 ] - - 44.4
InternVideo2s3-6B† [66][arXiv 2024.3 ] - - 41.1

(Adapt image MLLMs for video understanding)
SeViLA [81][NeurIPS 2023] BLIP-2 FLAN-T5-XL [10] 22.7

MVU [49][arXiv 2024.3 ] LLaVA-v1.5-13B Vicuna-13B 37.6
IG-VLM [22][arXiv 2024.3 ] LLaVA v1.6-7B Vicuna-7B 35.8∗

IG-VLM [22][arXiv 2024.3 ] LLaVA v1.6-13B Vicuna-13B 47.0∗

(LLM-based video agents)
LangRepo [21][arXiv 2024.3 ] CLIP-ViT-L Mixtral-12B [20] 41.2

Vamos [60][arXiv 2023.11] BLIP-2 Llama2-13B 36.7∗

Vamos [60][arXiv 2023.11] BLIP-2 GPT-3.5 41.2∗

Vamos [60][arXiv 2023.11] BLIP-2 GPT-4 48.3∗

MoReVQA [42][CVPR 2024 ] PALI-3-5B [8] PaLM-2 [2] 51.7
LLoVi [82][arXiv 2024.3 ] LaViLa† GPT-3.5 50.3

VideoAgent [63][ECCV 2024 ] LaViLa† GPT-4 54.1
LifelongMemory [67][arXiv 2024.3 ] LaViLa† GPT-4 62.4

VideoAgent [13][ECCV 2024 ] Video-LLava [32] GPT-4 60.2

(Our Text-Only Pre-Alignment)
TOPA CLIP-ViT-L Llama2-7B 41.2
TOPA CLIP-ViT-L Llama3-8B 44.2
TOPA CLIP-ViT-L Llama2-13B 51.0

Discussion 2: Video agents versus end-to-end video-LLM modeling. Video agents have shown
impressive results on the EgoSchema benchmark, aided by advanced LLMs and VLMs. However, a
significant limitation of these approaches is their heavy reliance on the powerful LLMs. For example,
the accuracy of Vamos drops by -11.6% when the GPT-4 is replaced with Llama2-13B, largely falling
behind the performance of the TOPA-Llama2-13B model. The reliance on powerful closed-source
LLMs restricts its application fields and introduces external overheads. Moreover, video agents make
decisions based on the language format clues collected by VLMs. Converting the video content into
language clues may lead to a limited upper bound compared to end-to-end modeling. Additionally,
the inference speed of these approaches is another concern, since it involves multiple interactions
with both VLMs and LLMs. In contrast, end-to-end video-LLM models, which condense the video
into a sequence of embeddings as the input of LLM, are more efficient.

4.1.2 Zero-shot Results on NExT-QA, STAR and TVQA

Table 2 shows the multi-choice video QA results across various benchmarks. TOPA achieves
impressive performance on the TVQA and EgoSchema benchmarks, significantly outperforming
previous video pre-training models and image-to-video adaptation approaches. This indicates that
our TOPA framework effectively enables LLMs to handle video input, despite not being pre-trained
on real videos. However, for the NeXT-QA and STAR benchmarks, TOPA underperforms compared
to SeViLA and IG-VLM. A major reason is that these benchmarks involve many fine-grained visual
questions, including those about object locations and relationships. SeViLA and IG-VLM, benefiting
from the advanced image-understanding capabilities of pre-trained VLMs such as LLaVA, excel in
answering these fine-grained visual questions. In contrast, our TOPA framework primarily focuses on
high-level semantic alignment. Moreover, during zero-shot inference, we project the visual features
into the text feature space to bridge the modality gap, as described in Eq. 2. This cross-modal semantic
projection process tends to overlook fine-grained visual details, such as object locations, which leads
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to inferior performance on the STAR benchmark. We provide extensive qualitative results to illustrate
TOPA’s advantages and limitations across various video understanding tasks in Appendix A.3.

Table 2: Zero-shot results on multi-choice video QA benchmarks.

Model (# Frames) NExT-QA STAR TVQA EgoSchema
Tem. Cau. Des. Avg. Int. Seq. Pre. Fea. Avg.

FrozenBiLM (10) [77] - - - - - - - - - 29.7 26.9
InternVideo (8) [64] 43.4 48.0 65.1 49.1 43.8 43.2 42.3 37.4 41.6 35.9 32.1

SeViLA (32 → 4) [81] 61.3 61.5 75.6 63.6 48.3 45.0 44.4 40.8 44.6 38.2 22.7
IG-VLM-Llava7B (6) [22] 63.1 57.3 74.9 63.1 49.3 50.1 48.4 48.8 49.6 42.1 35.8
IG-VLM-Llava13B (6) [22] 61.6 55.7 70.8 61.2 51.5 52.0 51.0 51.8 51.7 44.5 47.0

TOPA-Llama2-7B (10) 53.4 61.3 68.3 59.9 36.4 45.6 39.3 36.3 41.3 48.2 41.2
TOPA-Llama3-8B (10) 53.0 61.9 64.5 59.5 40.8 43.1 39.4 34.5 41.4 48.5 44.2
TOPA-Llama2-13B (10) 57.2 63.6 68.9 62.1 41.6 46.2 44.2 36.7 43.0 50.2 51.0

4.1.3 Results on MVBench

MVBench [29] is a recent video-language understanding benchmark that covers 20 challenging
video tasks, regrouped from existing video-language benchmarks. Table 3 shows the results. TOPA
demonstrates impressive results compared to previous image MLLM and video MLLM. It excels
particularly in tasks requiring high-level video-language understanding, such as Scene Transition (ST),
Episodic Reasoning (ER), and Unexpected Action (UA). TOPA Surprisingly excels in the Action
Localization (AL) task, which requires identifying the moment an action occurs. This indicates that
the text-only pre-alignment enables the LLM to understand temporal visual sequences. However,
TOPA struggles with tasks that demand fine-grained visual understanding, such as Moving Direction
(MR), Action Antonym (AA), and Object Shuffle (OS). A common challenge in these tasks is the
requirement for detailed visual understanding. For example, Action Antonym involves identifying
the direction of an action, while Object Shuffle involves locating objects. TOPA struggles in these
fine-grained visual tasks since it is trained with CLIP text features. The modality gap between CLIP
text features and image features hinders TOPA from capturing visual details. Further video instruction
tuning might address this limitation, which we leave for future work. We provide qualitative results in
Appendix A.3 to illustrate TOPA’s advantages and limitations on various video understanding tasks.

Table 3: Evaluation results on MVBench. The results of other approaches are sourced from [29]. We
gray out the results of VideoChat2 since it utilizes extensive annotated downstream video data.
Model LLM Avg AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI
Random - 27.3 25.0 25.0 33.3 25.0 25.0 33.3 25.0 33.3 25.0 25.0 25.0 33.3 25.0 33.3 33.3 25.0 33.3 25.0 20.0 30.9
Image MLLMs: Following [11], all models take 4 frames as input, with the output embeddings concatenated before feeding into the LLM.
mPLUG-Owl-I [74] LLaMA-7B 29.4 25.0 20.0 44.5 27.0 23.5 36.0 24.0 34.0 23.0 24.0 34.5 34.5 22.0 31.5 40.0 24.0 37.0 25.5 21.0 37.0
BLIP2 [27] FlanT5-XL 31.4 24.5 29.0 33.5 17.0 42.0 51.5 26.0 31.0 25.5 26.0 32.5 25.5 30.0 40.0 42.0 27.0 30.0 26.0 37.0 31.0
LLaMA-Adapter [84] LLaMA-7B 31.7 23.0 28.0 51.0 30.0 33.0 53.5 32.5 33.5 25.5 21.5 30.5 29.0 22.5 41.5 39.5 25.0 31.5 22.5 28.0 32.0
Otter-I [25] MPT-7B 33.5 34.5 32.0 39.5 30.5 38.5 48.5 44.0 29.5 19.0 25.5 55.0 20.0 32.5 28.5 39.0 28.0 27.0 32.0 29.0 36.5
MiniGPT-4 [89] Vicuna-7B 18.8 16.0 18.0 26.0 21.5 16.0 29.5 25.5 13.0 11.5 12.0 9.5 32.5 15.5 8.0 34.0 26.0 29.5 19.0 9.9 3.0
InstructBLIP [11] Vicuna-7B 32.5 20.0 16.5 46.0 24.5 46.0 51.0 26.0 37.5 22.0 23.0 46.5 42.5 26.5 40.5 32.0 25.5 30.0 25.5 30.5 38.0
LLaVA [34] Vicuna-7B 36.0 28.0 39.5 63.0 30.5 39.0 53.0 41.0 41.5 23.0 20.5 45.0 34.0 20.5 38.5 47.0 25.0 36.0 27.0 26.5 42.0
Video MLLMs: All models take 16 frames as input
Otter-V [25] LLaMA-7B 26.8 23.0 23.0 27.5 27.0 29.5 53.0 28.0 33.0 24.5 23.5 27.5 26.0 28.5 18.0 38.5 22.0 22.0 23.5 19.0 19.5
mPLUG-Owl-V [79] LLaMA-7B 29.7 22.0 28.0 34.0 29.0 29.0 40.5 27.0 31.5 27.0 23.0 29.0 31.5 27.0 40.0 44.0 24.0 31.0 26.0 20.5 29.5
Instructed Video MLLMs: All models take 16 frames as input, with the exception of VideoChatGPT, which uses 100 frames.
VideoChatGPT [38] Vicuna-7B 32.7 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5
VideoLLaMA [83] Vicuna-7B 34.1 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0
VideoChat [28] Vicuna-7B 35.5 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0
VideoChat2 [29] Vicuna-7B 51.1 66.0 47.5 83.5 49.5 60.0 58.0 71.5 42.5 23.0 23.0 88.5 39.0 42.0 58.5 44.0 49.0 36.5 35.0 40.5 65.5
Text-Only Pre-Alignment Video-MLLM: TOPA zero-shot inference with 10 frames.
TOPA-ZeroShot LLama2-7B 39.8 42.0 38.5 35.0 34.5 66.0 52.5 47.5 28.0 22.0 37.5 81.0 38.0 24.0 42.5 41.5 28.5 34.0 23.5 49.0 30.5
TOPA-ZeroShot LLama2-13B 42.5 38.0 40.0 42.5 35.0 69.0 52.5 58.5 29.5 22.5 43.5 80.5 38.0 25.5 43.0 43.0 29.5 37.5 38.5 50.0 32.5

AS AP AA FA UA OE OI OS MD AL
Action Action Action Fine-grained Unexpected Object Object Object Moving Action

Sequence Prediction Antonym Action Action Existence Interaction Shuffle Direction Localization
STAR [70] STAR [70] PAXION [68] MiT V1 [43] FunQA [73] CLEVRER [80] STAR [70] Perception Test [46] CLEVRER [80] Charades-STA [14]

ST AC MC MA SC FP CO EN ER CI
Scene Action Moving Moving State Fine-grained Character Egocentric Episodic Counterfactual

Transition Counting Counting Attribute Change Pose Order Navigation Reasoning Inference
MovieNet [18] Perception Test [46] CLEVRER [80] CLEVRER [80] Perception Test [46] NTU RGB+D [35] Perception Test [46] VLN-CE [69] TVQA [24] CLEVRER [80]
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4.2 Supervised Finetuning

In this section, we further finetune the pre-aligned TOPA models to study the benefits of TOPA
for downstream supervised learning. During finetuning, TOPA directly takes the video feature as
input without the cross-modal projection. More finetuning details for each dataset are provided in
Appendix E.2. Table 4 shows the finetuning results on multi-choice video QA dataset. For comparison,
we include baseline models without text-only pretraining. Our text-only pre-alignment consistently
improves the performance across three benchmarks. Notably, TOPA-Llama2-7B achieves 67.1%
accuracy on TVQA, outperforming other approaches by a large margin. These results suggest that
our text-only pre-alignment, even without training on real videos, has a similar effect to conventional
video-language pre-training.

Table 4: Finetuning results on NExT-QA, STAR and TVQA.

Model (# Frames) NExT-QA STAR TVQA
Tem. Cau. Des. Avg. Int. Seq. Pre. Fea. Avg.

FrozenBiLM (10) [77] - - - - - - - - - 57.5
InternVideo (8) [64] 58.5 62.5 75.8 63.2 62.7 65.6 54.9 51.9 58.7 57.2
BLIP-2voting (4) [81] 65.2 70.1 80.1 70.1 52.3 54.8 49.0 51.2 51.8 54.5
SeViLA (32 → 4) [81] 69.4 74.2 81.3 73.8 63.7 70.4 63.1 62.4 64.9 61.6
Llama-VQA-7B (10) [23] 69.2 72.7 75.8 72.0 66.2 67.9 57.2 52.7 65.4 -

Baseline (10) 65.3 69.0 72.6 68.4 60.8 61.5 49.2 49.8 59.4 63.8
TOPA-Llama2-7B (10) 71.3 74.2 78.5 73.9 66.8 68.9 59.1 55.5 66.4 67.1

+6.0 +5.2 +5.9 +5.5 +6.0 +7.4 +9.9 +5.7 +7.0 +3.3
Baseline (10) 66.0 69.7 73.7 69.1 61.4 62.4 50.6 51.8 60.3 66.2
TOPA-Llama3-8B (10) 70.1 74.5 74.6 73.1 66.3 67.0 59.1 56.5 65.4 68.1

+4.1 +4.8 +0.9 +4.0 +4.9 +4.6 +8.5 +4.7 +5.1 +1.9
Baseline (10) 67.8 71.6 75.2 70.9 58.7 59.5 54.3 51.8 58.2 66.6
TOPA-Llama2-13B (10) 72.1 75.8 79.3 75.1 66.8 68.3 61.0 55.1 66.3 69.0

+4.3 +4.2 +4.1 +4.2 +8.1 +8.8 +6.7 +3.3 +8.1 +2.4

Data-efficient finetuning. Figure 3 shows the results of finetuning LLMs with various ratios of
training data. TOPA trained with 10% data achieves 64.7% Top 1 accuracy on NeXT-QA benchmark,
significantly outperforming the baseline that without text-only pre-alignment. Besides, when trained
with less than 20% data, the baseline model even performs worse than TOPA-zeroshot on NeXT-QA
and TVQA, clearly demonstrating the effectiveness of TOPA in limited annotated data scenarios.

Figure 3: Results of finetuning TOPA with various ratios of training data.

4.3 Video Captioning

Results on zero-shot video captioning. We further perform zero-shot video captioning on MSR-
VTT [75] and VATEX [62]. As shown in Table 5, TOPA largely outperforms previous text-only
approaches like Decap which is trained on captions sourced from CC3M [53]. TOPA even outperforms
the video-text pre-training approaches like VideoCoCa, which is pre-trained on millions of videos-text
data, demonstrating that TOPA is an efficient and effective framework for video-LLM alignment.

9



Table 5: Zero-shot video captioning results. We report CIDEr score for all benchmarks. VT
denotes ⟨video clip, text⟩ pairs, IT denotes ⟨image, text⟩ pairs, and WP denotes webpages consisting
of interleaved image and text data.

Training data MSR-VTT VATEX
(Web video-text Pre-training)
VideoCoCa-g [76] 144M VT 27.1 22.8
Flamingo-3B [1] 27M VT & 2.1B IT & 43M WP - 40.1
Flamingo-9B [1] 27M VT & 2.1B IT & 43M WP - 39.5
VideoPrism-B [86] w/ PaLM-2-1B 618M VT 40.3 24.2
VideoPrism-B [86] w/ PaLM-2-8B 618M VT 38.5 31.7
(Text-only Pre-training)
DeCap [30] 3M Captions 18.6 18.7
TOPA-Llama2-7B 721K TextVid 32.9 31.0
TOPA-Llama2-13B 721K TextVid 33.4 32.0

4.4 Ablations

LLM prior in video-language understanding. To investigate the impact of LLM prior in multi-
choice video QA, we conduct experiments on EgoSchema with the blind setting, where only the
questions and choices are provided to the LLM. Table 6 shows the results. Bard and GPT-4-Turbo
achieve 33.2% and 30.8% accuracy, respectively. Gemini-Pro-1.0 reaches 38.2% accuracy. These
blind results of advanced LLMs suggest that in some video QA cases, LLMs can accurately choose
the correct answer solely based on the question and choices, without visual input. However, the blind
performance of Llama2-7B and Llama2-13B is inferior, potentially due to their smaller model size.
After training on the TextVid dataset, TOPA-Llama2-13B achieves a blind accuracy of 37.5% (or
+11.7%), closely approaching that of Gemini-Pro-1.0 model. These results suggest that text-only
pre-alignment can effectively prepare LLMs for downstream video-language tasks by leveraging
specialized text-only tasks, even in complex scenarios where the original LLMs are limited.
Table 6: Blind results on EgoSchema. † denotes
results sourced from [4].

Visual Input ES Full
Random Selection

%

20.0
GPT-4-Turbo † 30.8
Bard † 33.2
Gemini-Pro-1.0 38.2
Llama2-7B

%
20.1

Llama2-13B 25.8
TOPA-Llama2-7B

%
29.3

TOPA-Llama2-13B 37.5
TOPA-Llama2-7B

✔
41.2

TOPA-Llama2-13B 51.0

Table 7: Ablation on video frames.
TOPA #Frame NextQA ES Full

Llama2-7B
1 56.1 39.4
5 58.9 (+2.8) 41.0 (+1.6)
10 59.9 (+3.8) 41.2 (+1.8)

Llama2-13B
1 57.3 47.6
5 60.8 (+3.5) 50.5 (+2.9)
10 62.1 (+4.8) 51.0 (+3.4)

The impact of video frames. To better investigate TOPA’s capability in understanding temporal
dynamics of real videos, we conduct experiments with different number of frames. Table 7 shows
the results. Multiple frames input consistently enhances performance on NeXT-QA and EgoSchema
for both TOPA-Llama2-7B and TOPA-Llama2-13B. This indicates that the text-only pre-alignment
effectively enables the LLM to handle multiple video frames, despite not being trained on real videos.

5 Conclusions

In this paper, we introduce TOPA, a text-only pre-alignment framework designed for aligning LLMs
with video modality without requiring training on real videos. TOPA has demonstrated remarkable
performance on the recent, challenging long-form video understanding benchmark, i.e., EgoSchema,
showcasing that a text-only approach is effective in capturing the dynamics of long-form videos. Our
approach, which includes data generation and text-only pre-alignment, has potential applications
across various vision-language tasks where obtaining paired vision-language data is difficult.
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Appendix

In Appendix A, we provide additional experiments and analysis.

• In Appendix A.1, we further discuss the Multi-choice QA task and study the impact of the
multi-choice Tideo QA pre-training.

• In Appendix A.2, we study the impact of cross-modal projection (Eq. 2).
• In Appendix A.3, we provide extensive qualitative results to illustrate TOPA’s advantages

and limitations across various video understanding tasks.

Appendix B: The limitations of TOPA.

Appendix C: The broader impact of TOPA.

Appendix D: The details of proposed TextVid dataset.

Appendix E.1, The details of benchmarks.

Appendix E.2, The training details of TOPA.

Appendix F: The prompts used in this paper.

Appendix G: The licenses of datasets, codes and models used in this paper.

Appendix H: Examples from TextVid.
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A Additional Experiments

A.1 Further Discussion on Multi-Choice Video QA Task

Table 8: Multi-choice video QA on EgoSchema subset and full set. “Gap” refers to the difference in
performance between the subset and the full set

Method Eval Mode ES Subset ES Full Gap
LongViViT [45] Similarity 56.8 33.3 -23.5
MC-ViT-L [4] Similarity 62.6 44.0 -18.6
MVU [49] LLM logits 60.3 37.6 -22.7
LangRepo-Mixtral-8×7B-(12B active) [21] LLM logits 66.2 41.2 -25.0
VideoAgent (GPT-4) [63] LLM Selection 60.2 54.1 -6.1

TOPA-LLama2-13B LLM Logits 67.5 41.6 -25.9
TOPA-LLama2-13B LLM Selection 51.2 51.0 -0.2

TOPA-LLama2-7B LLM Logits 64.5 41.7 -22.8
TOPA-LLama2-7B LLM Selection 40.4 41.2 +0.8

TOPA-LLama2-7B (w/o multi-choice training) LLM Logits 65.1 40.5 -24.6
TOPA-LLama2-7B (w/o multi-choice training) LLM Selection 24.3 24.7 +0.4

A significant advantage of the text-only framework is that we can utilize the LLM to automatically
generate diverse language-based supervisions as needed, such as the multi-choice QA pairs. To explore
the impact of the multi-choice QA training tasks, we conduct an ablation study as shown in Table 8.
We would like to first introduce the different evaluation modes for multi-choice video QA tasks: (1)
LLM Selection: Asking the LLM to predict the correct answer given the video-question-choices.
(2) LLM Logits: Given the video and question as LLM context, we calculate the logits for each
choice by averaging the logits of all words within the choice. The choice with higher logit tends to
match the video-question context better and is thus selected as the predicted answer. (3) Similarity
Comparison [45, 4]: Mapping the multiple question-choice pairs and video to a common feature
space and calculating the similarity between the video and each question-choice.

The performance gap between the EgoSchema subset and full set. Previous work [4, 45] highlights
a huge performance gap between the subset and the full set of EgoSchema as shown in Table 8.
While concurrent work [21, 49] introduces log-likelihood based approaches for LLM inference, which
significantly improve the performance on EgoSchema subset, the issue of the performance gap still
persists. In this paper, we observe that such a performance gap phenomenon also occurs in approaches
based on LLM logits. However, but it diminishes or even disappears in methods employing LLM
selection. We find that this phenomenon may be attributed to differences in the linguistic structures of
the choices, as shown below. The choices in the subset often differ in several key works like “create”,
“repair” and “clean”. The similarity or logit can effectively identify this keyword-level difference to
select a more appropriate choice. Conversely, the choices in the full set display more substantial
linguistic differences. These variations introduce significant language biases, i.e., some sentences
naturally receive higher logits in LLM, complicating the reliance on similarity or logit for choice
selection. In contrast, LLM selection methods take all the choices within the context, allowing the
LLM to leverage its robust contextual understanding to select the correct choice.

Question-Choices examples from subset:
Q: Can you summarize the primary objective and the steps the person took throughout the video to achieve
it? ensure your answer captures the essence of the video without listing all actions.
A: The main aim of the person’s primary objective was to create and build a new, sturdy wooden bench.
B: The primary objective for the person was to thoroughly repair and restore the wooden bench.
C: The person’s primary objective was to thoroughly clean and sanitize the wooden bench’s surface.

Question-Choices examples from full set:
Q: Considering the entire video, what would you identify as the most crucial moments in the person’s
shopping experience and why?
A: Following a strict shopping list as a guideline and rejecting unfit produce.
B: Conducting taste tests and checking for the freshness of each vegetable.
C: Using math algorithm for optimal vegetable selection.
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LLM for multi-choice QA. In Table 8, we observe a notable phenomenon where the TOPA models
achieve impressive results on the subset with the logits evaluation mode. TOPA-LLama2-13B achieves
67.5% top1 accuracy, surpassing GPT-4-based video agents. However, when evaluated with the
multi-choice selection mode, the performance of the subset declines to 51.2%, but the performance of
the full set increases from 41.6% to 51.0%. These results suggest that while the LLM is capable of
selecting the answer from multiple choices, it is less sensitive to the keywords within those choices.
In contrast, the logit-based approach is sensitive to the keywords but has difficulty with complex
sentence understanding.

The impact of the Multi-Choice Tideo QA pre-training. In Table 8, we report the results of TOPA
without the multi-choice Tideo QA task, i.e., trained with Tideo summarization and Tideo QA tasks.
In this case, we find that TOPA-LLama2-7B maintains similar performance when evaluated with the
logit mode. However, there is a significant performance drop when evaluated with the multi-choice
selection mode. This result suggests that while the LLM is adapted to process video inputs, its
capability is somewhat constrained and can not extend to more complex video-language tasks beyond
the pre-training tasks. This finding highlights the advantage of our text-only data generation and
text-only pre-alignment framework, which enable us to develop a variety of pre-alignment tasks to
better equip the LLM for general video-language tasks such as dense captioning, multi-choice video
QA, and video chat.

A.2 The CLIP Modality Gap

TOPA is pretrained with CLIP text features while inferenced with CLIP image features. We employ a
modality projection approach, i.e., Eq. 2, to bridge this CLIP modality gap during zero-shot inference.
Table 9 shows the impact of Eq. 2. TOPA shows inferior results when directly taking the visual
feature as input due to the modality gap problem. The projection approach effectively alleviates such
a modality gap problem without additional training.

Table 9: Ablation on the modality projection (Eq. 2). Results on EgoSchema full set.

Model without Eq. 2 with Eq. 2
TOPA-LLama2-7B 30.6 41.2
TOPA-LLama2-13B 38.3 51.0
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A.3 Qualitative Results and Analysis

We present qualitative results to illustrate the capabilities and limitations of TOPA across various
video understanding tasks. Figure 4 shows qualitative results on the NExT-QA validation set. Figure 5
shows qualitative results on the EgoSchema subset. Figure 6 - 9 shows qualitative results on 20 video
understanding tasks from MVBench.

... ... ... ...

Question: What does the girl do as the dog sat next to her at the start?
Choices:  (A) look at the table.   (B) wave at it.  (C) shave the dog.   (D) play with toy.  (E) caress the dog.
Prediction: E      Ground Truth: E

... ... ... ...

Question: How many people are on stage?
Choices:  (A) one.   (B) six.   (C) three.   (D) five.  (E) seven.
Prediction: D      Ground Truth: B

... ... ... ...

Question: How did the children fill up the bucket?
Choices:  (A) turn on the tap.      (B) through straw.     (C) person bringing food to baby mouth.   
    (D) touch the top of bottle.   (E) sit around on the floor.
Prediction: A      Ground Truth: A

... ... ... ...

Question: Why did the man lying down roll over on the floor near the end?
Choices:  (A) to move to the camera.  (B) fall over.  (C) laughing.   (D) baby crying.  (E) let kids walk through.
Prediction: A      Ground Truth: A

Figure 4: Qualitative results on NeXT-QA. TOPA effectively performs complex video understanding
tasks. Additionally, a failure case is also shown in the figure, i.e., in the last sample, TOPA failed to
accurately count the number of people.
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... ... ... ...

Question: What is the overall process and purpose of the actions performed by the person in the video?
Choices:  
(A) The person is molding bricks with mortar and wet clay.   
(B) Currently, the person is diligently working on constructing a wall. 
(C) Currently, artist the person is diligently working on creating a unique sculpture.
(D) Currently, young the person is actively playing and having fun with mud. 
(E) The person is doing a science experiment.
Prediction: A      Ground Truth: A

... ... ... ...

Question: How does the person interact with the camera during the video and what might be the reason behind 
these adjustments?
Choices:  
(A) Casually, the person adjusts the camera angle skillfully to achieve a more visually appealing view of herself.
(B) The person skillfully adjusts the camera angle to achieve a better, enhanced view of the entire room.
(C) Casually, the person adjusts the camera angle to get a more improved, better view of the entrance door.
(D) The person adjusts the camera to get a better view of the window.
(E) The person adjusts the camera to get a better view of the bed and the cloths.
Prediction: E      Ground Truth: E

... ... ... ...

Question: Determine the primary purpose of the person's actions in the video, and explain the importance of the 
repetitive actions involved in this process.
Choices:  
(A) In the kitchen, the person is diligently making a cup of coffee. the repetitive actions, or steps, are necessary to ensure 
that the coffee concoction is mixed evenly throughout.
(B) The person is stirring a pot of soup. the repetitive actions are necessary to ensure that the soup is cooked evenly.
(C) The person is painting a piece of furniture. the repetitive actions are necessary to ensure that the paint is applied evenly.
(D) The person is diligently washing dishes. the repetitive actions performed are extremely necessary to ensure that every 
single dish is thoroughly clean.
(E) Currently, the person is diligently brushing his teeth. these repetitive actions are crucial and necessary to effectively 
ensure that his teeth remain ultimately clean and healthy.
Prediction: C      Ground Truth: C

Figure 5: EgoSchema presents unique challenges compared to previous video benchmarks. The
questions in EgoSchema are complex and demand advanced video capabilities, encompassing both
recognition and reasoning skills.
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... ... ... ...

Question: What happened after the person held the blanket?
Choices:  
(A) Tidied up the table.  (B) Took the dish.
(C) Opened the window.  (D) Took the pillow.
Prediction: A      Ground Truth: A

Task: AS
Action Sequence

... ... ... ...

Question: What will the person do next?
Choices:  
(A) Eat the medicine.   (B) Take the shoe.
(C) Take the clothes.   (D) Throw the food.
Prediction: B      Ground Truth: B

Task: AP
Action Prediction

... ... ... ...

Question: Which one of these descriptions correctly matches the actions in the video?
Choices:  
(A) Descending  (B) stacking 
(C) Flipping   (D) loading
Prediction: A     Ground Truth: B

Task: FA
Fine-grained Action

... ... ... ...

Question: What activity does the video depict?
Choices:  
(A) Catching something in the air and preventing it ascend   (B) Not sure.
(C) Throwing something in the air and letting it fall.
Prediction: A     Ground Truth: C

Task: AA
Action Antonym

... ... ... ...

Question: What unusual event takes place in the video during the magical segment?
Choices:  
(A) The basketball court transforms into a football field midway through the game.  
(B) A small basketball transforms into a person when thrown at the hoop. 
(C) A man playing basketball suddenly grows wings and starts flying.  
(D) A gigantic basketball appears after a man throws a normal-sized one at the hoop.
Prediction: D     Ground Truth: D

Task: UA
Unexpected Action

Figure 6: Qualitative results on MVBench (Task 1-5). The tasks where TOPA performs well, average,
or poorly are marked in green, blue, and red colors respectively.
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... ... ... ...

Question: Are there any moving brown objects?
Choices:  
(A) not sure   (B) no   (C) yes.
Prediction: C      Ground Truth: C

Task: OE
Object Existence

... ... ... ...

Question: Which object was put down by the person?
Choices:  
(A) The laptop.  (B) The dish.   (C) The picture.  (D) The food.
Prediction: C      Ground Truth: C

Task: OI
Object Interaction

... ... ... ...

Question: The person uses multiple similar objects to play an occlusion game. 
Where is the hidden object at the end of the game from the person's point of view?
Choices:  
(A) Under the second object from the left.
(B) Under the third object from the left.
(C) Under the fourth object from the left.
Prediction: B     Ground Truth: C

Task: OS
Object Shuffle

... ... ... ...

Question: Can you identify the direction of the red sphere's movement in the video?
Choices:  
(A) Down and to the right.
(B) Up and to the left.
(C) Up and to the right.
(D) The object is stationary.
Prediction: A     Ground Truth: D 

Task: MD
Moving Direction

Question: During which part of the video does the action 'person drinking from the cup' occur?
Choices:  
(A) In the middle of the video.    (B) At the end of the video.
(C) At the beginning of the video.   (D) Throughout the entire video.
Prediction: A     Ground Truth: A

Task: AL
Action Localization

... ... ... ...

Figure 7: Qualitative results on MVBench (Task 6-10).
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... ... ... ...

Question: Which choice matches the scene changes in the video?
Choices:  
(A) From the grocery store to the park.  
(B) From the classroom to the library.   
(C) From the barbershop to the front of the glass window. 
(D) From the office to the beach.
Prediction: C      Ground Truth: C

Task: ST
Scene Transition

... ... ... ...

Question: How many times did the person launch objects on the table?

Choices:  (A) 4  (B) 2  (C) 9
Prediction: A     Ground Truth: B

Task: AC
Action Count

... ... ... ...

Question: How many green spheres enter the scene?

Choices:  (A) 1  (B) 0  (C) 2  (D) 3
Prediction: A     Ground Truth: B

Task: MC
Moving Count

... ... ... ...

Question: What shape is the metal object that is stationary when the video ends?

Choices:  (A) cube   (B) cylinder   (C) sphere 

Prediction: C     Ground Truth: C
Task: MA

Moving Attribute

... ... ... ...

Question: The person interacts with a lighting device among other objects. Is the lighting device 
on at any point?
Choices:  (A) I don't know   (B) yes   (C) no 

Prediction: C     Ground Truth: C
Task: SC

State Change

Figure 8: Qualitative results on MVBench (Task 11-15).
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... ... ... ...

Question: What is the action performed by the person in the video?
Choices:  
(A) Pick up  (B) drop  (C) sit down (D) jump up
Prediction: A      Ground Truth: A

Task: FP
Fine-grained Pose

... ... ... ...

Question: What is the order of the letters at the end?

Choices: 
 (A) kag  (B) kav  (C) bag

Prediction: A     Ground Truth: C
Task: CO

Character Order

... ... ... ...

Question: This is a navigation video of an agent following instruction: "Walk to the front 
of the fireplace." What is the next action it should take?

Choices:  
(A) Move forward  (B) Turn left and move forward 
(C) Stop      (D) Turn right and move forward
Prediction: B     Ground Truth: B

Task: EN
Egocentric Navigation

... ... ... ...

Question: Without the gray object, which of the following will happen?
Choices:  
(A) The yellow cylinder collides with the blue object 
(B) The sphere collides with the blue object 
(C) The sphere and the rubber object collide  
Prediction: C     Ground Truth: C

Task: CI
Counterfactual Inference

... ... ... ...

Question: Why did Joey make a sign before Monica and Chandler are meant to come home?

Choices: 
(A) To announce a sandwich eating contest  (B) To welcome a new puppy 
(C) To welcome the new baby       (D) To welcome Phoebe
(E) To welcome Rachel
Prediction: C     Ground Truth: C

Task: ER
Episodic Reasoning

Figure 9: Qualitative results on MVBench (Task 15-20).
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B Limitations.

Modality gap in CLIP. Despite the fact that TOPA achieves impressive results, a significant limitation
in TOPA is the gap between the CLIP text feature and CLIP image feature. On the one hand, we use
the CLIP text feature for pre-alignment, while inference is with the CLIP visual feature. The modality
gap makes the performance degrade, despite employing a modality projection mechanism to mitigate
it. On the other hand, the CLIP text features cannot fully capture the fine-grained visual details present
in actual images, such as object locations and relationships. This limitation causes TOPA to struggle
in scenarios where questions involve detailed visual information, as shown in Appendix A.3.

Struggles in fine-grained visual understanding. In TOPA, we propose textual videos to mimic real
videos. However, this approach primarily focuses on keyframes understanding, which is insufficient
for scenarios requiring the model to process hundreds of frames at high fps, such as action counting
tasks. Besides, for the fine-grained action understanding scenarios, TOPA is unable to capture the
fine-grained visual information. For example, in a scene where a person climbs a ladder, it is difficult
for TOPA to identify whether the person is going up or down due to the limited capability to capture
detailed visual dynamics. Further enhancing TOPA with video instruction tuning might address these
limitations which we leave for future work.

C Broader Impact

Academic Impact. TOPA’s methodology, which frees the need for costly video-text data collection and
large-scale pre-training, lowers the barriers to entry for research and development in video-language
understanding technologies. The text-only learning framework of TOPA may inspire researchers with
limited resources to engage in cutting-edge multi-modal research, providing a more diverse range of
perspectives and contributions to this field.

Social Impact. The ultimate objective of TOPA is to develop a general video-language understanding
model. Its primary application enables users to extract information from long-form videos without the
need for detailed viewing. Moreover, these capabilities for interpreting and managing video content
could significantly enhance content moderation systems. Platforms hosting user-generated content
could employ sophisticated video-language models to efficiently detect and mitigate the effects of
inappropriate or harmful video content.

D The details of proposed TextVid dataset

We utilize Gemini Pro 1.0 API for our data generation process. We prompt the LLM to create
textual videos along with associated annotations. To ensure a diverse dataset that covers a wide of
domains, we add condition prompts including different themes, video captions, video events, and the
names of main objects. Specifically, we leverage video titles from Howto100M [40], video captions
from WebVid2M [3], video events from Ego4D [15], and object from Wordnet [41] as conditions
to generate diverse textual videos. For Ego4D condition, we ask the LLM to mimic an ego-centric
video to further improve the diversity of the dataset. Table 10 compares vocabulary sizes. Figure 11
shows that Tideos generated under different conditions have different distributions. For each data
generation, we prompt the LLM with the task prompt and one of the condition prompts as shown
in Figure 13. The statistics TextVid are shown in Table 10. Additionally, we provide Wordcloud of
TextVid in Figure 10. The examples of TextVid are shown in Appendix H.

Table 10: Statistics of TextVid.
TextVid

Generated by Gemini Pro 1.0
# textual videos 721K
# each condition Video Title-213k; Video Caption-183K; Video Scenarios-205K; Object-120K
# all QA pairs 3.5M
# each question types What-2.5M; Why-410K; How-287K;Others-254K
# all frames 4.4M
Avg. frame 6.13
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Table 11: Vocabulary size of Tideos generated under different prompts. We randomly sampled 20,000
global captions from each type of Tideos for comparison.

Howto100m Ego4D WebVid WordNet
Vocab Size 17492 7320 15095 26486

Figure 10: Wordcloud of TextVid. The frame caption (left) and the dense video caption (right).

Figure 11: Visualization of Tideo features generated from different type of prompts.

E Experimental Setup

E.1 Benchmarks

EgoSchema [39] is a challenging long-form video understanding benchmark with 5000 multi-choice
questions. The videos in EgoSchema are sourced from Ego-4D [15], with an average length of
3 minutes, distinct from previous benchmarks that focused on shorter, seconds-long videos. The
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questions in EgoSchema are manually curated to demand long temporal reasoning. We report results
on EgoSchema full set.

NExT-QA [72] is a multi-choice video QA benchmark for causal and temporal reasoning, including
5,440 natural videos. The average length of video is 44 seconds. We report results on NExT-QA
validation set, which contains 570 videos and 5,000 multiple-choice questions.

STAR [70] is a benchmark for situated reasoning. It contains 22K video clips with an average length
of 44 seconds. There are 4 different question types in STAR: Interaction (Int.), Sequence (Seq.),
Prediction (Pre.), and Feasibility (Fea.). We report results on STAR validation set.

TVQA [24] is a benchmark containing 21k video clips with an average length of 76 seconds. We
report results on TVQA validation set without subtitles.

MVbench [29] is a reorganized benchmark containing 20 video understanding tasks. These tasks
are sourced from STAR [70], PAXION [68], MiT Vi [43], FunQA [73], Perception Test [46],
Charades-STA [14], MovieNet [18], NTU RGB+D [35], VLN-CE [69] and TVQA [24].

E.2 The details of training and evaluation.

We leverage Llama2-7B, Llama2-13B [57] and Llama3-8B as the LLM backbone. Additionally, we
employ the Llama-adapter [84] with an adaptation embedding length of 50 for efficient finetuning. We
utilize CLIP-ViT-L as the multimodal encoder. We employ a simple linear layer to project the CLIP
feature into the LLM feature space. The CLIP model and LLM backbone are frozen. The projection
layer and additional Llama-adapter are trainable. For text-only pre-alignment, we uniformly sample
the Tideos into 10 frames. We train the model on a mixture of tasks comprising Tideo summarization,
Tideo QA, multi-choice Tideo QA with the ratio of 1:1:2. TOPA-Llama2-7B and TOPA-Llama3-8B
are trained on four 40G-A100 GPUs in one day. TOPA-Llama2-13B is trained in two days. For
zero-shot inference, we construct a memory for cross-modal projection, consisting of 2M CLIP text
features sampled from the frame captions in the TextVid dataset. We include the training details in
Table 12. The actual learning rate is calculated by base lr ∗ Effective Batchsize/256.

Table 12: Training hyper-parameters.

Model Training Dataset Epoch Effective Batchsize base Optimizer
(bs, #GPUs, grad accu) lr

Pre-training
TOPA-LLama2-7B

TextVid 721K 20
18x4x4 5e-3 AdamW

TOPA-LLama2-13B 4x4x8 8e-3 weight decay 0.1
TOPA-LLama3-8B 14x4x8 5e-3 warm up 1 epoch

Fine-tuning

TOPA-LLama2-7B
NextQA

5

20x4x4
5e-3

STAR 5 1e-2
TVQA 5e-3

TOPA-LLama2-13B
NextQA

6x4x16
2e-3 AdamW [36]

STAR 2e-3 weight decay 0.1
TVQA 5e-3 warm up 1 epochs

TOPA-LLama3-8B
NextQA

20x4x4
1e-2

STAR 5 1e-2
TVQA 5e-3

Baseline

LLama2-7B
NextQA

10

20x4x4
1e-2

STAR 10 2e-2
TVQA 2e-2

LLama2-13B
NextQA

6x4x16
1e-2 AdamW

STAR 10 2e-2 weight decay 0.1
TVQA 2e-2 warm up 2 epochs

LLama3-8B
NextQA

20x4x4
2e-2

STAR 10 2e-2
TVQA 1e-2
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F Prompts

F.1 Text-only Training Prompts.

We use the following prompts for Text-only training. The prompts are partially based on [23].

Tideo Multi-choice QA:
Instruction: Choose the correct answer based on the video and question.
Video: {f t1,...,f tn}.
Question: {Question}.
Choices:
(A): {Option A}. (B): {Option B}. (C): {Option C}. (D): {Option D}. (E): {Option E}.
Answer: The correct choice is {Correct Choice}.

Tideo QA:
Instruction: Predict the answer based on the video and question.
Video: {f t1,...,f tn}.
Question: {Question}.
Answer: {Answer}.

Tideo Description:
Instruction: Generate a dense description for the video.
Video: {f t1,...,f tn}.
Description: {Tideo Description}.

F.2 Prompt for Gemini Blind Evaluation

In Table 6, we use the following prompt for the blind evaluation of Gemini-Pro-1.0 on EgoSchema.
The prompt is based on [4].

You are a helpful assistant, an expert in answering questions about videos. You will be given a question 
about a video and five possible answer options. You will not be provided frames from the video, but still 
do your best to guess an answer. You are very capable, think step-by-step when answering the question. 

Question: <question>

Possible answer choices:
(A):  <Choice 1>
(B):  <Choice 2>
(C):  <Choice 3>
(D):  <Choice 4>
(E):  <Choice 5>

The response should be in JSON format:
{“Answer”: “(X)”}

Figure 12: The multi-choice QA prompts used for the blind evaluation of Gemini-1.0-Pro.

F.3 Prompts for Data Generation

The prompts for TextVid generation are shown in Figure 13.
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Task Prompt
Please assist in creating a textual dataset that simulates a video with 5-15 frame-level descriptions. The output should be 
structured in JSON format.

For each frame, you should describe it as following:
Frame Caption: Start with a 'Frame Caption' for each frame, providing a comprehensive overview.
Detailed Captions: Follow the frame caption with 1-3 detailed captions focusing on specific objects within the frame. 
Each detailed caption should highlight the main object at the beginning.

After describing the frames, provide:
Global Video Description: Provide a summary that synthesizes information from all described frames, offering an 
overarching narrative of the video.
QA Pairs: A set of question-answer pairs related to the video. Questions can vary, including "when," "why," "what," 
"how," "does/do," "is/are," and "where." Emphasis should be on visual reasoning. Each question will come with five 
options, including one correct answer. Questions that require integration of multiple frames to deduce the answer are 
preferred.

Output should structured as following:
```
{
  ”Video_Title": " ",
  ”Frames": [
   {
    ”Frame Caption": " ",
    "Object Name": " ",
    "Object Name": " ",
    "Object Name": " "
   },
    ...
  ],
  ”Global_Video_Description": " ",
  "QA Pairs": [
   {
    ”Question": " ",
    ”Options": {
     "A": " ",
     "B": " ",
     "C": " ",
     "D": " ",
     "E": " "
    },
    ”Answer": "D"
   },
   ...
  ]
}
```

Condition Prompts
Video title (Howto100M):
Now, please generate a textual video about {title}.

Video caption (WebVid): 
Now, please generate a textual video about {caption}.

Video scenarios (Ego4d):
Now, please generate an ego-centric video about 
{scenarios}. This video is taken by {name}.

Object (Wordnet):
Now, please generate a textual video about {object 
name}, {object description}.

Figure 13: The prompts used in TextVid generation.
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G License

The code, model and proposed dataset will be publicly accessible. We use standard licenses from the
community. We include the following licenses for the codes, datasets and models we used in this
paper.

1. Benchmarks
NExT-QA [72]: MIT
STAR [70]: Apache
TVQA [24]: MIT
EgoSchema [39]: MIT
MVBench [29]: MIT

2. Codes
LLama-adapter [84] GNU General Public License v3.0
Flipped-VQA [23]: MIT

3. Models
CLIP [48]: MIT
LLama2 [57]: Llama 2 Community License Agreement
LLama3: Meta Llama 3 Community License Agreement
Gimini-API [56]: Gemini API Additional Terms of Service.
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H Examples of TextVid

Textual Video

Video Title: Win the Budweiser Shootout in Nascar 07

Frame Caption 1: A car race is taking place on a racetrack.

Racecar: The racecar is speeding along the track. 

Crowd: A large crowd is gathered around the race to watch.

Frame Caption 2: The racecar is approaching a turn in the track.

Racecar: The racecar is preparing to turn the corner.

Driver: The driver is focused on the track ahead.

Stands: The grandstands are filled with spectators.

Frame Caption 3: The racecar is in a fierce battle for the lead.

Racecar1: The racecar in front is trying to hold onto its lead

Racecar2: The racecar in back is pushing hard to overtake.’

Track: The track is lined with advertising billboards.’

Frame Caption 4: The racecar is running at the racetrack.

Racecar: The racecar is speeding along the straightaway.

Driver: The driver is focused on the road ahead.

Pit crew: The pit crew is preparing for a pit stop.

Frame Caption 5: The racecar is blowing out

Racecar: The racecar is damaged and smoking.

Driver: The driver is trying to control the car.

Track: The track is covered in debris.

Frame Caption 6: The driver got out of the car and give up the game.

Racecar: The racecar is stopped on the track.’

Driver: The driver is walking away from the car.

Crew: The crew is running towards the car.

Annotations
Detailed Video Descriptions: The video begins with the racecars 
speeding around the track, as the driver navigates the turns and battles 
for the lead. Suddenly, one of the racecars suffers a blowout and crashes, 
causing the driver to exit the vehicle and surrender the race.

QA Pairs: 

Question:  What caused the racecar to crash? 

Options:

A: A mechanical failure.
B: A collision with another car.
C: A flat tire.
D: A driver error.
E: Bad weather conditions.
Answer: C

Question:  What happened to the driver after the crash?
Options:

A: He was injured and taken to the hospital.
B: He was able to walk away from the car.
C: He was disqualified from the race.
D: He was arrested for reckless driving.
E: He won the race.
Answer: B

Question What is the name of the track where the race is taking place?
Options:

A: Daytona International Speedway.
B: Indianapolis Motor Speedway
C: Talladega Superspeedway
D: Charlotte Motor Speedway
E: Bristol Motor Speedway
Answer: A

Textual Video

Video Title: Croesus

Frame Caption 1: Croesus sits on the throne in grandeur with a golden 

crown and scepter in hand, exuding wealth and power.

Croesus: A wealthy man wearing a golden crown and scepter, sitting on a 

throne.

Throne: A large, ornate chair made of gold and jewels.

Scepter: A long, thin staff made of gold, topped with a decorative finial.

Frame Caption 2: Croesus holds a scroll with mathematical equations 

written on it, revealing his intelligence and passion for knowledge.

Croesus: A wealthy man wearing a golden crown, holding a scroll

Scroll: A long, thin piece of paper with writing on it.

Equation: A mathematical expression consisting of variables and operators.

Frame Caption 3: Croesus stands before a large group of people, gesturing 

with his arms as he delivers a speech with confidence and authority.

Croesus: A wealthy man wearing a golden crown, standing in front of a 

crowd.

Crowd: A large group of people gathered together.

Frame Caption 4: Croesus sits with a wise man, seeking guidance and 

knowledge from the elder's experience and wisdom.

Croesus: A wealthy man wearing a golden crown, sitting with a wise man.

Wise man: An elderly man with a long beard, dressed in simple robes.

Frame Caption 5: Croesus stands alone in a desolate wasteland, his 

expression one of despair and regret, as he contemplates the consequences 

of his actions.

Croesus: A wealthy man wearing a golden crown, standing in a wasteland.

Wasteland : A barren, empty area of land.

Annotations
Detailed Video Descriptions: This video depicts the life of Croesus, a 
wealthy and powerful king who was known for his wisdom and intelligence. 
The video shows Croesus in various settings, including his throne room, 
his study, and a public square. Throughout the video, Croesus is shown 
interacting with various people, including scholars, advisors, and 
commoners. The video ends with Croesus standing alone in a desolate 
wasteland, contemplating the consequences of his actions.

QA Pairs: 

Question:  What is Croesus holding in his hand in frame 2?
Options:

A: A book.
B: A scroll.
C: A scepter. 
D: A sword.
E: A crown.
Answer: B

Question: Why is Croesus standing in a desolate wasteland in the final 
frame? 
Options:

A: He is lost.
B: He has been defeated in battle.
C: He is contemplating the consequences of his actions.
D: He is seeking solitude.
E: He is hiding from his enemies .
Answer: C

Question: How does Croesus's expression change throughout the video 
Options:

A: He becomes increasingly confident .
B: He becomes increasingly worried.
C: He becomes increasingly angry.
D: He becomes increasingly sad.
E: His expression does not change.
Answer: B

Textual Video

Video Title: Make Dough Without Yeast

Frame Caption 1: A kitchen counter with flour, salt, baking powder, and 

olive oil in bowls

Flour: A bowl of flour is on the left side of the counter

Salt: A bowl of salt is next to the bowl of flour.

Baking powder: A bowl of baking powder is next to the bowl of salt.

Salt: A bowl of salt is next to the bowl of flour.

Frame Caption 2: A woman is adding olive oil to the flour and salt in a 

bowl

Woman: A woman is standing behind the counter, adding olive oil to a 

bowl of flour and salt.

Olive oil: A cup of olive oil is in the woman's left hand.

Bowl: A bowl of flour and salt is on the counter in front of the woman.

Frame Caption 3: The woman is stirring the ingredients in the bowl.

Woman: The woman is standing behind the counter, stirring the 

ingredients in a bowl.

Spoon: A spoon is in the woman's right hand

Bowl: A bowl of ingredients is on the counter in front of the woman.

Frame Caption 4: The woman is adding water to the ingredients in the 

bowl.

Woman: The woman is standing behind the counter, adding water to a 

bowl of ingredients.

Water: A cup of water is in the woman's left hand.

Bowl: A bowl of ingredients is on the counter in front of the woman.

Frame Caption 5: The woman is stirring the ingredients in the bowl with a 

fork.

Woman: The woman is standing behind the counter, stirring the 

ingredients in a bowl with a fork.

Fork: A fork is in the woman's right hand.

Bowl: A bowl of ingredients is on the counter in front of the woman.

Frame Caption 6: The woman is kneading the dough on a floured surface.

Woman: The woman is standing behind the counter, kneading dough on a 

floured surface.

Dough: A ball of dough is on the counter in front of the woman.

Surface: The counter is covered in flour.

Frame Caption 7: The woman is shaping the dough into a loaf.

Woman: The woman is standing behind the counter, shaping dough into a 

loaf.

Dough: A loaf of dough is on the counter in front of the woman.

Hands: The woman's hands are on the dough.

Frame Caption 7: The woman is placing the loaf of dough in a baking pan.

Woman: The woman is standing behind the counter, placing a loaf of 

dough in a baking pan.

Dough: A loaf of dough is in the woman's hands.

Pan: A baking pan is on the counter in front of the woman.

………..

Annotations

Detailed Video Descriptions: This video shows how to make dough 
without yeast. The woman starts by adding olive oil to a bowl of flour and 
salt. She then stirs the ingredients together and adds water. The woman 
continues to stir the ingredients until they form a dough. She then kneads 
the dough on a floured surface and shapes it into a loaf. The woman 
places the loaf of dough in a baking pan and bakes it in the oven. Once the 
bread is baked, the woman removes it from the oven and lets it cool.

QA Pairs: 

Question:  What is the woman adding to the flour and salt?
Options:

A: Water.
B: Olive oil
C: Baking powder.
D: Sugar
E: Yeast
Answer: B

Question:  What is the woman doing in frame 6?
Options:

A: Stirring the ingredients
B: Kneading the dough
C: Shaping the dough
D: Baking the bread
E: Removing the bread from the oven
Answer: B

Question: Where is the woman placing the loaf of dough in frame 8?
Options:

A: In a bowl
B: On a baking sheet
C: In a baking pan
D: On a cutting board
E: In a plastic bag
Answer: C

Question: Why is the woman stirring the ingredients in frame 3 ?
Options:

A: To combine them
B: To dissolve the salt
C: To activate the yeast
D: To make the dough smooth
E: To prevent the dough from sticking
Answer: A

Question: What is the final product of this video?
Options:

A: Dough
B: Bread
C: Pizza
D: Pasta
E: Cake
Answer: B
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Textual Video

Video Title: Win the Budweiser Shootout in Nascar 07

Frame Caption 1: A car race is taking place on a racetrack.
Racecar: The racecar is speeding along the track. 
Crowd: A large crowd is gathered around the race to watch.

Frame Caption 2: The racecar is approaching a turn in the track.
Racecar: The racecar is preparing to turn the corner.
Driver: The driver is focused on the track ahead.
Stands: The grandstands are filled with spectators.

Frame Caption 3: The racecar is in a fierce battle for the lead.
Racecar1: The racecar in front is trying to hold onto its lead
Racecar2: The racecar in back is pushing hard to overtake.’
Track: The track is lined with advertising billboards.’

Frame Caption 4: The racecar is running at the racetrack.
Racecar: The racecar is speeding along the straightaway.
Driver: The driver is focused on the road ahead.
Pit crew: The pit crew is preparing for a pit stop.

Frame Caption 5: The racecar is blowing out
Racecar: The racecar is damaged and smoking.
Driver: The driver is trying to control the car.
Track: The track is covered in debris.

Frame Caption 6: The driver got out of the car and give up the game.
Racecar: The racecar is stopped on the track.’
Driver: The driver is walking away from the car.
Crew: The crew is running towards the car.

Annotations
Detailed Video Descriptions: The video begins with the racecars 
speeding around the track, as the driver navigates the turns and battles 
for the lead. Suddenly, one of the racecars suffers a blowout and crashes, 
causing the driver to exit the vehicle and surrender the race.

QA Pairs: 

Question:  What caused the racecar to crash? 
Options:
A: A mechanical failure.
B: A collision with another car.
C: A flat tire.
D: A driver error.
E: Bad weather conditions.
Answer: C

Question:  What happened to the driver after the crash?
Options:
A: He was injured and taken to the hospital.
B: He was able to walk away from the car.
C: He was disqualified from the race.
D: He was arrested for reckless driving.
E: He won the race.
Answer: B

Question What is the name of the track where the race is taking place?
Options:
A: Daytona International Speedway.
B: Indianapolis Motor Speedway
C: Talladega Superspeedway
D: Charlotte Motor Speedway
E: Bristol Motor Speedway
Answer: A

Textual Video

Video Title: Croesus

Frame Caption 1: Croesus sits on the throne in grandeur with a golden 
crown and scepter in hand, exuding wealth and power.
Croesus: A wealthy man wearing a golden crown and scepter, sitting on a 
throne.
Throne: A large, ornate chair made of gold and jewels.
Scepter: A long, thin staff made of gold, topped with a decorative finial.

Frame Caption 2: Croesus holds a scroll with mathematical equations 
written on it, revealing his intelligence and passion for knowledge.
Croesus: A wealthy man wearing a golden crown, holding a scroll
Scroll: A long, thin piece of paper with writing on it.
Equation: A mathematical expression consisting of variables and operators.

Frame Caption 3: Croesus stands before a large group of people, gesturing 
with his arms as he delivers a speech with confidence and authority.
Croesus: A wealthy man wearing a golden crown, standing in front of a 
crowd.
Crowd: A large group of people gathered together.

Frame Caption 4: Croesus sits with a wise man, seeking guidance and 
knowledge from the elder's experience and wisdom.
Croesus: A wealthy man wearing a golden crown, sitting with a wise man.
Wise man: An elderly man with a long beard, dressed in simple robes.

Frame Caption 5: Croesus stands alone in a desolate wasteland, his 
expression one of despair and regret, as he contemplates the consequences 
of his actions.
Croesus: A wealthy man wearing a golden crown, standing in a wasteland.
Wasteland : A barren, empty area of land.

Annotations
Detailed Video Descriptions: This video depicts the life of Croesus, a 
wealthy and powerful king who was known for his wisdom and intelligence. 
The video shows Croesus in various settings, including his throne room, 
his study, and a public square. Throughout the video, Croesus is shown 
interacting with various people, including scholars, advisors, and 
commoners. The video ends with Croesus standing alone in a desolate 
wasteland, contemplating the consequences of his actions.

QA Pairs: 

Question:  What is Croesus holding in his hand in frame 2?
Options:
A: A book.
B: A scroll.
C: A scepter. 
D: A sword.
E: A crown.
Answer: B

Question: Why is Croesus standing in a desolate wasteland in the final 
frame? 
Options:
A: He is lost.
B: He has been defeated in battle.
C: He is contemplating the consequences of his actions.
D: He is seeking solitude.
E: He is hiding from his enemies .
Answer: C

Question: How does Croesus's expression change throughout the video 
Options:
A: He becomes increasingly confident .
B: He becomes increasingly worried.
C: He becomes increasingly angry.
D: He becomes increasingly sad.
E: His expression does not change.
Answer: B

Textual Video

Video Title: Make Dough Without Yeast

Frame Caption 1: A kitchen counter with flour, salt, baking powder, and 
olive oil in bowls
Flour: A bowl of flour is on the left side of the counter
Salt: A bowl of salt is next to the bowl of flour.
Baking powder: A bowl of baking powder is next to the bowl of salt.
Salt: A bowl of salt is next to the bowl of flour.

Frame Caption 2: A woman is adding olive oil to the flour and salt in a 
bowl
Woman: A woman is standing behind the counter, adding olive oil to a 
bowl of flour and salt.
Olive oil: A cup of olive oil is in the woman's left hand.
Bowl: A bowl of flour and salt is on the counter in front of the woman.

Frame Caption 3: The woman is stirring the ingredients in the bowl.
Woman: The woman is standing behind the counter, stirring the 
ingredients in a bowl.
Spoon: A spoon is in the woman's right hand
Bowl: A bowl of ingredients is on the counter in front of the woman.

Frame Caption 4: The woman is adding water to the ingredients in the 
bowl.
Woman: The woman is standing behind the counter, adding water to a 
bowl of ingredients.
Water: A cup of water is in the woman's left hand.
Bowl: A bowl of ingredients is on the counter in front of the woman.

Frame Caption 5: The woman is stirring the ingredients in the bowl with a 
fork.
Woman: The woman is standing behind the counter, stirring the 
ingredients in a bowl with a fork.
Fork: A fork is in the woman's right hand.
Bowl: A bowl of ingredients is on the counter in front of the woman.

Frame Caption 6: The woman is kneading the dough on a floured surface.
Woman: The woman is standing behind the counter, kneading dough on a 
floured surface.
Dough: A ball of dough is on the counter in front of the woman.
Surface: The counter is covered in flour.

Frame Caption 7: The woman is shaping the dough into a loaf.
Woman: The woman is standing behind the counter, shaping dough into a 
loaf.
Dough: A loaf of dough is on the counter in front of the woman.
Hands: The woman's hands are on the dough.

Frame Caption 7: The woman is placing the loaf of dough in a baking pan.
Woman: The woman is standing behind the counter, placing a loaf of 
dough in a baking pan.
Dough: A loaf of dough is in the woman's hands.
Pan: A baking pan is on the counter in front of the woman.
………..

Annotations

Detailed Video Descriptions: This video shows how to make dough without 
yeast. The woman starts by adding olive oil to a bowl of flour and salt. She 
then stirs the ingredients together and adds water. The woman continues to stir 
the ingredients until they form a dough. She then kneads the dough on a 
floured surface and shapes it into a loaf. The woman places the loaf of dough 
in a baking pan and bakes it in the oven. Once the bread is baked, the woman 
removes it from the oven and lets it cool.

QA Pairs: 

Question:  What is the woman adding to the flour and salt?
Options:
A: Water.
B: Olive oil
C: Baking powder.
D: Sugar
E: Yeast
Answer: B

Question:  What is the woman doing in frame 6?
Options:
A: Stirring the ingredients
B: Kneading the dough
C: Shaping the dough
D: Baking the bread
E: Removing the bread from the oven
Answer: B

Question: Where is the woman placing the loaf of dough in frame 8?
Options:
A: In a bowl
B: On a baking sheet
C: In a baking pan
D: On a cutting board
E: In a plastic bag
Answer: C

Question: Why is the woman stirring the ingredients in frame 3 ?
Options:
A: To combine them
B: To dissolve the salt
C: To activate the yeast
D: To make the dough smooth
E: To prevent the dough from sticking
Answer: A

Question: What is the final product of this video?
Options:
A: Dough
B: Bread
C: Pizza
D: Pasta
E: Cake
Answer: B
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Textual Video

Video Object Name: Shouldered Arch

Frame Caption 1: A close-up view of a shouldered arch. The arch is made 

of stone and has a slightly pointed shape. It is supported by two corbels that 

project into the aperture.

Shouldered arch: The shouldered arch is made of stone and has a slightly 

pointed shape.

Corbels: The corbels are made of stone and project into the aperture.

Lintel: The lintel is a horizontal stone that spans the opening of the arch.

Frame Caption 2: The camera pans out to show the shouldered arch in the 

context of a larger building. The arch is part of a doorway that leads into a 

courtyard.

Shouldered arch: The shouldered arch is part of a doorway that leads into 

a courtyard.

Courtyard: The courtyard is surrounded by a wall and has a fountain in 

the center. 

Building: The building is made of stone and has a tiled roof.

Frame Caption 3: A person walks through the doorway into the courtyard. 

Jose is wearing a long robe and carrying a book.

Person: Jose is wearing a long robe and carrying a book.

Courtyard: The courtyard is surrounded by a wall and has a fountain in 

the center.

Shouldered arch: The shouldered arch is part of a doorway that leads into 

a courtyard

Frame Caption 4: The camera zooms in on the shouldered arch. The arch 

is decorated with a carving of a lion's head. 

Shouldered arch: The shouldered arch is decorated with a carving of a 

lion's head.

Lion's head: An elderly man with a long beard, dressed in simple robes.

Frame Caption 5: The camera pans out to show the shouldered arch in the 

context of a larger building. The arch is part of a window that overlooks the 

courtyard.

Shouldered arch: The shouldered arch is part of a window that overlooks 

the courtyard. 

courtyard: The courtyard is surrounded by a wall and has a fountain in the 

center.

Annotations
Detailed Video Descriptions: This video shows a shouldered arch. 
The arch is made of stone and has a slightly pointed shape. It is 
supported by two corbels that project into the aperture. The arch is 
part of a doorway that leads into a courtyard. The courtyard is 
surrounded by a wall and has a fountain in the center. The arch is also 
decorated with a carving of a lion's head.

QA Pairs: 

Question: What type of arch is shown in the video? 
Options:

A: Round arch.
B: Pointed arch.
C: Shouldered arch. 
D: Horseshoe arch.
E: Segmental arch.
Answer: C

Question: What is the purpose of the corbels in the arch? 
Options:

A: To support the lintel.
B: To decorate the arch 
C: To provide ventilation 
D: To strengthen the arch 
E: To reduce the weight of the arch 
Answer: A

Question: What is carved into the stone of the arch? 
Options:

A: A lion's head 
B: A human face 
C: A floral design
D: A geometric pattern
E: Nothing 
Answer: A

Question: Where is the arch located? 
Options:

A: In a doorway
B: In a window
C: In a wall
D: In a ceiling
E: In a bridge 
Answer: A
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Textual Video

Video Description: Aerial view of young man by the mountain 
lake looking at trail map for directions.

Frame Caption 1: A man is sitting on a couch, with his hand on his 
temple
Man: A man with a serious expression is sitting on a couch, his head is 

down and his eyes are closed.

Sofa: A beige fabric sofa is at the center of the living room, and a man is 

sitting on it.

Hands: The man's right hand is on his forehead, fingers rubbing his temple.

Background: Behind the sofa, a large window with white curtain on the 

right side.

Frame Caption 2: He massages his temple.

Man: The man is still sitting on the couch, his expression is still serious 

and his eyes are still closed.

Sofa: The man is sitting on this beige fabric sofa in his living room.

Hands: The man's right hand is still on his forehead, applying more 

pressure.

Background: A large window with white curtain is behind the man and the 

sofa.

Frame Caption 3: He seems to be in pain.

Man: The man's expression is getting worse, he wrinkles his brows and his 

mouth is slightly open.

Sofa: The man is sitting on a beige fabric sofa in the living room.

Hands: The man's right hand is still on his forehead, applying lots of 

pressure.

Background: A large window with white curtain is behind the man and the 

sofa.

Frame Caption 4: He is holding his temple and grimacing.

Man: The man's face is scrunched up in pain, his eyes are closed tightly.

Sofa: An elderly man with a long beard, dressed in simple robes.

Hands: The man's right hand is still on his forehead, applying pressure.

Background: A large window with white curtain is behind the man and the 

sofa.

Frame Caption 5: The man seems to be slightly relieved.

Man: The man's face looks a little better, he is starting to release the 

pressure on his forehead. 

Sofa: The man is sitting on a beige fabric sofa in his living room.

Hands: The man's right hand is still on his forehead, but he is not applying 

pressure anymore.

Background: A large window with white curtain is behind the man and the 

sofa.

Annotations
Detailed Video Descriptions: A man sitting on a couch in pain, 
rubbing his temple to relieve a migraine headache

QA Pairs: 

Question: What is the man doing to help relieve his pain?
Options:

A: Rubbing his forehead.
B: Taking medication.
C: Applying a cold compress.
D: Drinking plenty of water. 
E: Exercising.
Answer: A

Question: What is the man's expression? 
Options:

A: Happy 
B: Sad
C: Angry
D: In pain
E: Surprised
Answer: D

Question: What does the man have? 
Options:

A: A headache 
B: A toothache
C: A stomachache 
D: A cold 
E: A flu 
Answer: A
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Textual Video

Video Recorder: Jose

Frame Caption 1: A first-person perspective of Jose standing in the 
kitchen, holding a knife and chopping vegetables on a cutting board.
Cutting board: A rectangular wooden cutting board is placed on the 
kitchen counter.
Knife: Jose is holding a sharp, stainless steel knife in his right hand.

Frame Caption 2: Jose is cracking an egg into a bowl.
Man: The man is still sitting on the couch, his expression is still serious 

and his eyes are still closed.

Bowl: A white ceramic bowl is placed on the kitchen counter.
Egg: Jose is holding a brown egg in his left hand.

Frame Caption 3: Jose is whisking the egg and other ingredients in the 
bowl.
Whisk: Jose is holding a silver whisk in his right hand.
Bowl: The white ceramic bowl is filled with egg and other ingredients

Frame Caption 4: Jose is pouring the egg mixture into a pan..

Pan: A black nonstick pan is placed on the stovetop.

Bowl: Jose is holding the white ceramic bowl in his left hand.

Spatula: Jose is holding a black spatula in his right hand. 

Frame Caption 5: Jose is flipping the omelet in the pan.

Omelet: The omelet is cooking in the pan, browning on one side.

Spatula: Jose is using the black spatula to flip the omelet.

Annotations
Detailed Video Descriptions: The video shows Jose cooking an 
omelet. He first chops vegetables on a cutting board, then cracks an 
egg into a bowl. He whisks the egg and other ingredients in the bowl, 
then pours the mixture into a pan. He flips the omelet in the pan until it 
is cooked through.

QA Pairs: 

Question: What is Jose's primary goal in this video?
Options:

A: To wash dishes.
B: To make an omelet.
C: To clean the kitchen
D: To eat dinner.
E: To chop vegetables.
Answer: B

Question: What type of pan does Jose use to cook the omelet?
Options:

A: A cast iron skillet. 
B: A nonstick pan.
C: A Dutch oven
D: A saucepan.
E: A baking dish.
Answer: B

Question: What ingredients does Jose add to the egg mixture?
Options:

A: Salt and pepper
B: Milk and cheese.
C: Flour and water
D: Meat and vegetables.
E: Sugar and butter
Answer: A

Question: What does Jose do with the omelet after it is cooked?
Options:

A: He serves it with toast.
B: He eats it with a fork.
C: He puts it in a lunch box.
D: He gives it to his dog.
E: He throws it away.
Answer: B
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper aim to extend Large Language Models for video understanding
via Text-Only Pre-Alignment, which does not need real videos for pre-training. Extensive
experiments on video understanding benchmarks demonstrate the effectiveness of TOPA.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of TOPA are detailed in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

37



Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The training details of TOPA are included in Appendix E.2. The dataset
generation pipeline is detailed in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

38



Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: The code and dataset is publicly accessible (https://github.com/dhg-wei/
TOPA).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details of training and evaluation are included in Appendix E.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: TOPA is a large-scale pre-training framework. Similar to previous related
work [45, 81, 29], error bars are not reported because it would be computationally too
expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: The details of compute resources are included in Section 3.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics and it conforms with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The details of broader impacts are included in Appendix C.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our model and data focus on video-language understanding, with minimal risk
of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The licenses are mentioned in Appendix G.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The details of the new dataset and model are detailed in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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