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Abstract

High-fidelity 3D reconstruction from images remains a fundamental challenge in computer
vision. Implicit Signed Distance Field (SDF) models leverage photometric loss for isosurface
reconstruction, while recent approaches, such as planar constrained Gaussian splatting,
integrate 3D-2D geometry priors to improve structural accuracy. However, existing methods
struggle to capture fine-grained geometric details due to due the loss of high-frequency
geometric details during feature learning, which results in limited multi-scale representation.
To address this, we introduce a novel wavelet-conditioned implicit SDF model that enhances
geometric precision by leveraging a pretrained wavelet autoencoder optimized with sharp
depth maps. This autoencoder extracts multi-scale wavelet transformed features, which are
fused with implicit 3D triplane features via triplane projection, producing a more structured
and detail-preserving distance field. Our method can serve as a plug-and-play module,
seamlessly integrating with any implicit SDF representations.

Extensive evaluations on DTU, Tanks and Temples, and a cultural heritage dataset demon-
strate that our model consistently outperforms state-of-the-art implicit and explicit 3D re-
construction methods, achieving more complete surfaces with fine-detail preservation across
diverse scene scales, from small objects to large architectural buildings.

1 Introduction

Image-based 3D reconstruction methods, such as Structure from Motion (SfM), recover 3D structures from
multi-view 2D images (Schönberger (2016)), yet they are struggling to preserve high-fidelity details. Alterna-
tively, reconstruction from structured light scans (Hu et al. (2022); Wang et al. (2022)) or a fusion of images
and LiDAR scans (Moemen et al. (2020)) has seen active progress, but these point-based methods are prone
to noise in scans, making it difficult to obtain plausible reconstruction mesh. High-fidelity reconstruction
with fine structural details remains a core challenge in computer vision. Recent advances in implicit repre-
sentations, such as neural radiance fields (NeRF) by Mildenhall et al. (2021), and explicit methods such as
Gaussian splatting (GS) proposed by Kerbl et al. (2023), have significantly advanced 3D applications.

Implicit models leverage photometric consistency loss to learn Signed Distance Fields (SDFs) from multi-
view images (Hasson et al. (2020)). Unisurf by Oechsle et al. (2021) unifies surface and volume rendering
to improve generalization, while hybrid volume-surface representations can be converted into high-quality
meshes for real-time rendering , like the work by Yariv et al. (2023). Multi-resolution hash grids further
enable coarse-to-fine optimization for detailed neural surface reconstruction (Li et al. (2023b)), making
implicit SDF models effective for complex topologies and continuous geometry fields.

Kerbl et al. (2023) use Explicit Gaussian splatting (GS) to represent scenes using anisotropic 3D Gaussians,
enabling efficient training and real-time rendering. However, while GS offers speed, it often sacrifices geo-
metric quality. To address this, AGS-Mesh by Ren et al. (2025) incorporates meshing priors, PGSR proposed
by Chen et al. (2024) enforces planar constraints, Turkulainen et al. (2024) utilize depth and normal priors
for DN-Splatter method, and 2D GS by Huang et al. (2024a) simplifies 3D Gaussian parameters to improve
surface alignment.
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Most prior work emphasizes global shape reconstruction and coarse geometric structures. While some meth-
ods incorporate geometric priors to enhance shape representation, they often struggle with fine-grained
details due to high-frequency feature loss, as current network architectures have limited band representation
capacity, often requiring complex 3D prior integration. To overcome these challenges, we propose a multi-
scale wavelet-based feature approach utilizing a pre-trained depth image autoencoder trained on monocular
depth priors. Wavelets efficiently capture high-frequency geometric details while preserving spatial localiza-
tion, unlike Fourier transforms, which lose spatial information. This property is crucial for retaining fine
surface details that deep learning models often neglect due to the lack of specialized multi-scale represen-
tation. The autoencoder is trained on wavelet-transformed depth images generated by a state-of-the-art
monocular depth diffusion model (He et al. (2024)). The extracted wavelet features are aligned with implicit
3D triplane features via triplane projection and fused to enhance SDF predictions. Our method outperforms
state-of-the-art reconstruction models across diverse scenes. The main contributions of our work can be
summarized as follows:

• Wavelet-Transformed Depth Feature Conditioning: We introduce a pre-trained multi-scale
wavelet autoencoder for depth image reconstruction. During implicit SDF training, wavelet features
extracted from depth maps condition the network, enhancing geometric detail preservation.

• Triplane-Aligned Wavelet Feature Projection: A triplane projection strategy aligns 2D wavelet
features with 3D implicit representations, ensuring seamless fusion and improved geometric consis-
tency.

• Hybrid Feature Fusion for SDF Prediction: A UNet-based fusion mechanism integrates im-
plicit 3D features with wavelet-transformed depth representations, yielding more structured and
accurate SDF predictions for isosurface mesh extraction.

2 Related Work

Geometry Representation. 3D geometry representation follows two main paradigms: implicit and ex-
plicit. Implicit methods model surfaces via neural radiance fields (NeRF) (Mildenhall et al. (2021)), surface
reconstruction (Unisurf by Oechsle et al. (2021)), or signed distance functions (BakedSDF by Yariv et al.
(2023)). Explicit methods, such as Structure from Motion (SfM by Schönberger (2016)) and Multi-View
Stereo (MVS by Shen (2013)), reconstruct 3D geometry from multi-view images. Recent advances, like 3D
Gaussian Splatting (Kerbl et al. (2023)), enable real-time rendering while maintaining high fidelity. Each
approach balances reconstruction accuracy, efficiency, and rendering quality.

Further refinements address aliasing artifacts, such as Mip-NeRF created by Barron et al. (2021), and Mip-
NeRF 360 created by Barron et al. (2022), which extends NeRF-based models to large-scale unconstrained
environments (NeRF in the Wild proposed by Meshry et al. (2019)). Implicit SDF models reconstruct shapes
from single images (DISN by Xu et al. (2019)) and enhance local geometry with SDF priors by Chabra et al.
(2020).

Recent work integrates SDFs with diffusion models for high-fidelity shape generation from text or single
image input (Shim et al. (2023); Zheng et al. (2023); Chou et al. (2023); Li et al. (2023a); Cheng et al.
(2023)). Explicit Gaussian-based methods (Kerbl et al. (2023)) continue evolving: AGS-Mesh (Ren et al.
(2025)) incorporates meshing priors, PGSR (Chen et al. (2024)) enforces planar constraints for structured
Gaussian point clouds, and DN-Splatter (Turkulainen et al. (2024)) integrates depth and normal supervision
for improved reconstruction.

Spectrum Techniques. Spectral methods have long played a crucial role in computer vision. The frequency
analysis of a Fourier Transform has inspired spectral convolution kernels in CNNs like the work by Lavin &
Gray (2016) and enabled Fourier Convolutional Neural Networks (FCNN) by Pratt et al. (2017). Similarly,
the Fourier transform has also been integrated into multi-head attention mechanisms for Fourier Transformers
(He et al. (2023); Nguyen et al. (2022); Buchholz & Jug (2022)), enhancing image feature learning. However,
Fourier-based features often face training challenges due to the broad frequency distribution and the loss of
locality.
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Wavelet transforms provide a more localized spectral representation, preserving spatial details lost in the
standard Fourier transform. They have been widely applied in image denoising (Mohideen et al. (2008);
Chang et al. (2000)), super-resolution (Guo et al. (2017); Huang et al. (2017)), and restoration, as well as
compression (Shen & Delp (1999); Rippel & Bourdev (2017); Ma et al. (2020)) and inpainting (Huang et al.
(2024c); Yu et al. (2021); Figueiredo & Nowak (2003)). Wavelet autoencoders (Fujieda et al. (2018); Chen
et al. (2018); Mishra et al. (2020); Sadat et al. (2024); Schelkens et al. (2003)) efficiently represent image
features while reducing parameters for lightweight models.

Recent advances extend spectral methods to 3D tasks. Sitzmann et al. (2020) leverage periodic activation
functions in implicit MLPs to capture repeating geometric patterns, while Liu et al. (2024) adapts spectral
variables for feature learning. Fourier bases have been explored for implicit representations by Li et al.
(2024), with models like Bacon by Lindell et al. (2022) and BANF by Shabanov et al. (2024) make use of
progressive learning for band-limited feature capture in 3D reconstruction.

Wavelets have also been integrated into multi-scale triplane radiance fields (Khatib & Giryes (2024)) and
SDF diffusion models (Hu et al. (2024); Zhou et al. (2024); Hui et al. (2022)), enhancing shape generation
with fine-grained local details. Despite these advances, spectral models still face convergence challenges, and
implementing wavelet decomposition in 3D feature spaces remains computationally demanding.

3 Method

The proposed reconstruction method leverages implicit triplane features Fxy,Fxz,Fyz, whihc are learned
2D feature grids aligned with three orthogonal planes to encode both geometric and appearance information
of a 3D scene. As shown in Figure 1, our framework utilizes these triplane representations for efficient 3D
reconstruction from images with known pose. For any 3D query point along a sampled ray, features are
retrieved from the three orthogonal planes and aggregated to predict the Signed Distance Function (SDF)
value at that location.

To enhance this representation, we introduce a pipeline that enriches triplane features with wavelet-encoded
geometric details extracted from input images Xi. These subset input images undergo monocular depth
estimation and multi-resolution wavelet transforms before being aggregated and fused into refined triplane
features {Ffused

xy ,Ffused
xz ,Ffused

yz } for high-quality SDF prediction. In essence, our method improves surface
reconstruction by integrating implicit triplane features with multi-scale wavelet features. The following
sections detail each stage of the method along with its mathematical formulation.

3.1 Preliminaries

Implicit Neural Rendering. Implicit NeRF encodes a 3D scene by representing its volume density and
color field, leveraging multi-view posed images through volume rendering. A pixel ray r(t) = o + td is
defined, starting from the camera position o ∈ R3 and traversing along the view direction d ∈ R3. Radiance
integration along the ray accumulates color contributions from sampling points of each ray to generate the
final pixel color. For each sampling point, volume density σ and radiance c are predicted using separate
MLPs. The rendered pixel color Ĉ is calculated by T(t) = exp(−

∫ t

tn
σ(r(u)) du), density σ(t), and color c(t)

over the ray, bounded by tn (near) and tf (far):

Ĉ =
∫ tf

tn

T(t)σ(r(t))c(t) dt. (1)

For practical computation, the numerical quadrature-based integration in Alpert (1999) is used to approxi-
mate continuous integral calculation.

SDF-Based Neural Implicit Surface. A 3D surface S can be implicitly represented using the zero-level-
set of its signed distance function f(x) : R3 → R, with a 3D point initialized from the depth map of color
image X as input. Here, S = {x ∈ R3 | f(x) = 0}, can be seen as the zero-crossing of the signed distance
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Figure 1: Our model is based on implicit triplane feature fusion for Signed Distance Function (SDF) predic-
tion. Given an input view image Xi, a foreground mask Xfg

i is extracted to focus on the target region for
SDF queries. For each pixel, its ray is traced from the camera view Ci to query the implicit triplane features
{Fxy,Fxz,Fyz}. Images with close-up details are processed via a monocular depth prior to predict depth
maps, followed by wavelet transforms in three resolutions. The transformed features W∗ are encoded through
a multi-scale wavelet feature encoder (Φ1,Φ2,Φ3) and aggregated into a fused wavelet feature map. This
map is projected onto three orthogonal planes, producing Zproj = {Zxy,Zxz,Zyz}. The triplane features
(Peng et al. (2020)) and wavelet features are concatenated and further fused using a 2D U-Net ψ. Finally,
MLPs g(·) decode the fused features to predict SDF values. During inference, the isosurface is extracted via
marching cubes to generate the mesh.

function. NeuS by Wang et al. (2021) reformulates volume density rendering in NeRF into a signed distance
field (SDF) representation by employing a logistic function to optimize for neural volume rendering,

σ(x) = ϕs(f(x)), (2)

where ϕs(x) = se−sx/(1 + e−sx)2 is a logistic density function. It can be derived as the derivative of the
sigmoid function Φs(x) = (1 + e−sx)−1, and is parameterized by the slope s. The final opaque density σ(t)
along the ray is thus given by:

σ(t) = max
(

−dΦs

dt
(f(r(t)))/Φs(f(r(t))), 0

)
. (3)

3.2 Preprocessing

To get rid of clutter pixels like humans and animals existing in the random online images of landmarks
collected in the wild, we further utilize a preprocessing pipeline to create cleaner image and masks for
training high-fidelity reconstruction meshes.

The preprocessing pipeline including distractor detection, distractor mask, background mask, effectively
filters out non-architectural elements to focus the training only on the relevant structural components. The
end result provides clean input data where query rays are only generated for the actual building geometry,
improving the quality of the learned implicit representation.
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Figure 2: A three-stage preprocessing pipeline for distractor removal: (a) Initial detection identifies unwanted
elements like people and objects in the foreground using object detection, (b) Segment Anything Model
(SAM) created by Kirillov et al. (2023) converts these detections into precise segmentation masks shown in
black silhouettes, and (c) The final masked result isolates the architectural structure by removing both the
detected distractors and sky background, leaving only the foreground building pixels that will be used for
training the implicit model given query rays.

Figure 3: (a) Raw image with distractor on the ground. (b) Inpainted image without distractor as training
input. (c) Rendered color image predicted by conditioning on trained implicit SDF model. The whole
distractor removal process on the raw image is followed by diffusion model. In the end, our implicit model
after training can render the full image without the distractor pixels.

Furthermore, our model can also be directly used to render the clean color image by introducing a color
rendering head. The images in Figure 3 show a comparison of removing unwanted pixels (like people) from
a photo of the Brandenburg Gate in Berlin. The input to our framework is a color image (a), which contains
pedestrians in front of the Berlin Gate. This image serves as the initial scene for further cleanup. In the next
step, distractors are detected and removed, followed by an inpainting process to recover the missing pixels,
resulting in the processed image (b). Finally, (c) presents the rendered output generated by the pre-trained
implicit model, demonstrating the scene reconstruction without distractors and validating the effectiveness
of our approach. Such color rendering result is implemented by introducing an additional head for color
prediction conditioned on the SDF value prediction of the original implicit 3D model to justify the clean
3D representation of implicit SDF model. This paper is still focused on the results of the 3D reconstruction
instead of the results of the rendering.

Wavelet transforms are applied selectively to high-quality close-up images to optimize training efficiency for
wavelet feature fusion.

The overall pipeline effectively removes the transient elements (people) while preserving and reconstructing
the underlying static architecture through a combination of detection, masking and inpainting for a cleaner
3D reconstruction.

5



Under review as submission to TMLR

3.3 Model Structure

We adopt the same implicit volumetric rendering expression as clarified in previous section for the following
model introduction. The whole model is composed of five parts, including a multi-scale wavelet feature
encoder, a triplane feature query, a wavelet encoder with output feature projection onto triplane, a triplane
feature fusion, and an implicit SDF decoder. In particular, the input of wavelet encoder is monocular depth,
while all multi-view color images are used as input to the triplane feature encoder.

Wavelet Encoder for Multi-Scale Features. Given a selected input image Xi ∈ RH×W ×3 from the
original multiview images, the monocular depth prior of selected images predicts a depth map Di ∈ RH×W .
The selection of particular close-up images is based on the quality and details that exist in the input view
image, and most views are quite distant with blurry pixels, thus making it hard for the monocular depth
estimation to provide accurate depth details. The depth map Di undergoes a wavelet transform in three
resolutions to produce multi-scale wavelet features {W1,W2,W3}. These are generated using a wavelet
transform in three resolutions. These features are then processed by the wavelet encoder Φ with three
different sizes, resulting in a final fused wavelet feature map Zwave ∈ RH′×W ′×C through feature aggregation:

Zwave = Φ1(W1) + Φ2(W2) + Φ3(W3), (4)

where Φ1,2,3 are scale-specific encoding functions to extract various sized features. Usually, C is four channels,
representing 2D signals through four filters, defined as LL, LH, HL, and HH. Given an input image X,
the 2D wavelet transform with specific scale decomposes the image into a low-frequency component xL and
three high-frequency components {xH,xV,xD}, corresponding to horizontal, vertical, and diagonal details
respectively.

We train the wavelet feature encoder using an autoencoder similar to the design of LiteVAE (Sadat et al.
(2024)), aiming to reconstruct the original depth map from its wavelet-transformed representation. We ap-
ply a single-level wavelet decomposition independently at multiple scales of the input depth map, generating
multi-scale wavelet feature maps. This allows the encoder to capture fine-to-coarse spatial details efficiently.
After pretraining three separate wavelet encoders, we obtain their extracted multi-scale feature representa-
tions. To ensure alignment, We downsample the feature maps from the two higher-resolution encoders by
factors of 1/2 and 1/4, respectively, to align with the smallest-scale feature map. This downsampling and
aggregation follow the same process as Sadat et al. (2024) proposed in LiteVAE. To mitigate the loss of fine
details, we retain multi-scale information by aggregating features across different resolutions. Furthermore,
since each wavelet decomposition produces four sub-bands (LL, LH, HL, HH), we stack these submaps along
the channel dimension before passing them to the subsequent processing pipeline.

We provide example results of wavelet transformed features in Figure 4, which demonstrates the effectiveness
of wavelet transforms in preserving geometric information from depth maps. The visualization compares
original depth maps Dj (top row) with their corresponding wavelet decompositions Wj (bottom row). The
input depth maps, predicted by the state-of-the-art diffusion-based monocular depth estimation network of
LOTUS by He et al. (2024), capture detailed geometric structures and continuous depth variations. Our
wavelet transform decomposes these depth maps in three resolutions into multi-scale feature representations
Wj , j = 1, 2, 3 with three levels, where each level j preserves both spatial and frequency information critical
for geometric detail reconstruction. This multi-resolution representation enables the model to effectively
encode both fine-grained surface details and global shape features. The wavelet transform decomposes each
depth map with a specific resolution into four sub-bands (LL, LH, HL, HH), effectively capturing different
frequency components. While LL retains global structure, LH and HL emphasize horizontal and vertical
details, and HH captures diagonal features. This highlights the ability to preserve and distinguish depth-
specific geometry, and such spatial can also be easily aligned with the image feature map.

Pixel Ray Query for Implicit Triplane Features. Each pixel of the foreground masked input image
Xfg

i is associated with a ray cast from the camera view o ∈ SE(3). All the sampled points along query rays
of each image retrieves implicit triplane features {Fxy,Fxz,Fyz} from three orthogonal planes {xy, xz, yz}
of the 3D space via ray projection, where each plane has a feature resolution of RH′×W ′×C′ , with feature
channel dimension C ′:
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Figure 4: Wavelet transform of depth map in finest resolution, (a) is the original depth map, and (b) is
the wavelet transform of the depth map, composed of four parts: Low-Low (LL), Low-High (LH), High-Low
(HL), and High-High (HH). The wavelet transformed depth is used as input for the AutoVAE Encoder.

{Fxy,Fxz,Fyz} = Query{xy,xz,yz}(r(t)). (5)

Wavelet Feature Projection onto Triplane. Meanwhile, the wavelet feature map Zwave of Equation
4 is projected onto the three orthogonal 2D planes to match the implicit triplane feature resolution. This
cosine projection generates three projected wavelet feature maps {Zxy,Zxz,Zyz} respectively.

x

z

y

o

r(t)
S

sxy

sxz

syz

Figure 5: Sampling points along the pixel ray r(t) starting from o for implicit triplane feature learning via
projection. For Wavelet feature projection onto triplane. The ray r(t) starts from the camera origin o, then
passes through a single unprojected point S. Dashed lines represent the orthogonal projections onto the xy,
xz, and yz planes to obtain triplane features sxy, sxz, and syz for a 3D point.

7



Under review as submission to TMLR

To incorporate wavelet features into the implicit Signed Distance Field (SDF) model, we first generate a
structured 3D representation of the scene by leveraging aligned depth maps. Specifically, we reconstruct a
dense unprojected point cloud in the camera frame followed by camera to world transform. This transfor-
mation involves back-projecting depth pixels into 3D space using the known intrinsic and extrinsic camera
parameters. The resulting 3D points are then associated with wavelet-based features aligned with 2D pixels.

Once the wavelet-enhanced feature map is obtained, it is projected onto the three feature-aligned triplane rep-
resentations corresponding to the orthogonal planes defined by the normal vectors (1, 0, 0), (0, 1, 0), (0, 0, 1).
This projection ensures that the 3D wavelet features are properly integrated into the implicit triplane feature
space. Mathematically, this process is formulated as follows:

{Zxy,Zxz,Zyz} = PZwave · cos({α, β, γ}), (6)

where {Zxy,Zxz,Zyz} represent the projected wavelet-enhanced features on the three orthogonal feature
planes xy, xz, yz. The projection angles α, β, γ correspond to each feature plane, ensuring an optimal align-
ment between the wavelet features and the triplane encoding. Such angle is the dot product between ray
direction and axis direction. The transformation matrix P, derived from the camera intrinsic parameters
and the camera-to-world extrinsic pose, maps unprojected 3D points from the camera frame to the world
coordinate system. These mapped points are then projected onto the triplane feature planes, where they
serve as inputs to our method. Each pixel ray maps 3D spatial information onto a set of triplane feature
representations. Given a camera pixel ray r(t), we analyze the sampled point S along the ray scaled by the
predicted depth value and compute its orthogonal projections onto the three principal planes: xy, xz, and
yz. These projections provide the corresponding triplane feature locations sxy, sxz, and syz.

Figure 5 illustrates the feature extraction process along a pixel ray r(t). The ray originates from the camera
at o, extends through the sampled point S, and continues along its trajectory. Dashed lines indicate the
orthogonal projections of S onto the three triplane feature planes (xy, xz, and yz), which are used for feature
representation.

In the Figure 5, implicit triplane features are obtained by sampling multiple points along the pixel ray
uniformly, capturing continuous spatial information. Wavelet triplane features are projected in the same
way as the implicit features. A key distinction is that each feature plane in the implicit approach consists of
16 channels, whereas the wavelet-based plane features are compressed into 4 channels, reducing redundancy
while preserving essential spatial details.

This structured feature projection enables a seamless integration of 2D wavelet-transformed depth features
with 3D implicit features, leading to more accurate SDF predictions and higher-fidelity 3D reconstructions.

Feature Concatenation and Fusion. The implicit triplane features and the projected wavelet features of
each feature plane are concatenated along the channel dimension and fused using a 2D U-Net. This results
in three fused triplane features {Ffused

xy ,Ffused
xz ,Ffused

yz }, where Ffused
∗ ∈ RH′×W ′×2C :

{Ffused
xy ,Ffused

xz ,Ffused
yz } = {ψfusion([Fxy; Zxy]),

ψfusion([Fxz; Zxz]), ψfusion([Fyz; Zyz])}, (7)

where [; ] denotes concatenation of feature maps along the channel dimension.

Encoder for SDF Prediction. The fused features are finally decoded by a neural network g(·), which
predicts the SDF value v ∈ R for the given pixel ray query:

v = g(Ffused
xy ,Ffused

xz ,Ffused
yz ). (8)

The predicted SDF values are used to extract the isosurface via marching cubes created by Lorensen & Cline
(1998), producing a reconstructed 3D mesh.
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Loss Function. The total training loss Ltotal for the implicit model is defined as a combination of three
components: the mean cross-entropy loss LCE, the Eikonal regularizer LEik, and the depth loss Ldepth. The
total loss is defined as:

Ltotal = LCE + λEikLEik + λdepthLdepth, (9)

where each loss term is defined as follows:

LCE = − 1
N

N∑
i=1

[
vi log(v̂i) + (1 − vi) log(1 − v̂i)

]
, (10)

which represents the mean cross-entropy loss computed over N training samples, where vi is the ground
truth signed distance function (SDF) value, and v̂i is the predicted SDF value.

LEik = 1
M

M∑
i=1

∣∣∥∇v̂i∥ − 1
∣∣2
, (11)

where the Eikon loss is applied to M neighboring sampled points to regularize the smoothness of SDF
prediction.

Ldepth = 1
N

N∑
i=1

∥Di − D̂i∥2, (12)

which measures the mean squared error between the predicted depth values D̂i and the ground truth depth
values Di. Here, λEik and λdepth are weighting factors that balance the contributions of the Eikonal and
depth losses, respectively.

In the formulation 9, LEik regularizes the gradients to enforce the local smoothness of signed distance field,
and Ldepth ensures consistency with depth observations for better geometry representation learning. For
color image rendering, we just need to add another cross-entropy loss and structural similarity loss by Wang
et al. (2004) to the color image pixels.

4 Experimental Results

Datasets. To evaluate the general performance of our 3D reconstruction approach, we make use of a wide
variety of datasets, including the DTU (Jensen et al. (2014)) dataset, which is collected from a turntable; the
Tanks and Temples dataset (Knapitsch et al. (2017)), captured as video scans of sculptures and buildings;
and the Cultural Heritage dataset (Martin-Brualla et al. (2021)), which features large-scale historical sites.

For DTU (Jensen et al. (2014)), we use the Chamfer distance metric calculated between the reconstructed
model and the ground truth, while for Tanks and Temples (Knapitsch et al. (2017)), we evaluate recon-
struction accuracy using the F1 score (F1 = 2 · Precision·Recall

Precision+Recall ), as Chamfer distance makes it difficult to
differentiate the performance for some scenes. Due to the large scene scale of the Cultural Heritage dataset,
obtaining ground truth (GT) meshes or pseudo-GT is challenging, so we primarily provide qualitative results.
For DTU and Tanks and Temples, we sample 1,000 and 10,000 points uniformly, respectively, and compare
them with the nearest 3D points from the GT mesh.

Baseline models. For baseline evaluation, we compare our method against several state-of-the-art implicit
and explicit 3D reconstruction models. The implicit SDF baselines include VolSDF by Yariv et al. (2021),
NeuS by Wang et al. (2021), Neuralangelo by Li et al. (2023b), and BakedSDF by Yariv et al. (2023).
The explicit reconstruction baselines include SuGaR by Guédon & Lepetit (2024), GOF by Huang et al.
(2024b), and 2DGS by Huang et al. (2024a). We provide quantitative comparisons across DTU and Tanks
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and Temples datasets, while qualitative visual comparisons highlight the top three performing models. The
input for all baselines are images and camera poses.

Implementation details. For monocular depth estimation, we use the diffusion-based LOTUS model by
He et al. (2024) to predict depth maps for selected heritage dataset views, while for Tanks and Temples and
DTU datasets, we process all training images. Wavelet decomposition is performed using the Fast Wavelet
Transform (FWT) (Mallat (1989)) with Haar basis filters.

The autoencoder for wavelet-transformed depth features consists of a ResNet encoder followed by a fully
convolutional decoder, similar to LiteAutoVAE (Sadat et al. (2024)). We apply a Gaussian blurring loss
to low-frequency sub-bands and a Charbonnier loss (Barron (2019)) to high-frequency sub-bands. During
implicit SDF training, the AutoVAE encoder remains frozen. The triplane feature representation is structured
as 3 × 64 × 64 × 16, with an SDF decoder composed of fully connected layers. Wavelet-triplane fusion is
achieved via a 2D U-Net with four downsampling and upsampling blocks, followed by a 1×1 convolution along
the depth channel. The fused representation consists of three orthogonal triplane feature planes (64×64×16
each), combined with a projected wavelet feature map (64 × 64 × 4), and refined through the 2D U-Net.

The wavelet autoencoder processes four spectral channels—low-frequency, vertical high-frequency, horizontal
high-frequency, and diagonal high-frequency—using ResNet blocks. Wavelet transforms are applied to Lotus-
generated depth maps at three resolutions, with extracted features used to train the autoencoder. To
balance fine-grained details and global features, we incorporate self-modulated convolutional layers (Sadat
et al. (2024)). The loss function includes reconstruction, regularization, and adversarial terms (Sadat et al.
(2024)). Features are extracted at 256 × 256, 128 × 128, and 64 × 64 resolutions, with higher-resolution
features downsampled by 1/4 and 1/2 for alignment. For the cultural heritage dataset, we manually selected
100 close-up images to enhance the implicit SDF model with wavelet-transformed features.

For the implicit SDF model, we use the Facto-SDF implementation from SDFStudio by Yu et al. (2022),
integrating it with the triplane feature representation as the encoder backbone.

Training Complexity. Our training pipeline consists of two stages: training the wavelet encoder and
training the implicit SDF conditioned on the frozen wavelet encoder. The wavelet encoder training takes
approximately 8 hours on an RTX 3090. For the implicit SDF training of DTU model, training completes in
1-2 hours. As for Tanks and Temples and Cultural Heritage), initial implicit SDF training on color images
takes 6-8 hours due to data diversity, followed by 1-2 hours of fine-tuning with wavelet-triplane features.

All experiments were conducted on an NVIDIA RTX 3090 GPU, ensuring efficient training and inference.
This modular approach enables scalable learning across datasets of varying sizes and complexities.

4.1 Baseline Comparisons

We first provide the qualitative comparison results of the sample targets or scenes in the three datasets,
including the qualitative results of the DTU, Tank and Temple and the Cultural Heritage dataset in Figure
6. These datasets are collected via cameras that point towards a target. The selected scans of the Tank and
Temple dataset in Figure 7 include mainly the room scan with the camera pointing outward. Furthermore,
the quantitative results on the DTU and Tank and Temple datasets are also provided in Table 1 and Table
2, respectively.

As seen in Figure 6, our model can reconstruct fine-grained details on the mesh surface, such as feature
details on birds, details of clothes of happy buddha, owl, texts on the Berlin gate. We recommend readers
to have a close-up look in red highlighted circles. The 2D Gaussian Splatting seems to struggle to preserve
details and also has obvious artifacts and holes on the mesh surface. The 2D GS also fails to reconstruct
a mesh of large-scale Berlin gate. Neuralangelo is very good at preserving some details, but still has some
artifacts or obstructions as shown on the bottom of the Berlin gate with unexpected blockings, although
normals are consistent along with details of texts. BakedSDF has the worst performance, oversmoothing the
results, with a smooth surface and loss of details, particularly obvious on the Berlin gate, which even may
incur some unexpected reconstruction mesh regions in front of the house.
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Figure 6: Baseline comparison results on five targets from DTU (Jensen et al. (2014)), and Cultural Heritage
(Martin-Brualla et al. (2021)) dataset. Each model result (split by dashed line) contains mesh and normals.
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Figure 7: Baseline comparison results on the inner room scan of Tank and Temple (Knapitsch et al. (2017)).
The figures show the zoom-in details of the reconstruction results of the meeting room.

Lastly, the reconstruction of inner room scan with camera pointing outward is presented in Figure 7. While
Neuralangelo or MonoSDF either fails to preserve the geometry details, or smooth the details (as exhibited
by the middle figure with a flat wall without door), our model preserves the high-fidelity details.

Finally, we provide quantitative evaluation results in Table 1 and Table 2 using chamfer distance and F1 score
metric respectively. On DTU, our model is the best, while Neuralangelo gets the second best performance.
On Tank and Temple dataset, our model still scores best on three out of four scans while Neuralangelo
follows next.

Table 1: Performance evaluation comparison across baselines by chamfer distance ↓ metric. Smaller values
indicate better accuracy. Green is the best, while Orange and Yellow indicate second and third best.

Scan id 24 40 55 65 83 97 105 106 110 114
VolSDF (Yariv et al. (2021)) 1.14 0.81 0.49 0.70 1.29 1.18 0.70 0.66 1.08 0.42
NeuS (Wang et al. (2021)) 1.00 0.93 0.43 0.65 1.48 1.09 0.83 0.52 1.20 0.35

Neuralangelo (Li et al. (2023b)) 0.37 0.35 0.35 0.54 1.29 0.97 0.73 0.47 0.74 0.32
BakedSDF (Yariv et al. (2023)) 0.63 0.58 0.40 0.52 1.37 1.06 0.81 0.56 0.82 0.38

SuGaR (Guédon & Lepetit (2024)) 1.47 1.13 0.61 1.71 1.63 1.62 1.07 0.79 2.45 0.98
GOF (Huang et al. (2024b)) 0.50 0.37 0.37 0.74 1.18 1.29 0.68 0.77 0.90 0.42

2DGS (Huang et al. (2024a) ) 0.48 0.39 0.39 0.83 1.36 1.27 0.76 0.70 1.40 0.40
Ours 0.45 0.34 0.32 0.54 0.97 0.82 0.54 0.55 0.68 0.27

Table 2: Quantitative results of F1 Score↑ for the reconstruction on Tanks and Temples dataset. Our method
achieves best reconstruction accuracy for building or point outwards scan in the room. Green is the best,
while Orange and Yellow indicate second and third best.

Barn Courthouse Ballroom Meetingroom
VolSDF 0.19 0.20 0.12 0.21
NeuS 0.29 0.17 0.16 0.24
Neuralangelo 0.70 0.28 0.36 0.32
SuGaR 0.14 0.08 0.06 0.15
BakedSDF 0.63 0.23 0.19 0.13
GOF 0.51 0.28 0.30 0.28
2D GS 0.45 0.13 0.26 0.18
Ours 0.67 0.56 0.41 0.34

4.2 Ablation Study

The wavelet feature encoder can effectively capture fine-grained details from input views, such as edge
features, as shown in Figure 9. The output feature maps of wavelet encoder provides a rich representation of
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Figure 8: Ablation study on 3D reconstruction. From left to right: (1) Removing triplane leads to fragmented
geometry. (2) Without the wavelet encoder, fine details are distorted. (3) Omitting 2D U-Net fusion results
in less sharp features. (4) The full model achieves the best quality.

the input views to encode more geometry details, like the carved letters of front side of the gate. The final
reconstruction mesh details can be enhanced by the decoder conditioning on the wavelet features. Figure 9
showcases the feature output of the largest wavelet encoder in an autoencoder pre-trained separately on the
wavelet transformed depth input in three resolutions, highlighting the progressive decomposition of image
features across multiple frequency bands. The wavelet encoder outputs are visualized across four columns in
Figure 9. Column (a) shows the encoded depth features, preserving the overall geometric structure. Column
(b) displays vertical gradient features Φ that highlight edge transitions along the y-axis. Column (c) presents
horizontal gradient features, capturing edge variations along the x-axis. Column (d) shows diagonal gradient
features that encode diagonal directional geometric variations. This learned decomposition through our
wavelet encoder enables comprehensive feature extraction at multiple orientations, crucial for accurate 3D
surface reconstruction. Each component contributes specific directional information, allowing the model to
capture both directional surface variations and overall geometric structure.

Table 3: Ablation study of our model on DTU (Jensen et al. (2014)), including the main component design
and the various loss.

Metric w/o Triplane Feature w/o Multi-scale Wavelet Feature w/ Single Scale Wavelet w/o UNet Channelwise Fusion
F1-Score↑ 0.24 0.32 0.35 0.39
Metric w/o Cross Entropy Loss w/o Depth Loss w/o Eikon Loss Full Model
F1-Score↑ 0.18 0.41 0.43 0.50

We conduct ablation studies to assess the contribution of each key component in our model structure, with
qualitative results in Figure 8 and quantitative metrics in Table 3.

First, we evaluate the impact of removing the triplane representation, leaving only an MLP-based implicit
function for Signed Distance Field (SDF) modeling. This results in severe fragmentation, geometric arti-
facts, and disconnected surfaces, reflected in a sharp F1-score drop to 0.24, underscoring the triplane role in
capturing global spatial structure. Next, removing the wavelet encoder while retaining the triplane represen-
tation and SDF decoder preserves overall shape but degrades surface details, introducing irregular bumps,
particularly in fine-detail regions (e.g., eyes, beak). The F1-score drops to 0.32. Using a single-scale wavelet
improves the F1-score to 0.35, while our full multi-scale wavelet approach further enhances detail preserva-
tion, demonstrating the importance of multi-scale feature encoding. Removing the 2D U-Net fusion network
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and directly concatenating features results in suboptimal integration, leading to slight blurring and less dis-
tinct surface transitions, particularly in high-detail regions. This degrades the F1-score to 0.39, highlighting
the necessity of learned feature fusion. Further ablations show that excluding Depth Loss and the Eikon term
reduces F1-scores to 0.41 and 0.43, respectively, indicating their contribution to geometric accuracy. Our full
model, incorporating triplane encoding, multi-scale wavelet processing, U-Net fusion, Depth Loss, and the
Eikon term, achieves the best reconstruction quality, with an F1-score of 0.50. This configuration effectively
preserves global structure and fine-grained details while maintaining consistent performance across scales in
the DTU dataset.

Figure 9: Visualization of learned wavelet encoder feature maps at the highest resolution level. The four
columns demonstrate different components of the encoded representation: (a) depth features preserving
overall geometric structure, (b) vertical gradient features capturing y-axis surface variations, (c) horizontal
gradient features encoding x-axis transitions, and (d) diagonal gradient features representing cross-directional
geometric patterns. Each component is processed through our wavelet encoder Φ to extract orientation-
specific geometric information.

5 Conclusion

We propose an implicit SDF model that integrates wavelet transformed depth features into a latent triplane
feature space. By combining spatially decomposed wavelet representations with triplane embeddings, our
approach enhances the preservation of geometric details. During inference, fused features are sampled along
query rays and decoded into SDF values, enabling high-fidelity mesh reconstruction. Our model requires
only monocular priors from state-of-the-art diffusion-based depth estimation models or a subset of selected
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heritage dataset images. Compared to existing implicit SDF and explicit Gaussian Splatting methods, our
approach achieves superior shape completeness while retaining intricate geometric details. Despite these
advances, opportunities remain for further improvement. Future work could explore optimized sampling
strategies to enhance computational efficiency. Additionally, integrating discrete Gaussian representations
may accelerate training while maintaining high reconstruction fidelity. These extensions could expand our
method applicability to large-scale scenarios and real-time applications.
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