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ABSTRACT

Reasoning capabilities of large language models are primarily studied for English,
even when pretrained models are multilingual. In this work, we investigate to
what extent English reasoning finetuning can generalize across languages. First,
we find that sequential test-time scaling for English-centric reasoning language
models (RLMs) through longer chain-of-thoughts (CoTs) improves multilingual
mathematical reasoning across many languages including low-resource languages,
to an extent where they outperform models twice their size. Second, we reveal
that while English-centric RLM’s CoTs are naturally predominantly English, they
consistently follow a quote-and-think pattern to reason about quoted non-English
inputs. Third, we discover an effective strategy to control the language of long
CoT reasoning, and we observe that models reason better and more efficiently
in high-resource languages. Overall, we demonstrate the potentials, study the
mechanisms, and outline the limitations of crosslingual generalization of English
reasoning test-time scaling. We conclude that practitioners should let English-
centric RLMs reason in high-resource languages, while further work is needed to
improve reasoning in low-resource languages.

1 INTRODUCTION

Scaling up compute at test-time can maximize model performance and output quality (Snell et al.,
2024; Brown et al., 2024; Wu et al., 2024; Levi, 2024), but it has been understudied in multilingual
settings. In particular, reasoning language models (RLMs), such as Deepseek’s R1 (Guo et al., 2025)
and OpenAI’s o1 or o3 models (Jaech et al., 2024; OpenAI, 2025), strongly benefit from added
inference compute to their long chain-of-thoughts (long CoTs) (Chen et al., 2025), also known as
sequential test-time scaling. However, this advantage has primarily been explored in English contexts,
such as in recent work that combined small-scale reasoning finetuning with scaled up number of
thinking tokens at test time (Muennighoff et al., 2025; Ye et al., 2025). State-of-the-art RLMs rely on
reasoning training data that contain long CoTs, which is currently most available for English (Ghosh
et al., 2025). Thus, these RLMs are English-centric (Muennighoff et al., 2025; Hou et al., 2025; Hao
et al., 2024; Gou et al., 2024; Xiang et al., 2025; Ghosh et al., 2025). Given that their base models are
often multilingual models such as Qwen (Yang et al., 2024), does reasoning finetuning in English
give them multilingual reasoning abilities?

In this work, we investigate how much test-time compute can improve multilingual reasoning abilities
of English-centric RLMs. In particular, our research questions are as follows:

RQ1. Crosslingual test-time scaling: How effective is test-time scaling of English-centric RLMs
on multilingual reasoning tasks? (Section 4)

RQ2. Language-mixing behaviors: What kind of language-mixing patterns do English-centric
RLMs exhibit when they interact with non-English prompts? (Section 5)

RQ3. Language forcing: How well do English-centric RLMs perform when being forced to think
in non-English languages? (Section 6)

We experiment with s1 models (Muennighoff et al., 2025) as our English-centric RLMs for crosslin-
gual generalization study. They are multilingual Qwen2.5-Instruct models (Yang et al., 2024)
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supervised finetuned on 1k training samples of English STEM reasoning tasks and achieve state-of-
the-art performance on English math reasoning benchmarks (Muennighoff et al., 2025). Our most
significant contributions are as follows:

1. We provide evidence that larger models benefit from crosslingual test-time scaling that extends
CoT, which contrasts with contemporary work (Son et al., 2025) that draws negative conclusions
based on 1.5B models. Crosslingual test-time scaling is not only effective for both high-resource
and low-resource languages across different difficulty levels, but it can even allow an RLM to
outperform models twice its size on multilingual math reasoning tasks.

2. We report a dominant language-mixing pattern where RLMs quote non-English phrases related to
the question prompts in quotation marks in the thinking process. This quote-and-think pattern sug-
gests that model’s multilingual capability to parse and understand questions enables crosslingual
generalization of English reasoning finetuning.

3. We discover an effective strategy to control the reasoning language of RLMs, and we find
that forcing RLMs to think in high-resource languages yields substantially better reasoning
performance than in low-resource languages. Furthermore, the long CoTs for high-resource
languages are more token-efficient at test time.

Our work shows that test-time scaling of English-centric RLMs can serve as a strong multilingual
reasoning baseline. We recommend letting the English-centric RLMs reason in high-resource
languages such as English and Chinese for optimal performance and inference-compute efficiency.
Future work is needed for enabling RLMs to generalize to better reason in low-resource languages.

2 BACKGROUND AND RELATED WORK

Reasoning language models (RLMs). Recent advancements of reasoning language models (RLMs)
such as OpenAI-o1 (Jaech et al., 2024; OpenAI, 2025) and Deepseek-R1 (Guo et al., 2025) builds
on LLMs’ capability to perform intermediate reasoning steps, which is commonly referred to as
chain-of-thought reasoning (Wei et al., 2022). Prior work demonstrates that these intermediate
computation steps can significantly improve the correctness for final answer outputs (Wei et al., 2022;
Ling et al., 2017; Cobbe et al., 2021; Nye et al., 2021; Li et al., 2024b). Furthermore, extending
the lengths of these computation steps, thereby creating long chain-of-thoughts (long CoTs), can
allow the model to backtrack on incorrect reasoning steps and self-correct its final answer (Chen
et al., 2025; Gandhi et al., 2025; Guo et al., 2025; Hou et al., 2025; Lee et al., 2025). In our work, we
focus on RLMs with long CoTs capability, which is an emerging research area. These models are
created through distilling long English-only reasoning chains from larger RLMs (Huang et al., 2024b;
Ye et al., 2025; Labs, 2025; Madhusudhan et al., 2025; Wang et al., 2025a) to finetune multilingual
pretrained models like Qwen models (Yang et al., 2024); yet, there is a limited understanding on how
pretrained models’ multilingual capability enables crosslingual reasoning of long CoTs.

Sequential test-time scaling and s1. Sequential test-time scaling is a new scaling paradigm where
more computation budget is allocated for model generation lengths g before committing to an answer
(Snell et al., 2024). This is usually done by scaling up the number of thinking tokens during CoT
(Snell et al., 2024; Goyal et al., 2024; Jaech et al., 2024; Guo et al., 2025), which contrasts parallel
scaling that samples multiple generations and pick the best one (Khairi et al., 2025; Snell et al., 2024).
The s1 work (Muennighoff et al., 2025) demonstrates the effectiveness of a simple sequential test-time
scaling recipe: reasoning finetuning on small amount of training data with long CoTs (specifically 1k
samples distilled from larger RLMs such as Deepseek-R1) and scaling up inference budget at test
time. Through test-time scaling of a 32B-parameter model, the authors achieve the state-of-the-art
mathematical reasoning performance, and their models even rival industry-grade RLMs such as
o1-mini (Jaech et al., 2024). Nonetheless, similar to aforementioned RLMs literature, exploration of
test-time scaling paradigm mostly evaluate on English math benchmarks (Snell et al., 2024; Ghosh
et al., 2025; Levi, 2024; Xiang et al., 2025; Wu et al., 2024; Muennighoff et al., 2025). Here, our
work focuses on understanding how effective test-time scaling of English-centric RLMs, specifically
s1 models, in multilingual settings.

Multilingual reasoning. Multilingual reasoning encompasses the ability of language models to
perform complex reasoning tasks across different languages. Early work has demonstrated that chain-
of-thought prompting in English can significantly improve performance on multilingual mathematical
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Figure 1: Crosslingual test-time scaling of s1 and Qwen models on the MGSM benchmark (excluding
English) across different model sizes. In subfigure (a) we enforce a hard limit of maximum thinking
token, and in (b) we measure their inference FLOP compute for a Pareto frontier analysis. ∆ measures
the absolute difference between average accuracy scores at 0.5k and 8k maximum thinking tokens.
Dash lines indicate the best CoT prompting baseline performance of Qwen.

reasoning tasks (Shi et al., 2023), which suggests that LLMs might rely on dominant languages like
English as a pivot language for complex reasoning. Follow-up work explores several strategies such
as translating the multilingual queries to English (Qin et al., 2023; Zhu et al., 2024; Ko et al., 2025),
aligning of latent representation spaces (Yoon et al., 2024; Huang et al., 2024c) and reasoning outputs
(She et al., 2024; Yang et al., 2025; Ranaldi & Pucci, 2025; Gao et al., 2025) across languages, or
expanding language coverage of reasoning training data or in-context examples (Chen et al., 2023; Li
et al., 2024a; Tu et al., 2025). Nonetheless, some work reports opposite findings on whether English
is the best pivotal language (Turc et al., 2021).

Our work focuses on understanding how controlling the length of long CoTs and their reasoning
language at test time affects multilingual reasoning. One similar work (Son et al., 2025) experimented
with controlling generation lengths of finetuned Deepseek-R1-1.5B (Guo et al., 2025) but reported
negative results: increasing thinking tokens leads to minimal performance gains for mathematical
reasoning in non-English languages. We believe that their negative findings are due to constrained
model parameters, as we show that larger models can benefit from crosslingual test-time scaling.

3 EXPERIMENTAL SETUP

Models. We use s1 models (Muennighoff et al., 2025) as our English-centric RLMs. We work with
the s1.1 variants, which are multilingual Qwen2.5-Instruct models finetuned on 1k English-only
reasoning data generated by Deepseek-R1. Both the model weights and training data of s1 are fully
open-sourced. We experiment with s1 models at different scales, namely 1.5B, 3B, 7B, 14B, and 32B
parameters.

Budget forcing. Budget forcing refers to techniques for controlling inference budget for long CoTs
(Muennighoff et al., 2025), which can be done in two ways: (1) truncation, which cuts off long
CoTs after they reach maximum thinking tokens, or (2) extrapolation, which adds tokens such as
“Wait” at the end of CoTs to force the model continue reasoning. In our extrapolation setup, we follow
(Muennighoff et al., 2025) and experiment with adding “Wait” at the end of s1’s thinking to lengthen
its CoTs.

Evaluation data. We use the following three multilingual math reasoning benchmarks:

1. MGSM (Shi et al., 2023): A benchmark that contains 250 grade-school math problems manually
translated from the GSM8K dataset into ten languages, namely Bengali (bn), German (de),
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Figure 2: Performance of s1-32B on MT-
AIME2024 benchmark across 21 languages.
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Figure 3: Performance of s1-32B on PolyMath
benchmark across four difficult levels (i.e., low,
medium, high, and top). We average the results
of non-English languages.

Spanish (es), French (fr), Japanese (ja), Russian (ru), Swahili (sw), Telugu (te), Thai (th),
and Mandarin Chinese (zh).

2. MT-AIME2024 (Son et al., 2025): A benchmark that contains 30 machine-translated math
problems from American Invitational Mathematics Examination (AIME) 2024 (MAA, 2024). We
evaluated on 21 languages covering both high-resource and low-resource languages including
Kannada (kn), Guarani (gn) and Marathi (mr). This dataset is more challenging than MGSM.

3. PolyMath (Wang et al., 2025b): A benchmark that contains 500 math problems in total at four
different difficulty levels from K-12 math level (i.e., low level) to Olympiads problems (i.e., top
level). The questions are directly sourced from school exams and math competitions and are
translated into 18 languages by language experts.

We use the lm-evaluation-harness library (Gao et al., 2024) as the main evaluation frame-
work. We sample our outputs using 5 different random seeds, temperature of 0.6 and top-p of 0.95,
and we report task accuracy, which is equivalent to pass@1.

4 CROSSLINGUAL TEST-TIME SCALING

In RQ1, we explore test-time scaling in a zero-shot crosslingual setting, where English-centric
reasoning models are applied to math problems in different languages.

4.1 EFFECTIVENESS OF CROSSLINGUAL TEST-TIME SCALING

Crosslingual generalization of reasoning training and test-time scaling. We report two main
obsevations from Figure 1 (a). First, we observe that s1 outperforms Qwen’s few-shot prompting
baseline across languages in MGSM (excluding English) when given high inference thinking budget.
Second, crosslingual test-time scaling is effective for models with 3B parameters and above. We want
to highlight that sufficient model capacity is necessary for effective crosslingual test-time scaling, as
test-time scaling only yields minimal benefits (only +∆1.8%) at 1.5B size.

Figure 1 (b) illustrates the performance-efficiency trade-off across different sizes of the s1 model
family. We follow prior test-time scaling work (Snell et al., 2024; Sardana et al., 2023) and compute
the inference cost using the approximation FLOPs = 2NDinference where N represents model
parameters and Dinference the total number of tokens generated at inference time, and we average
across different languages. The figure further demonstrates the model capacity constraint on test-time
scaling, as we have not observed any performance surge with more compute for smaller models
in our experiments that matches the performance by 32B and 14B models. While we observe
accuracy-to-computation tradeoffs (i.e., better performance comes with using larger models and
higher test-time compute), the 14B model offers a compelling compromise by achieving above 80%
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Table 1: MGSM performance comparison against 14B-sized s1 model with maximum 8k thinking
tokens. We report the language-breakdown accuracy from cited papers if available; otherwise, we
reproduce using their open-sourced models without any inference budget constraint. We report the
average length of the generations (avg. len) and the relative accuracy difference (green text) between
s1-14B under extrapolation budget forcing and its baseline Qwen2.5-14B-Instruct. We bold both s1
performance and baseline models that outperform s1.

Models avg len bn de en es fr ja ru sw te th zh AVG

Qwen2.5-14B-Instruct (Yang et al., 2024) 413.1 74.0 77.6 82.0 77.6 67.6 70.4 76.4 40.4 50.8 78.8 84.0 70.9
+ 8-Shot EN-CoT Shi et al. (2023) 316.5 77.2 75.2 87.6 86.0 68.4 76.8 76.4 45.6 52.0 79.2 84.4 73.5
+ 8-Shot Native-CoT Shi et al. (2023) 365.2 79.2 77.2 88.0 87.2 68.4 76.0 75.6 46.8 53.2 80.4 83.6 74.1

s1-14B (truncation) 1912.9 82.0 84.8 92.8 88.4 85.2 83.6 86.8 55.6 59.6 85.2 86.4 80.9
s1-14B (extrapolation) 2352.3 82.8 86.8 92.4 86.4 83.2 83.2 88.8 57.2 58.0 84.8 87.6 81.0

Relative accuracy difference (%) +11.9% +11.9% +12.7% +11.3% +23.1% +18.2% +16.2% +41.6% +14.2% +7.6% +4.3% +14.2%

MetaMath-13B (Yu et al., 2024) 529.8 6.8 64.4 70.4 63.6 65.2 47.6 60.0 11.6 0.8 4.8 50.8 40.5
MetaMathOctopus-13B She et al. (2024) 545.8 41.6 60.1 66.8 61.1 60.8 57.3 59.1 50.9 3.6 52.1 53.1 51.5
MAPO-DPO-13B She et al. (2024) 552.4 54.7 69.5 70.5 70.6 71.3 69.0 68.2 62.9 4.0 64.7 68.2 61.2
SLAM-13B Fan et al. (2025) 101.5 45.6 62.8 71.2 67.6 65.2 54.0 64.4 46.4 2.4 47.6 58.8 53.3
MetaMath-LB-15B Yoon et al. (2024) 93.2 50.0 63.6 67.6 63.2 61.6 42.0 60.0 41.6 36.4 52.8 48.0 53.5
MetaMath-LB-20B Yoon et al. (2024) 93.1 52.8 64.0 66.4 60.4 64.0 45.2 58.8 49.2 47.2 53.6 52.4 55.8

R1-Distill-Qwen-14B Guo et al. (2025) 1030.7 66.0 77.2 83.6 80.4 74.4 78.4 82.4 22.4 22.4 74.8 79.6 67.4
R1-Distill-Qwen-32B Guo et al. (2025) 1353.8 77.6 82.8 85.2 85.6 79.6 83.2 84.8 38.0 14.4 82.4 85.6 72.7
Gemma-3-12B-it Team et al. (2025) 238.2 55.6 74.4 83.2 81.2 64.8 74.0 74.8 71.2 73.2 78.4 79.2 73.6
Gemma-3-27B-it Team et al. (2025) 461.7 64.8 83.2 88.4 84.0 72.4 79.2 83.2 78.0 76.0 84.4 84.4 79.8
Qwen3-14B Team et al. (2025) 1575.2 85.2 83.6 94.8 88.4 87.2 77.6 94.0 63.6 80.0 86.8 85.2 84.2

accuracy with substantially lower inference FLOPs than the 32B model on the easier benchmark
MGSM, representing a "sweet spot" on the Pareto frontier for practical applications.

Crosslingual generalization at different difficulty levels. Figure 2 demonstrates similar findings
with Figure 1 (a) on the harder benchmark MT-AIME2024. Across all 21 languages tested, including
both high-resource languages like German (de) and French (fr) and low-resource languages like
Guarani (gn) and Kannada (kn) and Guarani, s1-32B shows consistent improvements from test-time
scaling, with task accuracy increases drastically from mostly below 10% to above 40% as thinking
tokens increase from 500 to 8000.

To further understand how problem complexity affects crosslingual generalization, we analyze
performance on the PolyMath benchmark. We want to note that the most of the math reasoning data
for s1 (Muennighoff et al., 2025) is at “high” difficulty level according to the difficulty classification
scheme by Wang et al. (2025b). Figure 3 shows that crosslingual test-time scaling consistently
improves performance across all four difficulty levels for both English and non-English languages,
though the effectiveness varies considerably by complexity.

Most notably, at the top difficulty level representing Olympic-level problems, where s1 reasoning
training does not readily transfer to solving more challenging questions, both language groups
struggle significantly with English performance dropping to around 10% and non-English languages
performing even lower at roughly 5%. Nonetheless, for difficulty levels within s1’s competence
range (low, medium, and high), crosslingual test-time scaling demonstrates robust effectiveness with
substantial performance gains from increased thinking tokens.

4.2 PERFORMANCE COMPARISON ON MGSM BENCHMARK

We break down performance of s1-14B against other models on the MGSM benchmark. Since
MGSM comes with training data, we can perform few-shot prompting on the Qwen base model
following (Shi et al., 2023) by prompting either in English (EN-CoT) or in the same language as
input prompt (native-CoT). In addition, we benchmark against prior state-of-the-art models that are
trained on multilingual reasoning data to solve MGSM (Yue et al., 2023; She et al., 2024; Fan et al.,
2025; Yoon et al., 2024; Team et al., 2025). For performance comparison on PolyMath benchmark,
we refer readers to Appendix B.2.

Comparison against Qwen baselines. Table 1 shows that with crosslingual test-time scaling, s1 gains
substantial accuracy increase as compared to different baselines with Qwen2.5 models. Furthermore,
crosslingual test-time scaling benefits both high-resource and low-resource languages. For instance,
fr receives a significant +∆23.1% relative accuracy increase, whereas sw—the worst-performing
language for the base model Qwen—receives +∆41.6% relative accuracy improvement. Lastly, we
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Box 1. Example of quote-and-think language-mixing pattern demonstrated by s1 where
non-English phrases are mentioned in quotation marks and used for reasoning.

Question: ローブを作成するには、青色の繊維を2巻分、白色の繊維をその半分用
いる必要があります。全体で何巻必要ですか？
(To make a robe, you need 2 rolls of blue fiber and half of the white fiber. How many rolls
are needed total?)

s1’s Thinking: Okay, let’s see. ... The problem says "白色の繊維をその半分用いる"
which is white fibers the half amount. "その" refers to the blue fibers, right? So half of
the blue fibers, which is 2 rolls, so half is 1. So 2 + 1 is 3. Yeah, that seems right. Wait,
sometimes these problems can be tricks, but I don’t think so. If it had said "白色の繊維
を2巻分とその半分" that would be different, but no. It’s "青色の繊維を2巻分、白色の
繊維をその半分". So white is half of blue. So calculation is straightforward. Blue 2, white
1, total 3. ...

observe similar performance for both truncation and extrapolation budget forcing strategies. This is
because s1 models are already generating extensive reasoning chains so further lengthening the CoTs
have minimal benefits. Similar trends of language-specific improvements are also observed in other
s1 model sizes (Appendix B).

Comparison against state-of-the-art models. Table 1 shows that crosslingual test-time scaling
of s1 models can serve as a strong multilingual baseline for MGSM, as it outperforms all prior
state-of-the-art models that involve finetuning on multilingual data such as MetaMath, MAPO and
SLAM (Yu et al., 2024; She et al., 2024; Fan et al., 2025; Yoon et al., 2024). We believe this is because
these prior studies use Llama as their base models, which generate significantly shorter reasoning
traces and lack sophisticated reasoning behaviors such as verification and backtracking compared to
Qwen models (Gandhi et al., 2025).

Surprisingly, 14B-sized s1 can even outperform recent state-of-the-art reasoning models twice its size,
namely Deepseek’s R1-Distill-Qwen-32B (Guo et al., 2025) and Google’s Gemma-3-27B-it (Team
et al., 2025). We observe that R1-Distill-Qwen has substantially poorer performance on sw and te
than its base model Qwen-Instruct (first row), suggesting that their 800k samples of English and
Chinese training data (Guo et al., 2025) leads to catastrophic forgetting of lower-resource languages.
In contrast, s1 is only trained with 1k English samples for only 5 epochs (Muennighoff et al., 2025),
which leads to minimal forgetting and better crosslingual generalization. While the multilingual
Gemma-3 models outperform s1 on low-resource languages, probably due to these languages being
incorporated during reasoning finetuning, its performance gap against s1 on high-resource languages
may be attributed to the shorter reasoning thinking time. Qwen3 (Qwen Team, 2025) is the most
performant model due to its long reasoning capability and extensive multilingual training data.

5 LANGUAGE-MIXING BEHAVIORS

We notice that s1 models can mix languages in their CoT reasoning under test-time scaling. Given a
lack of systematic study of language mixing behaviors in crosslingual reasoning in prior work (Guo
et al., 2025; Ghosh et al., 2025), we analyze linguistic behaviors of s1 in multilingual math reasoning
tasks to address RQ2. We focus on four languages, namely ja, ru, th, and zh, and we refer our
readers to Appendix C.1 for detailed methodology.

Dominant Language in Model Outputs. We observe that, after reasoning finetuning on 1k English
reasoning samples, s1 generates in English language at least 92.5% of the time (Figure 4). This
model behavior is the complete opposite of its base model Qwen, which always generates in the same
language as question even when prompted with in-context English CoT samples (Appendix C.3).

Language-Mixing Patterns During Reasoning. Figure 4 shows that, in the remaining cases
when s1 mixes languages during reasoning, it primarily follows a sophisticated pattern to which
we refer as quote-and-think. Particularly, s1 will first quote certain words or phrases, often from
the input question, and then interpret their meanings and implications during its thinking process.
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This is demonstrated by the quoted phrase “白色の繊維をその半分用いる” and s1’s literal
translation “white fibers the half amount” in Box 1. In linguistics, this type of language-mixing is
known as foreign-language quotation (De Brabanter, 2004), and differs from the language confusion
phenomenon exhibited by LLMs (Marchisio et al., 2024). This language-mixing behavior happens
due to crosslingual generalization of the quoting-and-thinking reasoning characteristic in s1’s English
finetuning data, and we provide more quantitative analysis in Appendix C.4.
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Figure 4: Breakdown of language-mixing patterns
in s1’s reasoning. Percentage indicates the prob-
ability of a sentence being English only, quoting
non-English phrases (quote-and-think), entirely be-
ing in a different language (intersentential), or mix-
ing different languages within the same sentence
(intrasentential).

We want to emphasize that the quote-and-think
pattern goes beyond simple translation. As
demonstrated in Box 1, s1 builds upon the ex-
tracted phrase and synthesizes a new multilin-
gual setting where if the question had asked
“白色の繊維を2巻分とその半分” (two and a
half rolls of white fiber) it would have arrived
at a different answer. Here, the model shows
an understanding of how the syntactic structure
in Japanese affects the semantic meaning of the
math problem, which suggests that s1 is gen-
uinely parsing and reasoning about the mathe-
matical relationships expressed in Japanese and
not merely translating the content to English be-
fore processing. This suggests that the multilin-
gual capability of the base models is preserved
for natural language understanding and allows
s1 to reason about what it has understood about
the question.

6 LANGUAGE FORCING

When a multilingual user interacts with LLMs, it is natural to expect the LLMs to respond in the
language consistent with the user’s query. Therefore, in RQ3, we are interested in understanding if
we can perform language forcing–––controlling an English-centric RLM to generate reasoning in a
particular language—and if the difference in reasoning language affects performance.

6.1 METHODOLOGY: LANGUAGE FORCING TECHNIQUES

We experiment with the following language forcing techniques to control s1’s reasoning language:

• Translated Wait (translated_wait): Building upon extrapolation budget forcing strategy
that explicitly extends reasoning traces (Muennighoff et al., 2025), once the model finishes English
reasoning, we append a translated “Wait” token as an intervention strategy to force the model to
switch language and continue reasoning in our chosen language.

• Prefix (prefix): We append a prefix string translation-equivalent of “Okay, let me try to figure
this out.” at the beginning of the reasoning generation in order to guide the model’s generation in
our chosen language. We also apply the translated_wait strategy and append the translated
“Wait” token.

• System Prompt (system): We use a system prompt to control the language use in model
generation. Specifically, we translate the system prompt “You are a helpful assistant.”1 into our
chosen language and add the translation-equivalent of the instruction “You must think and answer
only in {language}”.

• Combined (combined): This method uses all the techniques above to maximize control over the
model’s reasoning language.

Our results on MGSM benchmark show that we need a combination of all techniques, which is
the combined method, to achieve nearly 100% success rate in forcing s1 to think in our specified

1We remove the part of “You are Qwen, created by Alibaba Cloud.” because English proper nouns like
‘Qwen’ and ‘Alibaba’ do not have translation equivalents in many non-English languages.
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Table 2: Performance scores across different reasoning languages given query language. We use
11 color codes to rank each row to highlight the high- (blue) and low-performing (red) reasoning
language given a query language. We also bold the best-performing reasoning language. Lastly, we
use ↘ to indicate the average accuracy when the reasoning language is the same as query language
(i.e., average of the diagonals).

Query Reasoning Language Range
Language bn de en es fr ja ru sw te th zh (max - min)
bn 79.2 85.2 86.8 84.4 81.6 81.2 83.6 62.4 75.6 80.8 81.2 24.4
de 88.4 89.2 90.4 88.8 90.8 90.0 87.6 75.6 78.4 88.0 89.6 15.2
en 93.2 94.4 94.4 95.2 94.8 94.4 93.2 84.0 84.0 94.8 96.8 12.8
es 86.4 92.4 93.6 93.6 92.4 90.8 93.2 76.6 82.8 90.0 90.8 17.0
fr 87.2 87.2 88.4 87.2 88.0 89.6 88.4 72.8 77.6 87.2 88.0 16.8
ja 79.2 84.8 83.6 81.6 85.6 82.0 84.8 71.6 74.0 85.6 83.6 14.0
ru 89.2 91.2 92.4 89.6 93.6 92.0 92.4 77.6 80.8 90.0 91.2 16.0
sw 45.6 58.8 59.6 55.2 55.6 47.6 48.4 44.4 32.4 45.2 52.0 27.2
te 53.2 56.4 60.0 56.4 60.0 57.2 55.2 34.8 54.4 53.6 52.8 25.2
th 80.8 88.4 89.2 88.4 91.2 87.2 87.2 66.4 69.2 86.4 88.8 24.8
zh 85.2 86.8 89.6 87.2 86.8 88.8 90.8 73.6 77.2 86.0 89.2 17.2

AVG 78.9 83.2 84.4 82.6 83.7 81.9 82.3 67.3 71.5 80.7 82.2 ↘81.2

reasoning language. Due to space constraint, we refer our readers to Appendix D.3 to see the full
result comparison of different language forcing techniques.

6.2 CROSSLINGUAL LANGUAGE FORCING RESULTS

We explore if there is a particular language that is best served as reasoning language for s1 on the
MGSM benchmark (which contains M = 11 different languages). Particular, for each query language
m ∈ M , we force the model to reason in all M possible languages using the combined technique,
resulting in an exhaustive M ×M query-reasoning language-pair analysis.2
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Figure 5: MGSM accuracy against number of
thinking tokens in s1 models’ outputs in different
reasoning languages.

Performance comparison of reasoning lan-
guages. Table 2 shows that reasoning in HRLs
such as en, fr, or de yield similarly high per-
formance (the accuracy difference is within 1
to 2 points), with English being the most per-
formant reasoning language and French being
the close second. We discover two surprising
findings: first, even though the Qwen2.5 base
model is highly pretrained in Chinese (Yang
et al., 2024), it is not necessarily the best rea-
soning language, even when the question is
asked in zh; second, neither reasoning in en
nor in query language necessarily yields the best
performance—quite the contrary, even reason-
ing in languages that are usually less represented
in pretraining data (Joshi et al., 2020) such as
ru and th can achieve the best performance
for query languages in other families such as
ja. Lastly, we observe that languages that are
considered as slightly less-resourced (Joshi et al., 2020) such as th and bn still achieve nearly 80%
overall accuracy, but further lower-resourced languages such as sw or te result in substantially lower
overall accuracy. Our results are consistent with the findings by concurrent work (Qi et al., 2025).

Choice of query language. Table 2 sheds light on whether we should translate inputs into HRLs such
as English for reasoning tasks, which has proven to be an effective strategy (Qin et al., 2023; Zhu
et al., 2024). Our results are consistent with prior work: merely translating the question from Swahili
to German can boost the accuracy from 59.6 to 90.8 even when the model reasons in French—a

2This analysis is is computationally heavy, so we only focus on 14B-sized s1 models.
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language that s1 is not trained to reason in. Besides, based on the range column, which measures
difference between the best and worst reasoning languages for a particular query language, the model
is less sensitive to query language in HRLs than in LRLs as exhibited by the smaller range. In other
words, querying s1 in HRLs increases the model’s consistency in achieving the same correct answer
with different reasoning languages.

Inference cost analysis. Our analysis of inference costs across reasoning languages in Figure 5
reveals a significant negative correlation (-0.811) between token count and mathematical problem-
solving accuracy. Reasoning in LRLs not only underperform their HRL counterpart (with accuracy
below 80%), but they also demand substantially more computational resources at test-time. For
instance, reasoning in Swahili requires approximately 3.5 times more compute than French for the
same tasks. One potential reason for this is tokenization inefficiency: common terms in CoT like
"but" is tokenized as 5 in Swahili ("hata hivyo") but only 2 subtokens in French ("mais"), and “for
example” 4 in Swahili ("kwa mfano") but only 2 in French ("par exemple"). These additional tokens
will accumulate throughout reasoning chains and lead to larger inference costs.

7 DISCUSSION, LIMITATIONS AND FUTURE WORK

Crosslingual generalization from English finetuning. Our findings from RQ1 contrast the conclu-
sion drawn by recent work (Son et al., 2025) that “test-time scaling may not generalize as effectively
to multilingual tasks.” Our results on different benchmarks of varying difficulty levels and languages
suggest that the limitation observed by Son et al. (2025) is due to their usage of 1.5B models. Fur-
thermore, Son et al. (2025) posit that multilingual generalization of test-time scaling would occur for
“significantly larger” models with at least 70B parameters, but we discover a substantially smaller
parameter threshold at 3B parameters, above of which RLMs will benefit from English finetuning on
multilingual tasks.

Preservation of multilingual generation capability. One notable finding from RQ2 and RQ3 is that
s1 remains capable of generating text in different languages and experiences minimal catastrophic
forgetting—a phenomenon where the model loses its ability to generate fluent text in other languages
after language-specific supervised finetuning (Yong et al., 2023; Kotha et al., 2024). In contrast,
R1-Distill-Qwen baseline experiences significant catastrophic forgetting for low-resource languages.
This suggests that data-efficient finetuning with a small number of reasoning finetuning steps (s1
is only trained with 1k English samples for 5 epochs, but R1-Distill models are trained with 800k
samples) is advisable for English-centric reasoning finetuning to preserve multilingual capability.

Training RLMs with multilingual data. One potential solution to mitigate poorer reasoning in
low-resource languages would be to curate multilingual reasoning training data with wide language
and domain coverage. Our work only focuses on English reasoning training, and we leave the
exploration of multilingual reasoning training for future work. Future work should compare the
effectiveness of different multilingual augmentation techniques such as back-translation (Edunov
et al., 2018) or synthetic data generation (Whitehouse et al., 2023; Yong et al., 2024) for reasoning
tasks.

Reasoning in low-resource languages (LRLs). Reasoning in LRLs can be challenging in deployment
due to the the higher inference costs for test-time scaling of RLMs. We believe that one solution is
to mitigate the unfairness in tokenization for LRLs (Petrov et al., 2023). Future work should focus
on developing more equitable tokenization strategies for reasoning across diverse languages (Liang
et al., 2023; Han et al., 2025; Xue et al., 2022).

Conclusion and limitations. We show that scaling up thinking tokens of English-centric reasoning
language models can improve multilingual math reasoning performance as the model performs
“quote-and-think” language-mixing pattern. We also show that English-centric RLMs reason poorly in
low-resource languages contexts, thus highlighting the need for future work to develop more inclusive
multilingual reasoning approaches that can better serve diverse linguistic communities. Furthermore,
our analysis focuses only on sequential test-time scaling paradigm and one common type of RLMs,
such as s1, which are created from supervised finetuning on distilled reasoning data. Future work can
expand our analysis to study multilingual generalization of reasoning reinforcement learning.
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APPENDIX

A LLM USAGE

Our work used AI Assistants such as ChatGPT and Grammarly for spell-checking and fixing minor
grammatical mistakes. We also use Claude Code to write parts of our codebase.

B FURTHER DETAILS ON CROSSLINGUAL TEST-TIME SCALING

B.1 MGSM

Table 3, Table 4, Table 5, and Table 6 shows the s1 performance against Qwen baselines on the MGSM
benchmark. Relative accuracy difference measures the relative gains for s1 under extrapolation budget
forcing compared to zero-shot prompting Qwen models (first row), except for Table 6 where the
relative accuracy is measured for s1 under truncation budget forcing.

Table 3: MGSM performance comparison against 32B-sized s1 model with maximum 8k thinking
tokens.

Models avg len bn de en es fr ja ru sw te th zh AVG
Qwen-32B-Instruct 365.6 82.0 79.6 84.0 80.0 69.2 80.8 77.2 54.0 56.4 84.4 84.0 75.6
+ 8-Shot EN-CoT 264.7 82.0 80.4 89.6 84.8 66.8 85.2 77.6 56.8 55.6 84.8 84.8 77.1
+ 8-Shot Native-CoT 179.9 82.4 78.0 90.0 87.2 66.8 80.8 74.0 57.2 59.6 87.2 88.0 77.4

s1-32B (truncation) 1682.1 89.2 86.8 94.8 90.0 84.8 84.8 91.2 66.8 65.6 87.2 88.8 84.5
s1-32B (extrapolation) 2610.1 89.2 88.8 93.2 89.6 83.6 84.8 88.8 70.8 68.4 88.0 88.0 84.8
Relative accuracy difference (%) +8.8% +11.6% +11.0% +12.0% +20.8% +5.0% +15.0% +31.1% +21.3% +4.3% +4.8% +12.2%

Table 4: MGSM performance comparison against 7B-sized s1 model with maximum 8k thinking
tokens.

Models avg len bn de en es fr ja ru sw te th zh AVG
Qwen-7B-Instruct 537.7 59.2 69.2 78.0 72.8 66.4 67.2 71.2 13.6 33.2 68.8 79.6 61.7
+ 8-Shot EN-CoT 537.8 62.0 72.4 86.4 78.8 62.4 68.0 76.8 15.2 33.2 70.4 76.8 63.9
+ 8-Shot Native-CoT 480.1 65.2 74.4 90.4 76.4 65.2 71.6 68.8 18.4 20.8 69.6 76.8 63.4

s1-7B (truncation) 3767.1 65.2 82.8 88.8 86.0 82.0 78.8 86.4 21.6 38.8 80.0 83.6 72.2
s1-7B (extrapolation) 4363.5 70.8 84.0 90.4 83.6 84.4 74.8 84.4 19.2 36.4 78.4 82.8 71.7

Relative accuracy difference (%) +19.6% +21.4% +15.9% +14.8% +27.1% +11.3% +18.5% +41.2% +9.6% +14.0% +4.0% +16.2%

Table 5: MGSM performance comparison against 3B-sized s1 model with maximum 8k thinking
tokens.

Models avg len bn de en es fr ja ru sw te th zh AVG
Qwen-3B-Instruct 1023.3 37.6 58.8 74.0 66.0 54.4 54.8 64.8 9.2 7.6 56.8 68.4 50.2
+ 8-Shot EN-CoT 281.3 48.0 67.6 79.2 71.2 65.2 58.0 70.4 12.4 14.8 60.4 68.4 56.0
+ 8-Shot Native-CoT 1657.0 36.0 63.2 80.0 70.8 58.4 52.0 62.0 9.6 9.6 59.2 70.4 51.9

s1-3B (truncation) 4813.3 56.8 66.8 82.0 74.4 69.6 60.4 72.4 10.4 16.8 68.8 72.0 59.1
s1-3B (extrapolation) 5367.1 55.2 65.6 81.6 76.4 71.6 60.8 74.4 9.6 20.0 68.8 74.0 59.8
Relative accuracy difference (%) +46.8% +11.6% +10.3% +15.8% +31.6% +10.9% +14.8% +4.3% +163.2% +21.1% +8.2% +19.1%

B.2 PERFORMANCE COMPARISON ON POLYMATH

Table 7 compares s1-32B model against other non-reasoning and reasoning models on the high-
difficulty PolyMath dataset, which is the difficulty level that s1 is trained on). The s1-32B model
substantially outperforms all non-reasoning language models, including much larger variants. This
validates the core premise that English reasoning finetuning can effectively generalize to complex
mathematical problems in diverse linguistic contexts.

We observe that s1-32B underperforms other RLMs, which is likely due to model capacity constraints.
The competing RLMs often operate at significantly larger scales (such as Deepseek-R1-671B)
or with more extensive reasoning training (such as Qwen-QwQ-32B and Qwen-3-225B-A22B-
Thinking), making the capacity disparity the most plausible explanation for the reasoning performance
differences.
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Table 6: MGSM performance comparison against 1.5B-sized s1 model with maximum 8k thinking
tokens. We didn’t run extrapolation budget forcing since without it, s1 already generates extremely
long CoTs.

Models avg len bn de en es fr ja ru sw te th zh AVG
Qwen-1.5B-Instruct 2991.7 10.4 35.6 66.0 52.8 41.2 31.2 43.6 2.0 1.2 31.2 56.0 33.7
+ 8-Shot EN-CoT 1100.3 21.6 46.4 70.0 58.0 55.2 37.2 51.6 2.8 6.4 41.2 52.0 40.2
+ 8-Shot Native-CoT 1729.9 14.0 44.4 71.6 52.4 41.6 34.4 39.2 3.2 1.6 33.2 54.0 35.4

s1-1.5B (truncation) 8227.2 27.6 51.2 66.8 62.8 56.0 43.2 55.6 1.6 6.4 46.4 58.8 43.3
Relative accuracy difference (%) +165.4% +43.8% +1.2% +18.9% +35.9% +38.5% +27.5% -20.0% +433.3% +48.7% +5.0% +28.5%

Table 7: The accuracy for non-reasoning and reasoning language models for PolyMath (Wang et al.,
2025b) of high difficulty level. Models with “†” are closed-source, and the numbers are taken directly
from the PolyMath paper (Wang et al., 2025b).

en zh ar bn de es fr id it ja ko ms pt ru sw te th vi avg.

Non-Reasoning LLMs

Llama-3.3-70B-Instruct 14.4 6.4 5.6 1.6 7.2 4.8 5.6 4.8 11.2 5.6 4.8 11.2 10.4 10.4 6.4 4.8 5.6 10.4 7.3
Qwen-2.5-72B-Instruct 14.4 12.0 11.2 10.4 12.0 12.8 12.0 9.6 11.2 11.2 10.4 13.6 11.2 13.6 5.6 12.0 14.4 11.2 11.6
Qwen-2.5-Math-72B-Instruct 16.0 18.4 17.6 16.8 22.4 19.2 16.8 13.6 13.6 16.8 17.6 16.8 19.2 16.0 15.2 16.0 12.8 16.8 16.8
Deepseek-v3 16.8 17.6 16.8 15.2 17.6 16.8 16.8 12.8 16.0 16.8 17.6 17.6 20.0 19.2 12.8 12.8 18.4 16.0 16.5
Qwen-2.5-Max† 12.0 17.6 16.8 10.4 13.6 16.8 16.0 16.0 14.4 10.4 14.4 16.8 16.0 16.0 14.4 13.6 12.8 15.2 14.6
Claude-3.7-sonnet† 21.6 17.6 14.4 13.6 17.6 15.2 12.8 12.8 16.8 12.0 12.8 16.0 13.6 15.2 14.4 12.8 16.0 15.2 15.0
ChatGPT-4o-latest† 22.4 21.6 20.0 16.8 23.2 20.0 24.8 16.0 20.0 22.4 20.0 23.2 20.8 21.6 17.6 17.6 17.6 20.8 20.4
GPT-4.5-preview† 34.4 25.6 24.8 24.0 24.8 29.6 27.2 27.2 28.8 27.2 25.6 29.6 27.2 31.4 25.6 24.0 26.4 29.6 27.4

Reasoning LLMs

Deepseek-R1-671B 48.8 46.4 50.4 46.4 52.8 55.2 52.8 52.0 56.8 51.2 46.4 51.2 52.0 51.2 51.2 44.8 49.6 52.8 50.7
Qwen-QwQ-32B 62.4 55.2 47.2 50.4 63.2 60.0 58.4 56.0 56.8 44.8 47.2 57.6 59.2 55.2 45.6 43.2 47.2 60.0 53.9
Qwen-3-235B-A22B-Thinking 66.4 62.9 62.4 62.4 63.2 64.8 66.4 60.8 70.4 61.6 64.8 59.2 64.8 60.0 60.0 60.0 64.0 65.6 63.3
Claude-3.7-sonnet-thinking† 36.0 38.4 36.8 38.4 35.2 29.6 32.0 36.8 38.4 34.4 37.6 39.2 37.6 40.8 40.0 38.4 37.6 33.6 36.7
Gemini-2.0-flash-thinking† 43.2 43.2 42.4 44.0 40.8 42.4 48.0 41.6 44.0 36.8 40.8 44.0 46.4 47.2 41.6 36.8 46.4 43.2 42.9
Gemini-2.5-pro† 66.4 66.4 62.4 62.4 65.6 64.8 63.2 59.2 68.8 64.8 61.6 60.8 63.2 62.4 56.8 60.0 50.4 60.0 62.2
OpenAI-o1-mini† 46.4 44.8 37.6 37.6 36.0 43.2 40.0 40.8 40.8 41.6 43.2 38.4 40.8 38.4 36.0 40.0 42.4 41.6 40.5
OpenAI-o3-mini-medium† 54.4 52.8 51.2 52.8 53.6 51.2 50.4 56.0 45.6 52.0 50.4 50.4 50.4 39.2 51.2 41.6 44.8 52.8 50.0

s1-32B (8000 tokens) 42.1 34.1 28.5 23.3 27.6 30.7 26.8 24.5 35.1 36.2 28.8 25.9 33.1 35.4 20.6 20.0 22.9 26.3 28.2

C FURTHER DETAILS ON LANGUAGE-MIXING BEHAVIORS

C.1 METHODOLOGY

To filter out language-mixed sentences, we first identify the dominant language, also known as matrix
language, of the generated response using the state-of-the-art language identification library lingua.
Then, we use the NLP library stanza to perform sentence segmentation according to the matrix
language and obtain individual sentences. Finally, we use lingua to annotate the language label of
each sentence and of each individual word token in the sentence.

We classify language-mixing patterns into three categories: (1) quote-and-think, where words or
phrases in foreign language are quoted in quotation marks; (2) intersentential, where the entire
sentence is in a language entirely different from generation dominant language, and (3) intrasentential,
where words, phrases or clauses of different languages are present in the same sentence. We refer our
readers to Appendix C.2 for our annotation procedures.

We focus on four languages, namely Japanese (ja), Russian (ru), Thai (th), and Mandarin Chinese
(zh), as they are readily supported by the libraries stanza and lingua. We avoid languages with
Latin scripts due to their possible shared vocabulary with English and results in incorrect language
classification. For instance, the German word ‘also’ (therefore) in the sentence “Sie isst 3 Eier zum
Frühstück und verwendet 4 Eier für Muffins, also verwendet sie insgesamt 3 + 4 = 7 Eier pro Tag.”
was misclassified as English word.

C.2 ANNOTATION FOR LANGUAGE-MIXING PATTERNS IN S1 REASONING

We collect the language label with the highest probability assigned to the entire sentence, and we label
a sentence belonging to “intersentential” language-mixing for s1 if the sentence is non-English, as
the dominant language of s1’s overall output is English. We then check language labels for individual
word tokens. If there are mixing of different languages within the same sentence, and quotation
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marks are present around the non-English words or phrases, then the sentence is assigned with the
“quote-and-think” label. Otherwise, if quotation marks are not present, the sentence is assigned with
the “intrasentential” label.

C.3 DOMINANT LANGUAGE IN 14B-SIZED MODEL OUTPUTS

Figure 6 shows the dominant language distribution in model outputs when MGSM questions are
asked in Japanese (ja), Russian (ru), Thai (th), and Mandarin Chinese (zh).
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Figure 6: Proportion of dominant languages used by 14B-sized models’ responses when queried with
Japanese (ja), Russian (ru), Thai (th), and Mandarin Chinese (zh) languages. “same” indicates that
the response language is the same as query language.

C.4 QUOTE-AND-THINK PATTERN IN S1’S TRAINING DATA

Among 1k English training samples of s1 models, 68.3% of the samples exhibit the quote-and-think
pattern, among which at least half of them involves directly copying from the question prompts.
This suggests that the quote-and-think language-mixing pattern is due to crosslingual transfer of the
original s1 model’s learned behavior of quoting phrases from question prompts during its long CoTs
thinking process.

C.5 FINE-GRAINED ANALYSIS OF S1-32B’S INTRASENTENTIAL LANGUAGE MIXING

We perform human annotations on the intrasententially language-mixed sentences during reasoning
and classify if each sentence belongs to one of the following categories: (1) extract-and-explain,
where the non-English phrases are taken directly from the original input prompt but without quotation
marks given (this resembles quote-and-think but no quotation marks are generated around the non-
English phrases); (2) insertional code-switching, where non-English lexical items (usually nouns)
are inserted into the morphosyntactic frame of the English sentence (an example would be “I want
to eat nasi goreng” where nasi goreng is a Malay word for fried rice), and (3) clause-level code-
switching, where switching between two languages within a single sentence structure at clausal
level (an example would be “I want to go to the library dan bersedia untuk peperiksaan” where dan
bersedia untuk peperiksaan is a Malay clause for “and prepare for the exam”.) Figure 7 demonstrates
the distribution of each category, with extract-and-explain being the dominant language-mixing
patterns.

D FURTHER DETAILS ON LANGUAGE FORCING

D.1 EXAMPLE OF COTS AFTER LANGUAGE FORCING

Box 2 show the example of CoTs generated by s1 from the combined language-forcing strategy.
This example contrasts Box 1 where Box 1 showcases s1’s natural CoTs without language forcing.

Note that we still observe the sophisticated quote-and-think pattern where here, English phrases
are quoted for reasoning (the dominant language is Japanese). Specifically, in that sentence where
quote-and-think occurs, it is translated to ‘if this question was in English, it would be “how many
rolls are needed in total?”’
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Figure 7: Breakdown of s1-32B’s finegrained intrasentential language mixing patterns.

Box 2. Example of CoTs prdocued from combined language forcing strategy.

Question: ローブを作成するには、青色の繊維を2巻分、白色の繊維をその半分用
いる必要があります。全体で何巻必要ですか？
(To make a robe, you need 2 rolls of blue fiber and half of the white fiber. How many rolls
are needed total?)

s1’s Thinking: よし、解いてみよう。問題はローブを作るために必要な繊維の巻
数を計算するものだね。青色の繊維が2巻必要で、白色の繊維はその半分、つま
り1巻必要だ。だから合計で3巻か。でも待って、問題文をもう一度確認しよう。

「ローブを作成するには、青色の繊維を2巻分、白色の繊維をその半分用い
る必要があります。全体で何巻必要ですか？」そうだ、青色が2巻、白色がその半
分。つまり青色の半分は1巻だから、白色は1巻必要。だから合計3巻。これでいい
のかな。でも、もしかして青色の2巻と白色の半分を足すと、2 + 0.5 = 2.5巻って意
味じゃないのだろうか。でも問題の言い回しが少しややこしいな。

待って、原文をもう一度。「青色の繊維を2巻分、白色の繊維をその半分用
いる」というのは、青色が2巻、そして白色が「その半分」。つまり、「青色の半
分」なのか、それとも「2巻の半分」なのか。日本語の文法で考えると、「その半
分」は直前の数詞、「2巻分」を指している可能性が高い。つまり、青色2巻、白
色は2巻の半分なので1巻。だから合計3巻。でも、もし「青色の繊維を2巻分、白
色の繊維をその半分」というのが、青色が2巻、白色が青色の半分、つまり1巻、
という意味なら、同じく3巻。結局同じ結果になるのか。

それに、問題が「全体で何巻必要ですか？」と聞いているので、必要な総
巻数を聞かれているのだろう。つまり、青色2巻、白色1巻、合計3巻。これが答え
だと思われる。でも、もしこの問題が英語だと、ḧow many rolls are needed in total?¨
だと仮定すると、3 rolls が答え。 でも、もしかして青色2巻、白色半分、つま
り2.5巻という解釈もある。でも、問題文の日本語の表現からすると、青色2巻、
白色1巻、合計3巻が妥当だと思う。
...

D.2 LANGUAGE COMPLIANCE

Detailed results for language compliance can be found in Tables 8, 9 and 10 for 32B, 14B and 7B,
respectively.

D.3 IN-LANGUAGE BUDGET FORCING REASONING

Detailed results for in-language budget forcing reasoning performance on MGSM are presented in
Table 11.
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Table 8: Results for s1-32B.

Strategy Reasoning Language avg len Language Distribution Language Compliance

translated_wait

bn 3073.3 ENGLISH: 99.6, BENGALI: 0.4 0.4
de 2405.3 ENGLISH: 51.6, GERMAN: 48.4 48.4
en 1833.1 ENGLISH: 100.0 100.0
es 2401.5 ENGLISH: 88.4, SPANISH: 11.6 11.6
fr 2379.7 ENGLISH: 90.8, FRENCH: 8.8, CHINESE: 0.4 8.8
ja 2515.1 ENGLISH: 70.8, JAPANESE: 29.2 29.2
ru 2601.1 ENGLISH: 90.4, RUSSIAN: 9.2, CHINESE: 0.4 9.2
sw 2611.4 ENGLISH: 100.0 0.0
te 3821.3 ENGLISH: 99.6, TELUGU: 0.4 0.4
th 1894.7 ENGLISH: 99.6, CHINESE: 0.4 0.0
zh 1776.3 ENGLISH: 94.4, CHINESE: 5.6 5.6

prefix

bn 3320.0 BENGALI: 98.8, ENGLISH: 1.2 98.8
de 1747.2 GERMAN: 98.8, CHINESE: 1.2 98.8
en 1729.7 ENGLISH: 100.0 100.0
es 2790.6 SPANISH: 99.6, ENGLISH: 0.4 99.6
fr 1822.9 FRENCH: 100.0 100.0
ja 2321.6 JAPANESE: 98.8, ENGLISH: 1.2 98.8
ru 1564.2 RUSSIAN: 98.8, ENGLISH: 0.8, CHINESE: 0.4 98.8
sw 3083.9 SWAHILI: 91.2, ENGLISH: 8.4, JAPANESE: 0.4 91.2
te 6912.7 TELUGU: 95.2, ENGLISH: 4.8 95.2
th 2126.3 THAI: 77.6, CHINESE: 20.4, ENGLISH: 2.0 77.6
zh 1150.1 CHINESE: 99.6, ENGLISH: 0.4 99.6

system

bn 2693.8 ENGLISH: 90.4, BENGALI: 9.6 9.6
de 1979.3 GERMAN: 100.0 100.0
en 1728.3 ENGLISH: 100.0 100.0
es 2241.6 ENGLISH: 69.6, SPANISH: 30.4 30.4
fr 2346.0 ENGLISH: 68.4, FRENCH: 31.2, CHINESE: 0.4 31.2
ja 1805.7 JAPANESE: 99.2, ENGLISH: 0.8 99.2
ru 2180.0 ENGLISH: 59.6, RUSSIAN: 39.2, CHINESE: 1.2 39.2
sw 2721.2 ENGLISH: 98.8, SWAHILI: 0.8, CHINESE: 0.4 0.8
te 3869.3 ENGLISH: 93.6, TELUGU: 6.4 6.4
th 1930.3 ENGLISH: 90.8, THAI: 8.0, CHINESE: 1.2 8.0
zh 1162.1 CHINESE: 100.0 100.0

combined

bn 3507.6 BENGALI: 99.6, CHINESE: 0.4 99.6
de 1845.2 GERMAN: 100.0 100.0
en 1582.6 ENGLISH: 100.0 100.0
es 2604.3 SPANISH: 100.0 100.0
fr 1726.5 FRENCH: 99.2, CHINESE: 0.8 99.2
ja 2127.4 JAPANESE: 100.0 100.0
ru 1523.6 RUSSIAN: 98.8, ENGLISH: 0.4, GERMAN: 0.4, CHINESE: 0.4 98.8
sw 3161.1 SWAHILI: 98.4, ENGLISH: 1.6 98.4
te 7036.0 TELUGU: 97.6, ENGLISH: 2.4 97.6
th 2043.3 THAI: 90.8, CHINESE: 8.8, GERMAN: 0.4 90.8
zh 1188.7 CHINESE: 100.0 100.0

E CROSS-DOMAIN GENERALIZATION

Since s1 models obtain strong crosslingual math performance with English-only training, a natural
question to ask is whether such generalization extends to other non-math domains that may require
knowledge recall or cultural reasoning. We address this research question using Global-MMLU
(Singh et al., 2024), FORK (Palta & Rudinger, 2023), and COPAL-ID (Wibowo et al., 2024)

In-domain (STEM) vs out-of-domain performance. Figure 8 (a) shows that test-time scaling of
thinking tokens (cyan line) substantially improves s1’s performance on STEM subject domain. This
strong crosslingual in-domain generalization3 is consistent with our findings in Section 4. On the
other hand, for out-of-domain subjects, we report minimal cross-domain generalization of test-time
scaling from Figure 8 (a). Domains such as medicine do not benefit from scaling up thinking tokens,
as increasing maximum thinking tokens from 0.5k to 4k tokens merely improves accuracy by only
+∆0.8% (73.0% → 73.8%), and further scaling to 8000 thinking tokens even reduces accuracy by
−∆2.0% (73.0% → 71.0%). Out of all non-STEM domains, business benefits the most from
test-time scaling (+∆3.2%), but the accuracy gain still lags behind STEM domain (+∆11.5%) by a
huge margin.

Cultural-specific knowledge and reasoning. For multilingual cultural benchmarks, we observe
similar findings that there is minimal benefit of test-time scaling of s1. Figure 8 (b) shows that
while reasoning finetuning improves overall model performance over Qwen baselines (dashed lines),
scaling up test-time thinking compute does not improve performance. In fact, for the English FORK
benchmark, increasing thinking tokens leads to substantially poorer performance. This is also known

3s1 training data includes OlympicArena dataset (Huang et al., 2024a) that encompasses various STEM
subject knowledge such as biology and astronomy
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Table 9: Results for s1-14B.

Strategy Reasoning Language avg len Language Distribution Language Compliance

translated_wait

bn 2457.1 ENGLISH: 100.0 0.0
de 1940.1 ENGLISH: 76.4, GERMAN: 23.6 23.6
en 1638.2 ENGLISH: 100.0 100.0
es 1966.1 ENGLISH: 94.4, SPANISH: 5.6 5.6
fr 2062.6 ENGLISH: 95.2, FRENCH: 4.4, CHINESE: 0.4 4.4
ja 2162.1 ENGLISH: 86.8, JAPANESE: 13.2 13.2
ru 1937.9 ENGLISH: 98.8, RUSSIAN: 0.8, CHINESE: 0.4 0.8
sw 3044.8 ENGLISH: 99.6, SWAHILI: 0.4 0.4
te 3852.4 ENGLISH: 98.8, CHINESE: 0.4, TELUGU: 0.8 0.8
th 1767.3 ENGLISH: 100.0 0.0
zh 1438.9 ENGLISH: 62.0, CHINESE: 38.0 38.0

prefix

bn 4570.1 BENGALI: 92.8, ENGLISH: 7.2 92.8
de 1621.8 GERMAN: 100.0 100.0
en 1572.2 ENGLISH: 100.0 100.0
es 2343.2 SPANISH: 99.6, ENGLISH: 0.4 99.6
fr 1354.3 FRENCH: 99.6, ENGLISH: 0.4 99.6
ja 2194.3 JAPANESE: 99.2, ENGLISH: 0.8 99.2
ru 1470.3 RUSSIAN: 98.8, CHINESE: 0.8, ENGLISH: 0.4 98.8
sw 4442.6 SWAHILI: 85.2, ENGLISH: 14.4, TAGALOG: 0.4 85.2
te 6041.8 TELUGU: 90.4, ENGLISH: 9.2, CHINESE: 0.4 90.4
th 2448.6 THAI: 88.4, CHINESE: 10.8, ENGLISH: 0.8 88.4
zh 1149.3 CHINESE: 100.0 100.0

system

bn 2196.2 ENGLISH: 99.2, BENGALI: 0.8 0.8
de 1643.4 GERMAN: 92.8, ENGLISH: 7.2 92.8
en 1664.3 ENGLISH: 100.0 100.0
es 1766.7 ENGLISH: 84.4, SPANISH: 15.6 15.6
fr 1841.7 ENGLISH: 91.6, FRENCH: 8.4 8.4
ja 2036.4 JAPANESE: 17.2, ENGLISH: 82.8 17.2
ru 1631.3 RUSSIAN: 49.2, ENGLISH: 50.8 49.2
sw 2984.6 ENGLISH: 98.8, SWAHILI: 1.2 1.2
te 3942.8 ENGLISH: 91.6, TELUGU: 8.4 8.4
th 1775.4 ENGLISH: 91.6, THAI: 8.0, CHINESE: 0.4 8.0
zh 1295.8 ENGLISH: 12.0, CHINESE: 88.0 88.0

combined

bn 4823.5 BENGALI: 98.0, ENGLISH: 2.0 98.0
de 1479.8 GERMAN: 100.0 100.0
en 1553.2 ENGLISH: 100.0 100.0
es 2503.3 SPANISH: 100.0 100.0
fr 1269.8 FRENCH: 100.0 100.0
ja 1941.4 JAPANESE: 100.0 100.0
ru 1577.6 RUSSIAN: 99.6, CHINESE: 0.4 99.6
sw 4525.5 SWAHILI: 88.4, ENGLISH: 11.6 88.4
te 6046.9 TELUGU: 93.6, ENGLISH: 6.4 93.6
th 2244.8 THAI: 92.4, CHINESE: 7.2, ENGLISH: 0.4 92.4
zh 1118.8 CHINESE: 100.0 100.0

as overthinking (Liu et al., 2024) where reasoning models expend excessive compute in their long
CoTs and lead to worse performance (Cuadron et al., 2025; Chen et al., 2024; Sui et al., 2025).
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Table 10: Results for s1-7B.

Strategy Reasoning Language avg len Language Distribution Language Compliance

translated_wait

bn 3355.8 ENGLISH: 100.0 0.0
de 2490.5 ENGLISH: 68.0, GERMAN: 32.0 32.0
en 2050.4 ENGLISH: 100.0 100.0
es 3156.8 ENGLISH: 83.6, SPANISH: 16.4 16.4
fr 2544.1 ENGLISH: 90.4, FRENCH: 9.2, CHINESE: 0.4 9.2
ja 3381.9 ENGLISH: 72.0, JAPANESE: 28.0 28.0
ru 2742.3 ENGLISH: 96.0, RUSSIAN: 2.8, CHINESE: 1.2 2.8
sw 5381.5 ENGLISH: 100.0 0.0
te 5232.8 ENGLISH: 97.6, TELUGU: 2.4 2.4
th 2654.8 ENGLISH: 89.6, THAI: 8.4, CHINESE: 2.0 8.4
zh 1471.1 CHINESE: 99.2, ENGLISH: 0.8 99.2

prefix

bn 3814.5 BENGALI: 91.6, ENGLISH: 7.2, CHINESE: 1.2 91.6
de 2183.4 GERMAN: 98.0, CHINESE: 1.6, ENGLISH: 0.4 98.0
en 2405.3 ENGLISH: 100.0 100.0
es 3468.3 SPANISH: 99.2, CHINESE: 0.4, ENGLISH: 0.4 99.2
fr 1712.5 FRENCH: 99.2, CHINESE: 0.8 99.2
ja 4976.8 JAPANESE: 99.6, ENGLISH: 0.4 99.6
ru 2242.7 RUSSIAN: 82.4, CHINESE: 13.6, ENGLISH: 4.0 82.4
sw 7653.5 SWAHILI: 55.2, ENGLISH: 43.6, TAGALOG: 1.2 55.2
te 6649.8 TELUGU: 82.4, ENGLISH: 17.2, CHINESE: 0.4 82.4
th 3239.8 THAI: 80.0, CHINESE: 17.6, ENGLISH: 2.4 80.0
zh 1675.4 CHINESE: 100.0 100.0

system

bn 3508.5 ENGLISH: 96.4, BENGALI: 3.2, CHINESE: 0.4 3.2
de 2093.8 GERMAN: 97.2, CHINESE: 2.8 97.2
en 2721.8 ENGLISH: 100.0 100.0
es 4099.5 SPANISH: 100.0 100.0
fr 1872.1 FRENCH: 99.6, CHINESE: 0.4 99.6
ja 2513.9 JAPANESE: 100.0 100.0
ru 2166.5 RUSSIAN: 79.2, CHINESE: 9.2, ENGLISH: 11.6 79.2
sw 5310.8 ENGLISH: 100.0 0.0
te 5250.4 ENGLISH: 96.8, TELUGU: 3.2 3.2
th 3438.9 THAI: 93.2, CHINESE: 6.8 93.2
zh 1528.5 CHINESE: 100.0 100.0

combined

bn 4094.8 BENGALI: 97.6, CHINESE: 0.8, ENGLISH: 1.6 97.6
de 2046.7 GERMAN: 100.0 100.0
en 2857.6 ENGLISH: 100.0 100.0
es 3907.6 SPANISH: 100.0 100.0
fr 1657.1 FRENCH: 99.6, CHINESE: 0.4 99.6
ja 4804.9 JAPANESE: 100.0 100.0
ru 2450.9 RUSSIAN: 86.4, CHINESE: 13.2, ENGLISH: 0.4 86.4
sw 7393.2 SWAHILI: 81.6, ENGLISH: 18.4 81.6
te 6403.0 TELUGU: 98.4, ENGLISH: 1.6 98.4
th 3609.9 THAI: 92.8, CHINESE: 7.2 92.8
zh 1734.0 CHINESE: 100.0 100.0

Table 11: Performance comparison of different language forcing strategies across multiple model
sizes and languages on fixed 8k thinking tokens. Languages are categorized into high-resource (HRL:
de, en, es, fr, ru, ja, zh) and low-resource (LRL: bn, sw, te, th) groups.

Model Method bn de en es fr ja ru sw te th zh ALL HRL LRL

s1.1-32B

Baseline 90.8 90.8 96.0 93.2 89.6 87.6 93.2 72.4 68.4 91.6 88.0 87.4 91.2 80.8
translated_wait 91.2 90.4 94.8 93.2 89.2 89.2 92.0 73.2 70.8 91.6 90.0 87.8 91.3 81.7
prefix 85.2 90.4 95.6 92.8 90.4 84.8 94.0 65.2 63.6 88.8 90.8 85.6 91.3 75.7
system 87.6 90.0 96.4 91.2 86.8 85.2 92.8 71.2 67.2 90.8 89.6 86.0 90.3 79.3
combined 82.8 89.2 95.2 91.6 88.8 85.2 92.8 58.4 63.2 89.2 90.4 84.3 90.5 73.4

s1.1-14B

Baseline 86.8 90.4 94.4 93.6 88.4 83.6 92.4 59.6 60.0 89.2 89.6 84.4 90.3 73.9
translated_wait 85.6 90.0 96.8 93.6 86.8 85.2 92.4 63.2 61.2 90.8 89.2 85.0 90.6 75.2
prefix 81.2 90.4 95.2 92.0 90.4 82.8 92.8 44.4 55.2 86.8 91.2 82.0 90.7 66.9
system 84.0 88.8 95.2 91.2 87.2 82.8 91.2 58.8 62.0 90.4 90.4 83.8 89.5 73.8
combined 81.2 90.0 93.2 92.0 86.4 82.4 90.4 36.8 54.4 89.2 88.4 80.4 89.0 65.4

s1.1-7B

Baseline 72.0 87.6 92.4 88.8 83.2 82.4 88.0 24.0 36.8 81.6 86.0 74.8 86.9 53.6
translated_wait 69.2 84.0 93.2 89.2 87.2 76.4 87.2 24.0 37.2 84.0 83.2 74.1 85.8 53.6
prefix 64.0 82.8 93.6 86.8 87.2 68.0 85.6 14.4 24.0 74.4 84.0 69.5 84.0 44.2
system 71.6 84.0 90.8 92.0 82.8 74.4 87.6 25.6 36.8 76.8 82.0 73.1 84.8 52.7
combined 60.8 84.0 92.8 88.0 83.6 72.8 86.4 14.8 27.6 74.4 83.6 69.9 84.5 44.4
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Table 12: Number of average thinking tokens for each reasoning langauge when the MGSM task
questions are asked in a particular query language.

Query Reasoning Language AVGLanguage bn de en es fr ja ru sw te th zh
bn 4,559 1,974 2,190 3,473 1,640 2,276 1,977 4,900 5,461 2,852 1,710 3,001
de 3,838 1,642 1,910 2,838 1,159 1,794 1,617 3,510 5,073 2,025 1,327 2,430
en 3,429 1,239 1,467 2,253 1,075 1,625 1,341 3,431 5,154 1,703 1,075 2,162
es 3,736 1,388 1,779 2,512 1,225 1,665 1,467 3,600 5,323 1,875 1,133 2,336
fr 3,868 1,562 1,886 2,886 1,218 2,103 1,577 4,077 5,033 2,218 1,263 2,517
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zh 4,017 1,650 1,737 2,521 1,365 1,822 1,649 4,233 5,344 2,009 1,117 2,496
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Figure 8: Effects of thinking time for s1 models on different domains of multilingual Global-MMLU
benchmark (subfigure (a)) and cultural commonsense knowledge (FORK) and reasoning (COPAL-ID)
benchmarks (subfigure (b)). Dashed lines indicates zero-shot prompting of Qwen-32B baseline in (b).
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