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Abstract

Learning to defer with multiple experts is a frame-
work where the learner can choose to defer the
prediction to several experts. While this prob-
lem has received significant attention in classi-
fication contexts, it presents unique challenges
in regression due to the infinite and continuous
nature of the label space. In this work, we in-
troduce a novel framework of regression with de-
ferral, which involves deferring the prediction
to multiple experts. We present a comprehen-
sive analysis for both the single-stage scenario,
where there is simultaneous learning of predic-
tor and deferral functions, and the two-stage sce-
nario, which involves a pre-trained predictor with
a learned deferral function. We introduce new sur-
rogate loss functions for both scenarios and prove
that they are supported by H-consistency bounds.
These bounds provide consistency guarantees that
are stronger than Bayes consistency, as they are
non-asymptotic and hypothesis set-specific. Our
framework is versatile, applying to multiple ex-
perts, accommodating any bounded regression
losses, addressing both instance-dependent and
label-dependent costs, and supporting both single-
stage and two-stage methods. Our single-stage
formulation subsumes as a special case the recent
regression with abstention (Cheng et al., 2023)
framework, where only a single expert is consid-
ered, specifically for the squared loss and a label-
independent cost. Minimizing our proposed loss
functions directly leads to novel algorithms for
regression with deferral. We report the results of
extensive experiments showing the effectiveness
of our proposed algorithms.

1Courant Institute of Mathematical Sciences, New York,
NY; 2Google Research, New York, NY. Correspondence
to: Anqi Mao <aqmao@cims.nyu.edu>, Mehryar Mohri
<mohri@google.com>, Yutao Zhong <yutao@cims.nyu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
The accuracy of learning algorithms can be greatly enhanced
by redirecting uncertain predictions to experts or advanced
pre-trained models. Experts can be individuals with special-
ized domain knowledge or more sophisticated, albeit costly,
pre-trained models. The cost of an expert is important to
consider, as it may capture the computational resources it
requires or the quality of its performance. The cost can
further be instance-dependent and label-dependent.

How can we effectively assign each input instance to the
most suitable expert among a pool of several, considering
both accuracy and cost? This is the challenge of learn-
ing to defer in the presence of multiple experts, which is
prevalent in various domains, including natural language
generation tasks, notably large language models (LLMs)
(Wei et al., 2022; Bubeck et al., 2023), speech recognition,
image annotation and classification, medical diagnosis, fi-
nancial forecasting, natural language processing, computer
vision, and many others.

This paper deals with the problem of learning to defer with
multiple experts in the regression setting. While this prob-
lem has received significant attention in classification con-
texts (Hemmer et al., 2022; Keswani et al., 2021; Kerrigan
et al., 2021; Straitouri et al., 2022; Benz & Rodriguez, 2022;
Verma et al., 2023; Mao et al., 2023a; 2024a), it presents
unique challenges in regression due to the infinite and contin-
uous nature of the label space. In particular, the score-based
formulation commonly used in classification is inapplica-
ble here, since regression problems cannot be represented
using multi-class scoring functions, with auxiliary labels
corresponding to each expert.

Our approach involves defining prediction and deferral func-
tions, consistent with previous studies in classification (Mao
et al., 2023a; 2024a). We present a comprehensive analysis
for both the single-stage scenario (simultaneous learning of
predictor and deferral functions) (Section 3), and the two-
stage scenario (pre-trained predictor with learned deferral
function) (Section 4). We introduce new surrogate loss func-
tions for both scenarios and prove that they are supported
by H-consistency bounds. These are consistency guaran-
tees that are stronger than Bayes consistency, as they are
non-asymptotic and hypothesis set-specific. Our framework
is versatile, applying to multiple experts, accommodating
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any bounded regression losses, addressing both instance-
dependent and label-dependent costs, and supporting both
single-stage and two-stage methods. We also instantiate
our formulations in the special case of a single expert (Sec-
tion 5), and demonstrate that our single-stage formulation
includes the recent regression with abstention framework
(Cheng et al., 2023) as a special case, where only a single
expert, the squared loss and a label-independent cost are
considered. In Section 6, we report the results of exten-
sive experiments showing the effectiveness of our proposed
algorithms.

Previous related work. The problem of learning to de-
fer, or the special case of learning with abstention charac-
terized by a single expert and constant cost, has received
much attention in classification tasks. Previous work on this
topic mainly includes the following formulations or meth-
ods: confidence-based, predictor-rejector, score-based, and
selective classification.

In the confidence-based formulation, the rejection function
r is based on the magnitude of the value of the predictor
h (Chow, 1957; 1970; Bartlett & Wegkamp, 2008; Yuan
& Wegkamp, 2010; 2011). This approach has been further
extended to multi-class classification in (Ramaswamy et al.,
2018; Ni et al., 2019), where the function r is based on the
magnitude of the value of the probability (e.g., softmax)
corresponding to the predictor h. This formulation becomes
inapplicable in regression, since in this setting the prediction
value cannot be interpreted as a measure of confidence.

The score-based formulation was proposed in the multi-
class classification scenario, where the multi-class cate-
gories are augmented with additional labels corresponding
to the experts, and the deferral is determined using the high-
est score (Mozannar & Sontag, 2020; Verma & Nalisnick,
2022; Cao et al., 2022; Mao et al., 2024c; Verma et al.,
2023; Mao et al., 2024a). However, this formulation is also
inapplicable in regression, since regression problems can-
not be represented using multi-class scoring functions with
auxiliary labels corresponding to each expert.

The approach of learning based on two distinct yet jointly
learned functions h and r in this paper is commonly re-
ferred as the predictor-rejector formulation (Cortes et al.,
2016b;a; Charoenphakdee et al., 2021; Cortes et al., 2023;
Mohri et al., 2024; Mao et al., 2024b). We show that this
method can be extended to the regression setting for deferral
with multiple experts, which underscores its versatility and
significance.

An alternative approach of selective classification (El-Yaniv
et al., 2010; Wiener & El-Yaniv, 2011; El-Yaniv & Wiener,
2012; Wiener & El-Yaniv, 2012; 2015; Geifman & El-Yaniv,
2017; 2019) optimizes non-abstained sample generalization
error under a fixed selection rate. However, this method does

not apply to the deferral case where the cost depends on the
label y and where there are multiple experts. Moreover, it
has been reported to perform suboptimally compared to the
predictor-rejector formulation in regression with abstention
settings with constant cost and a single expert (Cheng et al.,
2023).

More recently, a series of publications (Mao et al., 2023a;
Mohri et al., 2024; Mao et al., 2024b) have explored the
two-stage method of learning with deferral or abstention,
wherein the predictor h is first learned and subsequently
used in the learning process of the deferral function r. This
scenario is crucial in practice because the predictor is often
given and often cannot be retrained. This method also differs
from post-hoc approaches (Okati et al., 2021; Narasimhan
et al., 2022), which are not applicable to existing predictors
trained in the standard classification scenario. In this work,
we will study both the single-stage and two-stage methods
for regression with deferral.

In the special case of regression with abstention (corre-
sponding to a single expert and label-independent cost case),
Wiener & El-Yaniv (2012) characterized the optimal se-
lector for selective regression, Zaoui et al. (2020) studied
non-parametric algorithms, Geifman & El-Yaniv (2019) and
Jiang et al. (2020) explored the selective classification us-
ing neural network-based algorithms; Shah et al. (2022)
used the selective classification with greedy algorithms; De
et al. (2020) presented a method that is tailored specifi-
cally to ridge regression and small datasets. It proposed
an approximate procedure for learning a linear hypothesis
that determines which training instances should be deferred.
They then used a nearest neighbor approach to defer on new
instances; and Li et al. (2023) investigated a two-step no-
rejection learning strategy. However, none of these previous
publications studied surrogate losses for regression with ab-
stention. This excludes (Cheng et al., 2023), who proposed a
single-stage surrogate loss for learning the predictor-rejector
pair. We will show that their method coincides with a special
case of our single-stage regression with deferral surrogate
losses, where there is a single expert and where the cost
does not depend on the label y.

Another line of work has studied dynamic classifier selec-
tion or dynamic ensemble selection (Ko et al., 2008; Cruz
et al., 2018; Ekanayake et al., 2023), which aims to select
the most ‘competent’ classifiers or ensemble of classifiers
in the local region where each instance is located. While
these methods also consider how to select an expert from a
pool of several, their primary mechanism involves dividing
the feature space into distinct regions (a region is typically
defined via clustering or nearest-neighbor techniques). In
contrast, learning to defer with multiple experts aims to
learn a deferral function by minimizing a surrogate loss that
accounts for the accuracy and cost of each expert across
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all instances. Also, no local region or local competence is
considered.

It is worth noting that not all dynamic classifier selection
methods consider a local region or local competence. For
instance, the recent work by Ekanayake et al. (2023) learns
a joint feature acquisition and classifier selection policy
to identify the most relevant subset of features based on
which classification should be performed, and the classifier
to be used. In that sense, the policy for classifier selection
essentially functions as a deferral mechanism, since it de-
cides when to defer the decision to an expert. However,
this method bases its decisions solely on accuracy, not on
cost, whereas our focus is on regression, considering both
accuracy and base (inference) cost.

Learning to defer with multiple experts in the classification
setting has been studied in (Mao et al., 2023a; Verma et al.,
2023; Mao et al., 2024a). Verma et al. (2023) and (Mao
et al., 2024a) investigated the single-stage scenario with a
score-based formulation, while Mao et al. (2023a) explored
the two-stage scenario with both score-based and predictor-
rejector formulations. However, as previously highlighted,
the score-based formulation does not apply in the regression
setting. Our new predictor-rejector formulation not only
overcomes this limitation, but also provides the foundation
for the design of new deferral algorithms for classification.

2. Preliminaries
Learning scenario of regression. We first describe the
familiar problem of supervised regression and introduce
our notation. Let X be the input space and Y ⊆ R the
label space. We write D to denote a distribution over
X × Y. Let Hall be the family of all real-valued measur-
able functions h∶X → Y, and let H ⊆ Hall be the hypothe-
sis set adopted. The learning challenge in regression is to
use the labeled sample to find a hypothesis h ∈ H with
small expected loss or generalization error EL(h), with
EL(h) = E(x,y)∼D[L(h(x), y)], where L∶Y × Y → R+ is
a loss function used to measure the magnitude of error in
the regression. In the most common case, where L is the
squared loss L2 defined by L2(y′, y) = ∣y′ − y∣2, this repre-
sents the mean squared error. In the case where L is the
L1 loss defined by L1(y′, y) = ∣y′ − y∣, this represents the
mean absolute error. More generally, L can be an Lp loss,
defined by Lp(y′, y) = ∣y′ − y∣p for all y′, y ∈ Y, for some
p ≥ 1. In this work, we will consider an arbitrary regression
loss function L, subject to the boundedness assumption, that
is L(y′, y) ≤ l for some constant l > 0 and for all y, y′ ∈ Y.
This assumption is commonly adopted in the theoretical
analysis of regression (Mohri et al., 2018).

Regression with deferral. We introduce a novel frame-
work where a learner can defer predictions to multiple

experts, g1, . . . , gne . Each expert may represent a pre-
trained model or a human expert. The learner’s output is
a pair (h, r), where h∶X → Y is a prediction function and
r∶X × {0,1, . . . , ne}→ R a deferral function. For any input
x, r(x) = argmaxy∈[ne] r(x, y) = j is the expert deferred
to when j > 0, no deferral if j = 0. The learner makes
the prediction h(x) when r(x) = 0, or defers to gj when
r(x) = j > 0. Deferral incurs the cost L(gj(x), y) + αj ,
where αj is a base cost. The base cost can be the infer-
ence cost incurred when querying an expert, factoring in
scenarios where engaging experts entails certain costs. Non-
deferral incurs the cost L(h(x), y).

Let Hall and Rall denote the family of all measurable
functions h∶X → Y and r∶X × {0,1, . . . , ne} → R respec-
tively. Given a hypothesis set H ⊂ Hall and a hypoth-
esis set R ⊂ Rall, the goal of the regression with defer-
ral problem consists of using the labeled sample to find
a pair (h, r) ∈ (H,R) with small expected deferral loss
ELdef

(h, r) = E(x,y)∼D[Ldef(h, r, x, y)], where Ldef is de-
fined for any (h, r) ∈H ×R and (x, y) ∈ X × Y by

Ldef(h, r, x, y)=L(h(x), y)1r(x)=0+
ne

∑
j=1

cj(x, y)1r(x)=j (1)

and cj(x, y) > 0 is a cost function, which can be typically
chosen as αj + L(gj(x), y) for an expert gj and a base cost
αj > 0 as mentioned before. Here, we adopt a general cost
functions cj for any j, and only require that the cost remains
bounded: cj(x, y) ≤ cj for all (x, y) ∈ X × Y, for some
constant cj > 0.

Learning with surrogate losses. As with most target losses
in learning problems, such as the zero-one loss in classifi-
cation (Zhang, 2004a; Bartlett et al., 2006; Zhang, 2004b;
Tewari & Bartlett, 2007) and the classification with absten-
tion loss (Bartlett & Wegkamp, 2008; Cortes et al., 2016b),
directly minimizing the deferral lossLdef is computationally
hard for most hypothesis sets due to its non-continuity and
non-differentiability. Instead, surrogate losses are proposed
and adopted in practice. Examples include the hinge loss
in binary classification (Cortes & Vapnik, 1995), the (multi-
nomial) logistic loss in multi-class classification (Verhulst,
1838; 1845; Berkson, 1944; 1951), and the predictor-rejector
abstention loss in classification with abstention (Cortes et al.,
2016b). We will derive surrogate losses for the deferral loss.

Given a surrogate loss L∶ (h, r, x, y) ↦ R+, we denote by
EL(h, r) the generalization error of a pair (h, r), defined as

EL(h, r) = E
(x,y)∼D

[L(h, r, x, y)].

Let EL(H,R) = infh∈H,r∈R EL(h, r) be the best-in-class
error within the family H ×R. One desired property for sur-
rogate losses in this context is Bayes-consistency (Steinwart,
2007). This means that minimizing the expected surrogate
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loss over the family of all measurable functions leads to
minimizing the expected deferral loss over the same family.
More precisely, for a surrogate loss L∶ (h, r, x, y)↦ R+, it
is Bayes-consistent with respect to Ldef if,

EL(hn, rn) − EL(H,R) n→+∞ÐÐÐ→ 0

Ô⇒ ELdef
(hn, rn) − ELdef

(H,R) n→+∞ÐÐÐ→ 0

for all sequences {(hn, rn)}n∈N ⊂ H × R and all distribu-
tions. Recently, Awasthi et al. (2022a;b) (see also (Awasthi
et al., 2021a;b; 2023a;b; Mao et al., 2023f;c;d; Zheng et al.,
2023; Mao et al., 2023b;e; 2024e;d;f)) pointed out that
Bayes-consistency does not take into account the hypothesis
set H and is non-asymptotic. Thus, they proposed a stronger
guarantee called H-consistency bounds. In our context, a
surrogate loss L is said to admit an (H,R)-consistency
bound with respect to Ldef if, for all (h, r) ∈H ×R and all
distributions, the following inequality holds:

f(ELdef
(h, r) − E∗Ldef

(H,R)) ≤ EL(h, r) − E∗L(H,R)

for some non-decreasing function f ∶R+ → R+. In particular,
when (H,R) = (Hall,Rall), the (H,R)-consistency bound
implies Bayes-consistency.

We will prove (H,R)-consistency bounds for our proposed
surrogate losses, which imply their Bayes-consistency. One
key term in our bound is the minimizability gap, defined
as ML(H,R) = E∗L(H,R) − ExEy∣x[L(h, r, x, y)]. The
minimizability gap characterizes the difference between
the best-in-class error and the expected best-in-class point-
wise error, and is non-negative. As shown by Mao et al.
(2023f), the minimizability gap is upper bounded by the ap-
proximation error, satisfying 0 ≤ML(H,R) ≤ E∗L(H,R) −
E∗L(Hall,Rall) and is generally a finer quantity. The min-
imizability gap vanishes when (H,R) = (Hall,Rall), or,
more generally, when E∗L(H,R) = E∗L(Hall,Rall).

Given a loss function `∶ (r, x, y)↦ R+ that only depends on
the hypothesis r, the notions of generalization error, best-
in-class generalization error, and minimizability gaps, as
well as Bayes-consistency and R-consistency bounds, are
similarly defined (Awasthi et al., 2022a;b).

In the next sections, we study the problem of learning a pair
(h, r) in the framework of regression with deferral. We will
derive a family of surrogate losses ofLdef , starting from first
principles. We will show that these loss functions benefit
from strong consistency guarantees, which yield directly
principled algorithms for our deferral problem. We will
specifically distinguish two approaches: the single-stage
surrogate losses, where the predictor h and the deferral
function r are jointly learned, and the two-stage surrogate
losses wherein the predictor h have been previously trained
and is fixed and subsequently used in the learning process
of the deferral function r.

3. Single-Stage Scenario
In this section, we derive single-stage surrogate losses for
the deferral loss and prove their strong (H,R)-consistency
bounds guarantees. To do so, we first prove that the follow-
ing alternative expression holds for Ldef .

Lemma 3.1. For any (h, r) ∈ H × R and (x, y) ∈ X × Y,
the loss function Ldef can be expressed as follows:

Ldef(h, r, x, y) =
⎡⎢⎢⎢⎣

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
1r(x)≠0

+
ne

∑
j=1

[L(h(x), y) +
ne

∑
k=1

ck(x, y)1k≠j]1r(x)≠j

− (ne − 1)
⎡⎢⎢⎢⎣
L(h(x), y) +

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
.

Let `0−1 be the zero-one multi-class classification loss de-
fined by `0−1(r, x, y) = 1r(x)≠y for all r ∈ R and (x, y) ∈
X × Y and let `∶R ×X × [ne] → R+ be a surrogate loss for
`0−1 such that ` ≥ `0−1. ` may be chosen to be the logistic
loss, for example. Since the last term (ne − 1)∑nej=1 cj(x, y)
in the expression of Ldef in Lemma 3.1 does not depend
on h and r, the following loss function L` defined for all
(h, r) ∈H ×R and (x, y) ∈ X × Y by

L`(h, r, x, y) =
⎡⎢⎢⎢⎣

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
`(r, x,0) (2)

+
ne

∑
j=1

⎡⎢⎢⎢⎢⎣
L(h(x), y) +

ne

∑
j′≠j

cj′(x, y)
⎤⎥⎥⎥⎥⎦
`(r, x, j)

− (ne − 1)L(h(x), y),

is a natural single-stage surrogate loss for Ldef . We will
show that when ` admits a strong R-consistency bound
with respect to `0−1, then L` admits an (H,R)-consistency
bound with respect to Ldef .

Let us underscore the novelty of the surrogate loss formula-
tion presented in equation (2) in the context of learning to
defer with multiple experts. This formulation represents a
substantial departure from the existing score-based approach
prevalent in classification. As previously highlighted, the
score-based formulation becomes inapplicable in regression.
Our new predictor-rejector formulation not only overcomes
this limitation, but also provides the foundation for the de-
sign of new deferral algorithms for classification.

We say that a hypothesis set R is regular if for any x ∈ X,
the predictions made by the hypotheses in R cover the com-
plete set of possible classification labels: {r(x)∶ r ∈ R} =
{0,1, . . . , ne}. Widely used hypothesis sets such as linear
hypotheses, neural networks, and of course the family of all
measurable functions are all regular.
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Recent studies by Awasthi et al. (2022b) and Mao et al.
(2023f) demonstrate that common multi-class surrogate
losses, such as constrained losses and comp-sum losses
(including the logistic loss), admit strong R-consistency
bounds with respect to the multi-class zero-one loss `0−1,
when using such regular hypothesis sets. The next result
shows that, for multi-class loss functions `, their corre-
sponding deferral surrogate losses L` (Eq. (2)) also exhibit
(H,R)-consistency bounds with respect to the deferral loss
(Eq. (1)).

Theorem 3.2. Let R be a regular hypothesis set and `
a surrogate loss for the multi-class loss function `0−1

upper-bounding `0−1. Assume that there exists a function
Γ(t) = β tα for some α ∈ (0,1] and β > 0, such that the
following R-consistency bound holds for all r ∈ R and any
distribution,

E`0−1(r) − E∗`0−1
(R) +M`0−1(R)

≤ Γ(E`(r) − E∗` (R) +M`(R)).

Then, the following (H,R)-consistency bound holds for all
h ∈H, r ∈ R and any distribution,

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R)

≤ Γ(EL`(h, r) − E∗L`(H,R) +ML`(H,R)),

where Γ(t) = max{t, (ne(l +∑nej=1 cj))
1−α

β tα}.

The proof is given in Appendix B. As already mentioned,
when the best-in-class error coincides with the Bayes error
E∗L(H,R) = E∗L(Hall,Rall) for L = L` and L = Ldef , the
minimizability gaps ML`(H,R) and MLdef

(H,R) vanish.
In such cases, the (H,R)-consistency bound guarantees that
when the surrogate estimation error EL`(h, r)−E∗L`(H,R)
is optimized up to ε, the estimation error of the deferral loss
ELdef

(h, r) − E∗Ldef
(H,R) is upper bounded by Γ(ε).

In particular, when both H and R include all measurable
functions, all the minimizability gap terms in Theorem 3.2
vanish, which yields the following result.

Corollary 3.3. Given a multi-class loss function ` ≥ `0−1.
Assume that there exists a function Γ(t) = β tα for some
α ∈ (0,1] and β > 0, such that the following excess error
bound holds for all r ∈ Rall and any distribution,

E`0−1
(r) − E∗`0−1

(Rall) ≤ Γ(E`(r) − E∗` (Rall)).

Then, the following excess error bound holds for all h ∈Hall,
r ∈ Rall and any distribution,

ELdef
(h, r) − E∗Ldef

(Hall,Rall)
≤ Γ(EL`(h, r) − E∗L`(Hall,Rall)),

where Γ(t) = max{t, (ne(l +∑nej=1 cj))
1−α

β tα}.

In this case, as shown by Mao et al. (2023f), Γ(t) can
be expressed as

√
2t for the logistic loss `log∶ (r, x, y) ↦

log2(∑nej=0 e
r(x,j)−r(x,y)). Then, by Corollary 3.3, we fur-

ther obtain the following corollary.

Corollary 3.4. For any h ∈Hall, r ∈ Rall and distribution,

ELdef
(h, r) − E∗Ldef

(Hall,Rall)

≤ Γ(EL`log
(h, r) − E∗L`log

(Hall,Rall)),

where Γ(t) = max{t,
√

2ne(l +∑nej=1 cj)
1
2 t

1
2 }.

By taking the limit on both sides, we derive the Bayes-
consistency of these single-stage surrogate losses L` with
respect to the deferral loss Ldef . More generally, Corol-
lary 3.3 shows that L` admits an excess error bound with
respect to Ldef when ` admits an excess error bound with
respect to `0−1.

4. Two-Stage Scenario
In the single-stage scenario, we introduced a family of surro-
gate losses and resulting algorithms for effectively learning
the pair (h, r). However, practical applications often en-
counter a two-stage scenario, where deferral decisions are
based on a fixed, pre-trained predictor h. Retraining this pre-
dictor is often prohibitively expensive or time-consuming.
Thus, this two-stage scenario (Mao et al., 2023a) requires a
different approach to optimize deferral decisions controlled
by r, while using the existing predictor h.

In this section, we will introduce a principled two-stage
algorithm for regression with deferral, with favorable con-
sistency guarantees. Remarkably, we show that the single-
stage approach can be adapted for the two-stage scenario if
we fix the predictor h and disregard constant terms.

Let h be a predictor learned by minimizing a regression loss
L in a first stage. A deferral function r is then learned based
on that predictor h and the following loss function Lh` in the
second stage: for any r ∈ R, x ∈ X and y ∈ Y,

Lh` (r, x, y) =
⎡⎢⎢⎢⎣

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
`(r, x,0) (3)

+
ne

∑
j=1

⎡⎢⎢⎢⎢⎣
L(h(x), y) +

ne

∑
j′≠j

cj′(x, y)
⎤⎥⎥⎥⎥⎦
`(r, x, j),

where ` is a surrogate loss in the standard multi-class classi-
fication. Equation (3) resembles (2), except for the constant
term (ne − 1)L(h(x), y). In (3), the predictor h remains
fixed while only the deferral function r is optimized. In (2),
both h and r are learned jointly.

Similarly, we define Lhdef as the deferral loss (1) with a fixed
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predictor h as follows:

Lhdef(r, x, y) = L(h(x), y)1r(x)=0+
ne

∑
j=1

cj(x, y)1r(x)=j . (4)

Here too, h is fixed in (4). Both Lh` and Lhdef are loss
functions defined for deferral function r, while `` and `def

are loss functions defined for pairs (h, r) ∈ (H,R).

As with the proposed single-stage approach, the two-stage
surrogate losses Lh` benefit from strong consistency guaran-
tees. We show that in the second stage where a predictor
h is fixed, the surrogate loss function Lh` benefits from R-
consistency bounds with respect to Lhdef when ` admits a
strong R-consistency bound with respect to the binary zero-
one loss `0−1.
Theorem 4.1. Given a hypothesis set R, a multi-class loss
function ` ≥ `0−1 and a predictor h. Assume that there exists
a function Γ(t) = β tα for some α ∈ (0,1] and β > 0, such
that the following R-consistency bound holds for all r ∈ R
and any distribution,

E`0−1(r) − E∗`0−1
(R) +M`0−1(R)

≤ Γ(E`(r) − E∗` (R) +M`(R)).

Then, the following R-consistency bound holds for all r ∈ R
and any distribution,

ELh
def

(r) − E∗Lh
def

(R) +MLh
def

(R)

≤ Γ(ELh
`
(r) − E∗Lh

`
(R) +MLh

`
(R)),

where Γ(t) = (ne(l +∑nej=1 cj))
1−α

β tα.

The proof is given in Appendix C. When the best-in-class
error coincides with the Bayes error, E∗L(R) = E∗L(Rall) for
L = Lh` and L = Lhdef , the minimizability gaps MLh

`
(R)

and MLh
def

(R) vanish. In that case, the R-consistency
bound guarantees that when the surrogate estimation error
ELh

`
(r)−E∗

Lh
`

(R) is optimized up to ε, the target estimation

error ELh
def

(r)−E∗
Lh

def

(R) is upper bounded by Γ(ε). In the
special case where H and R are the family of all measurable
functions, all the minimizability gap terms in Theorem 4.1
vanish. Thus, we obtain the following corollary.
Corollary 4.2. Given a multi-class loss function ` ≥ `0−1

and a predictor h. Assume that there exists a function Γ(t) =
β tα for some α ∈ (0,1] and β > 0, such that the following
excess error bound holds for all r ∈ R and any distribution,

E`0−1(r) − E∗`0−1
(Rall) ≤ Γ(E`(r) − E∗` (Rall)).

Then, the following excess error bound holds for all r ∈ Rall

and any distribution,

ELh
def

(r) − E∗Lh
def

(Rall)) ≤ Γ(ELh
`
(r) − E∗Lh

`
(Rall)), (5)

where Γ(t) = (ne(l +∑nej=1 cj))
1−α

β tα.

Corollary 4.2 shows that Lh` admits an excess error bound
with respect to Lhdef when ` admits an excess error bound
with respect to `0−1.

We now establish (H,R)-consistency bounds the entire
two-stage approach with respect to the deferral loss function
Ldef . This result applies to any multi-class loss function `
that satisfies a strong R-consistency bound with respect to
the multi-class zero-one loss `0−1.

Theorem 4.3. Given a hypothesis set H, a regular hypoth-
esis set R and a multi-class loss function ` ≥ `0−1. Assume
that there exists a function Γ(t) = β tα for some α ∈ (0,1]
and β > 0, such that the following R-consistency bound
holds for all r ∈ R and any distribution,

E`0−1(r) − E∗`0−1
(R) +M`0−1(R)

≤ Γ(E`(r) − E∗` (R) +M`(R)).

Then, the following (H,R)-consistency bound holds for all
h ∈H, r ∈ R and any distribution,

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R)

≤ EL(h) − EL(H) +ML(H)

+ Γ(ELh
`
(r) − E∗Lh

`
(R) +MLh

`
(R)),

(6)

where Γ(t) = (ne(l +∑nej=1 cj))
1−α

β tα.

The proof is presented in Appendix D. As before, when
H and R are the family of all measurable functions, all
the minimizability gap terms in Theorem 4.3 vanish. In
particular, Γ(t) can be expressed as

√
2t for the logistic

loss. Thus, we obtain the following on excess error bounds.

Corollary 4.4. Given a multi-class loss function ` ≥ `0−1.
Assume that there exists a function Γ(t) = β tα for some
α ∈ (0,1] and β > 0, such that the following excess error
bound holds for all r ∈ Rall and any distribution,

E`0−1(r) − E∗`0−1
(Rall) ≤ Γ(E`(r) − E∗` (Rall)).

Then, the following excess error bound holds for all h ∈Hall,
r ∈ Rall and any distribution,

ELdef
(h, r) − E∗Ldef

(Hall,Rall)

≤ EL(h) − EL(Hall) + Γ(ELh
`
(r) − E∗Lh

`
(Rall)),

(7)

where Γ(t) = (ne(l +∑nej=1 cj))
1−α

β tα. In particular,

Γ(t) =
√

2ne(l +∑nej=1 cj)
1
2 t

1
2 for ` = `log.

Corollary 4.4 shows that our two-stage approach admits an
excess error bound with respect to Ldef when ` admits an
excess error bound with respect to `0−1. More generally,

6
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when the minimizability gaps are zero, as when the best-
in-class errors coincide with the Bayes errors, the (H,R)-
consistency bound of Theorem 4.3 guarantees that the tar-
get estimation error, ELdef

(h, r) − E∗Ldef
(H,R), is upper

bounded by ε1 + Γ(ε2) provided that the surrogate estima-
tion error in the first stage, EL(h) − EL(H), is reduced to
ε1 and the surrogate estimation error in the second stage,
ELh

`
(r) − E∗

Lh
`

(R), reduced to ε2.

Significance and novelty. The challenges in dealing with
multiple experts in the theoretical analysis of learning to
deferral in regression arise first from the need to formu-
late new surrogate losses that cannot be directly extended
from previous work. Furthermore, proving theoretical guar-
antees requires analyzing the conditional regret for both
the surrogate and target deferral loss, which becomes more
complex with multiple experts. The novelty and signifi-
cance of our work are rooted in these new surrogate losses
and algorithmic solutions, which come with strong theoreti-
cal guarantees specifically tailored for this context. These
enhancements are non-trivial and represent a substantial
extension beyond the existing framework of regression with
abstention, which is limited in scope to a single expert,
squared loss, and label-independent cost.

5. Special Case of a Single Expert
In the special case of a single expert, ne = 1, both the single-
stage surrogate loss L` and the two-stage surrogate loss Lh`
can be simplified as follows:

c(x, y)`(r, x,0) + L(h(x), y)`(r, x,1).

Let `(r, x,0) = Φ(r(x)) and `(r, x,1) = Φ(−r(x)), where
Φ∶R → R+ is a non-increasing auxiliary function upper
bounding the indicator u ↦ 1u≤0. Here, r∶X → R is a
function whose sign determines if there is deferral, that is
r(x) ≤ 0:

`def(h, r, x, y) = L(h(x), y)1r(x)>0 + c(x, y)1r(x)≤0.

As an example, Φ can be the auxiliary function that defines a
margin-based loss in the binary classification. Thus, both the
single-stage surrogate loss `Φ and the two-stage surrogate
loss `hΦ can be reformulated as follows:

c(x, y)Φ(r(x)) + L(h(x), y)Φ(−r(x)). (8)

Some common examples of Φ are listed in Table 2 in Ap-
pendix E. Note that (8) is a straightforward extension of the
two-stage formulation given in (Mao et al., 2024b, Eq. (5)).
In their formulation, the zero-one loss function replaces
the regression loss and is tailored for the classification con-
text. A special case of the straightforward extension (8)
is one where the cost does not depend on the label y and
the squared loss is considered. This coincides with the loss

function (Cheng et al., 2023, Eq. (10)) in the context of
regression with abstention. It is important to note that in-
corporating y as argument of the cost functions is crucial
in the more general deferral setting, as each cost takes into
account the accuracy of the corresponding expert.

Let the binary zero-one loss be `bi
0−1(r, x, y) = 1sign(r(x))≠y ,

where sign(α) = 1α>0 − 1α≤0. We say that a hypothesis set
R consists of functions mapping from X to R is regular, if
{sign(r(x))∶ r ∈ R} = {+1,−1} for any x ∈ X.

Then, Theorems 3.2 and 4.3 can be reduced to Theorems 5.1
and 5.3 below respectively. We present these guarantees
and their corresponding corollaries in the following sections.

5.1. Single-Stage Guarantees

Here, we present guarantees for the single-stage surrogate.
Theorem 5.1. Given a hypothesis set H, a regular hypoth-
esis set R and a margin-based loss function Φ. Assume that
there exists a function Γ(t) = β tα for some α ∈ (0,1] and
β > 0, such that the following R-consistency bound holds
for all r ∈ R and any distribution,

E`bi
0−1

(r) − E∗`bi
0−1

(R) +M`bi
0−1

(R)

≤ Γ(EΦ(r) − E∗Φ(R) +MΦ(R)).

Then, the following (H,R)-consistency bound holds for all
h ∈H, r ∈ R and any distribution,

E`def
(h, r) − E∗`def

(H,R) +M`def
(H,R)

≤ Γ(E`Φ(h, r) − E∗`Φ(H,R) +M`Φ(H,R)),

where Γ(t) = max{t, (l + c)1−α
β tα}.

In particular, when H and R are the family of all measurable
functions, all the minimizability gap terms in Theorem 5.1
vanish. In this case, as shown by Awasthi et al. (2022a),
Γ(t) can be expressed as t

2

2
for exponential and logistic loss,

t2 for quadratic loss and t for hinge, sigmoid and ρ-margin
losses. Thus, the following result holds.
Corollary 5.2. Given a margin-based loss function Φ. As-
sume that there exists a function Γ(t) = β tα for some
α ∈ (0,1] and β > 0, such that the following excess er-
ror bound holds for all r ∈ Rall and any distribution,

E`bi
0−1

(r) − E∗`bi
0−1

(Rall) ≤ Γ(EΦ(r) − E∗Φ(Rall)).

Then, the following excess error bound holds for all h ∈Hall,
r ∈ Rall and any distribution,

E`def
(h, r) − E∗`def

(Hall,Rall)
≤ Γ(E`Φ(h, r) − E∗`Φ(Hall,Rall)),

where Γ(t) = max{t, (l + c)1−α
β tα}. In particular,

Γ(t) = max{t, 1
2
(l + c) 1

2 t
1
2 } for Φ = Φexp and Φlog,

7
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Table 1. System MSE of deferral with multiple experts: mean ± standard deviation over three runs.

Dataset Base cost Method Base model Single expert Two experts Three experts

Airfoil

7 Single — 18.98 ± 2.44 13.16 ± 0.93 8.53 ± 1.57
7 Two 23.35 ± 1.90 18.64 ± 1.96 13.33 ± 0.92 8.81 ± 1.56
3 Single — 18.83 ± 2.14 13.79 ± 0.75 8.64 ± 1.40
3 Two 23.35 ± 1.90 19.15 ± 1.99 15.12 ± 0.62 10.06 ± 1.54

Housing

7 Single — 14.85 ± 5.40 14.75 ± 3.53 12.43 ± 2.03
7 Two 22.72 ± 7.68 16.26 ± 5.58 14.82 ± 3.60 12.02 ± 1.97
3 Single — 15.17 ± 5.18 15.07 ± 2.88 14.80 ± 3.48
3 Two 22.72 ± 7.68 16.24 ± 4.64 15.62 ± 3.04 14.87 ± 4.04

Concrete

7 Single — 104.38 ± 5.55 41.08 ± 2.05 37.83 ± 2.60
7 Two 120.20 ± 8.09 114.73 ± 6.50 44.46 ± 5.34 36.75 ± 1.76
3 Single — 105.01 ± 5.40 39.52 ± 2.81 38.46 ± 1.79
3 Two 120.20 ± 8.09 114.11 ± 5.34 39.93 ± 2.77 37.51 ± 2.32

Γ(t) = max{t, (l + c) 1
2 t

1
2 } for Φ = Φquad, and Γ(t) = t

for Φ = Φhinge, Φsig, and Φρ.

By taking the limit on both sides, we derive the Bayes-
consistency and excess error bound of these single-stage
surrogate losses `Φ with respect to the deferral loss `def .
More generally, Corollary 5.2 shows that `Φ admits an ex-
cess error bound with respect to `def when Φ admits an
excess error bound with respect to `0−1. Corollary 5.2 also
include the theoretical guarantees in (Cheng et al., 2023,
Theorems 7 and 8) as a special case where the cost does not
depend on the label y and the squared loss is considered.

5.2. Two-Stage Guarantees

Here, we present guarantees for the two-stage surrogate.
Theorem 5.3. Given a hypothesis set H, a regular hypoth-
esis set R and a margin-based loss function Φ. Assume that
there exists a function Γ(t) = β tα for some α ∈ (0,1] and
β > 0, such that the following R-consistency bound holds
for all r ∈ R and any distribution,

E`bi
0−1

(r) − E∗`bi
0−1

(R) +M`bi
0−1

(R)

≤ Γ(EΦ(r) − E∗Φ(R) +MΦ(R)).
Then, the following (H,R)-consistency bound holds for all
h ∈H, r ∈ R and any distribution,

E`def
(h, r) − E∗`def

(H,R) +M`def
(H,R)

≤ EL(h) − EL(H) +ML(H)

+ Γ(E`h
Φ
(r) − E∗`h

Φ
(R) +M`h

Φ
(R)),

where Γ(t) = (l + c)1−α
β tα.

As before, when H and R include all measurable functions,
all the minimizability gap terms in Theorem 4.3 vanish. In
particular, Γ(t) can be expressed as t2

2
for exponential and

logistic loss, t2 for quadratic loss and t for hinge, sigmoid
and ρ-margin losses (Awasthi et al., 2022a). Thus, we obtain
the following result.

Corollary 5.4. Given a margin-based loss function Φ. As-
sume that there exists a function Γ(t) = β tα for some
α ∈ (0,1] and β > 0, such that the following excess er-
ror bound holds for all r ∈ Rall and any distribution,

E`bi
0−1

(r) − E∗`bi
0−1

(Rall) ≤ Γ(EΦ(r) − E∗Φ(Rall)).

Then, the following excess error bound holds for all h ∈Hall,
r ∈ Rall and any distribution,

E`def
(h, r) − E∗`def

(Hall,Rall)

≤ EL(h) − EL(Hall) + Γ(E`h
Φ
(r) − E∗`h

Φ
(Rall)),

(9)

where Γ(t) = (l + c)1−α
β tα. In particular, Γ(t) = 1

2
(l +

c) 1
2 t

1
2 for Φ = Φexp and Φlog, Γ(t) = (l + c) 1

2 t
1
2 for Φ =

Φquad, and Γ(t) = t for Φ = Φhinge, Φsig, and Φρ.

Corollary 5.4 shows that the proposed two-stage approach
admits an excess error bound with respect to `def when Φ
admits an excess error bound with respect to `0−1. More
generally, in the cases where the minimizability gaps are
zero (as when the best-in-class errors coincide with the
Bayes errors), the (H,R)-consistency bound in Theo-
rem 5.3 guarantees that when the surrogate estimation er-
ror in the first stage EL(h) − EL(H) is minimized up to
ε1 and the surrogate estimation error in the second stage
E`h

Φ
(r) − E∗

`h
Φ

(R) is minimized up to ε2, the target estima-
tion error E`def

(h, r) − E∗`def
(H,R) is upper bounded by

ε1 + Γ(ε2).

It is worth noting that while our theoretical results are gen-
eral, they can be effectively applied to derive bounds for
specific loss functions. Applicable regression loss functions
are those with a boundedness assumption, and any classifica-
tion loss function that benefits from H-consistency bounds
is suitable. Our theoretical analysis guides the selection of
the loss function by considering several key factors: the
functional form Γ of the bound, the approximation proper-
ties indicated by the minimizability gaps, the optimization

8
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advantages of each loss function, and how favorably the
bounds depend on the number of experts.

6. Experiments
In this section, we report the empirical results for our single-
stage and two-stage algorithms for regression with deferral
on three datasets from the UCI machine learning repository
(Asuncion & Newman, 2007), the Airfoil, Housing
and Concrete, which have also been studied in (Cheng
et al., 2023).

Setup and Metrics. For each dataset, we randomly split
it into a training set of 60% examples, a validation set of
20% examples and a test set of 20% examples. We report
results averaged over three such random splits. We adopted
linear models for both the predictor h and the deferral func-
tion r. We considered three experts g1, g2 and g3, each
trained by feedforward neural networks with ReLU activa-
tion functions (Nair & Hinton, 2010) with one, two, and
three hidden layers, respectively. We used the Adam opti-
mizer (Kingma & Ba, 2014) with a batch size of 256 and
2,000 training epochs. The learning rate for all datasets is
selected from {0.01,0.05,0.1}. We adopted the squared
loss as the regression loss (L = L2). For our single-stage sur-
rogate loss (2) and two-stage surrogate loss (3), we choose
` = `log as the logistic loss. In the experiments, we con-
sidered two types of costs: cj(x, y) = L(gj(x), y) and
cj(x, y) = L(gj(x), y)+αj , for 1 ≤ j ≤ ne. In the first case,
the cost corresponds exactly to the expert’s squared error.
In the second case, the constant αj is the base cost for defer-
ring to expert gj . We chose (α1, α2, α3) = (4.0,8.0,12.0).
We selected those values of α because they are empirically
determined to encourage an optimal balance, ensuring a rea-
sonable number of input instances are deferred to each ex-
pert. For evaluation, we compute the system mean squared
error (MSE), that is the average squared difference between
the target value and the prediction made by the predictor h
or the expert selected by the deferral function r. We also
report the empirical regression loss, 1

n ∑
n
i=1 L(h(xi), yi), of

the base model used in the two-stage algorithm.

Results. In Table 1, we report the mean and standard de-
viation of the empirical regression loss of the base model,
as well as the System MSE obtained by using a single ex-
pert g1, two experts g1 and g2 and three experts g1, g2 and
g3, over three random splits of the dataset. Here, the base
model is the predictor. We did not report its performance in
the single-stage method because it is independently trained
and exhibits varying accuracies across settings with single
expert, two experts, and three experts, in contrast to the
two-stage method where the base model is pre-learned and
fixed. Additionally, in the single-stage method, the base
model is always used in conjunction with deferral, rather
than being used separately.

Table 1 shows that the performance of both our single-stage
and two-stage algorithms improves as more experts are
taken into account across the Airfoil, Housing and
Concrete datasets. In particular, our algorithms are able
to effectively defer difficult test instances to more suitable
experts and outperform the base model. Table 1 also shows
that the two-stage algorithm usually does not perform as
well as the single-stage one in the regression setting, mainly
due to the error accumulation in the two-stage process, par-
ticularly if the first-stage predictor has large errors. However,
the two-stage algorithm is still useful when an existing pre-
dictor cannot be retrained due to cost or time constraints. In
such cases, we can still improve its performance by learning
a multi-expert deferral with our two-stage surrogate losses.

Note that since our work is the first to study regression
with multi-expert deferral, there are no existing baselines
for direct comparison. Nevertheless, for completeness, we
include additional experimental results with three simple
baselines in Appendix F, further demonstrating the effec-
tiveness of our approach.

In real-life scenarios, “cancellation effects” might occur
when using experts with similar expertise (Verma et al.,
2023). However, the experts we have used do not exhibit
such an effect. This is because, for each expert, there are
specific input instances that they can predict correctly, which
others cannot. Therefore, without base costs, the system’s
error after using deferral is lower than that of any individual
expert. Furthermore, in our scenario, we operate under the
assumption that the experts are predefined.

Our H-consistency guarantees demonstrate that in both
single- and two-stage scenarios, given a sufficient amount
of data, our algorithms can approximate results close to the
optimal deferral loss for the given experts. Our analysis
and experiments do not directly address the process of se-
lecting experts beforehand. Optimally selecting diverse and
accurate experts is an interesting research question.

7. Conclusion
We introduced a novel and principled framework for regres-
sion with deferral, enhancing the accuracy and reliability
of regression predictions through the strategic use of multi-
ple experts. Our comprehensive analysis of this framework
includes the formulation of novel surrogate losses for both
single-stage and two-stage scenarios, and the proof of strong
H-consistency bounds. These theoretical guarantees lead to
powerful algorithms that leverage multiple experts, provid-
ing a powerful tool for addressing the inherent challenges of
regression problems. Empirical results validate the effective-
ness of our approach, showcasing its practical significance
and opening up new avenues for developing robust solutions
across diverse regression tasks.
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A. Useful lemmas
Lemma 3.1. For any (h, r) ∈H ×R and (x, y) ∈ X × Y, the loss function Ldef can be expressed as follows:

Ldef(h, r, x, y) =
⎡⎢⎢⎢⎣

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
1r(x)≠0 +

ne

∑
j=1

[L(h(x), y) +
ne

∑
k=1

ck(x, y)1k≠j]1r(x)≠j

− (ne − 1)
⎡⎢⎢⎢⎣
L(h(x), y) +

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
.

Proof. Observe that, for any x ∈ X, since r(x) = 0 if and only if r(x) ≠ j for all j ≥ 1, the following equality holds:

1r(x)=0 = 1⋀nej=1{r(x)≠j} =
ne

∑
j=1

1r(x)≠j − (ne − 1).

Similarly, since r(x) = j if and only if r(x) ≠ k for k ≠ j and r(x) ≠ 0, the following equality holds:

1r(x)=j = 1r(x)≠0 +
ne

∑
k=1

1r(x)≠k1k≠j − (ne − 1).

In view of these identities, starting from the definition of Ldef , we can write:

Ldef(h, r, x, y) = L(h(x), y)1r(x)=0 +
ne

∑
j=1

cj(x, y)1r(x)=j

= L(h(x), y)
⎡⎢⎢⎢⎣

ne

∑
j=1

1r(x)≠j − (ne − 1)
⎤⎥⎥⎥⎦
+
ne

∑
j=1

cj(x, y)[1r(x)≠0 +
ne

∑
k=1

1r(x)≠k1k≠j − (ne − 1)]

=
⎡⎢⎢⎢⎣

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
1r(x)≠0 +

ne

∑
j=1

L(h(x), y)1r(x)≠j +
ne

∑
j=1

ne

∑
k=1

cj(x, y)1k≠j1r(x)≠k

− (ne − 1)
⎡⎢⎢⎢⎣
L(h(x), y) +

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
1r(x)≠0 +

ne

∑
j=1

L(h(x), y)1r(x)≠j +
ne

∑
k=1

ne

∑
j=1

ck(x, y)1k≠j1r(x)≠j

− (ne − 1)
⎡⎢⎢⎢⎣
L(h(x), y) +

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦

(change of variables k and j)

=
⎡⎢⎢⎢⎣

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
1r(x)≠0 +

ne

∑
j=1

[L(h(x), y) +
ne

∑
k=1

ck(x, y)1k≠j]1r(x)≠j − (ne − 1)
⎡⎢⎢⎢⎣
L(h(x), y) +

ne

∑
j=1

cj(x, y)
⎤⎥⎥⎥⎦
.

This completes the proof.

Lemma A.1. Assume that the following R-consistency bound holds for all r ∈ R and any distribution,

E`0−1(r) − E∗`0−1
(R) +M`0−1(R) ≤ Γ(E`(r) − E∗` (R) +M`(R)).

Then, for any p = (p0, . . . , pne) ∈ ∆ne and x ∈ X, we have

ne

∑
j=0

pj1r(x)≠j − inf
r∈R

⎛
⎝
ne

∑
j=0

pj1r(x)≠j
⎞
⎠
≤ Γ

⎛
⎝
ne

∑
j=0

pj`(r, x, j) − inf
r∈R

⎛
⎝
ne

∑
j=0

pj`(r, x, j)
⎞
⎠
⎞
⎠
.

Proof. For any x ∈ X, consider a distribution δx that concentrates on that point. Let pj = P(y = j ∣ x), j ∈ [ne]. Then, by
definition, E`0−1(r) − E∗`0−1

(R) +M`0−1(R) can be expressed as

E`0−1(r) − E∗`0−1
(R) +M`0−1(R) =

ne

∑
j=0

pj1r(x)≠j − inf
r∈R

⎛
⎝
ne

∑
j=0

pj1r(x)≠j
⎞
⎠
.
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Similarly, E`(r) − E∗` (R) +M`(R) can be expressed as

E`(r) − E∗` (R) +M`(R) =
ne

∑
j=0

pj`(r, x, j) − inf
r∈R

⎛
⎝
ne

∑
j=0

pj`(r, x, j)
⎞
⎠
.

Since the R-consistency bound holds by the assumption, we complete the proof.

B. Proof of Theorem 3.2
Theorem 3.2. Let R be a regular hypothesis set and ` a surrogate loss for the multi-class loss function `0−1 upper-bounding
`0−1. Assume that there exists a function Γ(t) = β tα for some α ∈ (0,1] and β > 0, such that the following R-consistency
bound holds for all r ∈ R and any distribution,

E`0−1(r) − E∗`0−1
(R) +M`0−1(R) ≤ Γ(E`(r) − E∗` (R) +M`(R)).

Then, the following (H,R)-consistency bound holds for all h ∈H, r ∈ R and any distribution,

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R) ≤ Γ(EL`(h, r) − E∗L`(H,R) +ML`(H,R)),

where Γ(t) = max{t, (ne(l +∑nej=1 cj))
1−α

β tα}.

Proof. The conditional error of the deferral loss can be expressed as

E
y∣x

[Ldef(h, r, x, y)] = E
y∣x

[L(h(x), y)]1r(x)=0 +
ne

∑
j=1

E
y∣x

[cj(x, y)]1r(x)=j . (10)

Let c0(x) = infh∈H Ey∣x[L(h(x), y)] and cj(x) = Ey∣x[c(x, y)]. Thus, the best-in class conditional error of the deferral
loss can be expressed as

inf
h∈H,r∈R

E
y∣x

[Ldef(h, r, x, y)] = min
j∈[ne]

cj(x). (11)

The conditional error of the surrogate loss can be expressed as

E
y∣x

[``(h, r, x, y)] =
⎛
⎝
ne

∑
j=1

E
y∣x

[cj(x, y)]
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

E
y∣x

[cj′(x, y)]
⎞
⎠
`(r, x, j)

− (ne − 1) E
y∣x

[L(h(x), y)].
(12)

Note that the coefficient of term Ey∣x[L(h(x), y)] satisfies ∑nej=1 `(r, x, j) − (ne − 1) ≥ 0 since ` ≥ `0−1. Thus, the best-in
class conditional error of the surrogate loss can be expressed as

inf
h∈H,r∈R

E
y∣x

[L`(h, r, x, y)]

= inf
r∈R

⎡⎢⎢⎢⎢⎣

⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
c0(x) +

ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

⎤⎥⎥⎥⎥⎦
− (ne − 1)c0(x).

(13)

Next, we analyze four cases separately to show that the calibration gap of the surrogate loss can be lower bounded by that of
the deferral loss.

Case I: r(x) = 0 and c0(x) ≤ minnej=1 cj(x). In this case, by (10) and (11), the calibration gap of the deferral loss can be
expressed as

E
y∣x

[Ldef(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[Ldef(h, r, x, y)] = E
y∣x

[L(h(x), y)] − inf
h∈H

E
y∣x

[L(h(x), y)].
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By (12) and (13), the calibration gap of the surrogate loss can be expressed as

E
y∣x

[L`(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[L`(h, r, x, y)]

=
⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j) − (ne − 1) E

y∣x
L(h(x), y)

− inf
r∈R

⎡⎢⎢⎢⎢⎣

⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
c0(x) +

ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

⎤⎥⎥⎥⎥⎦
+ (ne − 1)c0(x).

Since ` ≥ `0−1, we have `(r, x, j) ≥ 1 for j ≠ 0. By eliminating the infimum over R from the final line, and consequently
canceling the terms related to cj(x) for j ≠ 0, the calibration gap of the surrogate loss can be lower bounded as

E
y∣x

[L`(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[L`(h, r, x, y)]

≥ (E
y∣x

[L(h(x), y)] − inf
h∈H

E
y∣x

[L(h(x), y)])
⎛
⎝
ne

∑
j=1

`(r, x, j) − ne + 1
⎞
⎠

≥ E
y∣x

[L(h(x), y)] − inf
h∈H

E
y∣x

[L(h(x), y)] (∑nej=1 `(r, x, j) − ne + 1 ≥ 1)

= E
y∣x

[Ldef(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[Ldef(h, r, x, y)].

Case II: c0(x) > minnej=1 cj(x). In this case, by (10) and (11), the calibration gap of the deferral loss can be expressed as

E
y∣x

[Ldef(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[Ldef(h, r, x, y)] = cr(x)(x) −
ne

min
j=1

cj(x).

By (12) and (13), the calibration gap of the surrogate loss can be expressed as

E
y∣x

[L`(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[L`(h, r, x, y)]

=
⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j) − (ne − 1) E

y∣x
[L(h(x), y)]

− inf
r∈R

⎡⎢⎢⎢⎢⎣

⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
c0(x) +

ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

⎤⎥⎥⎥⎥⎦
+ (ne − 1)c0(x).

Using the fact that c0(x) = infh∈H Ey∣x[L(h(x), y)] ≤ Ey∣x[L(h(x), y)], the calibration gap of the surrogate loss can be
lower bounded as

E
y∣x

[L`(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[L`(h, r, x, y)]

≥
⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

− inf
r∈R

⎡⎢⎢⎢⎢⎣

⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

⎤⎥⎥⎥⎥⎦

= ne
⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j=1

cj(x)
⎞
⎠

⎡⎢⎢⎢⎢⎣

ne

∑
j=0

pj`(r, x, j) − inf
r∈R

⎛
⎝
ne

∑
j=0

pj`(r, x, j)
⎞
⎠

⎤⎥⎥⎥⎥⎦
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where we let p0 =
∑nej=1 cj(x)

ne(Ey∣x[L(h(x),y)]+∑nej=1 cj(x))
and pj =

Ey∣x[L(h(x),y)]+∑nej′≠j cj′(x)

ne(Ey∣x[L(h(x),y)]+∑nej=1 cj(x))
, j = {1, . . . , ne} in the last equality.

By Lemma A.1, we have

ne

∑
j=0

pj`(r, x, j) − inf
r∈R

⎛
⎝
ne

∑
j=0

pj`(r, x, j)
⎞
⎠

≥ Γ−1⎛
⎝
ne

∑
j=0

pj1r(x)≠j − inf
r∈R

⎛
⎝
ne

∑
j=0

pj1r(x)≠j
⎞
⎠
⎞
⎠

= Γ−1(max
j∈[ne]

pj − pr(x))

= Γ−1⎛
⎝

Ey∣x[L(h(x), y)] −minnej=1 cj(x)
ne(Ey∣x[L(h(x), y)] +∑nej=1 cj(x))

⎞
⎠

Therefore, we obtain

E
y∣x

[L`(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[L`(h, r, x, y)]

≥ ne
⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j=1

cj(x)
⎞
⎠

Γ−1⎛
⎝

Ey∣x[L(h(x), y)] −minnej=1 cj(x)
ne(Ey∣x[L(h(x), y)] +∑nej=1 cj(x))

⎞
⎠

≥ ne
⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j=1

cj(x)
⎞
⎠

Γ−1⎛
⎝
Ey∣x[Ldef(h, r, x, y)] − infh∈H,r∈REy∣x[Ldef(h, r, x, y)]

ne(Ey∣x[L(h(x), y)] +∑nej=1 cj(x))
⎞
⎠

≥ 1

β
1
α

(Ey∣x[Ldef(h, r, x, y)] − infh∈H,r∈REy∣x[Ldef(h, r, x, y)])
1
α

(ne(l +∑nej=1 cj))
1
α−1

where we use the fact that Γ(t) = βtα, α ∈ (0,1], β > 0, L ≤ l and cj ≤ cj , j = {1, . . . , ne} in the last inequality.

Case III: r(x) > 0 and c0(x) ≤ minnej=1 cj(x). In this case, by (10) and (11), the calibration gap of the deferral loss can
be expressed as

E
y∣x

[Ldef(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[Ldef(h, r, x, y)] = cr(x)(x) − c0(x).

By (12) and (13), the calibration gap of the surrogate loss can be expressed as

E
y∣x

[L`(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[L`(h, r, x, y)]

=
⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j) − (ne − 1) E

y∣x
[L(h(x), y)]

− inf
r∈R

⎡⎢⎢⎢⎢⎣

⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
c0(x) +

ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

⎤⎥⎥⎥⎥⎦
+ (ne − 1)c0(x).
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Using the fact that Ey∣x[L(h(x), y)] ≥ infh∈H Ey∣x[L(h(x), y)] = c0(x), the calibration gap of the surrogate loss can be
lower bounded as

E
y∣x

[L`(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[L`(h, r, x, y)]

≥
⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
c0(x) +

ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

− inf
r∈R

⎡⎢⎢⎢⎢⎣

⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
c0(x) +

ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

⎤⎥⎥⎥⎥⎦

= ne
⎛
⎝
ne

∑
j=0

cj(x)
⎞
⎠

⎡⎢⎢⎢⎢⎣

ne

∑
j=0

pj`(r, x, j) − inf
r∈R

⎛
⎝
ne

∑
j=0

pj`(r, x, j)
⎞
⎠

⎤⎥⎥⎥⎥⎦

where we let p0 =
∑nej=1 cj(x)

ne(∑nej=0 cj(x))
and pj =

c0(x)+∑nej′≠j cj′(x)

ne(∑nej=0 cj(x))
, j = {1, . . . , ne} in the last equality. By Lemma A.1, we have

ne

∑
j=0

pj`(r, x, j) − inf
r∈R

⎛
⎝
ne

∑
j=0

pj`(r, x, j)
⎞
⎠

≥ Γ−1⎛
⎝
ne

∑
j=0

pj1r(x)≠j − inf
r∈R

⎛
⎝
ne

∑
j=0

pj1r(x)≠j
⎞
⎠
⎞
⎠

= Γ−1(max
j∈[ne]

pj − pr(x))

= Γ−1⎛
⎝
cr(x)(x) − c0(x)
ne(∑nej=0 cj(x))

⎞
⎠

Therefore, we obtain

E
y∣x

[L`(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[L`(h, r, x, y)]

≥ ne
⎛
⎝
ne

∑
j=0

cj(x)
⎞
⎠

Γ−1⎛
⎝
cr(x)(x) − c0(x)
ne(∑nej=0 cj(x))

⎞
⎠

= ne
⎛
⎝
ne

∑
j=0

cj(x)
⎞
⎠

Γ−1⎛
⎝
Ey∣x[Ldef(h, r, x, y)] − infh∈H,r∈REy∣x[Ldef(h, r, x, y)]

ne(∑nej=0 cj(x))
⎞
⎠

≥ 1

β
1
α

(Ey∣x[Ldef(h, r, x, y)] − infh∈H,r∈REy∣x[Ldef(h, r, x, y)])
1
α

(ne(l +∑nej=1 cj))
1
α−1

where we use the fact that Γ(t) = βtα, α ∈ (0,1], β > 0, L ≤ l and cj ≤ cj , j = {1, . . . , ne} in the last inequality.

Overall, by taking the expectation of the deferral and surrogate calibration gaps and using Jensen’s inequality in each case,
we obtain

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R) ≤ Γ(EL`(h, r) − E∗L`(H,R) +ML`(H,R)).

where Γ(t) = max{t, (ne(l +∑nej=1 cj))
1−α

β tα}.

C. Proof of Theorem 4.1
Theorem 4.1. Given a hypothesis set R, a multi-class loss function ` ≥ `0−1 and a predictor h. Assume that there exists a
function Γ(t) = β tα for some α ∈ (0,1] and β > 0, such that the following R-consistency bound holds for all r ∈ R and any
distribution,

E`0−1(r) − E∗`0−1
(R) +M`0−1(R) ≤ Γ(E`(r) − E∗` (R) +M`(R)).
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Then, the following R-consistency bound holds for all r ∈ R and any distribution,

ELh
def

(r) − E∗Lh
def

(R) +MLh
def

(R) ≤ Γ(ELh
`
(r) − E∗Lh

`
(R) +MLh

`
(R)),

where Γ(t) = (ne(l +∑nej=1 cj))
1−α

β tα.

Proof. Given a hypothesis set R, a multi-class loss function ` and a predictor h. For any r ∈ R, x ∈ X and y ∈ Y, the
conditional error of Lh` and Lhdef can be written as

E
y∣x

[Lhdef(r, x, y)] = E
y∣x

[L(h(x), y)]1r(x)=0 +
ne

∑
j=1

E
y∣x

[cj(x, y)]1r(x)=j

E
y∣x

[Lh` (r, x, y)] =
⎛
⎝
ne

∑
j=1

E
y∣x

[cj(x, y)]
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

E
y∣x

[cj′(x, y)]
⎞
⎠
`(r, x, j).

(14)

Let c0(x) = infh∈H Ey∣x[L(h(x), y)] and cj(x) = Ey∣x[c(x, y)]. Thus, the best-in class conditional error of of Lh` and Lhdef

can be expressed as

inf
r∈R

E
y∣x

[Lhdef(r, x, y)] = min
j∈[ne]

cj(x)

inf
r∈R

E
y∣x

[Lh` (r, x, y)] = inf
r∈R

⎡⎢⎢⎢⎢⎣

⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

⎤⎥⎥⎥⎥⎦

(15)

Let p0 =
∑nej=1 cj(x)

ne(Ey∣x[L(h(x),y)]+∑nej=1 cj(x))
and pj =

Ey∣x[L(h(x),y)]+∑nej′≠j cj′(x)

ne(Ey∣x[L(h(x),y)]+∑nej=1 cj(x))
, j = {1, . . . , ne}. Then, the calibration gap of

Lh` can be written as

E
y∣x

[Lh` (r, x, y)] − inf
r∈R

E
y∣x

[Lh` (r, x, y)]

= ne
⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j=1

cj(x)
⎞
⎠

⎡⎢⎢⎢⎢⎣

ne

∑
j=0

pj`(r, x, j) − inf
r∈R

⎛
⎝
ne

∑
j=0

pj`(r, x, j)
⎞
⎠

⎤⎥⎥⎥⎥⎦
By Lemma A.1, we have

ne

∑
j=0

pj`(r, x, j) − inf
r∈R

⎛
⎝
ne

∑
j=0

pj`(r, x, j)
⎞
⎠
≥ Γ−1⎛

⎝
ne

∑
j=0

pj1r(x)≠j − inf
r∈R

⎛
⎝
ne

∑
j=0

pj1r(x)≠j
⎞
⎠
⎞
⎠

= Γ−1(max
j∈[ne]

pj − pr(x))

= Γ−1⎛
⎝

cr(x)(x) −minj∈[ne] cj(x)
ne(Ey∣x[L(h(x), y)] +∑nej=1 cj(x))

⎞
⎠
.

Therefore, we obtain

E
y∣x

[L`(r, x, y)] − inf
r∈R

E
y∣x

[L`(r, x, y)]

≥ ne
⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j=1

cj(x)
⎞
⎠

Γ−1⎛
⎝

cr(x)(x) −minj∈[ne] cj(x)
ne(Ey∣x[L(h(x), y)] +∑nej=1 cj(x))

⎞
⎠

≥ 1

β
1
α

(Ey∣x[Lhdef(r, x, y)] − infr∈REy∣x[Lhdef(r, x, y)])
1
α

(ne(l +∑nej=1 cj))
1
α−1

where we use the fact that Γ(t) = βtα, α ∈ (0,1], β > 0, L ≤ l and cj ≤ cj , j = {1, . . . , ne} in the last inequality. Taking the
expectation on both sides and using Jensen’s inequality, we obtain

ELh
def

(r) − E∗Lh
def

(R) +MLh
def

(R) ≤ Γ(ELh
`
(r) − E∗Lh

`
(R) +MLh

`
(R)).

where Γ(t) = (ne(l +∑nej=1 cj))
1−α

β tα.
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D. Proof of Theorem 4.3
Theorem 4.3. Given a hypothesis set H, a regular hypothesis set R and a multi-class loss function ` ≥ `0−1. Assume that
there exists a function Γ(t) = β tα for some α ∈ (0,1] and β > 0, such that the following R-consistency bound holds for all
r ∈ R and any distribution,

E`0−1
(r) − E∗`0−1

(R) +M`0−1
(R) ≤ Γ(E`(r) − E∗` (R) +M`(R)).

Then, the following (H,R)-consistency bound holds for all h ∈H, r ∈ R and any distribution,

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R) ≤ EL(h) − EL(H) +ML(H) + Γ(ELh

`
(r) − E∗Lh

`
(R) +MLh

`
(R)),

where Γ(t) = (ne(l +∑nej=1 cj))
1−α

β tα.

Proof. The conditional error of the deferral loss can be expressed as

E
y∣x

[Ldef(h, r, x, y)] = E
y∣x

[L(h(x), y)]1r(x)=0 +
ne

∑
j=1

E
y∣x

[cj(x, y)]1r(x)=j .

Let c0(x) = infh∈H Ey∣x[L(h(x), y)] and cj(x) = Ey∣x[c(x, y)]. Thus, the best-in class conditional error of the deferral
loss can be expressed as

inf
h∈H,r∈R

E
y∣x

[Ldef(h, r, x, y)] = min
j∈[ne]

cj(x).

Thus, by introducing the term min{Ey∣x[L(h(x), y)],minnej=1 cj(x)} and subsequently subtracting it after rearranging, the
conditional regret of the deferral loss Ldef can be written as follows

E
y∣x

[Ldef(h, r, x, y)] − inf
h∈H,r∈R

E
y∣x

[Ldef(h, r, x, y)]

= E
y∣x

[L(h(x), y)]1r(x)=0 +
ne

∑
j=1

E
y∣x

[cj(x, y)]1r(x)=j − min
j∈[ne]

cj(x)

= E
y∣x

[L(h(x), y)]1r(x)=0 +
ne

∑
j=1

E
y∣x

[cj(x, y)]1r(x)=j −
ne

min
j=1

cj(x) + (
ne

min
j=1

cj(x) − min
j∈[ne]

cj(x)).

(16)

Note that by the property of the minimum, the second term can be upper bounded as

ne
min
j=1

cj(x) − min
j∈[ne]

cj(x) ≤ E
y∣x

[L(h(x), y)] − inf
h∈H

E
y∣x

[L(h(x), y)].

Next, we will upper bound the first term. Note that the conditional error and the best-in class conditional error of Lh` can be
expressed as

Lh` (r, x, y) =
⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

inf
r∈R

E
y∣x

[Lh` (r, x, y)] = inf
r∈R

⎡⎢⎢⎢⎢⎣

⎛
⎝
ne

∑
j=1

cj(x)
⎞
⎠
`(r, x,0) +

ne

∑
j=1

⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j′≠j

cj′(x)
⎞
⎠
`(r, x, j)

⎤⎥⎥⎥⎥⎦

(17)

Let p0 =
∑nej=1 cj(x)

ne(Ey∣x[L(h(x),y)]+∑nej=1 cj(x))
and pj =

Ey∣x[L(h(x),y)]+∑nej′≠j cj′(x)

ne(Ey∣x[L(h(x),y)]+∑nej=1 cj(x))
, j = {1, . . . , ne}. Then, the first term can be

rewritten as

E
y∣x

[L(h(x), y)]1r(x)=0 +
ne

∑
j=1

E
y∣x

[cj(x, y)]1r(x)=j −
ne

min
j=1

cj(x)

= ne
⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j=1

cj(x)
⎞
⎠

⎡⎢⎢⎢⎢⎣

ne

∑
j=0

pj1r(x)≠0 − inf
r∈R

⎛
⎝
ne

∑
j=0

pj1r(x)≠j
⎞
⎠

⎤⎥⎥⎥⎥⎦
.
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By Lemma A.1, we have

ne

∑
j=0

pj1r(x)≠j − inf
r∈R

⎛
⎝
ne

∑
j=0

pj1r(x)≠j
⎞
⎠
≤ Γ

⎛
⎝
ne

∑
j=0

pj`(r, x, j) − inf
r∈R

⎛
⎝
ne

∑
j=0

pj`(r, x, j)
⎞
⎠
⎞
⎠

= Γ
⎛
⎝
Lh` (r, x, y) − infr∈REy∣x[Lh` (r, x, y)]
ne(Ey∣x[L(h(x), y)] +∑nej=1 cj(x))

⎞
⎠
.

Therefore, the first term can be upper bounded as

E
y∣x

[L(h(x), y)]1r(x)=0 +
ne

∑
j=1

E
y∣x

[cj(x, y)]1r(x)=j −
ne

min
j=1

cj(x)

= ne
⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j=1

cj(x)
⎞
⎠

⎡⎢⎢⎢⎢⎣

ne

∑
j=0

pj1r(x)≠0 − inf
r∈R

⎛
⎝
ne

∑
j=0

pj1r(x)≠j
⎞
⎠

⎤⎥⎥⎥⎥⎦

≤ ne
⎛
⎝
E
y∣x

[L(h(x), y)] +
ne

∑
j=1

cj(x)
⎞
⎠

Γ
⎛
⎝
Lh` (r, x, y) − infr∈REy∣x[Lh` (r, x, y)]
ne(Ey∣x[L(h(x), y)] +∑nej=1 cj(x))

⎞
⎠

≤
⎛
⎝
ne

⎛
⎝
l +

ne

∑
j=1

cj
⎞
⎠
⎞
⎠

1−α

β (Lh` (r, x, y) − inf
r∈R

E
y∣x

[Lh` (r, x, y)])
α

where we use the fact that Γ(t) = βtα, α ∈ (0,1], β > 0, L ≤ l and cj ≤ cj , j = {1, . . . , ne} in the last inequality. After
upper bounding the first term and the second term in (16) as above, taking the expectation on both sides and using Jensen’s
inequality, we obtain

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R) ≤ EL(h) − EL(H) +ML(H)

+ Γ(ELh
`
(r) − E∗Lh

`
(R) +MLh

`
(R)),

where Γ(t) = (ne(l +∑nej=1 cj))
1−α

β tα.

E. Common margin-based losses and corresponding deferral surrogate losses

Table 2. Common margin-based losses and corresponding deferral surrogate losses.

Name Φ(u) Deferral surrogate loss `Φ

Exponential Φexp(u) = e−u L(h(x), y)er(x) + c(x, y)e−r(x)
Logistic Φlog(u) = log(1 + e−u) L(h(x), y) log(1 + er(x)) + c(x, y) log(1 + e−r(x))
Quadratic Φquad(u) = max{1 − u,0}2

L(h(x), y)Φquad(−r(x)) + c(x, y)Φquad(r(x))
Hinge Φhinge(u) = max{1 − u,0} L(h(x), y)Φhinge(−r(x)) + c(x, y)Φhinge(r(x))
Sigmoid Φsig(u) = 1 − tanh(ku), k > 0 L(h(x), y)Φsig(−r(x)) + c(x, y)Φsig(r(x))
ρ-Margin Φρ(u) = min{1,max{0,1 − u

ρ
}}, ρ > 0 L(h(x), y)Φρ(−r(x)) + c(x, y)Φρ(r(x))
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Table 3. Comparison of our proposed method with three simple baselines.

Baseline 1 Baseline 2 Baseline 3 Ours

EXP 1 EXP 2 EXP 3 EXP 1 EXP 1, 2 EXP 1, 2, 3 EXP 1 EXP 2 EXP 3 EXP 1 EXP 1, 2 EXP 1, 2, 3

17.37 ± 4.80 15.07 ± 3.03 12.72 ± 2.30 17.77 ± 5.12 15.43 ± 2.83 12.92 ± 2.45 16.26 ± 5.58 15.44 ± 2.25 12.36 ± 3.32 16.26 ± 5.58 14.82 ± 3.60 12.02 ± 1.97

F. Additional experiments
Here, we report additional experimental results with three simple baselines:

• Baseline 1: The accuracy of the expert.

• Baseline 2: Always defer to one expert (random or not random) with probability a%.

• Baseline 3: Single-expert formulation using only expert 1 (or 2, or 3).

In Table 3, we report the empirical results of our two-stage method without base cost on the Housing dataset alongside the
corresponding baselines, which further demonstrates our approach’s effectiveness. For our method, the single-expert deferral
ratio is 91%, the two-expert deferral rate is 8% for the first expert and 85% for the second expert, and the three-expert
deferral rate is 4% for the first expert, 35% for the second expert, and 60% for the third expert. We use the same deferral
rate for randomly deferring to experts in Baseline 2. The error of the base model is 22.72 ± 7.68. EXP represents the expert
used, and system MSE values are reported. Clearly, our method outperforms all three baselines.
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