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ABSTRACT

Large Language Models (LLMs) can carry out complex reasoning tasks by
generating intermediate reasoning steps. These steps are triggered by what
is called chain-of-thought (CoT) prompting, which comes in two flavors: one
leverages a simple prompt like “Let’s think step by step” to facilitate step-by-step
reasoning before answering a question (Zero-Shot-CoT). The other uses manual
demonstrations, each composed of a question and a reasoning chain that leads to
an answer (Manual-CoT). Unfortunately, the superior performance of the latter
strategy crucially hinges on manually generating task-specific demonstrations. This
makes it far less scalable and more dependent on the talent of the CoT engineer.
We show that such manual efforts may be eliminated by leveraging LLMs to
generate the reasoning chains on its own. Since these generated chains often
come with mistakes we propose a number of mitigation strategies. Our proposed
Auto-CoT method automaticaly samples diverse questions and we perform post-
processing quality control to generate usable reasoning chains from Zero-Shot-
CoT. On ten public benchmark reasoning tasks, Auto-CoT performs on par with
Manual-CoT without the need for human intervention. Code is available at
https://github.com/amazon-research/auto-cot.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Thoppilan et al., 2022; Rae et al., 2021;
Chowdhery et al., 2022) have performed impressively on complex reasoning tasks by decomposing
multi-step problems into intermediate steps before giving answers (Nye et al., 2022). This reasoning
process is elicited by a recent technique: chain-of-thought (CoT) prompting (Wei et al., 2022b).

CoT prompting comes in two major flavors: one is to add a single prompt such as “Let’s think step
by step” after the test question to facilitate the reasoning chains in LLMs (Kojima et al., 2022). Since
this strategy is task-agnostic and does not need input-output demonstrations, it is called Zero-Shot-
CoT (Figure 1 left). Via Zero-Shot-CoT, LLMs have shown to be decent zero-shot reasoners. The
other strategy is to provide few-shot prompting through manual reasoning demonstrations one by
one (Wei et al., 2022b). Each demonstration has a question and a reasoning chain. The latter is
composed of a rationale (a series of intermediate reasoning steps) and an expected answer. With all
the demonstrations being manually designed, this is referred to as Manual-CoT (Figure 1 right).

In practice, Manual-CoT outperforms Zero-Shot-CoT (Wei et al., 2022b; Kojima et al., 2022).
However, superior performance hinges on the hand-crafting of effective demonstrations. This
involves nontrivial efforts in designs of both questions and their reasoning chains for demonstrations.
Even more problematic, different tasks, such as arithmetic (Roy & Roth, 2015) and commonsense
reasoning (Talmor et al., 2019), require different ways of demonstrations to be manually generated.

We propose Auto-CoT. It addresses the problems in Manual-CoT by automatically constructing
demonstrations with questions and reasoning chains. Auto-CoT uses LLMs for this task. It generates
examples using the prompt “Let’s think step by step” with Zero-Shot-CoT. Unfortunately, a naive
approach is insufficient. For example, given a test question of a dataset, retrieving semantically
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A: Let’s think step by step. There are 64 puppies. 28 of

them were sold. This leaves 36 puppies. Each cage has

4 puppies, so we need 9 cages.

Therefore, the answer (arabic numerals) is Test Question

Generated Rationale

A Few Manual Demos

Q: A pet store had 64 puppies. In one day they sold 28 of

them and put the rest into cages with 4 in each cage.

How many cages did they use?

Q: There are 15 trees in the grove. Grove workers will plant

trees in the grove today. After they are done, there will be 21

trees. How many trees did the grove workers plant today?

A: There are 15 trees originally. Then there were 21 trees after

some more were planted. So there must have been 21 - 15 = 6.

The answer is 6.
…

Rationale Generation

9.

LLM

Answer Extraction

The pet store had 64 puppies. They sold 28 of them. So they

had 64 - 28 = 36 puppies left. They put them into cages with 4

in each cage. So they used 36 / 4 = 9 cages. The answer is 9.

Q: A pet store had 64 puppies. In one day they sold 28 of them

and put the rest into cages with 4 in each cage. How many

cages did they use?

A:

(a) Zero-Shot-CoT (b) Manual-CoT

Question

Answer Rationale

LLM

LLM

Q: A pet store had 64 puppies. In one day they sold 28 of

them and put the rest into cages with 4 in each cage.

How many cages did they use?

A: Let’s think step by step.

Figure 1: Zero-Shot-CoT (Kojima et al., 2022), using the ‘Let’s think step by step’ prompt, and
Manual-CoT (Wei et al., 2022b), using human generated reasoning chains, with example inputs and
outputs of an LLM.

similar questions and invoking Zero-Shot-CoT to generate reasoning chains will fail. After all, Zero-
Shot-CoT still makes mistakes in reasoning chains. These mistakes can be mitigated by providing
sufficient diversity of demonstrations. Auto-CoT employs two main steps: First, partition questions
of a given dataset into a few clusters. Second, select a representative question from each cluster and
generate its reasoning chain using Zero-Shot-CoT with simple heuristics.

We evaluate Auto-CoT on ten benchmark reasoning tasks including: (i) arithmetic reasoning
(MultiArith (Roy & Roth, 2015), GSM8K (Cobbe et al., 2021), AQUA-RAT (Ling et al., 2017),
SVAMP (Patel et al., 2021)); (ii) commonsense reasoning (CSQA (Talmor et al., 2019), StrategyQA
(Geva et al., 2021)); (iii) symbolic reasoning (Last Letter Concatenation, Coin Flip) (Wei et al.,
2022b). Experimental results show that Auto-CoT performs competitively compared to Manual-CoT
that requires (less scalable) manual designs. This indicates that LLMs can perform CoT reasoning by
automatically constructing demonstrations.

2 RELATED WORK

Two lines of research are key for the current work: chain-of-thought (CoT) prompting for multi-step
reasoning and in-context learning for LLMs. We review both of them below.

2.1 CHAIN-OF-THOUGHT PROMPTING

CoT prompting is a gradient-free technique of inducing LLMs to produce intermediate reasoning
steps that lead to the final answer. Wei et al. (2022b) studied CoT prompting in language models. It
elicits LLMs to generate a coherent sequence of intermediate reasoning steps that lead to the final
answer. LLMs can perform CoT reasoning with zero-shot prompting (Zero-Shot-CoT) (Kojima et al.,
2022) or through human generated few-shot demonstrations (Manual-CoT) (Wei et al., 2022b).

Zero-Shot-CoT. LLMs are decent zero-shot reasoners whose generated rationales have already
reflected the CoT reasoning. This observation inspires our work to leverage self-generated rationales
for demonstrations. Generating rationales by LLMs was shown to be practical by Zelikman et al.
(2022). In their work, an LLM is prompted to generate rationales. Among them, the ones that lead to
the correct answer are selected. The selection requires a training dataset of questions with annotated
answers. In contrast, we consider a more challenging scenario where only a set of test questions are
given (without a training dataset), following CoT prompting (Wei et al., 2022b; Kojima et al., 2022).

Manual-CoT achieves stronger performance by eliciting CoT reasoning via effective human-
generated and designed demonstrations. However, the work required in designing both questions and
their reasoning chains are nontrivial. Instead of addressing this limitation, recent studies mainly focus
on hand-crafting more complex demonstrations or leveraging ensemble-like methods. One trend
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is problem decomposition. In least-to-most prompting (Zhou et al., 2022a), complex problems are
reduced to sub-problems, and then the sub-problems are solved sequentially. In addition, prompting
with more reasoning steps shows performance boosts (Fu et al., 2022).

A second trend is to vote over multiple reasoning paths for a test question. Wang et al. (2022a)
introduced a self-consistency decoding strategy to sample multiple outputs of LLMs and then take
a majority over the final answers. Wang et al. (2022b) and Li et al. (2022) introduced randomness
in the input space to produce more diverse outputs for voting. Manually-designed demonstrations
served the seed set to generate additional rationales: leave one question from the seed set and use
the remaining demonstrations to generate rationales for this question by the LLM. More recently,
multilingual (Shi et al., 2022) and multimodal CoT (Lu et al., 2022b) have also emerged. Unlike the
aforementioned research lines that rely on manually-designed demonstrations, our work intends to
eliminate manual designs while retaining competitive performance.

2.2 IN-CONTEXT LEARNING

CoT prompting is closely related to in-context learning (ICL) (Radford et al., 2019; Brown et al.,
2020). ICL enables LLMs to perform a target task by feeding a few prompted examples as part of the
input. Without gradient update, ICL allows a single model to perform various tasks universally. There
are various research lines to improve the performance of ICL: (i) obtaining the most effective prompts
(Fu et al., 2022; Lu et al., 2022a; Zhou et al., 2022b), e.g., a popular practice is dynamically retrieving
related demonstrations to a given test input (Rubin et al., 2022; Su et al., 2022); (ii) augmenting with
fine-grained information, such as incorporating task instruction (Mishra et al., 2022; Wei et al., 2022a;
Sanh et al., 2022); (iii) manipulating output probabilities of LLMs instead of directly computing the
likelihood of target labels (Holtzman et al., 2021; Zhao et al., 2021; Min et al., 2022a).

Despite the success of ICL, studies (Liu et al., 2022b; Lu et al., 2022d;c) have shown that the strength
of ICL may vary widely depending on the choice of in-context demonstrations (Liu et al., 2022a).
In detail, the formatting of the prompt, such as wording or order of demonstrations, may lead to
performance fluctuations (Webson & Pavlick, 2022; Zhao et al., 2021). Min et al. (2022b) even
questioned the necessity of ground-truth input-output mapping: using incorrect labels in the examples
only marginally lowers the performance. In other words, LLMs already have an innate ability to
reason. We only need to compel it to do so rather than needing to teach it how to accomplish this goal.

Note that existing work in ICL is mainly based on standard classification and multiple choice datasets
that only have simple <input→output> mappings. We argue that those findings may not be applicable
to the CoT prompting scenario with more complex <input→rationale→output> mappings. As
experiments confirm (Appendix A.1), mistakes in either the <input→rationale> mapping or the
<rationale→output> mapping lead to a dramatic drop in accuracy.

3 CHALLENGES IN AUTOMATIC COT GENERATION

Good performance of ICL relies on well-crafted demonstrations. As reported in Manual-CoT (Wei
et al., 2022b), using demonstrations written by different annotators brings up to 28.2% accuracy
disparity in a symbolic reasoning task, while changing the order of demonstrations results in less than
2% changes in most tasks. This suggests that the key challenge of Auto-CoT lies in automatically
constructing demonstrations with good questions and their reasoning chains.

3.1 GENERATING COT DATA

Recall that Manual-CoT hand-crafts a small number of questions in demonstrations, not the least
due to the limited attention window size of a transformer.1 With similarity-based retrieval methods
being widely adopted for prompting LLMs (Rubin et al., 2022; Su et al., 2022), a promising solution
is to generate CoT demonstrations using Zero-Shot-CoT and then to pick a suitable set of them for
ICL, e.g. via similarity based retrieval. We use GPT-3 (Brown et al., 2020) with 175B parameters
(text-davinci-002) for the LLM, unless stated otherwise, to generate the demonstrations.

1Implementation details can be found in Section 5.1. For Manual-CoT, we use the provided demonstrations
from Wei et al. (2022b). There are 8 examples for MultiArith and GSM8K, and 4 examples for AQuA.
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We follow the more challenging assumption in CoT studies (Wei et al., 2022b; Kojima et al., 2022)
that only a set of test questions are given (without a training dataset). Following Liu et al. (2022b),
we use Sentence-BERT (Reimers & Gurevych, 2019) to encode questions. For each question qtest in
a test dataset, we sample demonstration questions qdemo

i (i = 1, . . . , k) from the rest of the questions.
One strategy is to use Information Retrieval. Retrieval-Q-CoT (Figure 9) retrieves the top-k, e.g.,
k = 8, most similar questions based on cosine similarity. Alternatively we can pick a more diverse
set by drawing k of them at random. We refer to this as Random-Q-CoT (Figure 10).

At a high level, both Retrieval-Q-CoT and Random-Q-CoT take the concatenation of qdemo
i , cdemo

i
pairs (i = 1, . . . , k) and qtest as input to predict the reasoning chain for qtest, which contains the
answer in the end (like right of Figure 1).

Table 1: Accuracy (%) of different sampling
methods. † indicates the use of training sets
with manually annotated CoT. We report the
mean and standard deviations for Random-Q-
CoT and Retrieval-Q-CoT over three runs.

Method MultiArith GSM8K AQuA

Zero-Shot-CoT 78.7 40.7 33.5
Manual-CoT 91.7 46.9 35.8

Random-Q-CoT 87.1±1.8 47.3±0.5† 36.4±2.2†
Retrieval-Q-CoT 82.4±0.5 48.4±0.6† 39.6±2.4†

To our surprise, Random-Q-CoT outperforms
Retrieval-Q-CoT on MultiArith, an arithmetic
dataset (Roy & Roth, 2015) (Table 1). Note that
retrieval for CoT was originally proposed for tasks
with annotated labels (Rubin et al., 2022; Su et al.,
2022). Unfortunately, invoking Zero-Shot-CoT does
not guarantee perfectly accurate reasoning chains
(if this were the case, the point of the current paper
would be moot). Thus, we hypothesize that the
inferior performance of Retrieval-Q-CoT is caused
by incorrect reasoning chains by Zero-Shot-CoT. To
test this hypothesis, we experiment with Retrieval-
Q-CoT on two other datasets GSM8K (Cobbe et al.,
2021) and AQuA (Ling et al., 2017) that have training sets with annotated reasoning chains. Given
such gold-standard data, Retrieval-Q-CoT even outperforms Manual-CoT (see the results indicated by
† in Table 1). This indicates that Retrieval-Q-CoT is effective when human annotations are available.

3.2 ERROR AMPLIFICATION IN RETRIEVAL-Q-COT

Retrieval-Q-CoT Random-Q-CoT
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Figure 2: Error on Q and on its complement.

In order to design a robust Auto-CoT system we
need to gain a better understanding of the failures of
Retrieval-Q-CoT. Key is the fact that the reasoning
chains (both rationales and answers) in Retrieval-
Q-CoT are generated by Zero-Shot-CoT: as such
they may have mistakes that lead to wrong answers,
particularly by amplification of errors through
retrieval of erroneous chains.

Let’s see how this works in practice: we invoke
Zero-Shot-CoT on all the 600 questions from the
MultiArith dataset. Among them there are 128
questions (denoted as Q) where Zero-Shot-CoT
generates wrong answers (error rate: 21.3% =
128/600). We’ll call Q the unresolving set. Let’s see how well Retrieval-Q-CoT and Random-
Q-CoT perform on Q and on the remaining 472 questions. We find that the conditional errors for
Retrieval-Q-CoT and Random-Q-CoT on Q are 46.9%, 25.8% respectively. On its complement they
are 9.7% and 9.4% respectively. This demonstrates that it is primarily the errors on Q that contribute
to the larger error for Retrieval-Q-CoT. In other words, for hard questions like those in Figure 2,
retrieval tends to retrieve similarly hard questions that the model gets wrong.

To show that unresolved questions of Retrieval-Q-CoT tend to be similar, we present one case
study (e.g., lexical overlap) in Table 2. In the left part, the retrieved demonstration questions are
similar to the test question and ask “how long will it take him to cook the rest?” The reasoning
chains generated by Zero-Shot-CoT produce answers regarding “the total of ” instead of “the rest”.
Following the demonstrations, Retrieval-Q-CoT also fails by misunderstanding the meaning of “the
rest”. In contrast, Random-Q-CoT correctly understands “the rest” better without making similar
mistakes in the demonstrations, thanks to relatively more diverse (random) demonstrations.
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Table 2: Examples of Retrieval-Q-CoT and Random-Q-CoT for constructing demonstrations and
prediction. The upper part contains the automatically constructed demonstrations, and the lower part
contains test questions along with predicted reasoning chains.

Retrieval-Q-CoT Random-Q-CoT

Q: A chef needs to cook 9 potatoes. He has already cooked 7. If
each potato takes 3 minutes to cook, how long will it take him to cook
the rest?

Q: Wendy uploaded 79 pictures to Facebook. She put 44
pics into one album and put the rest into 5 different albums.
How many pictures were in each album?

A: Let’s think step by step. The chef has already cooked 7 potatoes.
That means it has taken him 7 * 3 minutes to cook those 7 potatoes. That
means it will take him 3 more minutes to cook each of the remaining
2 potatoes. That means it will take him a total of 7 * 3 + 2 * 3 = 21
minutes to cook all 9 potatoes. The answer is 21. ✗

A: Let’s think step by step. Wendy uploaded 79 pictures to
Facebook. She put 44 pictures into one album. That means
she put the rest of the pictures, 79 - 44 = 35 pictures, into
5 different albums. That means each album had 35 / 5 = 7
pictures in it. The answer is 7. ✓

Q: A chef needs to cook 13 potatoes. He has already cooked 5. If
each potato takes 6 minutes to cook, how long will it take him to cook
the rest?

Q: At a restaurant each adult meal costs $5 and kids eat free.
If a group of 15 people came in and 8 were kids, how much
would it cost for the group to eat?

A: Let’s think step by step. The chef has already cooked 5 potatoes.
That means it has taken him 30 minutes so far. There are 13 potatoes
in total. 5 have been cooked so far. That means there are 8 left to cook.
Each potato takes 6 minutes to cook. That means it will take the chef 48
minutes to cook the 8 remaining potatoes. In total, it will take the chef
78 minutes to cook all 13 potatoes. The answer is 78. ✗

A: Let’s think step by step. There are 8 kids, so that means
there are 7 adults. Each adult meal costs $5, so that means
that the 7 adults will cost $5*7=$35. Now we just need to
add the two numbers together. $35+8=43$. So it would cost
$43 for the group to eat. The answer is 43. ✗

Q: A chef needs to cook 15 potatoes. He has already cooked 8. If
each potato takes 9 minutes to cook, how long will it take him to cook
the rest?

Q: A chef needs to cook 15 potatoes. He has already cooked
8. If each potato takes 9 minutes to cook, how long will it
take him to cook the rest?

A: Let’s think step by step. The chef has already cooked 8 potatoes.
That means it has taken him 8 * 9 minutes to cook those 8 potatoes.
That means it will take him 9 minutes to cook each of the remaining
7 potatoes. That means it will take him a total of 8 * 9 + 7 * 9 = 135
minutes to cook all 15 potatoes. The answer is 135. ✗

A: Let’s think step by step. The chef needs to cook 15
potatoes. He has already cooked 8. That means he has to
cook 15-8=7 more potatoes. Each potato takes 9 minutes to
cook. That means it will take him 9*7=63 minutes to cook
the rest of the potatoes. The answer is 63. ✓

3.3 ERRORS FREQUENTLY FALL INTO THE SAME CLUSTER
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Figure 3: Clusters of similar questions.

Motivated by the observations in Table 2, we use
k-means to partition all 600 test questions into
k = 8 clusters, where each cluster contains similar
questions.2 With these clusters and reasoning chains
generated by Zero-Shot-CoT (see Section 3.2),
we can review whether certain clusters contain
questions where Zero-Shot-CoT frequently fails.

As can be seen in Figure 3, one of the clusters
(Cluster 2) has an abnormally high Zero-Shot-CoT
error rate (52.3%). The phenomenon could be generic as Zero-Shot-CoT may lack some skills to
solve some common problems in target tasks.3 For convenience we will refer to cluster 2, and similar
clusters on other datasets, as the frequent-error cluster.

The imperfect nature of synthetically generated reasoning chains in a zero-shot fashion makes it more
likely for incorrect demonstrations to lead to incorrect answers in Retrieval-Q-CoT. As such, a path
to mitigation is to bound the influence that any single cluster might impose on the ICL model.

3.4 MITIGATION THROUGH DIVERSITY

The analysis so far compellingly shows that LLMs are still not perfect zero-shot reasoners; thus,
we aim to mitigate the effect of their Zero-Shot-CoT errors, especially to mitigate misleading by
similarity in the design of Auto-CoT.

As we show later in Section 5.4, presenting a small portion of mistakes (e.g., 1 or 2 wrong
demonstrations out of 8) does not harm the overall reasoning performance for test questions. On
the other hand, suppose that the wrong demonstrations fall into the same cluster (as they do in our
experiments). In this case, a question similar to that cluster will be burdened by many incorrect
demonstrations for ICL. On the other hand, if we enforce diversity, say, by sampling one question

2We use Sentence-BERT (Reimers & Gurevych, 2019) to encode questions.
3We observe similar phenomena when changing the cluster number or using other datasets, as illustrated in

Appendix A.2.
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Q: While shopping for music online, Zoe bought 3 country albums and 5

pop albums. Each album came with a lyric sheet and had 3 songs. How

many songs did Zoe buy total?

A: Let’s think step by step. Zoe bought 3 country albums. Each album has 3

songs. So she bought 3*3=9 songs from the country albums. Zoe bought 5

pop albums. Each album has 3 songs. So she bought 5*3=15 songs from

the pop albums. Zoe bought 9+15=24 songs in total. The answer is 24.
…

Q: A chef needs to cook 9 potatoes. He has already cooked 7. If each

potato takes 3 minutes to cook, how long will it take him to cook the rest?

A: Let’s think step by step. The chef has already cooked 7 potatoes. That

means it has taken him 7 * 3 minutes to cook those 7 potatoes. That means

it will take him 3 more minutes to cook each of the remaining 2 potatoes …

Demo Construction

LLM In-Context Reasoning

Q: While shopping for music online, Zoe bought 3 …

Q: A chef needs to cook 9 potatoes. He has already…

LLM

Q: While shopping for music online … A: Let’s …1

Q: A chef needs to cook 9 potatoes ... A: Let’s…k

1 k
Clustering

Sampling by Selection Criteria

Q: A pet store had 64 puppies. In one day they sold 28 of them and put

the rest into cages with 4 in each cage. How many cages did they use?

A: Let’s think step by step.

The pet store had 64 puppies. They sold 28 of them. That means they have

36 puppies left. They put the rest into cages with 4 in each cage. That

means they have 9 cages. The answer is 9.

k Auto Demos

Test Question

Figure 4: Auto-CoT. Different from Manual-CoT in Figure 1, a total of k demonstrations (on the
right) are automatically constructed, using an LLM with the ‘Let’s think step by step’ prompt.

from every cluster, it’ll lead to a much higher chance to obtain a set of demonstrations that is not too
heavily perturbed.

Since different clusters reflect diverse semantics of the questions, clustering-based sampling enhances
the diversity of demonstrations, quite the opposite of similarity-based Retrieval-Q-CoT. This can help
mitigate the problems encountered in Section 3.2. At its extreme, if we consider each demonstration
to be an example of a distinct skill, diverse demonstrations seem to cover more alternative skills for
solving target questions: even though there still exists a small portion (e.g., 1/8) of mistakes in the
demonstrations, the performance will not be negatively affected (see Figure 5).

A second strategy for improving the set of demonstrations is to apply general quality heuristics. For
instance, wrong demonstrations often come with long questions and long rationales. We thus reject
long and convoluted questions and rationales. See Appendix C.3 for details on how to further improve
the set of demonstrations.

4 AUTO-COT: AUTOMATIC CHAIN-OF-THOUGHT PROMPTING

We are now ready to introduce Auto-CoT, our algorithm for automatic Chain-of-Thought Prompting.
Auto-CoT consists of two main stages (the overall procedure is illustrated in Figure 4):

Question clustering: given a set of questions, partition them into a small number of clusters,
according to the number of demonstrations that the ICL context can support (e.g., 8 clusters).

Demonstration sampling: select a representative question from each cluster and generate its
reasoning chain using Zero-Shot-CoT with simple heuristics.

4.1 QUESTION CLUSTERING

Since diversity-based clustering may mitigate errors we first cluster the questions. Note that clustering
entire demonstrations only leads to a minimal performance improvement, at the expense of needing
to invoke the full (question, reasoning, answer) generation API for each question in the set. As such,
we use questions only. We first compute a vector representation for each question by Sentence-BERT
(Reimers & Gurevych, 2019). The contextualized vectors are averaged to form a fix-sized question
representation. Then, the question representations are processed by the k-means clustering. For
questions in each cluster i, sort them into a list qi = [qi1, q

i
2, . . .] in the ascending order of the distance

to the cluster center. We will preferentially pick from the most typical question of each cluster when
it comes to generating demonstrations. See Algorithm 1 for further details.
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4.2 GENERATING DEMONSTRATIONS

Next we need to generate reasoning chains for those sampled questions and then sample
demonstrations that satisfy our selection criteria. More specifically, we construct a demonstration
di (concatenation of a question, a rationale, and an answer) for each cluster i (i = 1, . . . , k). For
cluster i, we iterate over questions in the sorted list qi = [qi1, q

i
2, . . .], obtained by Algorithm 1 until

satisfying our selection criteria.

A question that is closer to the cluster center i is considered earlier. Say that the j-th closest question
qij is being considered. A prompted input is formulated as: [Q: qij . A: [P]], where [P] is a single
prompt “Let’s think step by step”. This is fed into an LLM using Zero-Shot-CoT (Kojima et al., 2022)
to output the reasoning chain consisting of the rationale rij and the extracted answer aij . Then, a
candidate demonstration dij for the i-th cluster is constructed by concatenating the question, rationale,
and answer: [Q: qij ,A: rij ◦ aij ].
Similar to the criteria of the hand-crafting demonstrations in Wei et al. (2022b), our selection criteria
follow simple heuristics to encourage sampling simpler questions and rationales: choose the selected
demonstration if it has a question with no more than 60 tokens and a rationale with no more than 5
reasoning steps. Since Zero-Shot-CoT often uses ‘\n’ for separating the reasoning steps, the rule can
be easily implemented by counting the ‘\n’ tokens in the generated rationales.

Algorithm 1 Cluster
Require: QuestionsQ, number of chains k
Ensure: Sorted questions qi = [qi1, q

i
2, . . .]

for each cluster i ∈ {1 . . . k}
1: procedure CLUSTER(Q, k)
2: for each question q inQ do
3: Encode q by Sentence-BERT
4: Cluster all questions q into k clusters
5: for each cluster i ∈ {1 . . . k} do
6: Sort questions qi = [qi1, q

i
2, . . .]

in the ascending order cluster centrality
7: return all qi for i ∈ {1 . . . k}

Algorithm 2 Construct Demonstrations

Require: Sorted question lists qi for all k clusters
Ensure: Demonstration list d = [d1, . . . , dk]

1: procedure CONSTRUCT(qi, . . . ,qk)
2: d← ∅
3: for each cluster i ∈ {1 . . . k} do
4: for each question q ∈ qi do
5: (rationale r, answer a) via Zero-Shot-CoT(q)
6: if (q, r) satisfy selection heuristic then
7: d← d ∪ {(q, r, a)}
8: break
9: return d

Algorithm 2 generates demonstrations for all k clusters. These are then used to augment a test question
qtest for in-context learning. Specifically, the input is the concatenation of all the demonstrations
[d1, . . . , dk] followed by [Q: qtest. A: [P]]. This input is fed to LLMs to obtain the reasoning chain
with the answer in the end for qtest (right of Figure 4).

5 EXPERIMENTS

We provide a brief description of the experimental setup and present main experimental results. More
details, including ablation studies and an evaluation of alternatives can be found in Appendices B-D.

5.1 SETUP

Tasks and Datasets. We evaluate Auto-CoT on ten benchmark datasets from three categories of
reasoning tasks: (i) arithmetic reasoning (MultiArith (Roy & Roth, 2015), GSM8K (Cobbe et al.,
2021), AddSub (Hosseini et al., 2014), AQUA-RAT (Ling et al., 2017), SingleEq (Koncel-Kedziorski
et al., 2015), SVAMP (Patel et al., 2021)); (ii) commonsense reasoning (CSQA (Talmor et al., 2019),
StrategyQA (Geva et al., 2021)); (iii) symbolic reasoning (Last Letter Concatenation, Coin Flip) (Wei
et al., 2022b).

Implementation. We use the text-davinci-002 version of GPT-3 (Brown et al., 2020) with 175B
parameters as LLM (Ouyang et al., 2022) unless stated otherwise. We select this LLM because
it has the strongest CoT reasoning performance among public LLMs, as reported in Kojima et al.
(2022) and Wei et al. (2022b). To assess the dependency on LLMs we also evaluate the code-
davinci-002 of Codex as an alternative (Chen et al., 2021). Following Wei et al. (2022b), the number
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Table 3: Accuracy on ten reasoning tasks. We report mean and standard deviations (±). Random-Q-
CoT and Auto-CoT with three different random seeds. ⇑ and ↑ indicate that Auto-CoT is significantly
better than Random-Q-CoT at significance level p < 0.01 and p < 0.05 respectively.

Model Arithmetic Commonsense Symbolic

MultiArith GSM8K AddSub AQuA SingleEq SVAMP CSQA Strategy Letter Coin

Zero-Shot 22.7 12.5 77.0 22.4 78.7 58.8 72.6 54.3 0.2 53.8
Zero-Shot-CoT 78.7 40.7 74.7 33.5 78.7 63.7 64.6 54.8 57.6 91.4

Few-Shot 33.8 15.6 83.3 24.8 82.7 65.7 79.5 65.9 0.2 57.2
Manual-CoT 91.7 46.9 81.3 35.8 86.6 68.9 73.5 65.4 59.0 97.2

Random-Q-CoT 87.1±1.8 40.4±0.4 82.7±1.3 31.5±1.1 81.5±0.3 66.7±1.8 71.9±0.2 58.0±0.1 58.2±0.3 95.9±0.1

Auto-CoT 92.0⇑
±1.7 47.9⇑

±3.7 84.8↑
±2.9 36.5⇑

±2.2 87.0⇑
±1.2 69.5↑

±2.2 74.4↑
±2.5 65.4⇑

±0.4 59.7↑
±3.2 99.9⇑

±0.1

of demonstrations k is 8 except for AQuA and Letter (4), CSQA (7), and StrategyQA (6). The
constructed demonstrations of Auto-CoT are presented in Appendix E.

Baselines. We compare Auto-CoT to four baselines: Zero-Shot (Kojima et al., 2022), Zero-Shot-
CoT (Kojima et al., 2022), Few-Shot (Wei et al., 2022b), and Manual-CoT (Wei et al., 2022b).
For reference, Zero-Shot-CoT and Manual-CoT are summarized in Figure 1. The Zero-Shot
baseline concatenates a test question with the prompt “The answer is” as the LLM input. The
Few-Shot baseline has the same LLM input as Manual-CoT except for removed rationales from all
the demonstrations.

5.2 PERFORMANCE OF AUTO-COT ON TEN DATASETS

Table 3 provides a summary of the performance of Auto-CoT on ten datasets from three categories
of reasoning tasks. The Zero-Shot and Zero-Shot-CoT results are taken from Kojima et al. (2022),
the Few-Shot and Manual-CoT results are taken from Wei et al. (2022b), and the Auto-CoT results
are averaged over three random runs. Overall, Auto-CoT performs competitively compared to
Manual-CoT that requires manual designs of demonstrations. Due to the cost of manual designs,
Manual-CoT may design the same demonstrations for multiple datasets (e.g., 5/6 of the arithmetic
datasets). In contrast, Auto-CoT is more flexible and task-adaptive: every single dataset gets its own
demonstrations that are automatically constructed. Even better, the performance is sufficiently good
that no human intervention is required. This arguably shows that LLMs are already inherently able to
solve multi-step reasoning problems, they only need to be compelled to do so.

5.3 ABLATION STUDIES

To investigate the effect of clustering and simple heuristics, we conduct an ablation study by removing
either of these two design components in Table 4. To test for the effect of clustering, we use Random-
Q-CoT onl queries that satisfy the simple quality heuristics (simplicity of reasoning and answer)
described previously. Both design components are effective and essential. For more comprehensive
results on all the ten datasets please review Appendix C.2.

Table 4: Ablation studies of Design Components.

Method MultiArith GSM8K AddSub

Auto-CoT 92.0 47.9 84.8
w/o heuristics 90.7 45.2 83.4
w/o clustering 88.1 44.4 83.0

Table 5: Accuracy using the Codex LLM.

Method MultiArith GSM8K AddSub

Zero-Shot-CoT 64.8 31.8 65.6
Manual-CoT 96.8 59.4 84.6
Auto-CoT 93.2 62.8 91.9

To evaluate the general effectiveness of Auto-CoT using different LLMs, here we change the LLM
to Codex (Chen et al., 2021). Note that, as illustrated in Table 5, Codex LLM leads to performance
improvement on Arithmetic reasoning tasks. This also applies to Manual-CoT when compared with
Table 3 that uses GPT-3. Both with Codex and with GPT-3 the overall performance of Auto-CoT is
competitive compared to Manual-CoT, providing additional empirical evidence for its effectiveness.
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5.4 EFFECT OF WRONG DEMONSTRATIONS

One of the key observations in our preliminary experiments in Section 3.4 was that in-context
models show a modicum of robustness to incorrect (question, demonstration, answer) triples. To
see if diversity mitigates this effect, we design an In-Cluster Sampling baseline that constructs
demonstrations by randomly sampling questions from the same cluster containing the test question.
Figure 5 compares accuracy with varying amounts of wrong demonstrations on MultiArith. Compared
with In-Cluster Sampling, Auto-CoT (using diversity-based clustering) is less affected by wrong
demonstrations: its performance still does not degrade significantly even when presented with 50%
wrong demonstrations.
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Figure 5: Effect of wrong demonstrations.
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Figure 6: Bootstraping for the streaming setting.

5.5 STREAMING QUERIES

Typically CoT studies assume that a full dataset with test questions is given at the beginning (Wei
et al., 2022b; Kojima et al., 2022). This is needed to generate the demonstrations used in ICL
estimation. As illustrated above, Auto-Cot performs very well in this case. Now let us consider a
case where questions arrive in small batches of, say m questions at a time. This streaming setting
(Auto-CoT*) is easily addressed with the following modifications:

1. Initialize an empty set M0;
2. For the first batch of questions q11 , . . . , q

1
m

Invoke Zero-Shot-CoT (no clustering due to small m) for each q1i to obtain its reasoning
chain (q1i , r

1
i , a

1
i ).

3. For any subsequent batch b of questions qb1, . . . , q
b
m

Construct demonstrations with existing questions and reasoning chains in Mb−1 (like
Auto-CoT) and use the demonstrations for in-context reasoning for each qbi .

4. Add question-chain pairs (qb1, r
b
1, a

b
1), . . . , (q

b
m, rbm, abm) to Mb−1 to obtain Mb;

Figure 6 compares the accuracy on MultiArith at each batch (m = 30) in this streaming setting.
For an extended discussion see Figure 15 in the Appendix. As expected, for batch 1, Auto-CoT*
and Zero-Shot-CoT obtain equal accuracy. From batch 2, Auto-CoT* performs comparably with
Manual-CoT. This indicates that Auto-CoT* is quite effective in the streaming setting.

6 CONCLUSION

LLMs have shown reasoning capabilities with CoT prompting. The superior performance of Manual-
CoT hinges on the hand-crafting of demonstrations. This requires subject-matter experts, it is highly
dependent on the skill level of the annotator and it is costly. Auto-CoT provides an alternative by
eliminating such manual designs. Our experiments showed that Auto-CoT performs competitively.

Auto-CoT relies on the fact that ICL is robust to small amounts of error. Furthermore, we are able to
limit the influence of erroneous data by drawing stratified examples from clusters of questions — in
many cases errors are unevenly distributed across clusters and as such we can reduce the probability of
obtaining many errors from one and the same cluster. Lastly, simple heuristics (complex answers are
less likely to be accurate) are suitable for assessing the quality of an answer and should be employed
for an improvement in accuracy.
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A EXTENDED ANALYSIS FOR THE CHALLENGE OF AUTO-COT

A.1 IMPACT OF DEMONSTRATION ELEMENTS.

A demonstration is a triple composed by <question, rationale, answer> as shown in Figure 1. We
shuffle either of the demonstration components to see how the performance changes. According to
the results in Table 6, shuffling questions has the least performance reduction (91.7% → 73.8%).
A possible reason for the decent performance is that the model may capture the rationale-answer
mapping patterns. The pattern is expected to reflect how the intermediate reasoning steps can lead
to the final answer. This finding shows that it is possible to leverage the generated rationales by
Zero-Shot-CoT because those rationales are often logically correct even though they may lead to
wrong answers (Kojima et al., 2022).

Table 6: Impact of different components in the demonstrations.

Method Accuracy

Manual-CoT 91.7

Shuffle Questions 73.8
Shuffle Rationales 43.8
Shuffle Answers 17.0

In contrast, shuffling either rationales or answers reduces the accuracy significantly (91.7% →
43.8%/17.0%). The observation indicates that the rationale-answer consistency is critical. This
kind of mismatch actually happens in Zero-Shot-CoT. An example is shown in Table 7. Using such
demonstrations might teach the model illusion—predicting answers without basis.

Table 7: Mistakes made by rationale-answer inconsistency in the demonstration. The first block
shows the demonstration used for the test question in the second block.

Q: For the school bake sale Wendy made pastries. She baked 4 cupcakes and 29 cookies. After the sale she
had 24 to take back home. How many pastries did she sell?
A: Let’s think step by step. Wendy made 4 cupcakes and 29 cookies. She sold some pastries. She had
24 to take back home. How many pastries did she sell?We can set up an equation to solve this problem.
Wendy made 4 cupcakes and 29 cookies. She sold some pastries. She had 24 to take back home. How many
pastries did she sell?We can set up an equation to solve this problem. 4 cupcakes + 29 cookies - pastries
sold = 24 past. The answer is 29. ✗

Q: A chef needs to cook 13 potatoes. He has already cooked 5. If each potato takes 6 minutes to cook, how
long will it take him to cook the rest?
A: Let’s think step by step. A chef needs to cook 15 potatoes. He has already cooked 8. If each potato
takes 9 minutes to cook, how long will it take him to cook the rest?We can set up an equation to solve this
problem. A chef needs to cook 15 potatoes. He has already cooked 8. If each potato takes 9 minutes to
cook, how long will it take him to cook the rest?We can set up an equation to solve this problem. 8 potatoes
+ (15-8) potatoes = 15 potatoes. The answer is 72 minutes. ✗

A.2 OBSERVATION OF FREQUENT-ERROR CLUSTERS

To verify if Zero-Shot-CoT fails at similar problems, we cluster the questions into a few clusters
and calculate the error rate of the answers to the questions in each cluster. As shown in Figure 7,
the mistakes tend to gather in one or more clusters across different datasets. We observe a similar
phenomenon when the cluster number changes, as shown in Figure 8. The phenomenon has shown to
be generic that Zero-Shot-CoT may lack some skills to solve some common problems in target tasks.
We call the cluster with the highest error rate as a frequent-error cluster. Therefore, the imperfect
nature of generated reasoning chains poses risks of retrieving a set of similar questions inside the
frequent-error cluster for similarity-based retrieval.
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Figure 7: Question clustering in different datasets. (∆ is computed by the difference of largest and
smallest values.
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Figure 8: Question clustering with different numbers of clusters.

A.3 COMPARISON OF DIFFERENT COT PROMPTING METHODS

There are various CoT prompting methods discussed in this paper. To help distinguish their key
characteristics, we present a comparison of those CoT prompting methods across different dimensions
in Table 8. Note that Random-Q-CoT can be implemented with ‘Same Demos’, however, we find that
the variance of the performance will become much larger. Therefore, we implement Random-Q-CoT
with different demonstrations for each test question, in a similar manner like Retrieval-Q-CoT.

Table 8: Comparison of different CoT prompting methods. ‘Same Demos’ means using the same
demonstrations for different test questions.

Method Demo Question Demo Chain Same Demos

Zero-Shot-CoT N/A N/A Yes
Manual-CoT Manual Written Manual Written Yes
Random-Q-CoT Random Sampling Generated No
Retrieval-Q-CoT Similarity Retrieval Generated No
Auto-CoT Clustering Generated Yes

For Random-Q-CoT and Retrieval-Q-CoT, we present the illustrations of their processes in Figure 9
and 10, respectively.

B EXPERIMENTAL DETAILS

B.1 TASKS AND DATASETS

Our method is evaluated on ten benchmark datasets that cover arithmetic reasoning, commonsense
reasoning, and symbolic reasoning tasks. The statistics of the datasets are shown in Table 9.

Arithmetic Reasoning. For arithmetic reasoning, we consider the following six datasets: (i)
MultiArith (Roy & Roth, 2015), (ii) GSM8K (Cobbe et al., 2021), (iii) AddSub (Hosseini et al.,
2014), (iv) AQUA (Ling et al., 2017), (v) SingleEq (Koncel-Kedziorski et al., 2015), and (vi) SVAMP
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Q: A chef needs to cook 9 potatoes. He has already cooked 7. If each

potato takes 3 minutes to cook, how long will it take him to cook the rest?

A: Let’s think step by step. The chef has already cooked 5 potatoes. That

means it has taken him 30 minutes so far. There are 13 potatoes in total. 5

have been cooked so far. That means there are 8 left to cook. Each potato

takes 6 minutes to cook. That means it will take the chef 48 minutes to cook

the 8 remaining potatoes. In total, it will take the chef 78 minutes to …
…

Q: A chef needs to cook 9 potatoes. He has already cooked 7. If each

potato takes 3 minutes to cook, how long will it take him to cook the rest?

A: Let’s think step by step. The chef has already cooked 7 potatoes. That

means it has taken him 7 * 3 minutes to cook those 7 potatoes. That means

it will take him 3 more minutes to cook each of the remaining 2 potatoes …

Generating Chains

LLM In-Context Reasoning

Q: A chef needs to cook 13 potatoes. He has already…

Q: A chef needs to cook 9 potatoes. He has already…

LLM

Q: A chef needs to cook 13 potatoes… A: Let’s …1

Q: A chef needs to cook 9 potatoes ... A: Let’s…k

1 k
Question Retrieval

Related Demos to Each Test

Q: A chef needs to cook 15 potatoes. He has already cooked 8. If each

potato takes 9 minutes to cook, how long will it take him to cook the rest?

A: Let’s think step by step.

Let’s think step by step. The chef has already cooked 8 potatoes. That
means it has taken him 8 * 9 minutes to cook those 8 potatoes. That means
it will take him 9 minutes to cook each of the remaining 7 potatoes. That
means it will take him a total of 8 * 9 + 7 * 9 = 135 minutes to cook …

k Retrieved Demos

Test Question

Test Question

Figure 9: Overview of the Retrieval-Q-CoT method.

Wendy uploaded 79 pictures to Facebook. She put 44 pics into one album
and put the rest into 5 different albums. How many pictures were in each
album?
A: Let's think step by step. Wendy uploaded 79 pictures to Facebook. She
put 44 pictures into one album. That means she put the rest of the pictures,
79 - 44 = 35 pictures, into 5 different albums. That means each album had
35 / 5 = 7 pictures in it. The answer is 7.

…
Q: At a restaurant each adult meal costs $5 and kids eat free. If a group of
15 people came in and 8 were kids, how much would it cost for them to eat?
A: Let’s think step by step. There are 8 kids, so that means there are 7
adults. Each adult meal costs $5, so that means that the 7 adults will cost
$5*7=$35. Now we just need to add the two numbers together …

Generating Chains

LLM In-Context Reasoning

Q: Wendy uploaded 79 pictures to Facebook. She …

Q: At a restaurant each adult meal costs $5 and kids…

LLM

Q: Wendy uploaded 79 pictures to … A: Let’s …1

Q: At a restaurant each adult meal ... A: Let’s…k

1 k

Random Demos for Each Test

Q: A chef needs to cook 15 potatoes. He has already cooked 8. If each
potato takes 9 minutes to cook, how long will it take him to cook the rest?
A: Let’s think step by step.

Let’s think step by step. The chef needs to cook 15 potatoes. He has
already cooked 8. That means he has to cook 15-8=7 more potatoes. Each
potato takes 9 minutes to cook. That means it will take him 9*7=63 minutes
to cook the rest of the potatoes. The answer is 63.

k Random Demos

Test Question

Question Sampling

Figure 10: Overview of the Random-Q-CoT method.

(Patel et al., 2021). MultiArith, AddSub, and SingleEq are from the classic Math World Problem
Repository (Koncel-Kedziorski et al., 2016), and the other three are from more recent benchmarks.

Commonsense Reasoning. For commonsense reasoning, we use (i) CommonsenseQA (CSQA)
(Talmor et al., 2019) and (ii) StrategyQA (Geva et al., 2021). CommonsenseQA asks questions
with complex semantics that often require reasoning based on prior knowledge (Talmor et al., 2019).
StrategyQA requires models to infer an implicit multi-hop reasoning to answer questions (Geva et al.,
2021).

Symbolic Reasoning. For symbolic reasoning, we use (i) Last Letter Concatenation (Wei et al.,
2022b) and (ii) Coin Flip tasks (Wei et al., 2022b). Last letter Concatenation requires the model to
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concatenate the last letters of each word. The goal of Coin Flip is to answer whether a coin is still
heads up after people either flip or do not flip the coin.

Table 9: Dataset Description.
Dataset Number of samples Average words Answer Format Licence

MultiArith 600 31.8 Number Unspecified
AddSub 395 31.5 Number Unspecified
GSM8K 1319 46.9 Number MIT License
AQUA 254 51.9 Multiple choice Apache-2.0
SingleEq 508 27.4 Number No License
SVAMP 1000 31.8 Number MIT License
CSQA 1221 27.8 Multiple choice Unspecified
StrategyQA 2290 9.6 Yes or No Apache-2.0
Last Letters 500 15.0 String Unspecified
Coin Flip 500 37.0 Yes or No Unspecified

B.2 IMPLEMENTATION DETAILS

We use GPT-3 (Brown et al., 2020) of the text-davinci-002 version with 175B parameters for the
LLM (Ouyang et al., 2022) unless otherwise stated. We select the model because it is public and is
widely used to assess the ability of CoT reasoning in LLMs (Wei et al., 2022b; Kojima et al., 2022).
The model is accessed via the OpenAI API. Greedy decoding is used to generate the output. We set
max_tokens = 256 and temperature = 0. Following Wei et al. (2022b), the number of demonstrations
k used for in-context learning is 8 in most tasks, except for 4 in AQuA and Last Letter Concatenation,
7 in CSQA, and 6 in StrategyQA.

For the Codex LLM, the instructions are the same as those for GPT-3. We find that those instructions
work well for the Codex model. The only exception is that we set an extra argument stop=["Q:"]
(as the end-of-sequence token in generation) when invoking the OpenAI API to avoid generating
additional questions after answering the test question.

We report mean and standard deviations for our main results. For Random-Q-CoT, we run the
experiments with three different random seeds. For Retrieval-Q-CoT, we run the experiments by
setting "temperature=0.7". For Auto-CoT, there may be slight randomness in question clustering (e.g.,
different orders of demonstration), so we also run the experiments with three different random seeds.

C ANALYSIS

C.1 VISUALIZATION OF QUESTION CLUSTERING

Figure 11 visualizes question clustering (with PCA projection) in ten datasets. The illustration
indicates that there exist generic patterns, where different patterns may be characterized by questions
from different clusters. A few example questions from different clusters for MultiArith are presented
in Figure 12.

#5

AddSub SingleEq

Coin Flip 

GSM8K

Last Letter Concatenation

MultiArith

StrategyQA

AQUA

CSQASVAMP

Figure 11: Question clustering on ten datasets of reasoning tasks. Stars denote cluster centers.
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#9

Cluster-1:

Q: A pet store had 13 siamese cats and 5 house cats. During a sale they sold 10 cats. How 

many cats do they have left?

Q: A pet store had 41 siamese cats and 28 house cats. During a sale they sold 15 cats. How 

many cats do they have left?

Cluster-8:

Q: There were 10 friends playing a video game online when 7 players quit. If each player left 

had 8 lives, how many lives did they have total?

Q: There were 16 friends playing a video game online when 7 players quit. If each player left 

had 8 lives, how many lives did they have total?

… …

Figure 12: Examples of question clustering on the MultiArith dataset.

C.2 FULL ABLATION STUDY RESULTS ON DESIGN COMPONENTS

Following the discussion in Section 5.3 that both design components of clustering and simple
heuristics are effective and essential, Table 10 shows full ablation study results.

Table 10: Full ablation study results of clustering and simple heuristics. “w/o clustering” is
implemented based on Random-Q-CoT with simple heuristics.

MultiArith GSM8K AddSub AQuA SingleEq SVAMP CSQA Strategy Letter Coin

Auto-CoT 92.0±1.7 47.9±3.7 84.8±2.9 36.5±2.2 87.0±1.2 69.5±2.2 74.4±2.5 65.4±0.4 59.7±3.2 99.9±0.1
w/o heuristics 90.7±1.6 45.2±3.1 83.4±2.7 34.6±2.8 85.3±0.3 67.0±1.7 73.0±1.8 62.0±1.0 60.2±1.0 96.3±3.6
w/o clustering 88.1±1.1 44.4±0.5 83.0±0.7 33.7±0.8 86.1±1.3 66.3±5.2 73.3±1.4 64.1±1.3 59.4±1.1 96.4±0.6

As discussed in Section 3, the key challenge of Auto-CoT lies in automatically constructing
demonstrations with good questions and their reasoning chains. This challenge can be addressed
effectively by the two design components: (i) clustering helps obtain the most representative (diverse)
questions; (ii) simple heuristics reduce the risk of sampling wrong reasoning chains (more details in
Appendix C.3).

C.3 EFFECTIVENESS OF THE SIMPLE HEURISTICS

In Section 4, we apply simple heuristics to encourage the model to use simple and accurate
demonstrations. Similar to the criteria of the hand-crafting demonstrations in Wei et al. (2022b), our
selection criteria follow simple heuristics to encourage sampling simpler questions and rationales: set
the selected demonstration di as dij if it has a question qij with no more than 60 tokens and a rationale
rij with no more than 5 reasoning steps.4 For arithmetic reasoning tasks except for AQuA (because it
is a multiple-choice problem), we require that aij is not empty and appears in rij to mitigate the risk
of rationale-answer mismatches (as we find that such mistakes are harmful in Appendix A.1). If the
question, rationale, and the answer satisfy the conditions above, then a candidate demonstration dij for
the i-th cluster is constructed by concatenating the question, rationale, and answer: [Q: qij ,A: rij ◦ aij ].

Table 11: Average mistakes in three runs of demonstration construction.

MultiArith AddSub GSM8K AQuA SingleEq SVAMP CSQA Strategy Letter Coin

Num. of Demos 8 8 8 4 8 8 7 6 4 8

Simple heuristics 0.3 1.7 1.7 1 1 0.7 2.7 2.3 0 0
w/o heuristics 1.3 5 3 2.7 2 3.3 3.3 2.3 3 1

We run the demonstration construction process three times before and after using simple heuristics to
quantify its effect. Table 11 shows the comparison. The simple heuristics reduce the average number
of wrong rationales in constructing demonstrations. Figure 13 further depicts the error rate with and

4Because Zero-Shot-CoT often uses “\n” for separating the reasoning steps, the rule can be easily
implemented by counting the “\n” tokens in the generated rationales.
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without the simple heuristics. The error rate is computed by the average number of wrong rationales
divided by the number of demonstrations. We see that our method can keep the error rate below 20%
in most tasks (7/10).

MultiArith AddSub GSM8K AQuA SingleEq SVAMP CSQA Strategy Last Letter Coin Flip
0
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Figure 13: Average error rate (%) of sampled demonstrations.

C.4 COMPARISONS OF CRITERIA FOR SORTING QUESTIONS

We compare different ways of sorting questions in each cluster, including: (i) minimal distance to the
cluster center (In-Cluster Min Dist, as adopted in Auto-CoT), (ii) maximal distance to the cluster
center (In-Cluster Max Dist), and (iii) random sampling inside the cluster (In-Cluster Random). To
alleviate the influence of wrong demonstrations, we only sample the demonstrations with correct
answers for this analysis.

Table 12: Influence of demonstration sampling.

Method MultiArith

Auto-CoT 92.0

In-Cluster Min Dist 92.0
In-Cluster Random 89.2
In-Cluster Max Dist 88.7

Comparing the results in Table 12, we see that the demonstrations are generally better if they are
closer to the cluster center.

C.5 EFFECT OF THE NUMBER OF CLUSTERS
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Figure 14: Performance of Auto-CoT with respect to varying values of k (number of clusters).

Our method is robust against k-means. The number of clusters k is equal to our desired number
of demonstrations. For fair comparisons with Manual-CoT, we use the same number of desired
demonstrations (k) in Manual-CoT without tuning it.
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To investigate the effect of k, we vary its value to obtain different numbers of demonstrations. As
shown in Figure 14, the improvement of Auto-CoT over Random-Q-CoT remains robust against the
varying values of k. Our findings in Figure 14 agree with Wei et al. (2022b) on the number of desired
demonstrations (same as the number of clusters: k). Therefore, k = 8 is an effective default value,
and using 8 demonstrations is far below what LLMs can handle (e.g., up to 2,048 tokens in GPT-3
models).

C.6 USING OTHER LLMS

We implement Auto-CoT using another 175B version of GPT-3 (text-davinci-001). The text-davinci-
001 is a fine-tuned version of GPT-3 and it can be seen as an earlier version of text-davinci-002. It
has a weaker Zero-Shot-CoT performance than our previously adopted text-davinci-002. Table 13
shows that Auto-CoT still attains the most competitive performance under text-davinci-001.

Table 13: Results using different LLMs on the MultiArith dataset.

Method text-davinci-001 text-davinci-002

Zero-Shot-CoT 47.8 78.7
Manual-CoT 39.0 91.7
Auto-CoT 53.3 92.0

C.7 EXTENDED: MORE CHALLENGING STREAMING SETTING

In Section 5.5, we discussed the application of Auto-CoT in a more challenging streaming setting
where a small batch of test questions (say m questions) arrive at a time like in data streams.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Zero-Shot-CoT Manual-CoT Auto-CoT*

Figure 15: Bootstrapping for the streaming setting.

Due to page space limits, we only showed the results of the first 10 batches (300 test questions in total)
in Section 5.5. In Figure 15, we illustrate the accuracy of each batch on all the 600 test questions in
MultiArith. As expected, for batch 1, Auto-CoT* and Zero-Shot-CoT obtain equal accuracy. From
batch 2, Auto-CoT* quickly performs comparably with Manual-CoT. This result indicates that our
method is still effective in the more challenging streaming setting.

D EXTENDED EXPERIMENTS

D.1 APPLYING AUTO-COT TO SAMPLE DEMONSTRATIONS WITH MANUALLY DESIGNED COT

The AQuA and GSM datasets have training sets with manually designed reasoning chains. We are
interested in whether it is possible to achieve better results by applying Auto-CoT to sample the
examples with manually designed CoT from the training set. Therefore, we cluster the questions
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from the training set and use the gold reasoning chains as our demonstrations. Results in Table 14
show that Auto-CoT can be further enhanced if manually designed CoT is available.

Table 14: Results of sampling demonstrations with manually designed CoT.

Method GSM8K AQuA

Zero-Shot-CoT 40.7 33.5
Manual-CoT 46.9 35.8

Auto-CoT 47.9 36.5
w/ Manually designed CoT 49.7 37.8

D.2 COMBINING RETRIEVAL-Q-COT AND RANDOM-Q-COT

Combining Retrieval-Q-CoT and Random-Q-CoT may also benefit from diversity of demonstrations.
We investigate a new method dubbed as “Cluster-Retrieval-CoT”. In detail, we first cluster the
questions into k clusters. Then, for each cluster, we retrieve the most similar question to the test
question.

Table 15: Results of combining Retrieval-Q-CoT and Random-Q-CoT on MultiArith.

Method Accuracy

Random-Q-CoT 87.1±1.8
Retrieval-Q-CoT 82.4±0.5
Auto-CoT 92.0±1.7

Cluster-Retrieval-CoT 85.7±3.8

The result is shown in Table 15. With more diversity involved, Cluster-Retrieval-CoT performs
better than Retrieval-Q-CoT. However, the performance is still inferior to Auto-CoT. This experiment
provides further evidence that using the representative skills (e.g., each cluster center) is helpful (more
evidence in Table 12). If we took each demonstration as a kind of skill, representative demonstrations
from diverse clusters could cover more alternative skills for solving target questions.

D.3 CLUSTERING WITH COT QUESTION-ANSWER (QA) PAIRS

Our clustering method is based on questions. There are other design choices such as firstly generating
the rationales for all questions and then sampling the demonstrations by clustering over rationales
(i.e., using QA pairs). We find that clustering with QA pairs slightly improves the results (Table 16).

Table 16: Results of clustering with questions only and QA pairs.

Method MultiArith

Questions only 92.0
QA pairs 92.6

However, this method needs to generate rationales for all questions. As there are often thousands
of questions in our investigated tasks, generating the reasoning chains for those questions requires
thousands of inferences. Given that API access is often hidden behind the paywalls of LLM providers,
there will be much more inference costs. In contrast, our method only needs to generate the reasoning
chain for the k (e.g., 8) sampled questions, which enjoys much more cost efficiency. Therefore, we
choose the questions-only method in our work.

D.4 COMPARISON WITH OTHER ZERO-SHOT COT PROMPTS

‘Let’s do this step by step’ has shown to be the current best prompt for Zero-Shot-CoT yet after
investigating 16 different prompts according to Kojima et al. (2022). Nonetheless, we also conduct
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further experiments to modify the prompts with three different ones and see if the prompt can be
optimized (Table 17). We find that optimizing the zero-shot prompts does not result in substantial
benefits.

Table 17: Comparison with other zero-shot prompts on MultiArith.

Method Accuracy

Let’s think step by step. 92.0
Let’s explain step by step. 89.5
Let’s think about this logically. 91.0

D.5 ONE-SHOT SETTING DEPENDING ON TEST QUESTIONS

It is possible to cluster samples into n-clusters (n = 2, . . . , 10) and then use just one demonstration
from the cluster where the test sample fits. As a result, we can use just one demonstration at each time.
We find that the performance of this method (dubbed as “One-Shot”) is on par with Random-Q-CoT
that leverages n demonstrations. Figure 16 shows the results on the MultiArith dataset. We observe
that the simplified method reduces the computation cost and can be seen as a less effective yet efficient
variant of Auto-CoT.
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Figure 16: Comparing the One-Shot variant with Random-Q-CoT and Auto-CoT.
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E APPENDIX: AUTOMATICALLY CONSTRUCTED DEMONSTRATIONS

Table 18: Automatically constructed demonstrations for MultiArith.

Q: For Halloween Katie and her sister combined the candy they received. Katie had 8 pieces of candy while
her sister had 23. If they ate 8 pieces the first night, how many pieces do they have left?

A: Let’s think step by step. Katie and her sister have a total of 8 + 23 = 31 pieces of candy. If they eat 8
pieces the first night, they have 31 - 8 = 23 pieces left. The answer is 23.

Q: A pet store had 78 puppies. In one day they sold 30 of them and put the rest into cages with 8 in each
cage. How many cages did they use?

A: Let’s think step by step. There are 78 puppies. 30 are sold, so that means there are 48 left. 48 divided by
8 is 6, so that means there are 6 cages with 8 puppies in each. The answer is 6.

Q: A waiter had 14 customers to wait on. If 3 customers left and he got another 39 customers, how many
customers would he have?

A: Let’s think step by step. The waiter had 14 customers to wait on. If 3 customers left, that means he
would have 11 customers left. If he got another 39 customers, that means he would have 50 customers in
total. The answer is 50.

Q: Bianca was organizing her book case making sure each of the shelves had exactly 8 books on it. If she
had 5 shelves of mystery books and 4 shelves of picture books, how many books did she have total?

A: Let’s think step by step. There are 5 shelves of mystery books. Each shelf has 8 books. So that’s 40
mystery books. There are 4 shelves of picture books. Each shelf has 8 books. So that’s 32 picture books. 40
+ 32 = 72 books. The answer is 72.

Q: Wendy uploaded 45 pictures to Facebook. She put 27 pics into one album and put the rest into 9 different
albums. How many pictures were in each album?

A: Let’s think step by step. First, we know that Wendy uploaded 45 pictures in total. Second, we know
that Wendy put 27 pictures into one album. That means that Wendy put the remaining 18 pictures into 9
different albums. That means that each album would have 2 pictures. The answer is 2.

Q: A trivia team had 7 members total, but during a game 2 members didn’t show up. If each member that
did show up scored 4 points, how many points were scored total?

A: Let’s think step by step. There were 7 members on the team, but 2 members didn’t show up. That means
that there were 5 members that did show up. Each member that showed up scored 4 points. So if 5 members
each scored 4 points, then the total number of points scored would be 5*4=20. The answer is 20.

Q: Mike made 69 dollars mowing lawns over the summer. If he spent 24 dollars buying new mower blades,
how many 5 dollar games could he buy with the money he had left?

A: Let’s think step by step. Mike made $69 from mowing lawns. He spent $24 on new mower blades. That
means he has $45 left. Each game costs $5, so he could buy 9 games. The answer is 9.

Q: The school cafeteria ordered 8 red apples and 43 green apples for students lunches. But, if only 42
students wanted fruit, how many extra did the cafeteria end up with?

A: Let’s think step by step. The school cafeteria ordered 8 red apples and 43 green apples for students
lunches. This means that they ordered a total of 51 apples. But, if only 42 students wanted fruit, This means
that the school cafeteria would have 9 apples leftover. The answer is 9.
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Table 19: Automatically constructed demonstrations for AddSub.

Q: Sally picked 7 lemons and Mary picked 9 lemons from the lemon tree . How many lemons were picked
in total ?

A: Let’s think step by step. Sally picked 7 lemons and Mary picked 9 lemons. So we can say that Sally
picked 7 lemons and Mary picked 9 lemons. So we can say that 7 + 9 = 16 lemons were picked in total. The
answer is 16.

Q: Gordon bought 3.42 pounds of fruit for a class party . The class ate 2.2 pounds of the fruit . How much
fruit is ?

A: Let’s think step by step. Gordon bought 3.42 pounds of fruit. The class ate 2.2 pounds of the fruit. That
means that there is 3.42 - 2.2 = 1.22 pounds of fruit left. The answer is 1.22.

Q: Mary had 21 dimes and 38 pennies in her bank . Her dad borrowed 18 pennies from Mary . How many
pennies does she have now ?

A: Let’s think step by step. Mary had 21 dimes and 38 pennies in her bank. Her dad borrowed 18 pennies
from Mary. So now, Mary has 21 dimes and 20 pennies in her bank. The answer is 20.

Q: Joan found 72 seashells and 12 starfishes on the beach . She gave Alyssa some of her seashells . She has
28 seashell . How many seashells did she give to Alyssa ?

A: Let’s think step by step. Joan found 72 seashells and 12 starfishes. She gave Alyssa some of her seashells.
So we need to find out how many seashells she gave to Alyssa. Joan has 28 seashells. So she gave Alyssa
44 seashells. The answer is 44.

Q: Last year , 90171 people were born in a country , and 16320 people immigrated to it . How many new
people began living in the country last year ?

A: Let’s think step by step. First, 90171 people were born in the country. Then, 16320 people immigrated to
the country. That means there were 90171 + 16320 = 106491 new people living in the country last year. The
answer is 106491.

Q: A construction company is repaving a damaged road . So far , they have repaved a total of 4938 inches
of the road . Today , they repaved 805 inches of the road . How many inches of the road had they repaved
before today ?

A: Let’s think step by step. The company has repaved a total of 4938 inches of the road. Today, they repaved
805 inches of the road. So before today, they had repaved 4938 - 805 = 4133 inches of the road. The answer
is 4133.

Q: There are 5 scissors and 3 pencils in the drawer . Jason placed 4 scissors in the drawer . How many
scissors are now there in total ?

A: Let’s think step by step. There are 5 scissors and 3 pencils in the drawer. Jason placed 4 scissors in the
drawer. Now, there are 9 scissors in the drawer. The answer is 9.

Q: There are 37 short bushes and 30 tall trees currently in the park . Park workers will plant 20 short bushes
today . How many short bushes will the park have when the workers are finished ?

A: Let’s think step by step. There are 37 short bushes and 30 tall trees currently in the park. Park workers
will plant 20 short bushes today. This means that when the workers are finished, there will be a total of 57
short bushes in the park. The answer is 57.
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Table 20: Automatically constructed demonstrations for GSM8K.

Q: Two trains leave San Rafael at the same time. They begin traveling westward, both traveling for 80 miles.
The next day, they travel northwards, covering 150 miles. What’s the distance covered by each train in the
two days?

A: Let’s think step by step. On the first day, both trains travel 80 miles. So the first train covers 80 miles,
and the second train covers 80 miles. On the second day, both trains travel 150 miles. So the first train
covers 150 miles, and the second train covers 150 miles. In total, the first train covers 230 miles, and the
second train covers 230 miles. The answer is 230.

Q: A tank of water has a depth of 17 feet on Monday. On Tuesday, the tank had 7 feet more water. On
Wednesday, the depth of the water is two thirds of what it was on Tuesday. What is the tank’s water depth
on Wednesday?

A: Let’s think step by step. On Monday, the depth was 17 feet. On Tuesday, the depth was 7 feet more than
on Monday, so the depth was 24 feet. On Wednesday, the depth was two thirds of what it was on Tuesday,
so the depth was 16 feet. The answer is 16.

Q: While at the dollar store, Sloane counts 100 customers entering the store. The next day, she counts 50
more customers than the first day. If the total number of customers by the third day was 500, how many
customers did she count on the third day?

A: Let’s think step by step. On the first day, Sloane counted 100 customers. On the second day, she counted
50 more customers than she did on the first day. So, she counted 150 customers on the second day. On
the third day, she counted 500 customers. Therefore, on the third day, Sloane counted 500 customers. The
answer is 500.

Q: Laurel’s friend gave her 24 baby outfits that her child no longer needed. At her baby shower, Laurel
received twice the amount of new baby outfits. Then, Laurel’s mom gifted her with another 15 baby outfits.
How many outfits does she have for her baby?

A: Let’s think step by step. Laurel’s friend gave her 24 baby outfits. So she has 24 baby outfits. At her baby
shower, Laurel received twice the amount of new baby outfits. So she has 48 baby outfits. Then, Laurel’s
mom gifted her with another 15 baby outfits. So she has 63 baby outfits. The answer is 63.

Q: Pam and Fred went to a carnival. Pam rode the roller coaster 2 times while Fred rode it 4 times. After
that, each of them decided to ride the luge 2 times. If each ride cost 6 tickets, how many tickets did they use
that day?

A: Let’s think step by step. Pam rode the roller coaster 2 times. So, that’s 2 * 6 = 12 tickets. Fred rode the
roller coaster 4 times. So, that’s 4 * 6 = 24 tickets. Pam rode the luge 2 times. So, that’s 2 * 6 = 12 tickets.
Fred rode the luge 2 times. So, that’s 2 * 6 = 12 tickets. In total, they used 12 + 24 + 12 + 12 = 60 tickets.
The answer is 60.

Q: The eighth-grade class held a bake-off. Kelsie made two times more cookies than Josh. Josh made
one-fourth the number of cookies that Suzanne made. If Suzanne made 36 cookies, how many did Kelsie
make?

A: Let’s think step by step. Josh made one-fourth the number of cookies that Suzanne made. So if Suzanne
made 36 cookies, Josh made 9 cookies. Kelsie made two times more cookies than Josh. So if Josh made 9
cookies, Kelsie made 18 cookies. The answer is 18.

Q: Jane has saved $4 of her allowance every week for the past 8 weeks. If she continues to save the same
amount each week, how many more weeks will it take for her to have saved a total of $60?

A: Let’s think step by step. Jane has saved $4 of her allowance every week for the past 8 weeks. That means
she has $32 in savings so far. $60 - $32 = $28 $28 / $4 = 7 It will take Jane 7 more weeks to have saved a
total of $60. The answer is 7.

Q: Mia and Emma are currently 16 years apart in age. If Mia, who is younger than Emma, is 40 years old,
what’s the average of their ages?

A: Let’s think step by step. Mia is currently 16 years old. Mia is younger than Emma. Mia is 40 years old.
Therefore, Emma must be 40 + 16 = 56 years old. The average of their ages is (40 + 56)/2 = 48 years old.
The answer is 48.
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Table 21: Automatically constructed demonstrations for AQuA.

Q: Julie’s yard is rectangular. One side of the yard is 100 feet wide. The total area of the yard is 3,000
square feet. What is the length of the other side of the yard? Answer Choices: (A) 30 feet (B) 20 feet (C) 10
feet (D) 50 feet (E) 60 feet

A: Let’s think step by step. We know that the yard is rectangular, so it has four sides. We also know that one
side of the yard is 100 feet wide. The total area of the yard is 3,000 square feet. We can set up the equation:
3,000 = 100x x = 30 So, the length of the other side of the yard is 30 feet. The answer is A.

Q: In a bag of red and green sweets, the ratio of red sweets to green sweets is 3:4. If the bag contains 120
green sweets, how many red sweets are there? Answer Choices: (A) 90 (B) 80 (C) 95 (D) 100 (E) 85

A: Let’s think step by step. There are 3 red sweets for every 4 green sweets. That means that for every 12
sweets, there are 9 red sweets. That means that for every 120 green sweets, there are 90 red sweets. The
answer is (A). The answer is A.

Q: A car finishes a journey in 20 hours at the speed of 60 km/hr. If the same distance is to be covered in 10
hours, how much speed does the car gain? Answer Choices: (A) 80 kmph (B) 50 kmph (C) 120 kmph (D)
70 kmph (E) 80 kmph

A: Let’s think step by step. The car is currently travelling at 60 km/hr. In order to travel the same distance
in 10 hours, the car would need to travel at 6 times the speed, or 360 km/hr. Therefore, the car would need
to gain 300 km/hr. The answer is C. The answer is C.

Q: Mark told John "If you give me half your money I will have Rs.75. John said, "if you give me one third
of your money, I will have Rs.75/-. How much money did John have ? Answer Choices: (A) 22 (B) 60 (C)
28 (D) 26 (E) 18

A: Let’s think step by step. If Mark has Rs.75, then John has Rs.75 as well. If Mark gives John half his
money, then Mark will have Rs.37.50 and John will have Rs.112.50. However, this isn’t one of the answer
choices. If Mark gives John one third of his money, then Mark will have Rs.50 and John will have Rs.100.
This is one of the answer choices, so John must have had Rs.100 to begin with. The answer is D.
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Table 22: Automatically constructed demonstrations for SingleEq.

Q: Mark’s father gave him $85. Mark bought 10 books, each of which cost $5. How much money does
Mark have left?

A: Let’s think step by step. Mark’s father gave him $85. Mark bought 10 books, each of which cost $5.
That means that Mark spent $50 on books. So Mark has $85 - $50 = $35 left. The answer is 35.

Q: Tim has 44 books. Sam has 52 books. How many books do they have together ?

A: Let’s think step by step. Step 1: How many books does Tim have? Step 2: How many books does Sam
have? Step 3: How many books do they have together? Tim has 44 books. Sam has 52 books. They have 96
books together. The answer is 96.

Q: There are 22 walnut trees currently in the park. Park workers will plant more walnut trees today. When
the workers are finished there will be 55 walnut trees in the park. How many walnut trees did the workers
plant today ?

A: Let’s think step by step. There are currently 22 walnut trees in the park. The workers will plant more
walnut trees today. When the workers are finished, there will be 55 walnut trees in the park. The workers
planted 33 walnut trees today. The answer is 33.

Q: Karen added 0.25 of a cup of walnuts to a batch of trail mix. Later, she added 0.25 of a cup of almonds.
How many cups of nuts did Karen put in the trail mix in all?

A: Let’s think step by step. Karen added 0.25 of a cup of walnuts to a batch of trail mix. This is the first
step, and so far, she has added 0.25 cups of walnuts. Later, she added 0.25 of a cup of almonds. This is
the second step, and so far, she has added 0.5 cups of nuts (0.25 cups of walnuts + 0.25 cups of almonds).
Therefore, in total, Karen has added 0.5 cups of nuts to the trail mix. The answer is 0.5.

Q: Sara, Keith, Benny, and Alyssa each have 96 baseball cards. How many dozen baseball cards do they
have in all?

A: Let’s think step by step. There are 12 dozens in a gross, so we need to divide 96 by 12. 96/12=8
Therefore, they have 8 dozens of baseball cards in all. The answer is 8.

Q: Craig walked 0.2 of a mile from school to David’s house and 0.7 of a mile from David’s house to his
own house. How many miles did Craig walk in all?

A: Let’s think step by step. Craig walked 0.2 miles from school to David’s house. Then, Craig walked 0.7
miles from David’s house to his own house. In total, Craig walked 0.2 + 0.7 = 0.9 miles. The answer is 0.9.

Q: Tom found 5 seashells on the beach. he gave Jessica 2 of the seashells. How many seashells does he now
have ?

A: Let’s think step by step. Tom found 5 seashells. Tom gave Jessica 2 seashells. Tom now has 3 seashells.
The answer is 3.

Q: Brenda’s mother made cookies for 5. If she prepared 35 cookies and each of them had the same number
of cookies, how many did each of them have?

A: Let’s think step by step. Brenda’s mother made 35 cookies. We know that she made them for 5 people.
That means that she made 7 cookies for each person. The answer is 7.
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Table 23: Automatically constructed demonstrations for SVAMP.

Q: Marco and his dad went strawberry picking. Marco’s dad’s strawberries weighed 11 pounds. If together
their strawberries weighed 30 pounds. How much did Marco’s strawberries weigh?

A: Marco’s dad’s strawberries weigh 11 pounds. If together their strawberries weigh 30 pounds, then
Marco’s strawberries weigh 19 pounds. The answer is 19.

Q: 19 red peaches, 11 yellow peaches and 12 green peaches are in the basket. How many more red peaches
than yellow peaches are in the basket?

A: There are 19 red peaches and 11 yellow peaches. 19-11=8 There are 8 more red peaches than yellow
peaches. The answer is 8.

Q: Baker made 144 cakes. He sold 71 of them. Then he made 111 more cakes. How many more cakes did
baker make than those he sold?

A: First, he made 144 cakes and sold 71 of them. So, he has 144-71 = 73 cakes left. Then, he made 111
more cakes. So, he has 73 + 111 = 184 cakes in total. Now, we need to find out how many more cakes he
made than those he sold. There are 184 cakes in total. He sold 71 of them. So, he made 184-71 = 113 more
cakes than those he sold. The answer is 113.

Q: Bryan took a look at his books as well. If he has a total of 42 books and each bookshelf contains 2 books
How many bookshelves does he have?

A: We know that Bryan has 42 books in total. We know that each bookshelf has 2 books. From this, we can
infer that Bryan has 21 bookshelves. The answer is 21.

Q: In a school there are 902 girls and 811 boys. 44 more girls joined the school. How many girls are there
in the school now?

A: There are 902 girls and 811 boys in the school. 44 more girls joined the school. That means there are
now (902 + 44) = 946 girls in the school. The answer is 946.

Q: He also had 26 aquariums for saltwater animals. The aquarium had 52 saltwater animals in total and
every aquarium had the same number of animals. How many saltwater animals does each aquarium have?

A: We know that there are 26 aquariums and 52 animals in total. That means that if we divide 52 by 26, we
will know how many animals are in each aquarium. 52 divided by 26 equals 2. So, each aquarium has 2
saltwater animals. The answer is 2.

Q: A mailman has to give 25 pieces of junk mail to each block. If he gives 5 mails to each house in a block
How many houses are there in a block?

A: The mailman has to give 25 pieces of junk mail to each block. That means if the mailman gives 5
pieces of junk mail to each house, he would have given away 25 pieces of junk mail after visiting 5 houses.
Therefore, if the mailman has to give 25 pieces of junk mail to each block, he would have to visit 5 houses
in a block. The answer is 5.

Q: Every day Ryan spends 3 hours on learning english and some more hours on learning chinese. If he
spends a total of 4 hours on learning english and chinese everyday How many hours does he spend on
learning chinese?

A: First, we know that Ryan spends 3 hours on learning English every day. Second, we know that Ryan
spends a total of 4 hours on learning English and Chinese every day. From this, we can infer that Ryan
spends 1 hour on learning Chinese every day. The answer is 1.
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Table 24: Automatically constructed demonstrations for CSQA.

Q: Where can you find a dogs house? Answer Choices: (A) found outside (B) faithful (C) frightening (D)
cold (E) four legs

A: Let’s think step by step. A dog needs a house to protect it from the weather and predators. The house
should be big enough for the dog to move around in, but not too big or the dog will be cold. The house
should have a door to keep out the cold and a roof to keep out the rain. The house should be made of sturdy
materials that will not collapse in the wind. The best place to find a dog house is at a pet store or a home
improvement store. You can also find dog houses online. The answer is A.

Q: Where would you find a ticket booth and see a concert? Answer Choices: (A) clerk (B) indoors (C)
movie theater (D) venue (E) auditorium

A: Let’s think step by step. You would go to a ticket booth to purchase a ticket for a concert. The concert
would take place at a venue, which could be indoors or outdoors. It is most likely that the concert would
take place indoors at a large auditorium or a movie theater. The answer is D.

Q: What do people aim to do at work? Answer Choices: (A) complete job (B) learn from each other (C) kill
animals (D) wear hats (E) talk to each other

A: Let’s think step by step. People usually go to work in order to earn money, which they can use to buy
things they want or need. In order to do this, they must complete their job. This usually means working with
others in order to get the job done efficiently. Sometimes, people learn new things from their coworkers.
For example, they might learn a new skill or how to do their job better. Finally, people usually talk to their
coworkers during their break or after work. The answer is A.

Q: Where do you store a large container? Answer Choices: (A) supermarket (B) factory (C) juice (D) hostel
(E) cabinet

A: Let’s think step by step. We need to store a large container. It won’t fit in a cabinet, so that’s not the
answer. It also won’t fit in a juice container, so that’s not the answer. It could fit in a factory, but that’s not
necessarily where you would store it. It could also fit in a supermarket, but that’s not necessarily where you
would store it. The most likely answer is a hostel. The answer is D.

Q: If there is a pond with trees around it, where it it likely located? Answer Choices: (A) ground (B)
bathroom (C) forest (D) countryside (E) rural area

A: Let’s think step by step. A pond is likely to be located near trees because trees need water to survive.
Therefore, the most likely location for a pond with trees around it is in a forest. The answer is C.

Q: James was meeting a friend. They had planed a slow day. They didn’t want to do much. They just
wanted what? Answer Choices: (A) relaxation (B) panic (C) alarm (D) joy (E) cheer

A: Let’s think step by step. James was meeting a friend. They had planned a slow day. They didn’t want to
do much. They just wanted _____. The only logical answer choice is relaxation. The answer is A.

Q: what does a person do to stay healthy? Answer Choices: (A) fever (B) eat every day (C) excited (D)
headache (E) expressive

A: Let’s think step by step. To stay healthy, a person should probably do things like eating healthy foods,
exercising, and getting enough rest. So the answer choices that best fit are (B) eat every day, (C) excited,
and (D) headache. The answer is B.
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Table 25: Automatically constructed demonstrations for StrategyQA.

Q: Would a vegetarian be able to eat something at Chick-fil-A?

A: Let’s think step by step. Chick-fil-A is a restaurant chain that specializes in chicken sandwiches. So right
off the bat, we can say that a vegetarian probably wouldn’t be able to find a sandwich that they could eat.
However, Chick-fil-A does offer salads and sides that a vegetarian could eat. The answer is yes.

Q: Can Justin Timberlake ride Shipwreck Falls at Six Flags?

A: Let’s think step by step. First, let’s consider the height requirement for Shipwreck Falls, which is 48
inches. Next, we’ll look up Justin Timberlake’s height. According to various sources, Timberlake is between
5’8" and 5’11". Finally, we’ll compare Timberlake’s height to the height requirement for Shipwreck Falls.
Since Timberlake is taller than 48 inches, he would be able to ride Shipwreck Falls. The answer is yes.

Q: Would a snake have reasons to fear a honey badger?

A: Let’s think step by step. A snake’s main method of attack is to coil around an animal and constrict it
until it suffocates. This would be difficult to do to a honey badger, which has thick skin and is very agile. In
addition, honey badgers are known to be very aggressive, and they have sharp claws and teeth that could
do a lot of damage to a snake. So, it is reasonable to say that a snake would have reasons to fear a honey
badger. The answer is yes.

Q: Will Queen Elizabeth be buried in the Pantheon?

A: Let’s think step by step. First, the Pantheon is a church, so it’s possible that she could be buried there.
Second, Queen Elizabeth II is still alive, so she hasn’t been buried yet. Third, even if she were to be buried
in the Pantheon, it’s unlikely that we would know about it ahead of time, so it’s hard to say for sure. The
answer is no.

Q: Can you see the moon in Wembley Arena?

A: Let’s think step by step. Wembley Arena is an indoor venue, so the moon would only be visible if
there was a hole in the roof. Even then, the moon would only be visible during the night. So the answer is
probably no. The answer is no.

Q: Did the 40th president of the United States forward lolcats to his friends?

A: Let’s think step by step. The 40th president of the United States was Ronald Reagan. There is no
evidence that Ronald Reagan ever forwarded lolcats to his friends. The answer is no.

Table 26: Automatically constructed demonstrations for Last Letter Concatenation.

Q: Take the last letters of each words in "Lesley Luna Nadia Adriana" and concatenate them.

A: Let’s think step by step. The last letter of "Lesley" is "y". The last letter of "Luna" is "a". The last letter
of "Nadia" is "a". The last letter of "Adriana" is "a". So the final answer is "yaaa". The answer is yaaa.

Q: Take the last letters of each words in "Alfonso Collin Amado Dick" and concatenate them.

A: Let’s think step by step. The last letter of "Alfonso" is "o". The last letter of "Collin" is "n". The last
letter of "Amado" is "o". The last letter of "Dick" is "k". So the final answer would be "onok". The answer
is onok.

Q: Take the last letters of each words in "Cristina Saad Bridget Katie" and concatenate them.

A: Let’s think step by step. The last letter of "Cristina" is "a". The last letter of "Saad" is "d". The last letter
of "Bridget" is "t". The last letter of "Katie" is "e". So the final answer would be "adte". The answer is adte.

Q: Take the last letters of each words in "Idalia Arnoldo Marla Duane" and concatenate them.

A: Let’s think step by step. The last letter of "Idalia" is "a". The last letter of "Arnoldo" is "o". The last
letter of "Marla" is "a". The last letter of "Duane" is "e". So the final answer would be "aoae". The answer
is aoae.
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Table 27: Automatically constructed demonstrations for Coin Flip.

Q: A coin is heads up. Shari flips the coin. Bella flips the coin. Liza does not flip the coin. Maira does not
flip the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step. Shari flips the coin. The coin is now tails up. Bella flips the coin. The coin is
now heads up. Liza does not flip the coin. The coin is still heads up. Maira does not flip the coin. The coin
is still heads up. The answer is yes.

Q: A coin is heads up. Joyce flips the coin. Leroy flips the coin. Alyssa does not flip the coin. Maggie does
not flip the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step. Joyce flips the coin, so now it is tails up. Leroy flips the coin, so now it is heads
up again. Alyssa does not flip the coin, so it remains tails up. Maggie does not flip the coin, so it remains
heads up. So the final answer is yes, the coin is still heads up. The answer is yes.

Q: A coin is heads up. Ubaldo does not flip the coin. Katrina flips the coin. Francis does not flip the coin.
Lynn flips the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step. Ubaldo does not flip the coin, so the coin remains heads up. Katrina flips the
coin, so the coin is now tails up. Francis does not flip the coin, so the coin remains tails up. Lynn flips the
coin, so the coin is now heads up again. The answer is yes.

Q: A coin is heads up. Carmelo flips the coin. Tony flips the coin. Susan flips the coin. Sara does not flip
the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step. Carmelo flips the coin. The coin is now tails up. Tony flips the coin. The coin is
now heads up. Susan flips the coin. The coin is now tails up. Sara does not flip the coin. The coin is still
tails up. The answer is no.

Q: A coin is heads up. Paulo flips the coin. Tatyana flips the coin. Bernice does not flip the coin. Raúl flips
the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step. Paulo flips the coin. This means that the coin is now tails up. Tatyana flips the
coin. The coin is now heads up again. Bernice does not flip the coin. The coin remains heads up. Raúl flips
the coin. The coin is now tails up again. The answer is no.

Q: A coin is heads up. Claudia flips the coin. Cole does not flip the coin. Matthew does not flip the coin.
Juan Pablo does not flip the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step. Claudia flips the coin, so it is now tails up. Cole does not flip the coin, so it
remains tails up. Matthew does not flip the coin, so it remains tails up. Juan Pablo does not flip the coin, so
it remains tails up. So the answer is no, the coin is not heads up. The answer is no.

Q: A coin is heads up. Aj does not flip the coin. Jd flips the coin. Maddie does not flip the coin. Francisca
does not flip the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step. Aj does not flip the coin, so the coin remains heads up. Jd flips the coin, so the
coin is now tails up. Maddie does not flip the coin, so the coin remains tails up. Francisca does not flip the
coin, so the coin remains tails up. So, the final answer is that the coin is tails up. The answer is no.

Q: A coin is heads up. Albert does not flip the coin. Felicia does not flip the coin. Margo flips the coin.
Patty does not flip the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step. Albert does not flip the coin, so the coin remains heads up. Felicia does not flip
the coin, so the coin remains heads up. Margo flips the coin, so the coin is now tails up. Patty does not flip
the coin, so the coin remains tails up. The answer is no.
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