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ABSTRACT

Understanding causality in event sequences where outcome labels such as diseases
or system failures arise from preceding events like symptoms or error codes is
critical in domains such as healthcare, cybersecurity, and vehicle diagnostics. Yet,
existing causal discovery methods struggle to be practical under high-dimensional,
sparse sequences involving thousands of event types—a common trait in real-
world data. We propose OSCAR, a novel one-shot causal autoregressive discovery
method that identifies the Markov Boundaries of each label directly from a single
sequence of events. By leveraging two pretrained Transformers as density estima-
tors, OSCAR estimates the conditional mutual information between the current
event and future labels given the past sequence, enabling for the first time efficient
parallelised causal discovery on GPUs. On a real-world vehicle dataset with 29,100
event types and 474 labels, OSCAR successfully recovers meaningful causal struc-
tures where classical algorithms fail to scale, demonstrating a practical path toward
interpretable and efficient causal reasoning in complex sequential domains.

1 INTRODUCTION

Causal discovery in event sequences is a central problem across domains such as cybersecurity
Manocchio et al. (2024), healthcare Rasmy et al. (2020); He et al. (2022), flight operations Luo
et al. (2021) or vehicle defects Pirasteh et al. (2019). These sequences, composed of discrete
asynchronous events, are increasingly available at scale– yet remain challenging to interpret beyond
associations. Understanding why specific events lead to particular outcomes is vital for effective
diagnosis, prediction and overall decision making Liu et al. (2025); Qiao et al. (2023).

Transformers have significantly advanced sequence modelling by capturing complex data distribution
through self-attention and autoregressive factorisation Vaswani et al. (2017); Radford et al. (2018);
Touvron et al. (2023). While they excel at next-token prediction, recent works explore their use for
causal discovery by interpreting attention scores Nauta et al. (2019); Alonso et al. (2024); Rohekar
et al. (2023) or using Transformers as density estimators for causal inference Im et al. (2024);
Moghimifar et al. (2020).

However, the majority of existing causal discovery methods, such as constraint-based or Granger-
style approaches, remain computationally intractable in high-dimensional event sequences involving
thousands of event types, due to the number of CI-tests involved. Additionally, their goal is often to
recover a global graph, which is rarely interpretable or actionable in real-world environments.

In contrast, practitioners frequently reason about causality within individual unknown sequences.
For instance, ”what series of events captured by diagnostics led to this vehicle failure” or ”what
symptoms led to this disease”. Here, an event sequence consists of a list of discrete events xi recorded
asynchronously over time, while labels y summarise outcomes associated with the full sequence (e.g,
a diagnosed defect or condition).

We aim to solve this setting in a one-shot manner: given only a single unknown sequence of observed
events, we directly infer the causal structure explaining its outcomes, without needing multiple
repetitions or large aggregated datasets. Specifically, we seek to extract, for each label, the minimal
set of causal events—its Markov Boundary.
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In this work, we address this gap by introducing OSCAR: the first One-Shot multi-label Causal
AutoRegressive discovery method. It leverages two Transformers as density estimators to estimate
conditional mutual information Cover (1999) using natural language processing sampling techniques
Holtzman et al. (2020). In this manner, instead of learning global structure, OSCAR extracts a
compact interpretable subgraph with causal indicators between events and labels, providing better
explainability. Unlike traditional causal discovery methods that suffer label cardinality-dependent
time complexity Li et al. (2016); Yu et al. (2020); Hasan et al. (2023); Gong et al. (2024), OSCAR
supports causal discovery across thousands of event types and hundreds of labels. Thanks to its
fully parallelised structure, it provides sequence-specific explainability in a matter of minutes for
thousands of sequences and reuse existing pretrained sequence models as backbones, making it easily
applicable in production.

We validate our approach on a real-world vehicular dataset comprising 29,100 event types as diagnosis
trouble codes and 474 labels as error patterns (EPs) representing vehicle defects Math et al. (2025).
By setting the known EPs rules as ground truth Markov Boundaries, we benchmark OSCAR against
standard well-established causal discovery baselines and demonstrate its practical superiority in
accuracy and scalability. To the best of our knowledge, this is the first method that solve efficiently
multi-label causal discovery for high-dimensional event sequences.

The contributions of this paper are as follows: 1) We introduce OSCAR, the first one-shot multi-label
causal discovery method that identifies Markov Boundaries of labels from high-dimensional event
sequences in parallel using Transformer-based as density estimators. 2) We provide theoretical
guarantees under several assumptions, showing that when using an estimation of conditional mutual
information (CMI), we can identify the correct Markov Boundaries of each label from a single event
sequences. 3) We empirically validate OSCAR on a large-scale vehicular dataset, demonstrating its
scalability and practical superiority over traditional causal discovery baselines.

2 RELATED WORK

Event Sequence Modelling. Event sequences are typically represented as a series of time-stamped
discrete events S = {(t1, x1), . . . , (tL, xL)} where 0 ≤ t1 < . . . ≤ tL denotes the time of occurrence
of event type xi ∈ X drawn from a finite vocabulary X. In multi-label settings, a binary label vector
y ∈ {0, 1}|Y| is attached to S and denotes the presence of multiple outcome labels drawn from Y
occuring at final time step tL. Forming a multi-labeled sequence Sl = (S, (yL, tL)).

Event sequence modelling has been widely applied to predictive tasks. For instance, in the automotive
domain, Diagnostic Trouble Codes (DTCs) Pirasteh et al. (2019) are logged asynchronously over
time and used to infer failures or error patterns Math et al. (2025). In healthcare, electronic health
records encode temporal sequences of symptoms, test results, and treatments that are predictive
of downstream diagnosis Rasmy et al. (2020); Labach et al. (2023); He et al. (2022). A common
modelling strategy Lafferty et al. (2001); McCallum et al. (2000) separates such event types X from
labels Y, thus it becomes easier to perform prediction tasks due to the difference in cardinality
between them.

Transformers Vaswani et al. (2017) have emerged as the dominant architecture for sequence modelling,
thanks to their ability to model long-range dependencies through self-attention. Recent work has
leveraged Transformers in high-dimensional event spaces for next-event and label prediction. Notably
Math et al. (2025) proposed a dual Transformer architecture where one model predicts the next event
type (DTC), and the other predicts the label occurrence (e.g, error pattern). Through this paper, we
build on this dual architecture and extend it beyond predictive modelling toward causal discovery.

Neural Autoregressive Density Estimation. Neural autoregressive models were initially introduced
for density estimation via chain-rule factorisation of the joint distribution Bengio & Bengio (1999),
later extended through recurrent architectures Cho et al. (2014); Hochreiter & Schmidhuber (1997)
and Transformers Vaswani et al. (2017). These models are trained using next-token prediction,
by minimising the negative log-likelihood of observing sequences X = (x1, . . . , xL). The joint
probability can be expressed as:

P (X) =

L∏
i=1

P (xi | x1, . . . , xi−1). (1)
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Recent work has explored autoregressive models as tools for causal inference. For example, Garrido
et al. (2021) leverages density estimators to simulate interventions and compute average treatment
effects. Im et al. (2024) shows that autoregressive language models can approximate sequential
Bayesian networks (Fig .1), treating the model itself as a statistical engine for causal inference. These
findings motivate our use of pretrained Transformers to estimate conditional mutual information
(CMI) Cover (1999) between events and labels.

In temporal data, Granger (1969) causality is commonly employed to assess pairwise dependencies
Xu et al. (2016); Qiao et al. (2023), based on the assumption that causes precede effects and should
improve the predictability of the effect. Recently, Han et al. (2025) proposed a Granger-inspired causal
discovery framework in multivariate time series using an encoder-decoder architecture. Specifically,
we repurposed these models as neural autoregressive density estimators (NADEs) for both the events
and labels, allowing us to quickly estimate the conditional probabilities of the next event xi and labels
y given past events (x1, · · · , xi−1).

Transformers as Causal Learners. Transformer-based models have gained growing attention in the
causal discovery literature. Nichani et al. (2024) showed that when trained on sequences generated
from in-context Markov chains, they can implicitly learn latent causal graphs, where attention weights
align with the adjacency matrix of the true causal structure. For sequential data, Rohekar et al. (2023)
analyses self-attention under the assumption that data is generated by a linear-Gaussian structural
causal model (SCM) Spirtes et al. (2001). They relate the covariance of endogenous variables to
attention scores and apply conditional independence (CI) tests to the final layer’s outputs to recover
a partial ancestral graph. Our work builds on this idea by leveraging Transformers but focuses on
multi-label event sequences. Although they refer to it as zero-shot, we found that one-shot is more
explicit since it requires a single sequence from unseen data of the same domain to infer a graph.

Multi-label Causal Discovery. Multi-label causal discovery seeks to identify the Markov Boundary
(MB) of each label—its minimal set of parents, children, and spouses—such that the label is
conditionally independent of all other variables given its MB Tsamardinos & Aliferis (2003). This
boundary serves as an optimal feature set for tasks like explainable modelling and feature selection,
under the faithfulness assumption.

While classical constraint-based algorithms have shown success on low-dimensional tabular data
Spirtes & Glymour (1991); Yu et al. (2020), their application to event sequences with multi-label
outputs remains challenging due to: (1) dimensionality—thousands of event types increase the number
of potential interactions combinatorially; (2) sparsity—multi-hot encodings often underrepresent rare
but important events; (3) temporal dependencies—causal effects can occur with varying delays; and
(4) distributional assumptions—such as linearity or Gaussian noise, which rarely hold in real-world
sequences.

Some recent works attempt to address these challenges. CASCADE Cüppers et al. (2024) recovers
DAGs from temporal event data under a Poisson process assumption but is limited to smaller event
spaces (∼ 200 types). Qiao et al. (2023) explore Granger causality under low-resolution temporal
data using Hawkes processes Hawkes (1971) and show gains in F1 across time granularities, though
their setup also assumes relatively small event vocabularies. However, rather than learning the full
joint causal graph, which is known to be NP-hard Chickering (1996)—we focus on recovering local
causal structure (LCS) Yu et al. (2020): discovering minimal subgraphs from inputs to labels within
a single sequence. This formulation makes the problem tractable in high dimensions and better suited
for real-world production scenarios.

Hence, contrary to event-to-event causal learning, multi-label causal discovery remains unexplored in
event sequences Gong et al. (2024); Hasan et al. (2023), yet it’s potential applications are enormous
across various domains. Making OSCAR a novel method to explain high-dimensional labeled event
sequences. We focus on causal discovery only and not event sequence modeling as in Math et al.
(2025).

3 NOTATIONS AND DEFINITIONS

We use capital letters (e.g., X) to denote random variables, P (X) the probability distribution of X ,
P (X = x) = p(x) the probability of the realisation x for the random variable X , and bold capital
letters (e.g., X) for sets of variables. Let U denote the set of all (discrete) random variables. We
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define the event set X = {X1, . . . , Xn} ⊂ U , and the label set Y = {Y1, . . . , Yn} ⊂ U . When
explicitly said, event X(ti)

i represent the occurrence of Xi at step i and time ti. Similarly for Y (ti+1)
i+1 .

Definition 1 (Bayesian Network). Pearl (1988) Let P denote the joint distribution over a variable
set U of a directed acyclic graph (DAG) G. The triplet < U ,G, P > constitutes a BN if the triplet
< U ,G, P > satisfies the Markov condition: every random variable is independent of its non-
descendant variables given its parents in G. Each node Xi ∈ U represents a random variable. The
directed edge (Xi → Xj) encodes a probabilistic dependence. The joint probability distribution can
be factorized P (X1, · · · , Xn) =

∏n
i=1 P (Xi|X1, · · · , Xi−1). If a variable does not depend on all

of its predecessors, we can write: P (Xi|X1, · · · , Xi−1) = P (Xi|par(Xi)) with ’par’ the parents of
node Xi such that: par(Xi) = {X1, · · · , Xi−1}.
Definition 2 (Faithfulness). Spirtes et al. (2001). Given a BN < U ,G, P >,G is faithful to P if and
only if every conditional independence present in P is entailed by G and the Markov condition holds.
P is faithful if and only if there exist a DAG G such that G is faithful to P .
Definition 3 (Markov Boundary). Tsamardinos & Aliferis (2003). In a faithful BN < U ,G, P >, for
a set of variables Z ⊂ U and label Y ∈ U , if all other variables X ∈ {X −Z} are independent of
Y conditioned on Z, and any proper subset of Z do not satisfy the condition, then Z is the Markov
Boundary of Y : MB(Y ).
Definition 4 (Conditional Independence). Variables X and Y are said to be conditionally independent
given a variable set Z, if P (X,Y |Z) = P (X|Z)P (Y |Z), denoted as X⊥Y |Z. Inversely, X ̸⊥
Y |Z denotes the conditional dependence. Using the conditional mutual information Cover (1999) to
measure the independence relationship, this implies that I(X,Y |Z) = 0 ⇔ X ⊥ Y |Z.

Auto-regressive Event Sequence Models. We reuse the two architectures introduced by Math et al.
(2025) to perform next event prediction (CarFormer as Tfx) and next labels (EPredictor as Tfy).
These two autoregressive Transformers model the conditional probability distribution of the next
events and labels conditioned on the past sequence of observed events Z = (x1, · · · , xi−1) = S<i,
the predictive distributions are:

Tfx(S<i) = Softmax(hx
i−1) ≜ Pθx(Xi|Z) (2)

Tfy(S≤i) = Sigmoid(hy
i ) ≜ Pθy (Y |Xi,Z) (3)

Here, hx
i−1,h

y
i ∈ Rd are the logits produced by the two Transformer heads of Tfx and Tfy

parametrized by θx, θy . The majority of Tfx (expect the heads) serves as a backbone for Tfy .

4 METHODOLOGY

Working with causal structure learning from observed data requires several assumptions, notably the
causal Markov assumptions Pearl (1988) states that a variable is conditionally independent of its
non-descendants given its parents. An extended discussion on the impact of assumptions is provided
later in Appendix E, and proofs in Appendix B. We assume the following:
Assumption 1 (Temporal Precedence). Given a perfectly recorded sequence of events
((x1, t1), · · · , (xL, tL)) with labels (yL, tL) and monotonically increasing time of occurrence
0 ≤ t1 ≤ · · · ≤ tL, an event xi is allowed to influence any subsequent event xj such that ti ≤ tj and
i < j. Formally, the graph G = (U ,E), (xi, xj) ∈ E =⇒ ti ≤ tj and step i < j

Figure 1: An example of a causal graph extracted from a multi-label event sequence where MB1

represents the Markov Boundary of Y1 and MB2 the Markov Boundary of Y2.

Time

Event Type

X1
· · · XL−2 XL−1 YL

Identification

X1 · · · XL−2 XL−1

Y1
Y2

MB1
MB2
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It allows us to remove ambiguity in causal directionality and orient the BN edges in Fig .1.

Assumption 2 (Causal Sufficiency for Labels). All relevant variables are observed, and there are no
hidden confounders affecting the labels.

Assumption 3 (Oracle Models). We assume that two autoregressive Transformer models, Tfx and
Tfy, are trained via maximum likelihood on a dataset of multi-labeled event sequences Dn =

{S1
l , · · · , Sn

l } ⊂ S, and can perfectly approximate the true conditional distributions of events and
labels:

P (Xi|Pa(Xi)) = Pθx(Xi|Pa(Xi)) = Tfx(S<i), P (Yj |Pa(Yj)) = Pθy (Yj |Pa(Yj)) = Tfy(S≤i)
(4)

Assumption 4 (Bounded Lagged Effects). Once we observed events up to timestamp ti and step
i as Z≤ti = ((x1, t1), · · · , (xi, ti)), any future lagged copy of event X(ti+τ)

i is independent of Yj

conditioned on Z≤ti :

Yj ⊥ X
(ti+τ)
i |Z≤ti

Where τ = ti+1 − ti is a finite bound on the allowed time delay for causal influence.

In other words, we allow the causal influence of event Xi on Yj until the next event Xi+1 is observed.
We note that for data with strong lagged effects (e.g., financial transactions), this might not hold well,
but relevant for log-based and error code-based data.

Lemma 1 (Identifiability of G). Assuming the faithfulness condition holds for the true causal graph
G. Let Tfx and Tfy be oracle models that model the true conditional distributions of events and labels,
respectively. The joint distribution Pθx,θy can then be constructed, and any conditional independence
detected from the distributions estimated by Tfx and Tfy corresponds to a conditional independence
in G:

Xi ⊥θx,θy Yj | Z =⇒ Xi ⊥G Yj | Z.

Where ⊥θx,θy denotes the independence entailed by the joint probability Pθx,θy .

Lemma 2 (Markov Boundary Equivalence). In a multi-label event sequence Sl and under the
temporal precedence assumption A1, the Markov Boundary of each label Yj is only its parents such
that ∀X ∈ {U − Pa(Yj)}, X ⊥ Yj |Pa(Yj) ⇔ MB(Yj) = Pa(Yj).

Theorem 1 (Markov Boundary Identification in Event Sequences). If Sk
l a multi-labeled sequence

drawn from a dataset Dn = {S1
l , · · · , Sn

l } ⊂ S where two Oracle Models Tfx and Tfy were trained
on, then under causal sufficiency (A2), bounded lagged effects (A4) and temporal precedence (A1),
the Markov Boundary of each label Yj in the causal graph G can be identified using conditional
mutual information for CI-testing.

We prove Theorem 1 in Appendix B.3 by induction. Such that under the previous assumptions, we
can correctly sequentially recover the Markov Boundary of our labels in the associated BN (Def 1).

Figure 2: The overview of OSCAR: One-Shot multi-label Causal AutoRegressive discovery. d
denotes the hidden dimension, L the sequence length, MB1,MB2 the Markov Boundary of Y1, Y2

respectively. All blue and green areas are parallelized on GPUs.
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4.1 CONDITIONAL MUTUAL INFORMATION ESTIMATION VIA AUTOREGRESSIVE MODELS

OSCAR works like a constraint-based causal discovery algorithm where the conditioning set of nodes
Z increases over time. Event apparitions are modelled using a sequential BN (Fig .1). Specifically,
we would like to access how much additional information event Xi occurring at step i provides about
label Yj when we already know the past sequence of events Z = S<i. We essentially try to answer if:

P (Yj |Xi,Z) = P (Yj |Z) ⇔ DKL(P (Yj |Xi,Z)∥P (Yj |Z)) = 0

where DKL denotes the Kullback-Leibler divergence Cover (1999). The distributional difference
between the conditionals P (Yj |Xi,Z), P (Yj |Z) is akin to Information Gain IG Quinlan (1986)
conditioned on past events:

IG(xi, Yj |zi) ≜ DKL(P (Yj |Xi = xi,Z = zi))||P (Yj |Z = zi)) (5)

Which is equals to the difference between the conditional entropies Cover (1999); Quinlan (1986)
denoted as H:

IG(Yj , xi|zi) = H(Yj |zi)−H(Yj |xi, zi) (6)

More generally, we can use the CMI to assess conditional independence (Def 4) which is simply the
expected value of the information gain IG(Yj , xi|zi) such as:

I(Yj , Xi|Z) ≜ H(Yj |Z)−H(Yj |Z, Xi) = Exi,zi [IG(Yj , Xi = xi|Z = zi)]) (7)

It can be interpreted as the expected value over all possible context Z of the deviation from inde-
pendence of Xi, Yj in this context. To approximate equation 7, a naive Monte Carlo Doucet et al.
(2001) approximation is performed where we draw N random variations of the conditioning set
z(l) = {x(l)

0 , . . . , x
(l)
i−1}, denoting the l-th sampled particle:

ÎN (Xi+1, Xi | Z) =
1

N

N∑
l=1

IG(Xi+1, Xi | Z = z(l)) (8)

This estimator is unbiased because the contexts z(l) are sampled directly from Tfx using a proposal
Q with the same support as P (Z). Since IG(Xi+1, Xi | Z = z) is a difference between conditional
entropies (equation 6), it is thus bounded uniformly Cover (1999) by the log of supports such as:

0 < IG(Xi+1, Xi | Z = z(l)) = H(Xi+1|z(l))−H(Xi+1|xi, z
(l))) ≤ H(Xi+1) ≤ log |X|

Thus the posterior variance of fi = IG(Xi+1, Xi | Z = z(l)) satisfies σ2
fi

≜ Ep(z)[f
2
i (p(z)] −

I2(fi) < +∞ Doucet et al. (2001) then the variance of ÎN (fi)) is equal to var(ÎN (fi)) =
σ2
ft

N and
from the strong law of large numbers:

ÎN
a.s.−−−−−→

N→+∞
Ez[IG(Xi+1, Xi | Z = z)] ≜ I(fi). (9)

An ablation of different proposal Q is presented in Appendix D.2. where we also study the effect
of N on classification and computational cost. Empirically, we found that combining top-k = 35
(randomly taking the k most probable tokens for each step) with nucleus sampling Holtzman et al.
(2020) (p = 0.9) and N = 68 provided the best trade-off between performance and efficiency.

In practice a label-specific threshold θj ≈ 0 is applied to equation 8 to identify conditional indepen-
dence:

Yj ⊥̸ Xi | Z ⇔ I(Yj , Xi | Z) > θj ≈ 0 (10)
θj is dynamically computed for each label based on the mean and standard deviation of the CMI
values across the sequence such that: θj = µYj

+ k · σYj
, where k controls the confidence interval.

We analyze the effect of k in Fig. 5.

To ensure stable conditional entropy estimates and reliable predictions from Tfy , the CMI is computed
after observing c events (context). This design choice also enables out-of-the-box parallelisation.
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By sampling N variations of the prefix sequence S≤c, the CMI is independently computed across
positions i ∈ [c, L]. One caveat is the phenomenon of entropy saturation Shannon (1951), whereby
the conditional entropy H(Yj | Zi) diminishes as Zi = S≤i grows longer:

H(Yj | Xi+1,Zi) ≤ H(Yj | Xi,Zi−1).

In other words, once a sufficiently informative context is observed, future uncertainty becomes
minimal. Therefore, context c and sequence length L must be carefully selected to balance informa-
tiveness and computational efficiency. In our case, we set c = 15, L = 128 for our experiments. An
ablation on c and the quality of the NADEs can be found in the Appendix D.1, as well as an extended
discussion on the assumptions in E.

4.1.1 COMPUTATION

A key advantage of our approach is its scalability. Unlike traditional methods whose complexity
depends on the event and label cardinality |X| and |Y| Li et al. (2016), our method is agnostic to both.
CMI estimations are independently performed for all positions i ∈ [c, L], with the sampling pushed
into the batch dimension and results averaged across labels, leading to BS×N ×L CI-tests per batch
D = {S0

l , . . . , S
n
l }.

Consequently, time complexity transitions from O(BS × N × L) to O(1) per batch due to GPU
parallelism. The complexity is bounded by the Transformers’ inference part, where it scales quadrati-
cally with the sequence length O(L2) if one uses vanilla self-attention Vaswani et al. (2017). The
implementation of OSCAR in Pytorch Paszke et al. (2019) is provided in Appendix G. It can be
easily decomposed into several steps such as:

1 logits_x = tfx(**batch)[’prediction_logits’]
2 x_hat = F.softmax(logits_x, dim=-1)
3 sampled = topk_p_sampling(batch[’input_ids’], x_hat, c=c, n=N)

Listing 1: Step 1: Next-event prediction and sampling.

The event Transformer tfx produces logits over next event types. We apply top-k/nucleus sampling
to expand the batch into N candidates in parallel. Only the first c events are sampled.

1 out_y = tfy(input_ids=sampled.reshape(-1,L), attention_mask=
attention_mask.repeat(N, 1))

2 prob_y = torch.sigmoid(out_y[’logits’]).reshape(bs, N, L-c, -1)
3 prob_y = torch.clamp(prob_y, eps, 1-eps)

Listing 2: Step 2: Next-label prediction.

The label Transformer tfy evaluates all samples in one forward pass starting from c, yielding
conditional probabilities P (Yj |Z) and P (Yj |Xi,Z). We then calculate the binary DKL:

1 y_z, y_zx = prob_y[...,:-1,:], prob_y[...,1:,:]
2 cmi = torch.mean(
3 y_zx*torch.log(y_zx/y_z) +
4 (1-y_zx)*torch.log((1-y_zx)/(1-y_z)),
5 dim=1
6 ) # (bs, L, |Y|)

Listing 3: Step 3: Conditional mutual information.

Conditional mutual information is averaged across the sampling dimension, producing a compact
(bs, L− c, |Y|) tensor:

1 mu, std = cmi.mean(dim=1), cmi.std(dim=1)
2 mask = cmi >= (mu + k*std).unsqueeze(1)

Listing 4: Step 4: Dynamic thresholding.

Finally, dynamic per-label thresholds identify causal events based on their value across the sequence
length dimension.
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4.2 CAUSAL INDICATOR

While deterministic DAGs reveal structural dependencies, they often obscure the magnitude and
direction of influence between variables. In many settings, a small subset of causal events may exert
disproportionate influence on the probability of a label. Moreover, causal relationships can be either
excitatory or inhibitory—that is, the presence of a cause may either increase or decrease the likelihood
of its effect.

For instance, if P (Yj | Xi,Z) < P (Yj | Z) then Xi negatively influences Yj , yet still constitutes a
valid causal relationship Pearl (2009). Without quantifying the effect direction and strength, such
cases may mislead the operator. Given that we can estimate both conditionals P (Yj | Xi,Z) and
P (Yj | Z), we define the causal indicator C ∈ [−1, 1] between an event Xi and a label Yj under
context Z that we assume fixed for every measurement Fitelson & Hitchcock (2010):

C(Yj , Xi;Z) := EZ [P (Yj | Xi, Z)− P (Yj | Z)]

following the measure proposed by Eells (1991). Here, C > 0 indicates a positive influence and
C < 0 reflects an inhibitory effect. While several metrics for causal strength exist—including Causal
Power Cheng (1997) and Good’s measure Fitelson & Hitchcock (2010), we adopt Eells’ measure for
its simplicity of interpretation. An operator can easily read it and get a sense of the raise in likelihood
of the label Yj We employ the term causal indicator to separate from causal strength measures, which,
if using this formulation, can be problematic as pointed out by Janzing et al. (2012). Ours serves
more as an indication than a strength, which is here the conditional mutual information.

C is computed using the same Monte-Carlo simulation as in equation 8 by averaging over all sampled
contexts. We compute mean and standard deviations over contexts to provide uncertainty estimates.

5 EMPIRICAL EVALUATION

Settings. We used a g4dn.12xlarge instance from AWS Sagemaker to run comparisons. It contains
48 vCPUs and 4 NVIDIA T4 GPUs. During inference, we used fp16 for Tfy and fp32 for Tfx. We
used a combination of F1-Score, Precision, and Recall with different averaging Zhang & Zhou (2014)
(Appendix C.1) to perform the comparisons. The code for OSCAR, Tfx,Tfy and the evaluation
are provided anonymously 1 as well as the anonymised version of the dataset for reproducibility
purposes.

Vehicle Event Sequences Dataset. We evaluated our method on a real-world vehicular test set of
n = 300, 000 sequences. It contains |Y| = 474 different error patterns and about |X| = 29, 100
different DTCs forming sequences of ≈ 150± 90 events. We used 105m backbones as Tfx,Tfy Math
et al. (2025). The two NADEs didn’t see the test set during training. The two NADEs didn’t see the
test set during training. The error patterns are manually defined by domain experts as boolean rules
between DTCs. For instance, in equation 11, DTCs x1 is a cause of the error pattern y1. We set the
elements of this rule as the correct Markov Boundary for each label yj in the tested sequences. It
is important to note that rules are subject to changes over time by domain experts, making it more
difficult to extract the true MB. Moreover, there is about 12% missing ground truth MB rules for
certain Yj .

Figure 3: Example of an error pattern (y1) boolean definition based on diagnosis trouble codes (xi)

y1 = x1 & (x5 | x8 ) & (x18 | x12) & x3 & (!x10 | !x20) (11)

Comparisons. Although no existing method directly targets one-shot multi-label causal discovery
Gong et al. (2024), we benchmark OSCAR against local structure learning (LSL) algorithms that
estimate global Markov Boundaries. This includes established approaches such as CMB Gao & Ji
(2015), MB-by-MB Wang et al. (2014), PCD-by-PCD Yin et al. (2008), IAMB Tsamardinos et al.
(2003) from the PyCausalFS package Yu et al. (2020), as well as the more recent, state-of-the-art

1https://tinyurl.com/oscar-iclr-2026
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MI-MCF Ma et al. (2025). 9 random folds of the test data were created and converted into a multi-
one-hot data-frame where one row represents one sequence and each column represents an event type
or label (X,Y). We set the target nodes as the labels with PyCausalFS.

Performances. We first drew n = 50, 000 random sequences from our dataset and performed
comparisons (Table 1). We found out that even under this reduced setup, LSL algorithms failed to
compute the Markov Boundaries within a 3 days timeout, far exceeding practical limits for deployment.
OSCAR on the other hand, shows robust classification over a large amount of events (29, 100),
especially 55% precision, in a matter of minutes. This behavior highlights the current infeasibility of
multi-label causal discovery in high-dimensional event sequences. This positions OSCAR as a more
feasible approach for large-scale causal per-sequence causal reasoning in production environments.

To enable at least partial comparison, we further sub-sampled to n = 500 sequences (Table 2) to
enable a faster computation. However, there is about the same number of labels in the test set for
n = 500 samples. Resulting to a poorly number of CI-tests for the baselines. As a result, LSL
algorithms output empty MB sets after multiple hours. Especially MI-MCF with even 500 samples
suffers from its expensive CMI testing. Thus, traditional algorithms suffer from having either too
much samples and taking days to compute or too less data to even function. This positions OSCAR
as a more feasible approach for large-scale, multi-label causal discovery in event sequences.

Table 1: Comparisons of MB retrieval with n = 50, 000 samples, |X| = 29, 100, |Y| = 474 averaged
over 6−folds. Classification metrics averaging is ’weighted’ and shown as one-shot for OSCAR. The
symbol ’-’ indicates that the algorithm didn’t output the MBs under 3 days. Metrics are given in %.

Algorithm Precision↑ Recall↑ F1↑ Running Time (min)↓
IAMB - - - > 4320
CMB - - - > 4320
MB-by-MB - - - > 4320
PCDbyPCD - - - > 4320
MI-MCF - - - > 4320
OSCAR 55.26± 1.42 31.37± 0.82 40.02± 1.03 11.7

Table 2: Comparisons of MB retrieval with n = 500 samples over 9−folds.
Algorithm Precision↑ Recall↑ F1 ↑ Running Time (min)↓

IAMB 0.0± 0.0 0.0± 0.0 0.0± 0.0 129.4
CMB 0.0± 0.0 0.0± 0.0 0.0± 0.0 128.7

PCDbyPCD 0.0± 0.0 0.0± 0.0 0.0± 0.0 129.1
MB-by-MB 0.0± 0.0 0.0± 0.0 0.0± 0.0 140.3

MI-MCF 0.0± 0.0 0.0± 0.0 0.0± 0.0 > 1440
OSCAR 54.78± 2.91 30.39± 2.39 39.92± 2.25 0.14

We exemplify the explainability provided by our method for the task of explaining error patterns
happening to a vehicle (Fig .10). A concrete use case for OSCAR in this context would be to refine
or create new error pattern rules based on OSCAR output predictions, such as non-common causal
variables Wu et al. (2020) between labels (Camera Error node), leading to a better automation of
quality processes. More examples are given in the Appendix F.1.

6 CONCLUSION

We presented OSCAR, the first scalable one-shot causal discovery method for high-dimensional
multi-labeled event sequences. It succeeded in uncovering causal structures on a real-world dataset in
an order of minutes, while classical baselines failed under the strain of dimensionality. Beyond local
structure learning, OSCAR quantifies causal strengths, offering more actionable insights in contrast
to deterministic DAGs.

OSCAR marks a decisive step towards making causality practical and efficient on GPUs for complex,
real-world high-dimensional sequential data.
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A APPENDIX

B PROOFS

We provide proofs for the results described in Section 4

B.1 PROOF OF LEMMA 1

Proof. We assume that the data is generated by the associated causal graph G following the sequential
BN from a multi-labeled sequence S. And that the faithfulness assumption holds Pearl (1988),
meaning that all conditional independencies in the observational data are implied by the true causal
graph G.

Given that the Oracle models Tfx and Tfy are trained to perfectly approximate the true conditional
distributions, for any variable Ui in the graph, we have:

P (Ui|Pa(Ui)) =

{
P (Yj |Pa(Yj)) = Pθy (Yj |Pa(Yj)), if Ui ∈ Y

P (Xi|Pa(Xi)) = Pθx(Xi|Pa(Xi)), otherwise.

By the faithfulness assumption Pearl (1988), if the conditional independencies hold in the data, they
must also hold in the causal graph G:

Xi ⊥ Yj |Z =⇒ Xi ⊥G Yj |Z

Since we can approximate the true conditional distributions, it follows that:

Xi ⊥θx,θy Yj |Z =⇒ Xi ⊥ Yj |Z =⇒ Xi ⊥G Yj |Z

Thus, the graph G can be identified from the observational data.

B.2 PROOF OF LEMMA 2

Proof. Let < U ,G, P > be the sequential BN composed of the events from the multi-labeled se-
quence Sl = ({(t1, x1, · · · , (tL, xL)}Li=1, (yL, tL)). Following the temporal precedence assumption
A1, the labels yL can only be caused by past events (x1, · · · , xL), moreover by definition labels does
cause any other labels. Thus, Yj has no descendants, so no children and spouses. Therefore, together
with the Markov Assumption we know that ∀X ∈ {U − Pa(Yj)} : Yj ⊥ X|Pa(Yj). Which is the
definition of the MB (Def. 3). Thus, MB(Yj) = Pa(Yj).

B.3 PROOF OF THEOREM 1.

Proof. By recurrence over the sequence length L of the multi-label sequence Sk
l , we want to show

that under temporal precedence A1, bounded lagged effects A4, causal sufficiency A2, Oracle Models
A3 and using an estimation of the CMI (equation 8) we can identify conditional independence so the
Markov Boundary of label Yj can be identified in the causal graph G.

14

http://proceedings.mlr.press/v3/yin08a.html
https://doi.org/10.1145/3409382


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Let’s define ML
j as the estimated Markov Boundary of Yj after observing L events.

Base Case: L = 1: Consider the BN for step L = 1 following the Markov assumption Pearl
(1988) with two nodes X1, Yj . Using Tfx,Tfy as Oracle Models A3, we can express the conditional
probabilities for any node U :

P (U |Pa(U)) =

{
P (X1) = Pθx(X1|[CLS]) if U ∈ X

P (Yj |X1) = Pθy (Yj |X1) otherwise
(12)

Assuming that P is faithful (A2) to G, no hidden confounders bias the estimate (A2) and temporal
precedence (A1), using equation 8, we can estimate the CMI such that iif I(Yj , X1|∅) > 0 ⇔
X1 ̸⊥θx,θy Yj =⇒ X1 ̸⊥G Yj (Lemma 1).

Since we assume temporal precedence A1, we can orient the edge such that X1 must be a parent of
Yj in G. Using Lemma 2, we know that Par(Yj) = MB(Yj) =⇒ X1 ∈ MB(Yj), thus we must
include X1 in M1

j , otherwise not.

Heredity: For L = i, we obtained M i
j with the sequential BN up to step L = i. Now for L = i+ 1,

the sequential BN has i + 2 nodes denoted as U ′ = (X1, · · · , Xi, Xi+1, Yj). Using the Oracle
Models A3 and following the Markov assumption (Pearl, 1988), we can estimates the following
conditional probabilities for any nodes U ∈ U ′:

P (U |Pa(U)) =

{
P (Yj |Pa(Yj)) ≈ Pθy (Yj |Pa(Yj)), if U ∈ Y

P (X|Pa(X)) ≈ Pθx(X|Pa(X)), otherwise.
(13)

By bounded lagged effects (A4) we know that the causal influence of past X≤i on Yj has expired.
Moreover, no hidden confounders (A2) bias the independence testing. Finally, using equation 8, we
can estimate the CMI such that iif I(Yj , Xi+1|Z) > 0 ⇔ Xi+1 ̸⊥θx,θy Yj |Z =⇒ Xi+1 ̸⊥G Yj |Z
(Lemma 1).

Since we assume temporal precedence A1, we can orient the edge so that Xi+1 must be a parent
of Yj in G. Using Lemma 2, we know that Par(Yj) = MB(Yj) =⇒ Xi+1 ∈ MB(Yj). Thus
Xi+1 ∈ M i+1

j which represent the MB(Yj) for step i+ 1.

Finally, Mi+1
j still recovers the Markov Boundary of Yj such that

∀U ∈ {U ′ −Mi+1
j }, Yj ⊥ U |Mi+1

j

C EVALUATION

C.1 METRICS

The Precision, Recall, and F1-Score for Markov boundary estimation were computed as follows using
the True set as the error pattern rule (True Markov Boundary) and the Inferred Markov Boundary set
from OSCAR:

• Precision (P ) measures the proportion of correctly identified causal events among all
inferred events:

P =
|Inferred ∩ True|

|Inferred|
where |Inferred ∩ True| is the number of true positive causal events, and |Inferred| is the
total number of inferred causal events.

• Recall (R) captures the proportion of correctly identified causal events among all true causal
events:

R =
|Inferred ∩ True|

|True|
where |True| is the total number of true causal tokens.
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• F1-Score (F1) is the harmonic mean of precision and recall, providing a balanced measure:

F1 =
2 · P ·R
P +R

C.2 PYCAUSALFS

Local structure learning algorithms were all used with α = 0.1 in the associated code: https:
//github.com/wt-hu/pyCausalFS/tree/master/pyCausalFS/LSL.

C.3 MI-MCF

MI-MCF Ma et al. (2025) was used for comparison following the official implementation at https:
//github.com/malinjlu/MI-MCF we used α = 0.05, L = 268, k1 = 0.7, k2 = 0.1.

D ABLATIONS

D.1 NADES QUALITY.

We did several ablations on the quality of the NADEs and their impact on the one-shot causal
discovery phase. In particular, Table 3 presents multiple Tfx,Tfy with respectively 90 and 15 million
parameters or 34 and 4 million parameters. We also varied the context window (conditioning set Z),
trained on different amounts of data (Tokens) and reported the classification results on the test set
of Tfy alone. We didn’t output the Running time since it was always the same for all NADEs: 1.27
minutes of 50,000 samples and 0.14 for 5000.

Table 3: Ablations of the performance of Phase 1 (One-shot MB retrieval) in function of different
NADEs with n = 50,000 and n = 500 samples averaged over 5-folds. Classification metrics use
weighted averaging. Metrics are given in %.

Tokens Parameters Context Precision (↑) Recall (↑) F1 Score (↑) Tfy F1 (↑)
For n = 50,000 samples

1.5B 105m c = 4 47.95± 1.05 30.65± 0.51 37.39± 0.67 88.6
1.5B 105m c = 12 54.62± 1.03 29.88± 0.73 38.63± 0.85 90.43
1.5B 105m c = 15 55.26± 1.42 31.37± 0.82 40.02± 1.03 90.57
1.5B 105m c = 20 49.52± 1.59 31.76± 0.85 36.54± 1.10 91.19
1.5B 105m c = 30 36.65± 1.18 22.75± 0.78 26.57± 0.91 92.64
300m 47m c = 20 39.49± 1.77 26.30± 0.89 29.01± 1.10 83.6

For n = 500 samples

1.5B 105m c = 12 54.84± 4.55 31.45± 2.23 39.95± 2.83 90.43
1.5B 105m c = 15 55.04± 3.36 29.90± 1.78 38.74± 2.24 90.57
1.5B 105m c = 20 48.84± 4.01 31.65± 2.37 36.19± 2.65 91.19
300m 47m c = 20 38.23± 2.91 25.31± 2.39 27.92± 2.25 83.6

D.2 PROPOSAL

We performed an ablation (Tab 4) on the effect of sampling methods to estimate the expected value
over all possible context Z. We used one A10 GPU on a sample of the test dataset (4000 random
samples) composed of 205 labels with a batch size of 4 during inference. We tested top-k sampling
with k = {20, 35} Fan et al. (2018) with and w/o a temperature scaler of T to log-probabilities x̂
such that

x̂′ = softmax(log x̂/T )

And a combination of top-k and a top-nucleus sampling Holtzman et al. (2020) with different
probability mass p = {0.8, 1.2} and finally a permutation of token position within the context c. We
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fixed a dynamic threshold with z score k = 3 and performed 10 runs. Then, we reported the average
and standard deviation of each classification metric and elapsed time (sec).

Without a surprise, sampling increases the predictive performance of OSCAR by a large margin.
More interestingly, different sampling types have different effects on specific averaging. This has
a ’smoothing’ effect on the CMI curve when multiple labels are present in the sequence. When
having no upsampling, the sensitivity of the CMI of different labels is increased, which makes
it more difficult to capture a threshold and a potential cause. We can notice that globally, top-k
sampling provides better results, especially with a combination of top-p=0.8 afterwards. Sampling
with the same tokens (Permutation) is not a good choice, giving more diversity by sampling from the
next-event prediction Tfx yielded better results. We will choose Top-k+p=0.8 for the increased F1
Micro and high F1 Macro, and Weighted.

Table 4: One-shot Classification performance and Elapsed Time (sec) across different sampling
methods. Best results are shown in Bold and Best ex aequo in underline.
Proposal F1 Micro (%) F1 Macro (%) F1 Weighted (%) Time (sec)

w/o Sampling 14.07 12.29 16.67 49.30± 0.30
Permutation 18.22± 0.36 13.75± 0.09 19.21± 0.03 557.82± 0.13
Top-k=20 26.77± 0.71 23.83± 0.19 29.25± 0.07 557.4± 0.13
Top-k=35 26.57± 0.96 24.08± 0.23 29.30± 0.07 557.35± 0.10
Top-k=35+T=0.8 27.36± 0.65 23.77± 0.21 28.98± 0.07 557.45± 0.11
Top-k=35+T=1.2 26.59± 1.49 24.62± 0.29 29.52± 0.06 557.45± 0.12
Top-k=25+p=0.8 27.98± 0.67 23.82± 0.28 29.18± 0.07 558.07± 0.07
Top-k=35+p=0.8 28.82± 0.75 24.06± 0.25 29.17± 0.07 558.16± 0.14
Top-k=35+p=0.9 26.39± 0.99 24.12± 0.31 29.26± 0.11 558.11± 0.12
Top-k=35+p=0.9+T=0.9 27.63± 0.75 23.90± 0.24 29.04± 0.09 558.07± 0.12
Top-k=35+p=0.9+T=1.1 26.75± 1.30 24.47± 0.24 29.45± 0.09 558.06± 0.11

D.3 SAMPLING NUMBER

We experimented with different numbers of N for the sampling method across different averaging
(micro, macro, weighted), Fig .4. We performed 8 different runs and reported the average, standard
deviation and elapsed time. We can say that generally, sampling with a bigger N tends to decrease
the standard deviation and give more reliable Markov Boundary estimation. Moreover, as we process
more samples, the model is gradually improving at a logarithmic growth until it converges to a final
score. We also verify that our time complexity is linear with the number of samples N . Based on
these results, we choose generally N = 68 as the number of samples.

D.4 DYNAMIC THRESHOLDING

We performed ablations on the effect of k during the dynamic thresholding of the CMI (equation 10)
to access conditional independence in Fig .5. To balance the classification metrics across the different
averaging, we set k = 2.75.
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Figure 4: Evolution of several classification metrics (one-shot) and elapsed time per sample in
function of the number of samples N chosen. Results are reported using 1-sigma error bar.
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Figure 5: Evolution of one-shot F1 Score, Precision and Recall in function of coefficient k. Results
are reported using 1-sigma error bar.
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E EXTENDED DISCUSSION ON ASSUMPTIONS

Our approach relies on several assumptions that enable one-shot causal discovery under practical and
computational constraints.

Temporal Precedence Temporal precedence (A1) simplifies directionality and faithfulness to G.
It allows for instantaneous influence, which aligns better with log-based data in cybersecurity or
vehicle diagnostics, where events can co-occur at the same timestamp. However, this places strong
reliance on precise event time-stamping. Even though we only test Xi → Yj , this could falsified the
conditioning test Z.
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Bounded Lagged Effects. The bounded lagged effects (A4) assumption enables us to restrict causal
influence and recover the MB of each label using Theorem 1. It also makes the computation faster.
In most real-world sequences where relevant history is limited, this holds empirically. Nonetheless,
in highly delayed causal chains, like financial transactions, some influence may be missed.

Causal Sufficiency. As with many causal discovery approaches, we assume all relevant variables
are observed (A2). Although it sounds like a strong assumption, interestingly, in high-cardinality
domains such as vehicle diagnostics, the volume of recorded events may reduce but not eliminate the
risk of hidden confounding.

Inter-label Effects. By definition, the labels are explained solely by events. While simplifying
multi-label causal discovery, this intrinsic assumption could be relaxed in future work by using the
do operator Pearl (2009) to perform interventions on common causal variables of multiple labels.
For exemple, our current framework estimates the Markov Boundaries for each label independently.
However, inter-label dependencies can exist, particularly when labels share overlapping Markov
Boundaries (e.g MB1 = [X1, X3],MB2 = [X1, X2]. We propose to investigate a ’Phase 2’ for
OSCAR, focusing on inter-label dependencies through simulated interventions. For instance, if we
consider a sequence S1 of two labels Y1, Y2 with the MB above, we could perform counterfactual
interventions by applying do(X1 = 0), do(X3 = 0)to S1. Then we would observe the average
change in the likelihood of Y1 which if it is non-zero, would indicate a dependence between Y1 and
Y2. Wu et al. (2020) points out that the assumptions of these inter-label dependencies are already
anchored in the Markov Boundaries, we do the same here.

NADEs. Due to the usage of flexible NADEs, we can relax common assumptions regarding data
generation processes such as Poisson Processes or SCMs. Finally, as seen in the Ablations D.1,
the effectiveness of OSCAR hinges on the capacity of Tfx and Tfy to approximate true conditional
probabilities (A3) and provide Oracle CI-test. While assuming Oracle tests is common in the literature
Xie et al. (2024); Li et al. (2016) and necessary to recover correct causal structures, this remains a
strong assumption. And it is only valid to the extent that the models are perfectly trained. Especially
for multi-label classification, performance may degrade in underrepresented regions of the data
distribution.

For example, we analyze on a reduced dataset, the performance of OSCAR in function of the MB
length:

Figure 6: Evolution of the One-Shot Recall, Precision and F1-Score in function of the Markov
Boundary length |MB(Yj)| using n = 45969 samples.
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Figure 6 reveals the classification performance depending on the number of nodes in the ground truth
MB. On the same plot is drawn in grey the number of samples that each MB length contains (to
account for imbalance). We observe that generally, a bigger |MB(Yj)| does not imply a reduction in
performance, highlighting the capability of OSCAR to retrieve complex Markov Boundaries in high-
dimensional data. However, we observe that past a certain number of samples (imbalance threshold
in red ≈ 7 × 102 samples), the classification metrics are directly correlated with the number of
samples per |MB(Yj)|. This indicates that Tfx,Tfy struggle to output proper conditional probabilities,
which deteriorates the CI-test when having rare classes. Therefore, when using OSCAR and more
generally assumption A3, one should carefully assess class imbalance in the pretraining phase.
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F FIGURES

F.1 EXPLAINATION EXAMPLE

To enhance interpretability and illustrate the learned relationships, we present graphical explanations
of error pattern occurrences based on sequences of Diagnostic Trouble Codes (DTCs). For each case,
we selected representative samples that reflect diverse yet intuitive failure scenarios.

Fig. 8 depicts a clear-cut example involving a single failure label related to the emergency antenna
system. In contrast, Fig. 9 captures a more intricate case where airbag and tire pressure (RDC)
malfunctions co-occur. These graphs highlight the influence of preceding events, with causal
contributions shown in orange and red, and inhibitory effects illustrated in pink. Such visualisations
serve to provide both human-understandable insights and support for the model’s reasoning process.

Figure 7: Example of a sequence of events (DTCs) that lead to a steering wheel degradation and a
power limitation as outcome labels. The inhibitory strengths are shown in violet and causal strengths
in orange and red depending on the magnitude.
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Figure 8: Example of a sequence of events (DTCs) that lead to an emergency antenna dysfunction as
outcome labels. The inhibitory strengths are shown in pink and causal strengths in orange and red
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Figure 9: Example of a sequence of events (DTCs) that lead to an airbag and tire pressure malfunctions
as outcome labels. The inhibitory strengths are shown in pink and causal strengths in orange and red
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Figure 10: Example of a sequence of events (DTCs) that lead to a steering wheel degradation and a
power limitation as outcome labels. The inhibitory strengths are shown in violet and causal strengths
in orange and red depending on the magnitude.
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G IMPLEMENTATION

The following is the full implementation of OSCAR in PyTorch Paszke et al. (2019).

1 def topk_p_sampling(z, prob_x, c: int, n: int = 64, p: float = 0.8, k:
int = 35,

2 cls_token_id: int = 1, temp: float = None):
3 # Sample just the context
4 input_ = prob_x[:, :c]
5

6 # Top-k first
7 topk_values, topk_indices = torch.topk(input_, k=k, dim=-1)
8

9 # Top-p over top-k values
10 sorted_probs, sorted_idx = torch.sort(topk_values, descending=True,

dim=-1)
11 cum_probs = torch.cumsum(sorted_probs, dim=-1)
12 mask = cum_probs > p
13

14 # Ensure at least one token is kept
15 mask[..., 0] = 0
16

17 # Mask and normalize
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18 filtered_probs = sorted_probs.masked_fill(mask, 0.0)
19 filtered_probs += 1e-8 # for numerical stability
20 filtered_probs /= filtered_probs.sum(dim=-1, keepdim=True)
21

22 # Unscramble to match the original top-k indices
23 # Need to reorder the sorted indices back to the original top-k
24 reorder_idx = torch.argsort(sorted_idx, dim=-1)
25 filtered_probs = torch.gather(filtered_probs, -1, reorder_idx)
26

27 batched_probs = filtered_probs.unsqueeze(1).repeat(1, n, 1, 1)
# (bs, n, seq_len, k)

28 batched_indices = topk_indices.unsqueeze(1).repeat(1, n, 1, 1)
# (bs, n, seq_len, k)

29

30 sampled_idx = torch.multinomial(batched_probs.view(-1, k), 1)
# (bs*n*seq_len, 1)

31 sampled_idx = sampled_idx.view(-1, n, c).unsqueeze(-1)
32

33 sampled_tokens = torch.gather(batched_indices, -1, sampled_idx).
squeeze(-1)

34 sampled_tokens[..., 0] = cls_token_id
35

36 # Reconstruct full sequence
37 z_expanded = z.unsqueeze(1).repeat(1, n, 1)[..., c:]
38 return torch.cat((sampled_tokens, z_expanded), dim=-1)
39

40 from torch import nn
41 def OSCAR(tfe: nn.Module, tfy: nn.Module, batch: dict[str, torch.Tensor],

c: int, n: int, eps: float=1e-6, topk: int=20, k: int=2.75, p=0.8)
-> torch.Tensor:

42 """ tfe, tfy: are the two autoregressive transformers (event type and
label)

43 batch: dictionary containing a batch of input_ids and
attention_mask of shape (bs, L) to explain.

44 c: scalar number defining the minimum context to start inferring,
also the sampling interval.

45 n: scalar number representing the number of samples for the
sampling method.

46 eps: float for numerical stability
47 topk: The number of top-k most probable tokens to keep for

sampling
48 k: Number of standard deviations to add to the mean for dynamic

threshold calculation
49 p: Probability mass for top-p nucleus
50 """
51 o = tfe(attention_mask=batch[’attention_mask’], input_ids=batch[’

input_ids’])[’prediction_logits’] # Infer the next event type
52 x_hat = torch.nn.functional.softmax(o, dim=-1)
53

54 b_sampled = topk_p_sampling(batch[’input_ids’], x_hat, c, k=topk, n=n
, p=p) # Sampling up to (bs, n, L)

55 n_att_mask = batch[’attention_mask’].unsqueeze(1).repeat(1, n, 1)
56

57 with torch.inference_mode():
58 o = tfy(attention_mask=n_att_mask.reshape(-1, b_sampled.size(-1))

, input_ids=b_sampled.reshape(-1, b_sampled.size(-1))) # flatten and
infer

59 prob_y_sampled = o[’ep_prediction’].reshape(b_sampled.size(0), n,
batch[’input_ids’].size(-1)-c, -1) # reshape to (bs, n, L-c)

60

61 # Ensure probs are within (eps, 1-eps)
62 prob_y_sampled = torch.clamp(prob_y_sampled, eps, 1 - eps)
63

64 y_hat_i = prob_y_sampled[..., :-1, :] # P(Yj|z)
65 y_hat_iplus1 = prob_y_sampled[..., 1:, :] # P(Yj|z, x_i)
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66

67 # Compute the CMI & CS and average across sampling dim
68 cmi = torch.mean(y_hat_iplus1*torch.log(y_hat_iplus1/y_hat_i)+

(1-y_hat_iplus1)*torch.log((1-y_hat_iplus1)/(1-y_hat_i)), dim=1)
69 # (BS, L, Y)
70 cs = y_hat_iplus1 - y_hat_i
71 cs_mean = torch.mean(cs, dim=1)
72 cs_std = torch.std(cs, dim=1)
73

74 # Confidence interval for threshold
75 mu = cmi.mean(dim=1)
76 std = cmi.std(dim=1)
77 dynamic_thresholds = mu + std * k
78

79 # Broadcast to select an individual dynamic threshold
80 cmi_mask = cmi >= dynamic_thresholds.unsqueeze(1)
81

82 cause_token_indices = cmi_mask.nonzero(as_tuple=False)
83 # (num_causes, 3) --> each row is [batch_idx, position_idx,

label_idx]
84 return cause_token_indices, cs_mean, cs_std, cmi_mask

Remark. Since tfy contains tfe as backbone, in practice we need only one forward pass from tfy and
extract also x̂, so tfe is not needed. We let it to improve understanding and clarity.
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