LONGHEADS: Multi-Head Attention is Secretly a Long Context Processor

Anonymous ACL submission

Abstract

Large language models (LLMs) have achieved
impressive performance in numerous domains
but often struggle to process lengthy inputs ef-
fectively and efficiently due to limited length
generalization and attention’s quadratic com-
putational demands. Many sought to mitigate
this by restricting the attention window within
the pre-trained length. However, these meth-
ods introduce new issues such as ignoring the
middle context and requiring additional train-
ing. To address these problems, we propose
LONGHEADS, a training-free framework that
enhances LLM’s long context ability by unlock-
ing multi-head attention’s untapped potential.
Instead of allowing each head to attend to the
full sentence, which struggles with generalizing
to longer sequences due to out-of-distribution
(OOD) issues, we allow each head to process in-
distribution length by selecting and attending
to important context chunks. To this end, we
propose a chunk selection strategy that relies on
the inherent correlation between the query and
the key representations, efficiently distributing
context chunks to different heads. In this way,
each head ensures it can effectively process
attended tokens within the trained length,
while different heads in different layers can
collectively process longer contexts. LONG-
HEADS works efficiently in linear time, fits
seamlessly with many LLMs that use relative
positional encoding. Our extensive empirical
analyses verify LONGHEADS’s efficacy in ex-
tending the usable context window for existing
models, showcasing its promise for enhancing
long text understanding.

1 Introduction

LLMs are usually required to handle tasks with
long contexts, such as in-context learning (Dong
et al., 2023), tool learning (Qin et al., 2023), and

retrieval-augmented generation (Gao et al., 2024).

However, enabling LLMs to process long contexts
presents significant challenges. The OOD issue

Accuracy on Passkey Retrieval

Out of Pre-trained Length |
| I \ I
32k

All Heads § E os
(b) Restricted Attention
Evicted Tokens 0.6
Y e —
All Heads T05 4
8k 16k

NTKe (a) mLM-INFe (b) ®Ourse(c)

(@) Full Attention

-
Head n T¥13

Head 2 {093

Figure 1: Left: Three types of long-context proces-
sors, (a) Attend all contexts but struggle with out-of-
pre-trained length; (b) Attend local context to generate
fluently but lose information; (c) Head attends short
chunks and HEADS attend LONG context. Right: Accu-
racy of three specific methods on passkey retrieval task.

makes LLM struggle to process tokens beyond pre-
trained length, and quadratic complexity of atten-
tion introduces considerable training and inference
costs. Although OOD issue could be addressed
by zero-shot learning (Jin et al., 2024), fine-tuning
(Chen et al., 2023a; Peng et al., 2023), or re-training
(Sun et al., 2022; Press et al., 2022), the required
memory and computation still increases quadrati-
cally with context length, as shown in Figure 1(a).

To alleviate these issues, recent works restrict
the attention window to pre-trained length, which
reduces the computation cost and avoids the pro-
cessing of OOD tokens. One direction is to ex-
clude distant tokens (except for a few initial to-
kens, Han et al., 2023; Xiao et al., 2023) to restrict
the attention window in-distribution, as shown in
Figure 1(b). However, these methods could re-
sult in losing critical information, degrading per-
formance on downstream tasks. The other way to
constrain the attention window is to retrieve chunks
of long sequences (Mohtashami and Jaggi, 2023;
Zhang et al., 2024), but these approaches usually re-
quire special operations and continuous fine-tuning,
which makes it difficult for existing LLMs to be
directly applicable to long sequences. In summary,
improving the ability of LLMs to handle long con-
texts at a low cost is still challenging.

In this paper, we propose LONGHEADS, a novel
framework to enhance LLM’s long context abil-
ity without additional training. The key idea is to
fully unlock the potential of multi-head attention.
We first utilize the nature of different heads focus
on different subspaces of the context, and each
head can effectively process sequences within
the pre-training length. As shown in Figure 2
(c), we limit each head to selecting and attending
to important contextual chunks within pre-trained
length, rather than having each head attend to the
entire sentence, thereby avoiding the OOD prob-
lem. Furthermore, we leverage the model’s inher-
ent dot-product attention and propose a chunk se-
lection strategy to find important chunks for each
head. Drawing inspiration from the fact that each
head assigns different attention weights to to-
kens based on the inherent correlation between
the query and the key representations, we break
the input into chunks and create chunk-level fea-
tures for each block. It utilizes native token-level
correlation to construct chunk-level queries and key
representations, which allows each head to utilize
its existing capabilities (dot-product attention) to
select chunks based on the attention weights. In
this way, each head effectively processes selected
context chunks within the trained length, and all
heads in all layers work together to handle longer
contexts. Meanwhile, all operations are based on
the intrinsic capabilities of multi-head attention,
allowing LONGHEADS to enhance LLMs without
additional training.

To evaluate the effectiveness of LONGHEADS,
we employ LLaMA-2-7B-Base and LLaMA-2-7B-
Chat as base models and evaluate on language
modeling, synthetic retrieval task and long con-
text benchmark. LONGHEADS achieving nearly
100% accuracy across context lengths from 4k
to 32k on the Passkey Retrieval task. On Long-
Bench, LONGHEADS achieves the state-of-the-art
(SOTA) performance among restricted attention
methods. Compared with full attention methods,
LONGHEADS achieves comparable performance
on 16K test lengths and the best performance on
32K test lengths while enjoying linear computa-
tional cost. The experimental results demonstrate
that LONGHEADS enables the LLMs to directly
generalize to longer sequences and achieve com-
parable or even superior performance compared to
the methods that require continuous fine-tuning.

Our contributions can be summarized as follows:

* We propose LONGHEADS, a training-free in-
ference framework that leverages the structural
properties of attention heads to process long se-
quences efficiently and effectively.

* We design a simple yet effective chunk selection
strategy that can accurately select useful chunks
and cover the full context.

» Experiments demonstrate that LONGHEADS is
a SOTA restricted-attention-based long con-
text processor and works efficiently in linear
time, also with comparable performance to full-
attention methods.

2 Method

In this section, we describe how the LONGHEADS
utilizes the inherent ability of multi-head attention
to encode and generate long sequences without
additional training.

2.1 Overview

An overview of LONGHEADS is shown in Figure 2.
We break the text into chunks and calculate the
chunk representations for each chunk. When gen-
erating token x14, we pick the relevant k& chunks
based on the current token’s query vector and chunk
representations. In this way, each attention head of
the LONGHEADS selectively focuses on different
text chunks according to its preference. The tokens
of attended chunks are then restructured, ensuring
the subsequent causal attention always performed
within the pre-trained length.

When encoding or generating an out-of-length
token, a parameter-free chunk selection network
picks the relevant k£ chunks based on the current
query vector and chunk representations. Unpicked
chunks can be approximated as having zero atten-
tion score (this usually holds under the sparsity of
the attention mechanism), and do not need to be
computed. This allows the attention matrix not
to increase with length, significantly reducing the
memory and computational cost of long contexts
from O(N?) to O(N). Other works that restrict
the scope of attention simply ignore distant tokens
beyond a few initial tokens, even if they contain
information worthy of attention.

In order to accurately select useful chunks,
we utilize inherent similarity between token-level
queries and token-level keys to construct chunk-
level query and key representations. Taking the
32K Passkey Retrieval experiment as an example,

! Stat Chunk Selection for Head;] \| Selected Chunks of Each Head
Query States A , Chunk1 Chunk2 Chunk3 Chunk4 x14
ey states €19 €3 X Bl v v d L v T v |Hed. Generating |Next Token
Value States 0 04 01 ____ 0.5 N -
i ; | v | v o I v | Head; x N blocks
Chunk Query Vector KV Cache t 7
Cj Chunk Representation 1 ,/ v v v} | s Multi-Head
,,,,,,,,,, / -
Chunk 1 Chunk 2 Chunk 3 Chunk 4 Attention

FlashAttention —» €; FlashAtiention —> €

FlashAttention — C3
-

.—> FlashAttention — €4

FlashAttention & Pooling FlashAttention & Pooling FlashAttention & Pooling FlashAttention & Pooling T—
Lo)lee)(zs) (o Jos Lo) Lar Lo) 2) (20)20](2] (205

Figure 2: An overview of LONGHEADS’s inference, generating token x14 in the current step. During inference,
LONGHEADS keeps the first chunk for stable computation, combined with the last chunk containing recent tokens.

the chunk containing the answer (i.e., the most valu-
able one) is the chunk with the highest selection
score in 98% of the cases without being trained.

2.2 Chunk Representation

Chunk representation is an indicator of whether the
tokens in this chunk should be attended to. We ob-
tain chunk representations in a training-free manner
by utilizing the attention’s intrinsic abilities.

Formally, given a long input sequence X =
(1, ...,), we segment it into chunks according to
a predefined chunk size [/, then the input sequence
can be denoted as X = (Cy,...,Cp),m = [7].
We use attention’s key states to generate chunk
representation for each chunk due to the existing
attention mechanism relies on query states. There
are numerous straightforward methods to obtain
chunk representation, such as mean pooling of the
key vectors of all tokens in the chunk. However,
they have demonstrated suboptimal performance
in preliminary experiments, particularly in select-
ing the correct chunks. We hypothesize that this is
attributed to the significance of individual tokens
within a chunk vary substantially.

To address the above problem, we should iden-
tify the tokens that can represent the entire chunk.
For that purpose, we evaluate each token’s signif-
icance to the chunk and perform scaled attention
aggregation on all tokens’ key states to obtain a
representative chunk representation as follows:

c; = flash-attention (¢, K;, K;) (1)

where ¢; € R™*? is the chunk representation,
K, € R s the attention’s all key states of chunk
C;, g¢ € R™*4 is a query vector to indicate which
token’s key state is suitable for representing the
chunk representation. Next, we describe how to
create the query vector.

A good chunk query vector should be able to
represent the chunk’s full semantic information,
i.e., the value vector of all tokens in the entire
chunk. However, different tokens do not contribute
equally to the semantic representation, e.g., con-
tent words hold a higher semantic weight, while
function words contribute less. Utilizing the in-
herent dot-product similarity between token-level
query and key representations, we construct seman-
tic weights for each token through a bidirectional
self-attention aggregation. From the perspective of
message passing, semantically rich content words
will transmit more of their information to other
tokens, whereas function words transmit little. Fi-
nally, the query vectors g; that successfully summa-
rize the complete semantics are obtained by mean-
pooling of the aggregated representations, and can
be formalized as follows.

O; = flash-attention(Q;, K;, V;)
g; = mean (O;), 2)

where Q;, K;,and V; € R4 are all query states,
key states, and value states of chunk C; respec-
tively. Both K; and V; can be directly accessed
from the KV cache, whereas @Q; requires tempo-
rary storage during the calculation of the current
chunk’s representation and is released thereafter.

2.3 Chunk Selection Strategy

During the encoding or generation of the next token
(denoted by x;), we employ a query-aware chunk
selection strategy, picking the k& most relevant
chunks from those already generated. Based on
prior knowledge, there are two mandatory chunks.
One is aligning with Xiao et al. (2023)’s find-
ings, acknowledging the essential role of the few
start tokens of a sentence in preserving the stabil-
ity of LLMs. If the few start tokens are missing

from the context, the pre-trained LL.Ms will com-
pletely lose their expressive ability (i.e., exhibit
very high perplexity). To ensure fluency, all at-
tention heads uniformly select the first chunk (i.e.,
(1) of the sentence. Otherwise, the LLM cannot
handle downstream tasks (as demonstrated in the
Ablation Study). The other is assigning the last
chunk (i.e., C'_1) to all attention heads, in order
to provide the model with the local information
necessary for generation.

Next, we pick the remaining £ — 2 most relevant
chunks for each attention head. In the attention
module of LLMs, the dot product score reflects
the relevance of the context token to the current
token. Inspired by it, we pick target chunks by the
dot product similarity between the current token’s
query state g; and the chunk representation c;.

P = {Cl}U{CZ | rank(qj ~Ci) < k—Q}U{C_l},
3)
where P is the final set of selected chunks, and
the rank(-) function outputs the rank of the current
chunk’s computed similarity among all candidates.
In this way, different attention heads across the lay-
ers naturally attend to different parts of the context,
retrieving the important chunks for inference.

Position Remapping. There are text chunks in
the set P that exceed the pre-training length, so
the positional encoding of P needs to be remapped.
The total length of the selected chunks is controlled
to be within the pre-training length L, i.e., kxl < L.
Here, LONGHEADS restructures the picked chunks
and concatenates them, while preserving the or-
der of precedence. In Figure 3, the current head
attends to chunks (1, 2,7, 8) among the eight can-
didate chunks. The positions are assigned as [1, 4],
in contrast to the original text positions, which
would be [1,1] U [[+1,2]] U [6]41, TI] U [7I+1, 81].
Position remapping avoids the out-of-distribution
problem encountered when extending the context
even without further training.

[t~ |[ir1i~2] [2e+1~3] [3t+1~4]] [at+1~5] [51+1~6] [t +1~7]
Cio. Caui G Cy Cs Cs Cr
~~~~~~~~~~ y =
— e 7 -
Picked == = T
e P=[1~u | [irr~2] rr1~s] prri~4]
Cl Cz Cr, C7

Figure 3: Demonstration of Position Remapping.

2.4 Inference with LONGHEADS

We separately describe the encoding of long in-
puts and the generation of long outputs during the

inference. Here we describe only the modified
multi-head causal attention layer.

Computation and Memory in Encoding Phase.
When the LONGHEADS receives long inputs, it
first computes the representations of all chunks in
parallel. This can be quickly achieved through two
passes of flash-attention, with the number of tokens
involved in the attention equal to the chunk size
(i.e., [=256, which is much smaller than the length
of the input, e.g., n=16k). The second step is to
select the £ most relevant chunks for each query
based on chunk representations and to obtain their
key and value representations, making the attention
window equals to kxl=w (e.g., w=2k, which is also
much smaller than n). Finally, length-restricted
causal flash-attention is performed efficiently.

Computation and Memory in Generation Phase.
During the generation process, LONGHEADS first
performs chunk selection, then loads the Key-Value
representations of the picked & chunks for length-
constrained causal attention. When generating with
very large inputs (e.g. 100K), the KV cache (except
the chunk representations) can be offloaded to CPU
to significantly reduce memory usage, and we only
load the picked chunks into the GPU memory. We
always retain the query-key-value representations
of recent tokens (not exceeding the chunk size)
during the generation process. When the number of
recent tokens equals the chunk size, we compute a
chunk representation, similar to the encoding phase,
and append it to the previous chunk representations.

Overall, the time complexity approximates an
LLM with window attention O(w?) (window size
w is equal to k * [). Memory usage of the decoding
phase approximates O(n + w?), and can be further
reduced to O(k * | + w?), avoiding a quadratic
increase in costs with sequence length.

3 Experiment

We evaluate the proposed LONGHEADS primarily
using the LLaMA-2 (Touvron et al., 2023) consider-
ing its wide adoption and popularity. The effective-
ness of LONGHEADS is evaluated on three kinds of
tasks: language modeling, synthetic retrieval task
and long context benchmark.

3.1 Settings

Implementation. Our method is applied to
LLaMA-2-7B base and chat models for empiri-
cal studies. In our setup, we set the size of each



PG19

Proof-pile
Method 4k 16k 32k 4k 16k 32k
Full Attention
PI-16K 742 672 >10° 298 2.61 >10°
NTK 698 9.58 193 299 3.00 4.05
Restricted Attention
LLaMA-2-7B 6.98 >10% >10% 2.99 >10% >103
LM-Infinite  6.98 7.33 7.75 299 296 3.10

Landmark

10.03 10.13 10.14 4.98 4.86 4.92
LONGHEADS 698 8.15 841 299 326 342

Table 1: Sliding window perplexity of different context
window extension methods on PG19 and Proof-pile
LONGHEADS extends the original LLaMA-2’s context
window length to 32k with 2k attention window.

chunk [ to be 256. During each inference step, we
employ our chunk selection strategy to perform
query-aware chunk selection. For each selection,

=
S)

o
©

Fine-tuned
- PI-16K
Landmark

o
o

Training-free
-®- Llama-2-7B
LM-Infinite
NTK
~#- LongHeads

Accuracy

o
P

\
\
\

o
[N

A

\

\

\

\

- -

8k

0.0

4k 12k 16k 20k

Context Length

24k 28k 32k

Figure 4: The evaluation of passkey retrieval task at
different context lengths. LONGHEADS achieves a com-

parable performance as Landmark Attention and outper-
forms other methods.

3.3 Retrieval-Based Evaluation

We conduct experiments on the passkey retrieval

we consistently choose the first chunk from the
long text to facilitate normal generation by the
model, and the last chunk to provide local con-
text information. For all evaluation tasks, inference
is conducted on a single NVIDIA A100 GPU.

Baselines. The following types of baselines are

chosen for comparison. 1) The method with full
attention, including “Dynamic NTK” interpolation
(NTK, emozilla, 2023) and Position Interpolation
(PI, Chen et al., 2023a). 2) The method with re-
stricted attention, including LM-Infinite (Han et al.,
2023) and Landmark-Attention (Mohtashami and

Jaggi, 2023). The implementation details of base-
lines are in Appendix A.

3.2 Long Context Language Modeling

The experiment on long context language model-
ing is performed with two datasets: PG19 (Rae
et al., 2019) and Proof-pile dataset (Azerbayev
et al., 2023). Details are shown in Appendix B.1.

The evaluation results are reported in Table 1.
Although the PPL of LLaMA-2-7B-Base model
and PI remain low within the pre-training context
length, it increases significantly when the context
exceeds this window. The NTK approach can main-
tain low PPL values for sequences up to 16k length,
but PPL rises significantly at 32k context length. In
contrast, LONGHEADS, Landmark Attention and
LM-infinite successfully maintain a low PPL score
even at a sequence length of 32k.

task introduced by (Mohtashami and Jaggi, 2023).
This task challenges a language model to accurately
locate and retrieve a simple passkey (a five-digit
random number) in a long text sequence. It tests
whether a LLM can effectively attend to informa-
tion across all positions of the input sequence. Fol-
lowing the design of Mohtashami and Jaggi (2023),
the passkey is placed with various context lengths
(ranging from 4k to 32k with 4k interval). For
each context length, we perform 50 tests with the
passkey placed at a random position in the context.
In Figure 4, we can see that all the models can
output the passkey within the pretrained length.
The base model completely fails at the extended
length. The NTK and LM-Infinite induce a sig-
nificant drop in accuracy for models at lengths
surpassing 6k tokens, with accuracy falling below
20% when token lengths exceed 16k. LM-Infinite
can only access 10% passkey with its local win-
dow, despite having low PPL at 32k length. Con-
versely, Landmark Attention and LONGHEADS
consistently retrieve with nearly 100% accuracy
regardless of sequence length. We note that LONG-
HEADS uses only 2k attention window achieving
98% accuracy at the 32k length without training.

3.4 Long Context Benchmark Evaluation

Language modeling tasks have proven to be insuf-
ficient metrics for ensuring success in downstream
tasks (Sun et al., 2021), while synthetic password
retrieval tasks often do not align with real-world
scenarios. It is significant to conduct real down-
stream task evaluations to more comprehensively
reflect the model’s long sequence capabilities. We



FT

Single-Doc QA

Multi-Doc QA

Summarization

Few-shot Learning  Synthetic

Code

Method Avg.
Tokens NQA Qspr. MulFi HQA WMQA Musq. GRpt QMSM MuIN TREC TriQA SMSM PsgC PsgR Lcc Repo
Full Attention
NTK - 16.47 29.62 31.42 31.31 28.75 10.20 22.70 17.65 6.31 64.67 77.36 37.95 3.99 5.12 65.64 52.97 31.38
PI-16k 0.85B 21.37 31.78 36.67 37.56 27.47 1598 13.55 20.69 1.18 63.00 89.24 25.64 5.67 11.33 67.05 56.02 32.76
Restricted Attention
LM-Infinite - 14.34 20.75 26.18 20.37 20.08 5.87 16.70 7.01 2.28 54.67 76.69 15.64 4.30 7.00 62.90 52.74 25.47
Landmark 0.80B 11.35 2391 20.96 26.95 26.25 5.22 17.74 19.15 9.84 42.67 80.73 3545 5.73 7.00 59.74 42.76 27.22
LONGHEADS - 14.51 21.58 30.32 30.07 25.28 9.15 24.74 20.26 6.30 55.00 83.26 34.27 245 9.39 65.01 50.65 30.14
w/ NTK init - 16.48 28.63 31.36 31.19 28.67 13.54 22.85 17.63 6.38 6533 77.49 38.07 4.32 4.97 65.56 52.87 31.58
w/ Pl init 0.85B 21.43 31.78 36.64 37.63 27.33 15.98 13.36 20.57 130 63.00 89.57 25.86 5.67 11.33 66.93 48.96 32.33
Extend to 32k
NTK - 5.74 29.05 31.39 28.98 27.03 9.34 22.00 15.13 5.40 64.67 48.34 3450 3.89 4.85 57.54 45.29 27.07
PI-16k 0.85B  8.43 30.15 35.20 29.47 24.72 1.74 1323 1259 130 55.00 66.15 19.16 5.42 11.33 33.21 27.21 23.39
LM-Infinite - 10.87 20.58 26.19 19.48 20.40 16.52 526 2.51 6.14 55.00 82.78 11.26 4.30 6.67 64.88 56.02 25.55
Landmark 0.80B 13.88 23.69 21.06 28.04 2578 11.52 17.70 19.11 10.68 41.00 77.15 35.61 5.70 7.00 58.22 40.97 27.32
LONGHEADS - 13.38 21.81 30.33 29.59 2490 11.48 27.43 19.87 6.07 55.00 81.15 33.56 2.79 10.06 63.75 47.97 29.95

Table 2: The results of different methods based on the LLaMA-2-7B-Base model on LongBench. FT Tokens
indicate the number of tokens used for continuous training. The context window size for LONGHEADS is 4k.

opt LongBench (Bai et al., 2023) for downstream
NLP task evaluation, the details are shown in Ap-
pendix B.2. The results are listed in Table 2. We
also conduct experiments on LLaMA-2-7B-Chat
model, and the results are shown in Appendix D.

Comparison with Restricted Attention Methods.
LONGHEADS surpasses the current methods with
restricted attention. Specifically, LONGHEADS per-
forms better than the method with the sliding win-
dow mechanism on LongBench (+4.67 vs. LM-
Infinite). Compared to the method with chunking
strategy (i.e., Landmark Attention), LONGHEADS
exceeds the average score by 2.92 on LongBench
without additional training. This indicates that the
chunk selection strategy in LONGHEADS can accu-
rately supplement LL.Ms with relevant contextual
information, enabling efficient and effective under-
standing on long sequences.

Comparison with Full Attention Methods. Full
attention methods can increase the maximum se-
quence length of LLLMs but also raise computa-
tional and memory costs. LONGHEADS can be
augmented with PI or NTK methods during the en-
coding phase, achieving comparable or even better
results with a shorter window size, significantly re-
ducing computational overhead. This suggests that
LONGHEADS has the potential for scalability, and
can be strengthened with a stronger base model.

Performance when extending to 32k Con-
text window. A desirable attribute for RoPE-
extension methods is that the models should main-
tain their performance when directly extending

to a longer context window. When extending to
32k context windows, PI and NTK methods strug-
gle with the out-of-demonstration issue and tend
to compromise model performance. In contrast,
LONGHEADS maintains its performance and out-
performs all the baseline methods. It successfully
extend LLaMA-2-7B-Base from a 4K length to 8
times its length, demonstrating that LONGHEADS
can easily generalize to a longer context window.

4 Discussion

4.1 Analysis

In this section, we explore how different attention
heads handle long contexts and whether they find
important information. We set LONGHEADS’s at-
tention window to 2048 and analyzed its perfor-
mance on passkey retrieval and summary tasks. We
visualize the tests for both tasks in Figure 5 and
show the statistical results in Table 3. The details
of analytical experiments are in Appendix C.

Attention heads focus on important parts in con-
text. On the passkey retrieval task, shown in Fig-
ure 5(a), all attention heads focused on the same
chunk containing the answer and predicted it accu-
rately. Even when the passkey is not successfully
predicted in Figure 5(b), the chunks containing
the answer are still selected by multiple heads. In
contrast, on the summary task in Figure 5(c), the
attention heads spread their focus more evenly to
summarize the entire information. Similarly, Table
3 reveals a lower uniformity score for the summary
task compared to the passkey retrieval task. These
findings suggest that our chunk selection strategy



31 31
30 30
29 29
28 28
27 27
26 26 n
25 25 ]
2 2
23 23
2 2
21 B | 21
20 20
19 | B | 19
L 18 18
gu o7
A 6
81 S
1 1
#* 03 #* 3
12 12
1 1
10 10
9 9
8 8
7 7
6 6
5 H
a a
3 3
2 2
1 1
o o
“““““““““““““““ I o A B o S MU RO

012345678 910111213141516171819202122232425262728293031

012345678 910111213141516171319202122232425262725293031

(a) Passkey Retr|eva| Task (Success)

(b) Passkey Retrieval Task (Fail)

# Attention Heads

I ]
r
EEEEEN
| -] [ |

L
INEERNENNE BN

|“

5
e

s
** 13

s

=

i

9

8

:

:

:

: B
3 | |

2 ||

:

;

od N o

0123456789 101112]314]5]617]519202]2223242526272529303]

(c) Summarlzatlon Task

Figure 5: Visualization of chunks selected by different attention heads at each layer represented by color blocks. For
the passkey retrieval task, the chunk containing the passkey is delineated with a red border. For the failed example,
the red border encompasses two chunks due to the passkey-containing sentence coincidentally spanning two chunks.

Input  Cover Uniformity Hit Rate
Length  Rate Topl Top5
Passkey Retrieval
4k 100 0.52 0.55 0.96
8k 100 0.52 0.89 0.96
16k 99.2 0.60 0.99 1.00
32k 82.0 0.76 0.98 0.98

Summary
4k 100 0.31 / /
8k 100 0.44 / /
16k 100 0.49 / /
32k 100 0.57 / /

Table 3: Statistical results with different sequence
lengths. Cover Rate is defined as the percentage of
selected chunks out of the total number of chunks. Uni-
formity of the distribution of chunk selection is evalu-
ated by the Gini coefficient, with lower values indicating
a more uniform distribution. Hit Rate means the proba-
bility that the top-1 and top-5 selected chunks contain
the correct answer in the past key retrieval task.

results in a more uniform distribution of selections
in the summary task, while the distribution in the
passkey retrieval task is more concentrated. We
attribute this to the specificity of chunks required
for the passkey retrieval task, whereas the sum-
mary task necessitates various parts of the text to
formulate a comprehensive answer. Moreover, the
probability of the top 5 selected chunks containing
the answer is almost 100% across all test lengths
in Table 3. These results suggest that our chunk se-
lection strategy adaptively fits the characteristics of
different tasks, and allows different attention heads
to concentrate on task-related content.

Attention heads can handle long sequences in a
short window. In Figure 5, the lower layer atten-
tion heads focus on the more dispersed text in both

tasks, while the upper layer attention heads focus
more on specific chunks. We speculate that dif-
ferent attention heads naturally focus on different
parts of the information in the text at lower layers,
collecting and aggregating the entire long docu-
ment information in a short length, while the upper
layer attention heads are responsible for process-
ing the aggregated information, mainly focusing on
the chunks needed to complete the task. In Table
3, the Cover Rate is 100% in most cases. Given
that different heads in each layer can select varying
chunks, the maximum theoretical length accessi-
ble by LONGHEADS is |P| x n_heads x n_layers
(e.g., the maximum length for LLaMA-2-7B with
4k attention window is 512k). These observations
demonstrate that we have successfully utilized a
limited attention window to capture almost all in-
formation from the entire long document.

4.2 Ablation Study

We conduct ablation experiments to investigate
the influence of chunk selection strategy, attention
heads flexibility, number of chunks K, and chunk
size [. The ablation study is constructed on Long-
Bench and the results are presented in Table 4.

Effect of Chunk Selection Strategy. We find
that the performance when selecting the highest-
scoring chunks significantly surpasses that of the
lowest-scoring (Last K) chunks, and even Random
Selection yields better results than Last K Selection.
We also observe a significant performance degrada-
tion when the first chunk is not preserved. This is
because the absence of the first chunk results in the
model’s output distribution collapsing directly. Our
findings are consistent with Streamingl.LLM (Xiao



Method Setting LongBench Avg.
LONGHEADS 30.14
© -Random Selection 2 2877
- Last K Selection 26.22
- w/o First Selection 14.06
© -FixHead 7 2046
- Fix Layer 28.78
- Fix Head & Layer 28.72
~ -Number of Chunks K =8 7 2009
- Number of Chunks K = 4 26.64
- Chunk Sizel =512 7 2095
- Chunk Size [ = 128 29.35

Table 4: Ablation study on LongBench, by default
l = 256, K = 16, and Top K Selection.

et al., 2023) and LM-Infinite (Han et al., 2023).

Effect of Heads Flexibility. When the flexibility
of attention heads is constrained, the model’s per-
formance is compromised to varying degrees (-0.68
Fix Head, -1.36 Fix Layer, -1.42 Fix Head&Layer).
This demonstrates that within the LONGHEADS
framework, the collaboration of different attention
heads in each layer plays a crucial role.

Effect of Number of Chunks & Chunk Size. In-
creasing the number of chunks in a text may pro-
vide more information, but the benefits show a
diminishing return. This indicates that four chunks
provide enough information to ensure performance,
and eight chunks are already adequate to access the
entire sequence’s information with chunk selection
strategy, Different chunk sizes do not lead to a sig-
nificant impact on the results, indicating larger or
smaller chunk sizes are feasible for LONGHEADS.

5 Related Work

Expanding Positional Encoding (PE). Context
extension studies typically target the popular RoPE
encoding, aiming to scale unseen PE into the
space of positions seen during pre-training. Chen
et al. (2023a), and concurrently kaiokendev (2023)
discovered that interpolating the position indices
within the pre-trained limit works well with the
help of a small amount (a few billion, Chen et al.,
2023a) of fine-tuning. However, position interpola-
tion (PI) equally stretches all dimensions of RoPE,
neglecting the variations in frequency. As an alter-
native, Bloc97 (2023b) proposed the “NTK-aware”
interpolation by taking the loss of high-frequency
components into account. Subsequently, emozilla
(2023) proposed the “Dynamic NTK” interpolation
method, which performs well without the need for

fine-tuning. Bloc97 (2023a) introduced the “NTK-
by-parts” interpolation method, which performs the
best when fine-tuned on a small amount of longer-
context data. Peng et al. (2023) proposed YaRN,
an improved method to efficiently extend the con-
text window by fine-tuning on less than 0.1% of
the original pre-training data. This work directly
modifies the PE to expand to a theoretically infinite
context length. In contrast, our method does not
require modifying the PE, and only a finite chunk
participates in the attention calculation during gen-
eration, which improves inference efficiency and
reduces memory usage.

Restricted Attention. In addition, the global
causal attention could be restricted to local atten-
tion, thus avoiding exceeding the pre-trained posi-
tion length. ReRoPE (Su, 2023) truncates all con-
text lengths to the max length during pretraining.
LM-Infinite (Han et al., 2023) restricted the global
attention window into a chevron-shaped window,
retaining only a few tokens from the beginning of
the text and a local window. Mohtashami and Jaggi
(2023) insert a learnable landmark token after each
text fragment with a fixed length, and use these
landmarks to retrieve relevant fragments. Zhang
et al. (2024) similarly insert a learnable beacon to-
ken and use its representation to summarise the cor-
responding whole fragment. Although restricted at-
tention offers advantages in terms of memory usage
and inference speed, they risk losing valuable con-
text information. Existing methods employ local
windows that are either fixed or selected through
fine-tuning. In our approach, local windows are
flexibly composed of chunks from the context and
do not rely on additional fine-tuning.

6 Conclusion

We present LONGHEADS, a novel, training-free
framework for efficiently processing long contexts
in pre-trained LLMs. Utilizing the intrinsic capa-
bilities of attention heads, LONGHEADS smartly
segments and assigns long text to relevant heads,
streamlining the handling of extended sequences
without extra computational load. Experiment
results validate LONGHEADS’s superiority in re-
stricted attention setups and its competitive edge
against full attention methods when applied to the
LongBench suite. Our approach paves the way for
performance breakthroughs in long context LLM
operations, leveraging existing model structures to
unlock new potential without further training.



Limitations

We summarize the limitations of our method as
follows: (1) Splitting the text into chunks may
disrupt the continuity of the content. When the
correct answer is in the middle of two chunks,
this kind of splitting can affect the performance
of downstream tasks. (2) The theoretical maximum
length accessible by LONGHEADS is confined to
|P| x n_heads x n_layers. LONGHEADS cannot
fully access inputs that surpass this threshold. How-
ever, LONGHEADS can still perform well on long
document tasks by selecting important parts from
the context. (3) The success of LONGHEADS in
downstream tasks depends on the non-parametric
chunk selection function. For complex compre-
hension tasks, the effectiveness of the selection
function may be affected.

References

Zhangir Azerbayev, Bartosz Piotrowski, Hailey
Schoelkopf, Edward W. Ayers, Dragomir Radev, and
Jeremy Avigad. 2023. Proofnet: Autoformalizing
and formally proving undergraduate-level mathemat-
ics.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, multi-
task benchmark for long context understanding.

Bloc97. 2023a. Add NTK-Aware interpolation "by
parts" correction.

Bloc97. 2023b. NTK-Aware Scaled RoPE allows
LLaMA models to have extended (8k+) context size
without any fine-tuning and minimal perplexity degra-
dation.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023a. Extending context window
of large language models via positional interpolation.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon-
glora: Efficient fine-tuning of long-context large lan-
guage models.

Together Computer. 2023. Redpajama: An open
source recipe to reproduce llama training dataset.
https://github.com/togethercomputer/
RedPajama-Data.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.

emozilla. 2023. Dynamically Scaled RoPE further in-
creases performance of long context LLaMA with
zero fine-tuning.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2024. Retrieval-
augmented generation for large language models: A
survey.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng
Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen,
and Xia Hu. 2024. LIm maybe longlm: Self-extend
IIm context window without tuning.

kaiokendev. 2023. Things irh learning while training
superhot.

Amirkeivan Mohtashami and Martin Jaggi. 2023. Land-
mark attention: Random-access infinite context
length for transformers.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023. Tool learning with foundation
models.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, and Timothy P. Lillicrap. 2019. Compressive
transformers for long-range sequence modelling.

Jianlin Su. 2023. Rectified rotary position embeddings.
https://github.com/bojone/rerope.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-
Micke, and Mohit Iyyer. 2021. Do long-range lan-
guage models actually use long-range context?

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shao-
han Huang, Alon Benhaim, Vishrav Chaudhary, Xia
Song, and Furu Wei. 2022. A length-extrapolatable
transformer.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,


http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
https://github.com/jquesnelle/scaled-rope/pull/1
https://github.com/jquesnelle/scaled-rope/pull/1
https://github.com/jquesnelle/scaled-rope/pull/1
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
http://arxiv.org/abs/2301.00234
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2401.01325
http://arxiv.org/abs/2401.01325
http://arxiv.org/abs/2401.01325
https://kaiokendev.github.io/til#extending-context-to-8k
https://kaiokendev.github.io/til#extending-context-to-8k
https://kaiokendev.github.io/til#extending-context-to-8k
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2309.00071
http://arxiv.org/abs/2309.00071
http://arxiv.org/abs/2309.00071
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
https://github.com/bojone/rerope
http://arxiv.org/abs/2109.09115
http://arxiv.org/abs/2109.09115
http://arxiv.org/abs/2109.09115
http://arxiv.org/abs/2212.10554
http://arxiv.org/abs/2212.10554
http://arxiv.org/abs/2212.10554

Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,
Qiwei Ye, and Zhicheng Dou. 2024. Soaring from
4k to 400k: Extending llm’s context with activation
beacon.

A Baseline Implementation Details

We conduct experiments on 4 methods as our base-
lines.We illustrate the details of each baseline as
follows:

For NTK, we set the scale factor of NTK to 2.0
for base model and 1.0 for chat model. For LM-
Infinite, we set the number of preserved initial to-
kens to 10 and the local window at the end to 4096
tokens. In the context of training-free methods,
we did not evaluate StreamingL.LM (Xiao et al.,
2023) as their framework does not support inputs
exceeding 4K tokens, and their method is similar
to LM-Infinite. For Position Interpolation method
performed on 8K and 16K context, we use the Red-
pajama (Computer, 2023) dataset for training. Fol-
lowing (Chen et al., 2023b), we set the per-device
batch size as 1 and gradient accumulation steps as
8, which means that the global batch size equals
64, using 8 GPUs. We train the models for 1000
steps. For Landmark-Attention, we adopted their
configuration settings for consistency. We finetune
LLaMA-2-7B Base model for 15000 steps using
their method. We fine-tune the model with context
length 512 on Redpajama dataset.

B Evaluation Details

B.1 Language Modeling Evaluation Details

We evaluate the long context language modeling
performance on the book corpus dataset PG19 (Rae

10

et al., 2019) and the cleaned Arxiv Math proof-pile
dataset (Azerbayev et al., 2023). For both datasets,
a subset of one hundred instances from the test
corpus is utilized to gauge language modeling pro-
ficiency. Following (Press et al., 2022), we evaluate
perplexity by using a sliding window approach with
S =256.

B.2 Long Context Benchmark Evaluation
Details

Following Jin et al. (2024); Zhang et al. (2024), we
opt Longbench (Bai et al., 2023) for downstream
NLP task evaluation, including Single-Document
Question Answering (QA), Multi-Document QA,
Summarization, Few-shot Learning, and Code
Completion. To ensure a more balanced and ratio-
nal evaluation of the model’s long-text capabilities,
we employed tasks from LongBench-E to replace
the corresponding tasks in Longbench for our test-
ing. We follow LongBench (Bai et al., 2023) to
evaluate the models on 16k context window sizes
by truncating the prompt from the middle when the
task length exceeds a designated context window
size.

C Analysis Experiments Details

We conduct analytical experiments on the tasks of
passkey retrieval and summary. For the passkey
retrieval task, we compiled statistics for the results
with sequence lengths of 4k, 8k, 16k, and 32k, as
mentioned in Section 3.3. Regarding the summary
task, we select the government report dataset from
the LongBench, from which we chose 5 samples
each for lengths of 4k, 8k, 16k, and 32k for statisti-
cal analysis.

D More Results on LongBench

Tabel 5 shows that LONGHEADS also has strong
performance on LLaMA2-7b-Chat models. When
encoding is enhanced with NTK, LONGHEADS is
able to achieve comparable performance to the full
attention method.


http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462

FT Single-Doc QA Multi-Doc QA Summarization  Few-shot Learning Synthetic Code

Viethod Tokens NQA Qspr. MulFi HQA WMQA Musq. GRpt QMSM MuIN TREC TriQA SMSM PsgC PsgR Lcc Repo Ave
Chat Model

LM-Infinite - 0.00 18.57 2533 9.87 11.73 048 11.30 299 8.72 32.50 29.22 13.82 5.61 5.20 34.19 24.55 14.63

NTK - 15.18 30.89 36.14 35.10 25.79 13.53 3148 20.21 23.86 61.67 80.94 39.43 7.40 13.33 48.96 42.45 32.90

LONGHEADS - 11.61 22.98 23.76 31.28 24.10 8.87 25.36 20.24 16.18 50.67 79.98 36.74 6.39 9.67 53.85 44.22 29.12

w/ NTK init - 16.87 30.32 38.59 36.04 26.72 10.21 31.28 20.91 24.46 55.67 76.72 39.07 6.07 14.67 49.97 40.27 32.37

Table 5: The results of different methods based on the LLaMA-2-7B-Chat model on LongBench.

11



	Introduction
	Method
	Overview
	Chunk Representation
	Chunk Selection Strategy
	Inference with LongHeads

	Experiment
	Settings
	Long Context Language Modeling
	Retrieval-Based Evaluation
	Long Context Benchmark Evaluation

	Discussion
	Analysis
	Ablation Study

	Related Work
	Conclusion
	Baseline Implementation Details
	Evaluation Details
	Language Modeling Evaluation Details
	Long Context Benchmark Evaluation Details

	Analysis Experiments Details
	More Results on LongBench

