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Abstract

Large language models (LLMs) have achieved001
impressive performance in numerous domains002
but often struggle to process lengthy inputs ef-003
fectively and efficiently due to limited length004
generalization and attention’s quadratic com-005
putational demands. Many sought to mitigate006
this by restricting the attention window within007
the pre-trained length. However, these meth-008
ods introduce new issues such as ignoring the009
middle context and requiring additional train-010
ing. To address these problems, we propose011
LONGHEADS, a training-free framework that012
enhances LLM’s long context ability by unlock-013
ing multi-head attention’s untapped potential.014
Instead of allowing each head to attend to the015
full sentence, which struggles with generalizing016
to longer sequences due to out-of-distribution017
(OOD) issues, we allow each head to process in-018
distribution length by selecting and attending019
to important context chunks. To this end, we020
propose a chunk selection strategy that relies on021
the inherent correlation between the query and022
the key representations, efficiently distributing023
context chunks to different heads. In this way,024
each head ensures it can effectively process025
attended tokens within the trained length,026
while different heads in different layers can027
collectively process longer contexts. LONG-028
HEADS works efficiently in linear time, fits029
seamlessly with many LLMs that use relative030
positional encoding. Our extensive empirical031
analyses verify LONGHEADS’s efficacy in ex-032
tending the usable context window for existing033
models, showcasing its promise for enhancing034
long text understanding.035

1 Introduction036

LLMs are usually required to handle tasks with037

long contexts, such as in-context learning (Dong038

et al., 2023), tool learning (Qin et al., 2023), and039

retrieval-augmented generation (Gao et al., 2024).040

However, enabling LLMs to process long contexts041

presents significant challenges. The OOD issue042
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Figure 1: Left: Three types of long-context proces-
sors, (a) Attend all contexts but struggle with out-of-
pre-trained length; (b) Attend local context to generate
fluently but lose information; (c) Head attends short
chunks and HEADS attend LONG context. Right: Accu-
racy of three specific methods on passkey retrieval task.

makes LLM struggle to process tokens beyond pre- 043

trained length, and quadratic complexity of atten- 044

tion introduces considerable training and inference 045

costs. Although OOD issue could be addressed 046

by zero-shot learning (Jin et al., 2024), fine-tuning 047

(Chen et al., 2023a; Peng et al., 2023), or re-training 048

(Sun et al., 2022; Press et al., 2022), the required 049

memory and computation still increases quadrati- 050

cally with context length, as shown in Figure 1(a). 051

To alleviate these issues, recent works restrict 052

the attention window to pre-trained length, which 053

reduces the computation cost and avoids the pro- 054

cessing of OOD tokens. One direction is to ex- 055

clude distant tokens (except for a few initial to- 056

kens, Han et al., 2023; Xiao et al., 2023) to restrict 057

the attention window in-distribution, as shown in 058

Figure 1(b). However, these methods could re- 059

sult in losing critical information, degrading per- 060

formance on downstream tasks. The other way to 061

constrain the attention window is to retrieve chunks 062

of long sequences (Mohtashami and Jaggi, 2023; 063

Zhang et al., 2024), but these approaches usually re- 064

quire special operations and continuous fine-tuning, 065

which makes it difficult for existing LLMs to be 066

directly applicable to long sequences. In summary, 067

improving the ability of LLMs to handle long con- 068

texts at a low cost is still challenging. 069
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In this paper, we propose LONGHEADS, a novel070

framework to enhance LLM’s long context abil-071

ity without additional training. The key idea is to072

fully unlock the potential of multi-head attention.073

We first utilize the nature of different heads focus074

on different subspaces of the context, and each075

head can effectively process sequences within076

the pre-training length. As shown in Figure 2077

(c), we limit each head to selecting and attending078

to important contextual chunks within pre-trained079

length, rather than having each head attend to the080

entire sentence, thereby avoiding the OOD prob-081

lem. Furthermore, we leverage the model’s inher-082

ent dot-product attention and propose a chunk se-083

lection strategy to find important chunks for each084

head. Drawing inspiration from the fact that each085

head assigns different attention weights to to-086

kens based on the inherent correlation between087

the query and the key representations, we break088

the input into chunks and create chunk-level fea-089

tures for each block. It utilizes native token-level090

correlation to construct chunk-level queries and key091

representations, which allows each head to utilize092

its existing capabilities (dot-product attention) to093

select chunks based on the attention weights. In094

this way, each head effectively processes selected095

context chunks within the trained length, and all096

heads in all layers work together to handle longer097

contexts. Meanwhile, all operations are based on098

the intrinsic capabilities of multi-head attention,099

allowing LONGHEADS to enhance LLMs without100

additional training.101

To evaluate the effectiveness of LONGHEADS,102

we employ LLaMA-2-7B-Base and LLaMA-2-7B-103

Chat as base models and evaluate on language104

modeling, synthetic retrieval task and long con-105

text benchmark. LONGHEADS achieving nearly106

100% accuracy across context lengths from 4k107

to 32k on the Passkey Retrieval task. On Long-108

Bench, LONGHEADS achieves the state-of-the-art109

(SOTA) performance among restricted attention110

methods. Compared with full attention methods,111

LONGHEADS achieves comparable performance112

on 16K test lengths and the best performance on113

32K test lengths while enjoying linear computa-114

tional cost. The experimental results demonstrate115

that LONGHEADS enables the LLMs to directly116

generalize to longer sequences and achieve com-117

parable or even superior performance compared to118

the methods that require continuous fine-tuning.119

Our contributions can be summarized as follows:120

• We propose LONGHEADS, a training-free in- 121

ference framework that leverages the structural 122

properties of attention heads to process long se- 123

quences efficiently and effectively. 124

• We design a simple yet effective chunk selection 125

strategy that can accurately select useful chunks 126

and cover the full context. 127

• Experiments demonstrate that LONGHEADS is 128

a SOTA restricted-attention-based long con- 129

text processor and works efficiently in linear 130

time, also with comparable performance to full- 131

attention methods. 132

2 Method 133

In this section, we describe how the LONGHEADS 134

utilizes the inherent ability of multi-head attention 135

to encode and generate long sequences without 136

additional training. 137

2.1 Overview 138

An overview of LONGHEADS is shown in Figure 2. 139

We break the text into chunks and calculate the 140

chunk representations for each chunk. When gen- 141

erating token x14, we pick the relevant k chunks 142

based on the current token’s query vector and chunk 143

representations. In this way, each attention head of 144

the LONGHEADS selectively focuses on different 145

text chunks according to its preference. The tokens 146

of attended chunks are then restructured, ensuring 147

the subsequent causal attention always performed 148

within the pre-trained length. 149

When encoding or generating an out-of-length 150

token, a parameter-free chunk selection network 151

picks the relevant k chunks based on the current 152

query vector and chunk representations. Unpicked 153

chunks can be approximated as having zero atten- 154

tion score (this usually holds under the sparsity of 155

the attention mechanism), and do not need to be 156

computed. This allows the attention matrix not 157

to increase with length, significantly reducing the 158

memory and computational cost of long contexts 159

from O(N2) to O(N). Other works that restrict 160

the scope of attention simply ignore distant tokens 161

beyond a few initial tokens, even if they contain 162

information worthy of attention. 163

In order to accurately select useful chunks, 164

we utilize inherent similarity between token-level 165

queries and token-level keys to construct chunk- 166

level query and key representations. Taking the 167

32K Passkey Retrieval experiment as an example, 168
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Figure 2: An overview of LONGHEADS’s inference, generating token x14 in the current step. During inference,
LONGHEADS keeps the first chunk for stable computation, combined with the last chunk containing recent tokens.

the chunk containing the answer (i.e., the most valu-169

able one) is the chunk with the highest selection170

score in 98% of the cases without being trained.171

2.2 Chunk Representation172

Chunk representation is an indicator of whether the173

tokens in this chunk should be attended to. We ob-174

tain chunk representations in a training-free manner175

by utilizing the attention’s intrinsic abilities.176

Formally, given a long input sequence X =177

(x1, ..., xn), we segment it into chunks according to178

a predefined chunk size l, then the input sequence179

can be denoted as X = (C1, ..., Cm),m = ⌈nl ⌉.180

We use attention’s key states to generate chunk181

representation for each chunk due to the existing182

attention mechanism relies on query states. There183

are numerous straightforward methods to obtain184

chunk representation, such as mean pooling of the185

key vectors of all tokens in the chunk. However,186

they have demonstrated suboptimal performance187

in preliminary experiments, particularly in select-188

ing the correct chunks. We hypothesize that this is189

attributed to the significance of individual tokens190

within a chunk vary substantially.191

To address the above problem, we should iden-192

tify the tokens that can represent the entire chunk.193

For that purpose, we evaluate each token’s signif-194

icance to the chunk and perform scaled attention195

aggregation on all tokens’ key states to obtain a196

representative chunk representation as follows:197

ci = flash-attention (qci ,Ki,Ki) (1)198

where ci ∈ Rm×d is the chunk representation,199

Ki ∈ Rl×d is the attention’s all key states of chunk200

Ci, qci ∈ Rm×d is a query vector to indicate which201

token’s key state is suitable for representing the202

chunk representation. Next, we describe how to203

create the query vector.204

A good chunk query vector should be able to 205

represent the chunk’s full semantic information, 206

i.e., the value vector of all tokens in the entire 207

chunk. However, different tokens do not contribute 208

equally to the semantic representation, e.g., con- 209

tent words hold a higher semantic weight, while 210

function words contribute less. Utilizing the in- 211

herent dot-product similarity between token-level 212

query and key representations, we construct seman- 213

tic weights for each token through a bidirectional 214

self-attention aggregation. From the perspective of 215

message passing, semantically rich content words 216

will transmit more of their information to other 217

tokens, whereas function words transmit little. Fi- 218

nally, the query vectors qci that successfully summa- 219

rize the complete semantics are obtained by mean- 220

pooling of the aggregated representations, and can 221

be formalized as follows. 222

Oi = flash-attention(Qi,Ki,Vi) 223

qci = mean (Oi) , (2) 224

where Qi, Ki, and Vi ∈ Rl×d are all query states, 225

key states, and value states of chunk Ci respec- 226

tively. Both Ki and Vi can be directly accessed 227

from the KV cache, whereas Qi requires tempo- 228

rary storage during the calculation of the current 229

chunk’s representation and is released thereafter. 230

2.3 Chunk Selection Strategy 231

During the encoding or generation of the next token 232

(denoted by xj), we employ a query-aware chunk 233

selection strategy, picking the k most relevant 234

chunks from those already generated. Based on 235

prior knowledge, there are two mandatory chunks. 236

One is aligning with Xiao et al. (2023)’s find- 237

ings, acknowledging the essential role of the few 238

start tokens of a sentence in preserving the stabil- 239

ity of LLMs. If the few start tokens are missing 240
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from the context, the pre-trained LLMs will com-241

pletely lose their expressive ability (i.e., exhibit242

very high perplexity). To ensure fluency, all at-243

tention heads uniformly select the first chunk (i.e.,244

C1) of the sentence. Otherwise, the LLM cannot245

handle downstream tasks (as demonstrated in the246

Ablation Study). The other is assigning the last247

chunk (i.e., C−1) to all attention heads, in order248

to provide the model with the local information249

necessary for generation.250

Next, we pick the remaining k− 2 most relevant251

chunks for each attention head. In the attention252

module of LLMs, the dot product score reflects253

the relevance of the context token to the current254

token. Inspired by it, we pick target chunks by the255

dot product similarity between the current token’s256

query state qj and the chunk representation ci.257

P = {C1}∪{Ci | rank(qj ·ci) ≤ k−2}∪{C−1},
(3)258

where P is the final set of selected chunks, and259

the rank(·) function outputs the rank of the current260

chunk’s computed similarity among all candidates.261

In this way, different attention heads across the lay-262

ers naturally attend to different parts of the context,263

retrieving the important chunks for inference.264

Position Remapping. There are text chunks in265

the set P that exceed the pre-training length, so266

the positional encoding of P needs to be remapped.267

The total length of the selected chunks is controlled268

to be within the pre-training length L, i.e., k∗l < L.269

Here, LONGHEADS restructures the picked chunks270

and concatenates them, while preserving the or-271

der of precedence. In Figure 3, the current head272

attends to chunks (1, 2, 7, 8) among the eight can-273

didate chunks. The positions are assigned as [1, 4l],274

in contrast to the original text positions, which275

would be [1, l]∪ [l+1, 2l]∪ [6l+1, 7l]∪ [7l+1, 8l].276

Position remapping avoids the out-of-distribution277

problem encountered when extending the context278

even without further training.

Picked 

chunks

Figure 3: Demonstration of Position Remapping.279

2.4 Inference with LONGHEADS280

We separately describe the encoding of long in-281

puts and the generation of long outputs during the282

inference. Here we describe only the modified 283

multi-head causal attention layer. 284

Computation and Memory in Encoding Phase. 285

When the LONGHEADS receives long inputs, it 286

first computes the representations of all chunks in 287

parallel. This can be quickly achieved through two 288

passes of flash-attention, with the number of tokens 289

involved in the attention equal to the chunk size 290

(i.e., l=256, which is much smaller than the length 291

of the input, e.g., n=16k). The second step is to 292

select the k most relevant chunks for each query 293

based on chunk representations and to obtain their 294

key and value representations, making the attention 295

window equals to k∗l=w ( e.g., w=2k, which is also 296

much smaller than n). Finally, length-restricted 297

causal flash-attention is performed efficiently. 298

Computation and Memory in Generation Phase. 299

During the generation process, LONGHEADS first 300

performs chunk selection, then loads the Key-Value 301

representations of the picked k chunks for length- 302

constrained causal attention. When generating with 303

very large inputs (e.g. 100K), the KV cache (except 304

the chunk representations) can be offloaded to CPU 305

to significantly reduce memory usage, and we only 306

load the picked chunks into the GPU memory. We 307

always retain the query-key-value representations 308

of recent tokens (not exceeding the chunk size) 309

during the generation process. When the number of 310

recent tokens equals the chunk size, we compute a 311

chunk representation, similar to the encoding phase, 312

and append it to the previous chunk representations. 313

Overall, the time complexity approximates an 314

LLM with window attention O(w2) (window size 315

w is equal to k ∗ l). Memory usage of the decoding 316

phase approximates O(n+ w2), and can be further 317

reduced to O(k ∗ l + w2), avoiding a quadratic 318

increase in costs with sequence length. 319

3 Experiment 320

We evaluate the proposed LONGHEADS primarily 321

using the LLaMA-2 (Touvron et al., 2023) consider- 322

ing its wide adoption and popularity. The effective- 323

ness of LONGHEADS is evaluated on three kinds of 324

tasks: language modeling, synthetic retrieval task 325

and long context benchmark. 326

3.1 Settings 327

Implementation. Our method is applied to 328

LLaMA-2-7B base and chat models for empiri- 329

cal studies. In our setup, we set the size of each 330
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PG19 Proof-pile

Method 4k 16k 32k 4k 16k 32k

Full Attention
PI-16K 7.42 6.72 >103 2.98 2.61 >103

NTK 6.98 9.58 19.3 2.99 3.00 4.05

Restricted Attention
LLaMA-2-7B 6.98 >103 >103 2.99 >103 >103

LM-Infinite 6.98 7.33 7.75 2.99 2.96 3.10
Landmark 10.03 10.13 10.14 4.98 4.86 4.92
LONGHEADS 6.98 8.15 8.41 2.99 3.26 3.42

Table 1: Sliding window perplexity of different context
window extension methods on PG19 and Proof-pile.
LONGHEADS extends the original LLaMA-2’s context
window length to 32k with 2k attention window.

chunk l to be 256. During each inference step, we331

employ our chunk selection strategy to perform332

query-aware chunk selection. For each selection,333

we consistently choose the first chunk from the334

long text to facilitate normal generation by the335

model, and the last chunk to provide local con-336

text information. For all evaluation tasks, inference337

is conducted on a single NVIDIA A100 GPU.338

Baselines. The following types of baselines are339

chosen for comparison. 1) The method with full340

attention, including “Dynamic NTK” interpolation341

(NTK, emozilla, 2023) and Position Interpolation342

(PI, Chen et al., 2023a). 2) The method with re-343

stricted attention, including LM-Infinite (Han et al.,344

2023) and Landmark-Attention (Mohtashami and345

Jaggi, 2023). The implementation details of base-346

lines are in Appendix A.347

3.2 Long Context Language Modeling348

The experiment on long context language model-349

ing is performed with two datasets: PG19 (Rae350

et al., 2019) and Proof-pile dataset (Azerbayev351

et al., 2023). Details are shown in Appendix B.1.352

The evaluation results are reported in Table 1.353

Although the PPL of LLaMA-2-7B-Base model354

and PI remain low within the pre-training context355

length, it increases significantly when the context356

exceeds this window. The NTK approach can main-357

tain low PPL values for sequences up to 16k length,358

but PPL rises significantly at 32k context length. In359

contrast, LONGHEADS, Landmark Attention and360

LM-infinite successfully maintain a low PPL score361

even at a sequence length of 32k.362
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Figure 4: The evaluation of passkey retrieval task at
different context lengths. LONGHEADS achieves a com-
parable performance as Landmark Attention and outper-
forms other methods.

3.3 Retrieval-Based Evaluation 363

We conduct experiments on the passkey retrieval 364

task introduced by (Mohtashami and Jaggi, 2023). 365

This task challenges a language model to accurately 366

locate and retrieve a simple passkey (a five-digit 367

random number) in a long text sequence. It tests 368

whether a LLM can effectively attend to informa- 369

tion across all positions of the input sequence. Fol- 370

lowing the design of Mohtashami and Jaggi (2023), 371

the passkey is placed with various context lengths 372

(ranging from 4k to 32k with 4k interval). For 373

each context length, we perform 50 tests with the 374

passkey placed at a random position in the context. 375

In Figure 4, we can see that all the models can 376

output the passkey within the pretrained length. 377

The base model completely fails at the extended 378

length. The NTK and LM-Infinite induce a sig- 379

nificant drop in accuracy for models at lengths 380

surpassing 6k tokens, with accuracy falling below 381

20% when token lengths exceed 16k. LM-Infinite 382

can only access 10% passkey with its local win- 383

dow, despite having low PPL at 32k length. Con- 384

versely, Landmark Attention and LONGHEADS 385

consistently retrieve with nearly 100% accuracy 386

regardless of sequence length. We note that LONG- 387

HEADS uses only 2k attention window achieving 388

98% accuracy at the 32k length without training. 389

3.4 Long Context Benchmark Evaluation 390

Language modeling tasks have proven to be insuf- 391

ficient metrics for ensuring success in downstream 392

tasks (Sun et al., 2021), while synthetic password 393

retrieval tasks often do not align with real-world 394

scenarios. It is significant to conduct real down- 395

stream task evaluations to more comprehensively 396

reflect the model’s long sequence capabilities. We 397
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Method
FT

Tokens
Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code

Avg.
NQA Qspr. MulFi HQA WMQA Musq. GRpt QMSM MulN TREC TriQA SMSM PsgC PsgR Lcc Repo

Full Attention
NTK - 16.47 29.62 31.42 31.31 28.75 10.20 22.70 17.65 6.31 64.67 77.36 37.95 3.99 5.12 65.64 52.97 31.38
PI-16k 0.85B 21.37 31.78 36.67 37.56 27.47 15.98 13.55 20.69 1.18 63.00 89.24 25.64 5.67 11.33 67.05 56.02 32.76

Restricted Attention
LM-Infinite - 14.34 20.75 26.18 20.37 20.08 5.87 16.70 7.01 2.28 54.67 76.69 15.64 4.30 7.00 62.90 52.74 25.47
Landmark 0.80B 11.35 23.91 20.96 26.95 26.25 5.22 17.74 19.15 9.84 42.67 80.73 35.45 5.73 7.00 59.74 42.76 27.22
LONGHEADS - 14.51 21.58 30.32 30.07 25.28 9.15 24.74 20.26 6.30 55.00 83.26 34.27 2.45 9.39 65.01 50.65 30.14

w/ NTK init - 16.48 28.63 31.36 31.19 28.67 13.54 22.85 17.63 6.38 65.33 77.49 38.07 4.32 4.97 65.56 52.87 31.58
w/ PI init 0.85B 21.43 31.78 36.64 37.63 27.33 15.98 13.36 20.57 1.30 63.00 89.57 25.86 5.67 11.33 66.93 48.96 32.33

Extend to 32k
NTK - 5.74 29.05 31.39 28.98 27.03 9.34 22.00 15.13 5.40 64.67 48.34 34.50 3.89 4.85 57.54 45.29 27.07
PI-16k 0.85B 8.43 30.15 35.20 29.47 24.72 1.74 13.23 12.59 1.30 55.00 66.15 19.16 5.42 11.33 33.21 27.21 23.39
LM-Infinite - 10.87 20.58 26.19 19.48 20.40 16.52 5.26 2.51 6.14 55.00 82.78 11.26 4.30 6.67 64.88 56.02 25.55
Landmark 0.80B 13.88 23.69 21.06 28.04 25.78 11.52 17.70 19.11 10.68 41.00 77.15 35.61 5.70 7.00 58.22 40.97 27.32
LONGHEADS - 13.38 21.81 30.33 29.59 24.90 11.48 27.43 19.87 6.07 55.00 81.15 33.56 2.79 10.06 63.75 47.97 29.95

Table 2: The results of different methods based on the LLaMA-2-7B-Base model on LongBench. FT Tokens
indicate the number of tokens used for continuous training. The context window size for LONGHEADS is 4k.

opt LongBench (Bai et al., 2023) for downstream398

NLP task evaluation, the details are shown in Ap-399

pendix B.2. The results are listed in Table 2. We400

also conduct experiments on LLaMA-2-7B-Chat401

model, and the results are shown in Appendix D.402

Comparison with Restricted Attention Methods.403

LONGHEADS surpasses the current methods with404

restricted attention. Specifically, LONGHEADS per-405

forms better than the method with the sliding win-406

dow mechanism on LongBench (+4.67 vs. LM-407

Infinite). Compared to the method with chunking408

strategy (i.e., Landmark Attention), LONGHEADS409

exceeds the average score by 2.92 on LongBench410

without additional training. This indicates that the411

chunk selection strategy in LONGHEADS can accu-412

rately supplement LLMs with relevant contextual413

information, enabling efficient and effective under-414

standing on long sequences.415

Comparison with Full Attention Methods. Full416

attention methods can increase the maximum se-417

quence length of LLMs but also raise computa-418

tional and memory costs. LONGHEADS can be419

augmented with PI or NTK methods during the en-420

coding phase, achieving comparable or even better421

results with a shorter window size, significantly re-422

ducing computational overhead. This suggests that423

LONGHEADS has the potential for scalability, and424

can be strengthened with a stronger base model.425

Performance when extending to 32k Con-426

text window. A desirable attribute for RoPE-427

extension methods is that the models should main-428

tain their performance when directly extending429

to a longer context window. When extending to 430

32k context windows, PI and NTK methods strug- 431

gle with the out-of-demonstration issue and tend 432

to compromise model performance. In contrast, 433

LONGHEADS maintains its performance and out- 434

performs all the baseline methods. It successfully 435

extend LLaMA-2-7B-Base from a 4K length to 8 436

times its length, demonstrating that LONGHEADS 437

can easily generalize to a longer context window. 438

4 Discussion 439

4.1 Analysis 440

In this section, we explore how different attention 441

heads handle long contexts and whether they find 442

important information. We set LONGHEADS’s at- 443

tention window to 2048 and analyzed its perfor- 444

mance on passkey retrieval and summary tasks. We 445

visualize the tests for both tasks in Figure 5 and 446

show the statistical results in Table 3. The details 447

of analytical experiments are in Appendix C. 448

Attention heads focus on important parts in con- 449

text. On the passkey retrieval task, shown in Fig- 450

ure 5(a), all attention heads focused on the same 451

chunk containing the answer and predicted it accu- 452

rately. Even when the passkey is not successfully 453

predicted in Figure 5(b), the chunks containing 454

the answer are still selected by multiple heads. In 455

contrast, on the summary task in Figure 5(c), the 456

attention heads spread their focus more evenly to 457

summarize the entire information. Similarly, Table 458

3 reveals a lower uniformity score for the summary 459

task compared to the passkey retrieval task. These 460

findings suggest that our chunk selection strategy 461
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(a) Passkey Retrieval Task (Success)
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(b) Passkey Retrieval Task (Fail)
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(c) Summarization Task
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Figure 5: Visualization of chunks selected by different attention heads at each layer represented by color blocks. For
the passkey retrieval task, the chunk containing the passkey is delineated with a red border. For the failed example,
the red border encompasses two chunks due to the passkey-containing sentence coincidentally spanning two chunks.

Input Cover Uniformity Hit Rate

Length Rate Top 1 Top 5

Passkey Retrieval
4k 100 0.52 0.55 0.96
8k 100 0.52 0.89 0.96

16k 99.2 0.60 0.99 1.00
32k 82.0 0.76 0.98 0.98

Summary
4k 100 0.31 / /
8k 100 0.44 / /

16k 100 0.49 / /
32k 100 0.57 / /

Table 3: Statistical results with different sequence
lengths. Cover Rate is defined as the percentage of
selected chunks out of the total number of chunks. Uni-
formity of the distribution of chunk selection is evalu-
ated by the Gini coefficient, with lower values indicating
a more uniform distribution. Hit Rate means the proba-
bility that the top-1 and top-5 selected chunks contain
the correct answer in the past key retrieval task.

results in a more uniform distribution of selections462

in the summary task, while the distribution in the463

passkey retrieval task is more concentrated. We464

attribute this to the specificity of chunks required465

for the passkey retrieval task, whereas the sum-466

mary task necessitates various parts of the text to467

formulate a comprehensive answer. Moreover, the468

probability of the top 5 selected chunks containing469

the answer is almost 100% across all test lengths470

in Table 3. These results suggest that our chunk se-471

lection strategy adaptively fits the characteristics of472

different tasks, and allows different attention heads473

to concentrate on task-related content.474

Attention heads can handle long sequences in a475

short window. In Figure 5, the lower layer atten-476

tion heads focus on the more dispersed text in both477

tasks, while the upper layer attention heads focus 478

more on specific chunks. We speculate that dif- 479

ferent attention heads naturally focus on different 480

parts of the information in the text at lower layers, 481

collecting and aggregating the entire long docu- 482

ment information in a short length, while the upper 483

layer attention heads are responsible for process- 484

ing the aggregated information, mainly focusing on 485

the chunks needed to complete the task. In Table 486

3, the Cover Rate is 100% in most cases. Given 487

that different heads in each layer can select varying 488

chunks, the maximum theoretical length accessi- 489

ble by LONGHEADS is |P | × n_heads×n_layers 490

(e.g., the maximum length for LLaMA-2-7B with 491

4k attention window is 512k). These observations 492

demonstrate that we have successfully utilized a 493

limited attention window to capture almost all in- 494

formation from the entire long document. 495

4.2 Ablation Study 496

We conduct ablation experiments to investigate 497

the influence of chunk selection strategy, attention 498

heads flexibility, number of chunks K, and chunk 499

size l. The ablation study is constructed on Long- 500

Bench and the results are presented in Table 4. 501

Effect of Chunk Selection Strategy. We find 502

that the performance when selecting the highest- 503

scoring chunks significantly surpasses that of the 504

lowest-scoring (Last K) chunks, and even Random 505

Selection yields better results than Last K Selection. 506

We also observe a significant performance degrada- 507

tion when the first chunk is not preserved. This is 508

because the absence of the first chunk results in the 509

model’s output distribution collapsing directly. Our 510

findings are consistent with StreamingLLM (Xiao 511

7



Method Setting LongBench Avg.

LONGHEADS 30.14
- Random Selection 28.77
- Last K Selection 26.22
- w/o First Selection 14.06
- Fix Head 29.46
- Fix Layer 28.78
- Fix Head & Layer 28.72
- Number of Chunks K = 8 29.09
- Number of Chunks K = 4 26.64
- Chunk Size l = 512 29.95
- Chunk Size l = 128 29.35

Table 4: Ablation study on LongBench, by default
l = 256, K = 16, and Top K Selection.

et al., 2023) and LM-Infinite (Han et al., 2023).512

Effect of Heads Flexibility. When the flexibility513

of attention heads is constrained, the model’s per-514

formance is compromised to varying degrees (-0.68515

Fix Head, -1.36 Fix Layer, -1.42 Fix Head&Layer).516

This demonstrates that within the LONGHEADS517

framework, the collaboration of different attention518

heads in each layer plays a crucial role.519

Effect of Number of Chunks & Chunk Size. In-520

creasing the number of chunks in a text may pro-521

vide more information, but the benefits show a522

diminishing return. This indicates that four chunks523

provide enough information to ensure performance,524

and eight chunks are already adequate to access the525

entire sequence’s information with chunk selection526

strategy, Different chunk sizes do not lead to a sig-527

nificant impact on the results, indicating larger or528

smaller chunk sizes are feasible for LONGHEADS.529

5 Related Work530

Expanding Positional Encoding (PE). Context531

extension studies typically target the popular RoPE532

encoding, aiming to scale unseen PE into the533

space of positions seen during pre-training. Chen534

et al. (2023a), and concurrently kaiokendev (2023)535

discovered that interpolating the position indices536

within the pre-trained limit works well with the537

help of a small amount (a few billion, Chen et al.,538

2023a) of fine-tuning. However, position interpola-539

tion (PI) equally stretches all dimensions of RoPE,540

neglecting the variations in frequency. As an alter-541

native, Bloc97 (2023b) proposed the “NTK-aware”542

interpolation by taking the loss of high-frequency543

components into account. Subsequently, emozilla544

(2023) proposed the “Dynamic NTK” interpolation545

method, which performs well without the need for546

fine-tuning. Bloc97 (2023a) introduced the “NTK- 547

by-parts” interpolation method, which performs the 548

best when fine-tuned on a small amount of longer- 549

context data. Peng et al. (2023) proposed YaRN, 550

an improved method to efficiently extend the con- 551

text window by fine-tuning on less than 0.1% of 552

the original pre-training data. This work directly 553

modifies the PE to expand to a theoretically infinite 554

context length. In contrast, our method does not 555

require modifying the PE, and only a finite chunk 556

participates in the attention calculation during gen- 557

eration, which improves inference efficiency and 558

reduces memory usage. 559

Restricted Attention. In addition, the global 560

causal attention could be restricted to local atten- 561

tion, thus avoiding exceeding the pre-trained posi- 562

tion length. ReRoPE (Su, 2023) truncates all con- 563

text lengths to the max length during pretraining. 564

LM-Infinite (Han et al., 2023) restricted the global 565

attention window into a chevron-shaped window, 566

retaining only a few tokens from the beginning of 567

the text and a local window. Mohtashami and Jaggi 568

(2023) insert a learnable landmark token after each 569

text fragment with a fixed length, and use these 570

landmarks to retrieve relevant fragments. Zhang 571

et al. (2024) similarly insert a learnable beacon to- 572

ken and use its representation to summarise the cor- 573

responding whole fragment. Although restricted at- 574

tention offers advantages in terms of memory usage 575

and inference speed, they risk losing valuable con- 576

text information. Existing methods employ local 577

windows that are either fixed or selected through 578

fine-tuning. In our approach, local windows are 579

flexibly composed of chunks from the context and 580

do not rely on additional fine-tuning. 581

6 Conclusion 582

We present LONGHEADS, a novel, training-free 583

framework for efficiently processing long contexts 584

in pre-trained LLMs. Utilizing the intrinsic capa- 585

bilities of attention heads, LONGHEADS smartly 586

segments and assigns long text to relevant heads, 587

streamlining the handling of extended sequences 588

without extra computational load. Experiment 589

results validate LONGHEADS’s superiority in re- 590

stricted attention setups and its competitive edge 591

against full attention methods when applied to the 592

LongBench suite. Our approach paves the way for 593

performance breakthroughs in long context LLM 594

operations, leveraging existing model structures to 595

unlock new potential without further training. 596
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Limitations597

We summarize the limitations of our method as598

follows: (1) Splitting the text into chunks may599

disrupt the continuity of the content. When the600

correct answer is in the middle of two chunks,601

this kind of splitting can affect the performance602

of downstream tasks. (2) The theoretical maximum603

length accessible by LONGHEADS is confined to604

|P | × n_heads×n_layers. LONGHEADS cannot605

fully access inputs that surpass this threshold. How-606

ever, LONGHEADS can still perform well on long607

document tasks by selecting important parts from608

the context. (3) The success of LONGHEADS in609

downstream tasks depends on the non-parametric610

chunk selection function. For complex compre-611

hension tasks, the effectiveness of the selection612

function may be affected.613
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A Baseline Implementation Details727

We conduct experiments on 4 methods as our base-728

lines.We illustrate the details of each baseline as729

follows:730

For NTK, we set the scale factor of NTK to 2.0731

for base model and 1.0 for chat model. For LM-732

Infinite, we set the number of preserved initial to-733

kens to 10 and the local window at the end to 4096734

tokens. In the context of training-free methods,735

we did not evaluate StreamingLLM (Xiao et al.,736

2023) as their framework does not support inputs737

exceeding 4K tokens, and their method is similar738

to LM-Infinite. For Position Interpolation method739

performed on 8K and 16K context, we use the Red-740

pajama (Computer, 2023) dataset for training. Fol-741

lowing (Chen et al., 2023b), we set the per-device742

batch size as 1 and gradient accumulation steps as743

8, which means that the global batch size equals744

64, using 8 GPUs. We train the models for 1000745

steps. For Landmark-Attention, we adopted their746

configuration settings for consistency. We finetune747

LLaMA-2-7B Base model for 15000 steps using748

their method. We fine-tune the model with context749

length 512 on Redpajama dataset.750

B Evaluation Details751

B.1 Language Modeling Evaluation Details752

We evaluate the long context language modeling753

performance on the book corpus dataset PG19 (Rae754

et al., 2019) and the cleaned Arxiv Math proof-pile 755

dataset (Azerbayev et al., 2023). For both datasets, 756

a subset of one hundred instances from the test 757

corpus is utilized to gauge language modeling pro- 758

ficiency. Following (Press et al., 2022), we evaluate 759

perplexity by using a sliding window approach with 760

S = 256. 761

B.2 Long Context Benchmark Evaluation 762

Details 763

Following Jin et al. (2024); Zhang et al. (2024), we 764

opt Longbench (Bai et al., 2023) for downstream 765

NLP task evaluation, including Single-Document 766

Question Answering (QA), Multi-Document QA, 767

Summarization, Few-shot Learning, and Code 768

Completion. To ensure a more balanced and ratio- 769

nal evaluation of the model’s long-text capabilities, 770

we employed tasks from LongBench-E to replace 771

the corresponding tasks in Longbench for our test- 772

ing. We follow LongBench (Bai et al., 2023) to 773

evaluate the models on 16k context window sizes 774

by truncating the prompt from the middle when the 775

task length exceeds a designated context window 776

size. 777

C Analysis Experiments Details 778

We conduct analytical experiments on the tasks of 779

passkey retrieval and summary. For the passkey 780

retrieval task, we compiled statistics for the results 781

with sequence lengths of 4k, 8k, 16k, and 32k, as 782

mentioned in Section 3.3. Regarding the summary 783

task, we select the government report dataset from 784

the LongBench, from which we chose 5 samples 785

each for lengths of 4k, 8k, 16k, and 32k for statisti- 786

cal analysis. 787

D More Results on LongBench 788

Tabel 5 shows that LONGHEADS also has strong 789

performance on LLaMA2-7b-Chat models. When 790

encoding is enhanced with NTK, LONGHEADS is 791

able to achieve comparable performance to the full 792

attention method. 793
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Method
FT

Tokens
Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code

Avg.
NQA Qspr. MulFi HQA WMQA Musq. GRpt QMSM MulN TREC TriQA SMSM PsgC PsgR Lcc Repo

Chat Model
LM-Infinite - 0.00 18.57 25.33 9.87 11.73 0.48 11.30 2.99 8.72 32.50 29.22 13.82 5.61 5.20 34.19 24.55 14.63
NTK - 15.18 30.89 36.14 35.10 25.79 13.53 31.48 20.21 23.86 61.67 80.94 39.43 7.40 13.33 48.96 42.45 32.90
LONGHEADS - 11.61 22.98 23.76 31.28 24.10 8.87 25.36 20.24 16.18 50.67 79.98 36.74 6.39 9.67 53.85 44.22 29.12

w/ NTK init - 16.87 30.32 38.59 36.04 26.72 10.21 31.28 20.91 24.46 55.67 76.72 39.07 6.07 14.67 49.97 40.27 32.37

Table 5: The results of different methods based on the LLaMA-2-7B-Chat model on LongBench.
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