
Sequential data-consistent model inversion

Timothy Rumbell
IBM Research

thrumbel@us.ibm.com

Catherine Wanjiru
IBM Research

catherine.wanjiru@ibm.com

Isaiah Onando Mulang’
IBM Research

mulang.onando@ibm.com

Stephen Obonyo
Strathmore University

sobonyo@strathmore.edu

James Kozloski
IBM Research

kozloski@usibm.com

Viatcheslav Gurev
IBM Research

vgurev@us.ibm.com

Abstract

Data-consistent model inversion problems aim to infer distributions of model
parameters from distributions of experimental observations. Previous approaches
to solving these problems include rejection algorithms, which are impractical for
many real-world problems, and generative adversarial networks, which require
a differentiable simulation. Here, we introduce a sequential sample refinement
algorithm that overcomes these drawbacks. A set of parameters is iteratively refined
using density ratio estimates in the model input and output domains, and parameters
are resampled by training a generative implicit density estimator. We implement this
novel approach using a combination of standard models from artificial intelligence
and machine learning, including density estimators, binary classifiers, and diffusion
models. To demonstrate the method, we show two examples from computational
biology, with different levels of complexity.

1 Introduction

Data-consistent model inversion (DCMI) problems [1–3] aim to model ensembles of individuals
that have variability in their observable features. In DCMI for deterministic models, a vector of
latent variables x ∈ Rn linked to every individual is related to a vector of observed features y ∈ Rm

through a known function y = M(x), and the goal is to find a distribution of latent variablesQX that
produces the observed target distribution QY of y within the ensemble. In this case, the distribution
of QY is the push-forward of the distribution of latent variables QX using y = M(x). To solve a
DCMI problem, a prior distribution PX of x is also incorporated to address uncertainty due to non-
invertibility of y = M(x). DCMI is similarly formulated for non-deterministic models, for which
y = M(x, ξ), as the problem of finding a latent variable distribution that generates a distribution of
target observations in the presence of additional noise ξ. It should be noted that DCMI is different
from parameter inference problems that aim to find the most likely set of parameters from multiple
observations of a single individual, termed ‘parameter identification problems’ or ‘simulation-based
inference’, which are often solved using Bayesian inference methods, which have a different purpose
and have been demonstrated empirically to solve a different inference problem than DCMI [1, 2].

Previous methods for constructing the parameter distribution ‘consistent’ with the experimental
data include density estimation and rejection sampling algorithms [1–3], adversarial variational
optimization (AVO) [4], and generative adversarial networks (GANs) [5, 6]. We based the current
work on multiple previous methods that solve DCMI, with the goal of creating a powerful approach
that combines the benefits of prior methods into a flexible and reliable framework that can be
implemented using standard machine learning (ML) density estimators and classifiers, which we term
sequential data-consistent model inversion (sDCMI).

NeurIPS 2023 Workshop on Deep Learning and Inverse Problems.

In our framework, DCMI is presented in the form of constrained optimization, as in [6]. In this form,
the goal is to minimize divergence between the prior PX and the distribution QXg of model inputs
sampled by a parametric generative model Gθ ∈ {Gθ(·)|θ ∈ Θ}, given that the distribution QYg

of
the push-forward of QXg

through the model M matches the target distribution of observations QY :

given PX , QY , y = M(x)

minimize Df (QXg
||PX)

subject to supp(Xg) ⊆ supp(X), Df (QYg ||QY) = 0

where yg = M(xg) ∼ QYg
, xg ∼ QXg

.

(1)

In (1), Df (·||·) is an f-divergence measure such as Jensen-Shannon (JS) divergence. In [5, 6], Gθ was
defined as a generator network in a regularized GAN (termed r-GAN), with separate discriminator
networks used to guide the optimization towards minimizing Df (QXg ||PX) and Df (QYg ||QY). A
weighted sum of losses from each discriminator was used to train Gθ, solving (1) with the penalty
method. To encourage exploration and prevent early convergence to local minima, wX can initially
be large, and gradually reduced according to a schedule, similar to simulated annealing. However, a
drawback of the r-GAN approach is that M must be differentiable to backpropagate loss from the
discriminator in Y to Gθ, which is problematic as arbitrary simulators consisting of complex sets of
differential equations might be used.

Another option to solve (1) is to minimize the divergence terms using a non-parametric model ofQXg

and adapt points based on estimation of the density ratios pX(x)
q̂X(x) and qY (y)

q̂Y (y) . Here pX(x), q̂X(x),
qY (y), q̂Y (y) are densities of PX , QXg , QY , and QYg , respectively. Previous rejection algorithm
approches to DCMI have used this idea, minimizing divergence between QYg and QY by rejecting
points based on the qY (y)

q̂Y (y) ratio [2]. We followed a similar approach in this work, and designed an
optimization where the parameter distribution in a non-parametric model is optimized based on a
series of iterations by sampling a density model of QXg

, perturbing the samples, and re-sampling
based on the density ratio between generated samples and the target densities pX(x), qY (y) to
optimize the divergence terms in (1).

2 Methods
𝒬!"

𝒫!

𝒬#

Diffusion Model

Gaussian kernel

Simulator 𝑀

𝑋 Density Estimator

𝑌 Density Estimator

𝑋 Rejection

𝑌 Rejection

𝒬!"

𝒬#"

G
en

er
at

or

𝑦 = 𝑀(𝑥)

𝒬!"

Figure 1: sDCMI sequence.

Sequential sampling for data-consistent model in-
version. The core method we introduce to solve (1)
is a sequential refinement of a set of parameter points
for non-parametric representation of QXg

(Figure 1).
The initial point set is generated by sampling the prior
PX with density pX(x) to obtain initial samples of
QXg

. First, we train a density estimator on the points
inQXg , and then explore the parameter space by gen-
erating ‘perturbed’ points in QXg by sampling from
the trained model. In the current implementation, a
parametric and non-parametric density estimator are
applied in series, generating new samples from a dif-
fusion model, and perturbing those samples with a
Gaussian kernel. This process is somewhat analogous
to sample perturbation approaches from sequential
Monte Carlo methods [7]. New points are added to
the pool of existing points, and two rejection steps
are performed on the pool, one based in X and one
based in Y , minimizing the divergence terms. The
number of rejected points are equal to the number of
newly generated points, keeping the non-parametric
model (set of samples) a constant size. To minimize
the divergences, we used an adaptation of the rejec-
tion algorithm from [6], calculating the density ratio
between generated samplesQXg

(QYg
) and the target

2

density PX (QYg). The flow of one sequence is shown in Figure 1, and we can iterate over the
sequence until convergence.

In the non-constrained problem (1) we minimize a weighted sum of divergences, wX ×
Df (PX ||QXg

) + wY ×Df (QYg
||QY). Typically, we gradually increase weight wY with respect to

wX , to first explore the prior, then converge to the data-consistent solution. To minimize this sum, we
apply the rejection algorithm twice, first rejecting according to pX(x)

q̂X(x) . When the prior PX is assumed
to be a uniform distribution over some parameter range, as is often used in the literature, this step
encourages exploration in the parameter space to capture all modes of the latent distribution. Because
the first rejection step only requires information in X , we can apply y = M(x) on new points after
the first rejection to reduce computational costs associated with M . In the second rejection step,
points are rejected based on qY (y)

q̂Y (y) , minimizing the divergence to render QXg
‘data consistent’. The

rejection algorithm is presented in the Appendix, algorithm 3, and the constant B in the algorithm is
calculated using a binary search (Appendix algorithm 4) to reject approximately a specified number of
points NSr

over the two steps. To simulate changes in ratio between weights wX and wY , NSr
×wX

are rejected using pX(x)
q̂X(x) , and then the remaining NSr × (1− wX) samples are rejected using qY (y)

q̂Y (y) ,
with wX gradually decreasing according to a schedule.

Boosted density estimation. The critical part of the DCMI rejection algorithm (Appendix
algorithm 3) is the calculation of density ratios. For two distributions represented by their samples,
direct calculation of densities is challenging, and the density ratio trick is used instead by training
a binary classifier. There are multiple methods to calculate density ratios, including those that
employ auxiliary distributions [8]. The context of this work is different, however, since pX(x) and
qY (y) are often given explicitly, and the challenge is then to estimate the density ratios based on
direct estimation of q̂X(x) and q̂Y (x). Here, we use ideas from boosted density estimation [9] by
training a density estimator that is then augmented with a binary classifier. First, we train a density
estimator on data (q̂X(x), q̂Y (x)). Then, we train a binary classifier between samples from the
density estimator and samples from the data to calculate a density ratio between the estimator and

A B Initial Samples
Ground-truth for Target 1
Ground-truth for Target 2

Initial samples
Target 1
sDCMI output 1
Target 2
sDCMI output 2

C DsDCMI w/ Target 1 sDCMI w/ Target 2

E F

JS
 D

iv
er

ge
nc

e

JS
 D

iv
er

ge
nc

e

Target 1 Target 2

Figure 2: SIR model. (A) SIR simulation outputs (In-
fected count) for initial, target, and generated samples.
(B) Initial sample density in parameter space, and loca-
tion of ground-truth for 2 targets. (C-D) sDCMI gener-
ated parameter densities. (E-F) JS Divergence for final
samples from q̂X (dashed lines) and q̂Y (solid lines)
from sDCMI algorithm during a decreasing wX sched-
ule.

data samples. This density ratio is then mul-
tiplied with the density from the estimator
to provide a final density q̂X(x), q̂Y (x)) to
use in the calculation of pX(x)

q̂X(x) and pY (y)
q̂Y (y)

in the rejection step. Boosted density es-
timation requires a density estimator that
allows both an explicit density calculation,
and implicit samples, for which we use a
normalizing flow network [10]. A simple
feed forward neural network was used as a
binary classifier.

3 Experiments

We demonstrate sequential DCMI using
2 experiments. First, we show solutions
to an ordinary differential equation (ODE)
model of disease epidemiology that has
been used for benchmarking simulation-
based inference (SBI) [11]. Second, we
use a complex ODE model of a cardiac cell
contraction in a scenario where observa-
tions are recorded across multiple experi-
mental protocols. Further details of exper-
imental configurations are provided in the
Appendix.

SIR model. This common epidemio-
logical model simulates disease dynamics,
representing the portion of a population in each of 3 states, susceptible S, infectious I , and recovered

3

or deceased R, according to
dS
dt = −β SI

N
dI
dt = β SI

N − γI dR
dt = γI. (2)

We used the same form of the model as in previous studies [11], inferring contact rate β and mean
recovery rate γ given observations of I at 10 time points, with population size N = 1000. To
test sDCMI with this model, 2 sets of target data were simulated (Figure 2A) by sampling β and
γ according to 2 different “ground-truth” distributions (x’s in Figure 2B). We ran sDCMI twice,
once with each target, starting from the same distribution PX of initial samples (density in Figure
2B). While simulations from initial samples showed a wide variety of time courses, simulations
from the final QXg

closely matched the two respective targets (Figure 2A). Ground-truth parameter
distributions were narrow relative to PX (Figure 2B), but the sDCMI algorithm converged to produce
final generated samples close to the ground-truth for both targets (Figure 2C-D). While reducing
wX across training, DJS(PX ||QXg) increased as wX decreased, and DJS(QYg ||QY) decreased,
converging by wX = 0.3, which we therefore used for plotting the final results (Figure 2E-F).

sDCMI Outputs

Initial Samples

A

B

C

Initial Samples Target Samples sDCMI outputs

1 Hz
2 Hz
4 Hz

Figure 3: Cardiac cell model. (A) Force during stim-
ulation at 1 Hz (black), 2 Hz (blue), and 4 Hz (red)
frequencies. Samples from (left) initial parameters PY ,
(middle) target outputs QY , (right) sDCMI result Q̂Y .
(B) Density of initial samples in 1st 2 PCs from PCA
on initial samples in X and Y . (C) Density of sD-
CMI trained Generator output samples. Blue x’s show
“ground-truth” in X and target observations in Y .

Cardiac cell model. In some experi-
ments, multiple experimental protocols are
performed on individuals from the ensem-
ble. In such a scenario, DCMI can include
constraints from each protocol to find QXg

consistent with all available data. Sequen-
tial DCMI can leverage the iterative op-
timization approach to gradually incorpo-
rate new protocols and data, training QXg

first on a subset of QY , then using that
QXg

as the initial samples when introduc-
ing additional data. To test this scenario,
we adapted a model of cardiac myocyte
contraction [5], simulating an experiment
measuring contraction force in response to
periodic stimulation. The model produces a
force transient when stimulated, and steady-
state transients increase in amplitude and
duration across stimulation frequencies of
1, 2, and 4Hz (Figure 3A). We sampled 102
parameter sets from a Gaussian mixture to
represent a “ground-truth” distribution in
parameter space (blue points in Figure 3B-
C, left), and simulated the model at the
3 frequencies to represent a series of ex-
periments conducted on each individual in
the ensemble, producing a target distribu-
tionQY (blue points in Figure 3B-C, right).
The model input and output spaces in this
example are 12- and 14-dimensional, re-
spectively, when all 3 frequencies are used,
so we visualize results using the first 2
principal components (PCs) from princi-
pal component analyses (PCA) on samples
from PX and PY . The ground-truth sam-
ples are located in a relatively small region of the prior ranges and qY samples are in a low-density
region of pY (Figure 3B). We used 10 iterations of the DCMI algorithm (NIg = 10 in Appendix
algorithm (1)) at each of 5 wX values, decreasing wX over training, and using the final samples
from sDCMI at one weight as input to sDCMI at the next weight. An outer loop over experimental
protocols gradually increased the model output dimensionality, training initially with only 1Hz
stimulation, then adding the other 2 frequencies one at a time, and using the final samples from one
protocol as initial samples for the next protocol. Alternatively, we could have updated pX for the
next protocol with the final q̂X from the previous protocol as a form of autoregressive update to the
prior density. By gradually converging in this way, we were able to obtain an accurate solution to a
complex DCMI problem, sampling model parameters from a broader space than the “ground-truth”

4

(which would be unknown in a real-world example), while converging to an accurate fit to target data
across multiple experimental protocols (Figure 3C).

4 Conclusions

We have introduced a new approach to DCMI problems using sequential refinement of a set of
samples, approximated by a sequence of generative models. This approach alleviates several practical
hurdles in employing DCMI for complex problems, and can be reliably and flexibly implemented
using standard ML/AI methods. In the current implementation, the use of boosted density estimation
enables models that are not necessarily optimal for each specific problem to be used effectively,
and we used identical configuration of the individual components configurations in both examples
shown here. A number of enhancements to this algorithm are possible in future work, including
autoregressive prior distribution updates across multiple experiments performed on an ensemble and
conditioning the generative model on covariate information. We have developed software tools for
configuration and deployment of this algorithm.

References
[1] M. Pilosov, C. del Castillo-Negrete, T. Y. Yen, T. Butler, and C. Dawson, “Parameter estimation with

maximal updated densities,” Computer Methods in Applied Mechanics and Engineering, vol. 407, p.
115906, 2023.

[2] T. Butler, J. Jakeman, and T. Wildey, “Combining push-forward measures and bayes’ rule to construct
consistent solutions to stochastic inverse problems,” SIAM Journal on Scientific Computing, vol. 40, no. 2,
pp. A984–A1011, 2018.

[3] T. Butler, T. Wildey, and T. Y. Yen, “Data-consistent inversion for stochastic input-to-output maps,” Inverse
Problems, vol. 36, p. 085015, 2020.

[4] G. Louppe, J. Hermans, and K. Cranmer, “Adversarial variational optimization of non-differentiable
simulators,” in Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, ser. Proceedings of Machine Learning Research, K. Chaudhuri and M. Sugiyama, Eds., vol. 89.
PMLR, 16–18 Apr 2019, pp. 1438–1447.

[5] J. Parikh, T. Rumbell, X. Butova, T. Myachina, J. C. Acero, S. Khamzin, O. Solovyova, J. Kozloski,
A. Khokhlova, and V. Gurev, “Generative adversarial networks for construction of virtual populations of
mechanistic models: simulations to study omecamtiv mecarbil action,” Journal of Pharmacokinetics and
Pharmacodynamics, vol. 49, pp. 51–64, 2022.

[6] T. Rumbell, J. Parikh, J. Kozloski, and V. Gurev, “Novel and flexible parameter estimation methods for
data-consistent inversion in mechanistic modeling,” Royal Society Open Science, vol. 10, p. 230668, 2023.

[7] A. Doucet, N. De Freitas, N. J. Gordon et al., Sequential Monte Carlo methods in practice. Springer,
2001, vol. 1, no. 2.

[8] A. Srivastava, S. Han, K. Xu, B. Rhodes, and M. U. Gutmann, “Estimating the density ratio between distri-
butions with high discrepancy using multinomial logistic regression,” arXiv preprint arXiv:2305.00869,
2023.

[9] Z. Cranko and R. Nock, “Boosted density estimation remastered,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 1416–1425.

[10] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real NVP,” in International Conference
on Learning Representations, 2017.

[11] J.-M. Lueckmann, J. Boelts, D. Greenberg, P. Goncalves, and J. Macke, “Benchmarking simulation-based
inference,” in International conference on artificial intelligence and statistics. PMLR, 2021, pp. 343–351.

[12] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” arXiv preprint arxiv:2006.11239,
2020.

5

A Algorithms

Algorithm 1 Sequential data-consistent model inversion (sDCMI)
Require: Number of: samples to generate NSg

, samples to retain NSr
, generation iterations NIg ,

rejection iterations NIr ; simulator/model M ; target output density qY ; initial parameter density
pX ; parameter space rejection weight wX

1: Frej ←
NSg

NSg+NSr
▷ Fraction of samples to reject each iteration

2: P := GENERATESAMPLES(pX , M , NSr
) ▷ Initial samples

3: for j=1...NIg do
4: Set Q :=

{
xi : (xi,yi) ∈ P

}
5: Train Generator q̂X from Q ▷ Diffusion model plus Gaussian noise
6: P̂ := GENERATESAMPLES(q̂X , M , NSg

)
7: P := P ∪ P̂
8: F0 ← 1.0
9: for k=1...NIr do

10: F ← F0×Frej

NIr
;FX ← F × wX ;FY ← F×(1−wX)

1−FX
;F0 ← F0

1−F ▷ Rejection fractions
11: P ← REJECTION(P , pX , qY , FX , FY)
12: end for
13: end for
14: return

{
xi : (xi,yi) ∈ P

}
Algorithm 2 sDCMI subroutines - GenerateSamples
Require: Density to sample from gX , model M , number of samples to generate N

1: function GENERATESAMPLES(gX , M , N)
2: Sample {xi}Ni=1 ∼ gX
3: for i=1...NSr do
4: yi := M(xi)
5: end for
6: P := {xi,yi}

NSr
i=1

7: return P
8: end function

6

Algorithm 3 sDCMI subroutines - Rejection
Require: Set of {x,y} pairs involved in rejection P , X target density pX , Y target density qY ,

target fraction to reject using X FX , target fraction to reject using Y FY

1: function REJECTION(P , pX , qY , FX , FY)
2: Set Q :=

{
xi : (xi,yi) ∈ P

}
3: Train density estimator q̂X from Q
4: B ← COMPUTEB(Q, pX , q̂X , FX)
5: for (xi,yi) ∈ P do
6: λi = min

(
pX(xi)

B×q̂X(xi)
, 1
)

7: ρ ∼ U ([0, 1])
8: if ρ > λi then
9: Reject P := P \ (xi,yi)

10: end if
11: end for
12: Set Q :=

{
yi : (xi,yi) ∈ P

}
13: Train density estimator q̂Y from Q
14: B ← COMPUTEB(Q, qY , q̂Y , FY)
15: for (xi,yi) ∈ P do
16: λi = min

(
qY (yi)

B×q̂Y (yi)
, 1
)

17: ρ ∼ U ([0, 1])
18: if ρ > λi then
19: Reject P := P \ (xi,yi)
20: end if
21: end for
22: return P
23: end function

Algorithm 4 sDCMI subroutines - ComputeB
Require: Set of points involved in rejection Q, target density p, generated sample density q, target

fraction to reject F
1: function COMPUTEB(Q, p, q, F)
2: R← []
3: for (xi) ∈ P do
4: R := R ∪ q(xi)

p(xi)

5: end for
6: Sort R in ascending order
7: l← 0, h← |R| − 1
8: while l < h do ▷ binary search for optimal B
9: m = (l + h)/2 ▷ index of current B estimate

10: b← R[m] ▷ assign current B estimate to b
11: Fb ← 0
12: for (ri) ∈ R do
13: Fb = Fb +min

(
b
ri
, 1
)
▷ expected contribution of ri to number of remaining points

14: end for
15: Fb =

Fb

|R| ▷ convert expected number of points to fraction
16: if Fb < F then ▷ binary search
17: l = m+ 1
18: else
19: h = m− 1
20: end if
21: end while
22: B = R[l] FFb

▷ adjust B to account for difference between F and estimated F from points
23: return B
24: end function

7

B AI/ML model implementations

The models used for each component of sDCMI are flexible. Here, we used neural networks for generative
models, density estimators and binary classifiers to implement these components, but many alternate AI/ML
approaches may work effectively. All neural networks used to produce the results in the example experiments
had the same structure and properties, and were implemented in pytorch using custom code. Below we briefly
detail the implementation for each component shown in Figure 1 in the main manuscript.

Diffusion model. For the generator, we trained a diffusion model [12] to match samples QXg each sDCMI
iteration. We used a sigmoid with 100 time steps to calculate the diffusion schedules, and an embedding layer
for t. The neural network was a fully connected network with 8 hidden layers of 256 nodes per layer, and ReLU
activation. The batch size was 512, learning rate 0.001, and we trained for 20 epochs. The input and output
dimensions matched the dimension of X .

Gaussian kernel. After generating samples QXg from the trained diffusion model, we added Gaussian noise
according to N (0, 0.1) to each parameter. Samples were normalized based on the prior, so we applied the same
variance to each dimension, to ‘explore’ an equivalent proportion of PX .

Density Estimator. To train the density estimators in X and Y at lines 3 and 13 of algorithm 3, we used
boosted density estimators, refining the density estimated by a neural network with the output of a binary
classifier trained to discriminate the density estimator training set from the density estimator outputs.

For the neural network density estimator, we used normalizing flow networks, implemented using the ‘normflows’
python package (https://pypi.org/project/normflows/). Starting from a diagonal Gaussian base distribution, we
used 32 layers, each comprising an ‘AffineCouplingBlock’, consisting of a fully connected network with 2
hidden layers of 200 nodes per layer, a dropout rate of 0.3, followed by a ‘Permute’ operation to swap the roles
of the output ‘shift’ and ‘scale’ values for each dimension, to implement Real NVP [10]. We trained for 1 epoch
with batch size 512, using all input samples as the training data.

For the binary classifier, we used a fully connected network with 8 hidden layers and 128 nodes per layer, ReLU
activation, a dropout rate of 0.2, and trained using cross-entropy loss for 1 epoch with batch size 512. Batches
of training data consisted of samples used to train the density estimator, labeled ‘1’, and samples randomly
generated by the trained density estimator, labeled ‘0’.

After training both the density estimator and the classifier, the final density for an input is computed by
multiplying the output of both networks, as described in the ‘boosted density estimation’ section of the main
manuscript.

sDCMI and Rejection parameters. The following hyperparameters were used in algorithm 1: NSg =
65, 536; NSr = 65, 536; (NIg = 8;NIr = 4) for the SIR model example; (NIg = 10;NIr = 5) for the
Cardiac cell model example.

8

C sDCMI examples - further details

C.1 SIR model.

The SIR model experiments generally followed the example in [11]. The prior was specified as β ∼
LogNormal(log(0.4), 0.5), γ ∼ LogNormal(log(1/8), 0.2). Two target distributions were simulated from
two “ground-truth” parameter distributions according to: ground-truth for target 1: β ∼ N (0.615, 0.615/20),
γ ∼ N (0.192, 0.192/20); ground-truth for target 2: β ∼ N (0.238, 0.238/40), γ ∼ N (0.121, 0.121/40).
The means of these ground-truth distributions were two of the ground-truth points used for the simulation-
based inference benchmarks in [11], and we added variation to those means to represent multiple observa-
tions of disease dynamics from an ensemble, to make the problem relevant for DCMI. Initial conditions
were (S(0), I(0), R(0)) = (N − 1, 1, 0), where N = 1000 was the population size. The model was sim-
ulated for 160 time points (days), and 10 evenly spaced points from the resulting I were used as y. We
ran the sDCMI algorithm with 8 kernels and 4 rejection steps across iterations for 8 different wX values,
[0.9, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05]. The results from wX = 0.3 are shown in Figure 2, as at this point the
simulation outputs visually matched the target distributions, and subsequent reductions in wX did not reliably
improve JS divergence between q̂(y) and q(y).

C.2 Cardiac cell model.

The cardiac cell model used was simplified from [5] to reproduce only one aspect of that simulation, the typical
cooperative relationship between force and calcium concentrations (i.e., significant increase in maximum force
for small changes in calcium levels) upon stimulation at fixed sarcomere lengths and calcium concentration.
Stimulation was effectively performed by modulating calcium concentration, inducing calcium transients at the
stimulation frequency, which in turn cause a contraction force transient. The ordinary differential equations used
for this simulation are provided below.

At each of 3 stimulation frequencies, 1, 2 and 4Hz, we simulated the equations for a duration of 5s, and extracted
features of the final (steady-state) transients, with the unitless force values normalized to the peak value at 1Hz.
The features extracted from the transients at each frequency were: duration at 5% of maximum amplitude;
duration 50% of maximum amplitude; ratio of durations at 5 and 50%; quiescent period (i.e. duration between
stimulation onset and 5% of maximum amplitude). Additional features calculated across multiple transients
were: ratio of amplitudes at 1Hz and 2Hz; ratio of amplitudes at 1Hz and 4Hz. The full distribution of features
used as optimization targets are shown in orange in Figure 5. Note that these feature targets occupy a relatively
narrow range of the possible features generated by initial samples in the model, shown in main manuscript
Figure 3B. The final distribution of simulated outputs generated by the final trained generator is shown in blue in
Figure 5.

As described in the main manuscript, sDCMI was performed in a set of nested loops to iteratively con-
verge to a solution. The main sDCMI algorithm (algorithm 1) performs a sequence of generative model
training, sampling, and rejection steps for a given wX value. Starting with only the 1Hz stimulation fre-
quency, a second loop progressively reduced the wX values across a series of sDCMI trainings through the
sequence [0.4, 0.3, 0.2, 0.15, 0.1, 0.05]. The third loop added the 2Hz and 4Hz stimulation frequencies one at
a time, and repeated the second loop of wX reductions, but starting from a lower wX , through the sequence
[0.3, 0.2, 0.15, 0.1, 0.05].

9

Cardiac cell model equations

Calcium equations

β =

(
τ1
τ2

)−1/
(

τ1
τ2

−1
)
−

(
τ1
τ2

)−1/
(
1− τ2

τ1

)

[Ca] (t) =

(
Caamp − Cad

β

)
×

(
e
− t−tstart

τ1 − e
− t−tstim

τ2

)
+ Cad

Cooperativity equations

H (A) =

(
AnA

AnA +A50
nA

)
gon (A) = f̄G ×H (A)ζ

goff (A) = ḡG ×min
{
H (A)ζ−1 , gmax

}
Binding of calcium to troponin

dA

dt
= kon[Ca](1−A)− koffA

Cross-bridge groups
dGXB

dt
= gon(1−GXB)− goffGXB

Force calculation
F = γ ×GXB

Cardiac cell model parameters

The default fixed parameters, and bounds of a uniform distribution used as the prior for variable parameters
parameters are listed in Table 1. These were optimized in previous work [5] to match in vitro experiments
performed in rat myocyte preparations. A total of 8 model parameters were free to vary during the sDCMI
algorithm at 1Hz stimulation, and 2 additional parameters were added at each subsequent iteration, to simulate the
effects of increased stimulation frequency on the magnitude of the calcium transient (driving the force transient).
For each parameter set (individual), these additional parameters scaled the tau2 and konT parameters relative to
the values used in the 1Hz simulation for that parameter set. Between stimulation frequency iterations (e.g. from
1Hz, to (1Hz and 2Hz)), the final trained generator from the previous iteration was used for all parameters used
in the previous iteration, and the additional parameters required for the new additional stimulation frequency
simulation were sampled uniformly within the prior bounds shown in Table 1. At the final iteration when all 3
frequencies were simulated the parameter space was 12-dimensional. Figure 4 shows the full distribution of
“ground-truth” samples used for those parameters in orange, which come from a relatively narrow region of the
full prior, as demonstrated in main manuscript Figure 3B. Figure 4 also shows the final distribution of sDCMI
output parameter samples in blue, which encompass the ground-truth region, but also spread according to the
uniform prior, within the constraint that the simulated outputs should match.

Parameter Value Bounds Units
Caamp 1.2 - µM

τ1 18.0 - ms
Cad 8e-3 - µM
ζ - [0.3, 0.7] unitless
τ2 - [40, 120] ms
kon - [8e-4, 8e-2] µM−1s−1

koff - [7.5e-4, 7.5e-2] s−1

f̄G - [2e-3, 1.0] ms−1

ḡG - [1e-3, 3.5e-2] ms−1

A50 - [0.1, 0.9] unitless
nA - [7.0, 10.0] unitless

tau2scale, 2Hz - [0.5, 2.0] unitless
konscale, 2Hz - [0.5, 2.0] unitless
tau2scale, 4Hz - [0.5, 2.0] unitless
konscale, 4Hz - [0.5, 2.0] unitless

Table 1: Cardiac cell model parameters.

10

50

100

ta
u2

0.005

0.010

0.015

k_
on

0.01

0.02

k_
of

f

0.0

0.5

f_
gr

ou
p

0.01

0.02

0.03

g_
gr

ou
p

0.6

0.8

a_
50

7.0

7.5

8.0

n_
a

0.9

1.0

1.1

ta
u2

_2
H

z

1.0

1.2

1.4

k_
on

_2
H

z

0.6

0.8

ta
u2

_4
H

z

0.30 0.35
zeta

1.5

2.0

k_
on

_4
H

z

50 100
tau2

0.0050.0100.015
k_on

0.00 0.02
k_off

0.0 0.5
f_group

0.000 0.025
g_group

0.50 0.75
a_50

7 8
n_a

0.75 1.00
tau2_2Hz

1.0 1.5
k_on_2Hz

0.5 1.0
tau2_4Hz

1 2
k_on_4Hz

Type
Gx 1,2,4 Hz
Data

Figure 4: Cardiac model X (parameter) space samples. 1, 000 samples from the ground-truth
distribution (orange) sampled from a mixture of 3 Gaussians, and from the trained generator G after
sDCMI (blue).

11

0.10

0.15

1_
W

id
th

P
ct

50

2.1

2.2

1_
W

id
th

R
at

io

0.03

0.04

1_
de

la
y

0.2

0.3

0.4

2_
W

id
th

P
ct

05

0.10

0.15

0.20

2_
W

id
th

P
ct

50

2.0

2.2

2_
W

id
th

R
at

io

0.025

0.030

2_
de

la
y

0.20

0.25

4_
W

id
th

P
ct

05

0.10

0.15

4_
W

id
th

P
ct

50

1.5

2.0

4_
W

id
th

R
at

io

0.015

0.020

4_
de

la
y

1

2

1_
2_

A
m

pR
at

io

0.2 0.4
1_WidthPct05

2

4

1_
4_

A
m

pR
at

io

0.1 0.2
1_WidthPct50

2.0 2.2
1_WidthRatio

0.03 0.04
1_delay

0.2 0.4
2_WidthPct05

0.1 0.2
2_WidthPct50

2.00 2.25
2_WidthRatio

0.0250.030
2_delay

0.20 0.25
4_WidthPct05

0.10 0.15
4_WidthPct50

1.5 2.0
4_WidthRatio

0.015 0.020
4_delay

1 2
1_2_AmpRatio

2.5 5.0
1_4_AmpRatio

Type
M(Gx) 1,2,4 Hz
Data

Figure 5: Cardiac model Y (feature) space samples. 1, 000 samples from the target distribution
(orange), and from the sDCMI output (blue), both simulated from the orange and blue points in
Figure 4.

12

	Introduction
	Methods
	Experiments
	Conclusions
	Algorithms
	AI/ML model implementations
	sDCMI examples - further details
	SIR model.
	Cardiac cell model.

