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ABSTRACT

A useful inductive bias for temporal data is that trajectories should stay close to
the data manifold. Traditional flow matching relies on straight conditional paths,
and flow matching methods which learn geodesics rely on RBF kernels or near-
est neighbor graphs that suffer from the curse of dimensionality. We propose to
use score matching and annealed energy distillation to learn a metric tensor that
faithfully captures the underlying data geometry and informs more accurate flows.
We demonstrate the efficacy of this strategy on synthetic manifolds with analytic
geodesics, and interpolation of cell trajectories from single-cell RNA sequencing
data.

1 INTRODUCTION

Generative models are the workhorse of modern Al, enabling us to sample from complex data dis-
tributions. Methods based on diffusion have recently excelled at mapping from Gaussian noise
distributions to data manifolds, and flow models enable mapping from any noise distribution to
the manifold. Typically, these methods are interested in the trajectory that an individual sample
takes, from noise to data, only because it enables straightforward simulation with an ODE or SDE
solver (Yang et al., 2024)). However, for temporal data one may be interested in these trajectories
themselves, for example in the context of single-cell trajectory inference.

Recently, more focus has been given to parameterize the trajectories along a manifold, e.g. with
fitting expressive Neural ODEs. Early methods focused on the simulation-based setup that required
differentiation through an ODE Solver (Tong et al., [2020). However, the improved efficiency of
training simulation-free methods such as flow matching (Lipman et al.| 2022; [Tong et al., 2023) has
granted simpler training to these methods.

We are especially interested in the application of inferring cell trajectories in single-cell genomics.
Currently, many datasets are collected at a single timepoint, and temporal models must resort to
“pseudotime” methods to artificially create multiple timepoints, but a growing number of datasets
have subsets of cells measured at different times. In such settings, accurate recovery of manifold
geometry is critical for characterizing cellular development and disease processes.

Our contributions are three-fold: (i) a novel combination of score-matching and annealed energy
distillation to parameterize a metric tensor that characterizes the underlying data manifold; (ii) a
variant of stratified sampling to robustly infer geometry from density, mitigating failures on dis-
connected components; and (iii) practical application of these metrics to synthetic manifolds with
known geodesics and single-cell RNA trajectory inference.

2 SETUP

2.1 DENOISING SCORE MATCHING

The score matching objective (Song et al., [2020) is the backbone of modern diffusion models, pro-
viding an efficient way to learn a family of score functions corresponding to the data distribution
under different levels of noise. For a full diffusion model parameterizing density over time, the
model takes as input a time variable, but in our setting we consider a monotonic noise schedule of
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Figure 1: A visualization of our method. We fit an initial score and energy (left), then use annealing
and self-normalized importance sampling to fit an updated energy that is less biased by unequal
density in the data (middle), and we clip the energy to calculate a balanced metric tensor that captures
the manifold (right).

°
g
8

Lo
b b

-11.00

-13.75

negative energy
negative metric tensor

&
o

-19.25

-22.00

-24.75

Omin < -+ < Omag and simply condition on noise. In this case, the score matching loss is given by
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which yields sg(x, 0;) = V log p,, (x) where p,, () is the density of pgqt, convolved with Gaussian
density of standard deviation o;.
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There are many equivalent formulations of this loss that are more practical for optimization, where
instead of learning sg directly one can instead learn to predict the noise via the loss function

2
ﬁscore(g) = Exwpdam,ewN(O,I) [Z ||€9(£L’ + o€, Ui) - E”]

and approximate the score by V log p,, (z) = —@. We will rely on this loss in all of our subse-
quent experiments.

2.2 CONDITIONAL FLOW MATCHING

Given two measures, conditional flow matching (Tong et al, 2023}, [Lipman et al, 2022) learns a

vector field to map one distribution pg to another distribution p;. A general form of this loss is
given in |Albergo et al| (2023) where one considers a coupling of 7 of the two measures and a
parameterization of paths x; := x¢(xo, 1) that defines a conditional density p:(-|2o,x1). Then
optimizing the loss

d 2

— X
!
guarantees that vy solves the continuity equation with the marginal density p;. In this way, one can
numerically integrate vy to sample along trajectories from pg to p;. When the goal is sampling, a
common choice is z; = (1 — t)zg + tz1 + 0 fiowe Where € ~ N(0,1) such that p;(xo,x1) is a
Gaussian centered along the straight line between xg and ;.

Lflow('&) = EtNU([O,l]),(a:o,azl)Nﬂ Uﬂ(xt) -

2.3  STOCHASTIC INTERPOLANTS ALONG GEODESICS

When a prior is available, flow matching trajectories may be intentionally biased towards a known
or inferred manifold. Namely, given a metric tensor G(z), one may parameterize conditional paths
between xq and x; of the form,

xy = x¢(xo, 1) = (1 — t)wo + to1 + t(1 — ) (2o, x1,t) + T f10we,
which are guaranteed to be geodesics after minimizing the loss,

.2
ﬁgeodesi6(¢) = EtN[O,l],(aco,arl)Nw ||xt||G(gc,) .

This characterization was first introduced in [Kapusniak et al.| (2024)). Given satisfactory geodesics,
one can make this choice of conditional paths and use the same conditional flow matching loss as
usual.
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3 RELATED WORK

3.1 FLOW MATCHING

Flow matching has rapidly evolved since its original formulations (Lipman et al.l 2022} |Albergo
et al 2023} [Liu et al.| 2022). In particular, research has focused on incorporating prior knowl-
edge into the the definition of the conditional flows, based on optimal transport (Tong et al.| 2023
Pooladian et al., [2023)), minimal curvature (Rohbeck et al.l |2025)), and user-defined potential func-
tions (Neklyudov et al.l |2023)), among others. While these methods enrich interpolation flexibility,
they rely on Euclidean path parameterization or external priors, rather than directly learning a data-
driven metric tensor.

3.2 ENERGY DISTILLATION FROM SCORE MATCHING

Although the primary application of score matching continues to be diffusion models (Song et al.,
2020), several methods have focused on using score matching as a tool to distill an accurate energy of
the data. [Thornton et al.|(2025) suggest a specific parameterization of the energy used for sequential
Monte Carlo sampling, and |Akhound-Sadegh et al.|(2025) infer a score and energy simultaneously
for annealed sampling. These methods, however, fail to connect energy to manifold geometry or
flow interpolation.

3.3 LEARNING GEODESICS ALONG DATA-DRIVEN MANIFOLDS

Flow matching was initially extended to trajectories on manifolds by |Chen & Lipman| (2023)) with a
focus on settings where geodesics could be exactly or approximately computed. This was extended
further by Kapusniak et al| (2024)) allowing for learning of geodesics by minimizing energy with
respect to some inferred metric tensor.

Other methods consider interpolation in a latent space and map back to ambient space to learn a
curved path (Palma et al} [2025). de Kruiff et al.| (2024) also considered learned metric tensors in
latent space through a pullback, although they require simulation through a Neural ODE solver to
train.

The methods most related to the current work also consider how to infer a non-trivial metric tensor
from the data manifold to derive plausible geodesics and train simulation-free flows. Kapusniak et al.
(2024) learn a metric tensor based on the linear combination of RBF kernels proposed in Arvanitidis
et al.| (2020). Similarly, [Sun et al.| (2024) learn a pullback metric using the pairwise distances
inferred from the embedding method PHATE (Moon et al., 2019).

Additionally, so-called Fermat distances (Groisman et al., [2022) that define a metric tensor through
a density have been studied before in more limited contexts, primarily for 2d inference of single
geodesics in |Sorrenson et al.| (2024) and image interpolation in [Yu et al.| (2025). In contrast, we
learn an adaptive energy metric tensor with annealing in our setting, and apply it to the task of
learning general geodesics.

4 METHODS

We propose a multi-stage training procedure that yields a geometrically faithful flow-matching tra-
jectory aligned with the data manifold. First, given samples & ~ pg,, We estimate a density py(x)
by jointly learning the score sg(x) = Vlog pe(z) and the energy E.(x) via score- and energy-
matching. This estimation is iteratively refined to better align pg with pg,,. Next, we construct a
metric tensor G from the learned energy, and jointly learn geodesics and the associated geodesic
distance d under G. Finally, we compute an optimal transport coupling under the cost defined by d
and train a flow-matching vector field to realize the resulting displacement interpolation, yielding a
flow that respects the learned manifold geometry.
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4.1 SCORE AND ENERGY MATCHING

We first aim to learn the shape of the manifold through score and energy matching in the form of the
data generating density. Formally, denote the score matching network as sg(z, o) where 6 is the set
of learnable parameters and o is the noise scale. Denote noised data at noise scale o; as y = x +€o;.
We perform denoising score matching by minimizing,
2
€
oi- B ] ’

i
where the score net sy(-, o) takes noised data from various noise levels and conditions on an em-
bedding of the noise scales. [ is the a temperature scalar. The log density of the learned generating
distribution is then given by sq(-,0) = V log pg(x). We can then recover energy as,

E(G) = Ewwpdala,GNN(O,I) So (y7 Ui) +

E(z) ~ —logpy (),

which can be learned by optimizing

L(O = EmNpumﬁNN(OJ)

Z HVEC(y7UZ) + 59(y70'i)||2‘|

where ( is the set of parameters from the energy network E(.,o) which conditions on the noise
embedding and takes in noised data.

4.2 ITERATIVE DENSITY REFINEMENT

The primary issue with simply using the score is imbalance in data density. To better align the
learned density py to the underlying geometry, we repeat score and energy matching multiple times
while refining the learned density with the following operations to achieve stable and annealed den-
sity estimation.

Self normalized importance sampling (SNIS). One important component of these refinement
steps is self normalized importance sampling. At refinement step k, the reweighting is,

pdata(z)
eXP(*ﬂu;CﬁP(E? (1‘, Um1n))) ’

where 3,, is a hyperparameter and the clipping is based on energy quantiles. We use this reweighting
over our data, which is closer to uniform, in subsequent steps.

ﬁgala (z) ox

Density annealing. Aside from reweighting, we also give the option to anneal the density based
on the previous step density and temperature. Let y = x + €o;, at refinement step k, the density
annealing loss is given by,

2 A
+(1-a) 3 b sk Ny, 04)
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when o = 1 this is equivalent to optimizing denoising score matching with current temperature [,
at step k.

The iterative density refinement is possible due to the scalability and efficiency of score/energy
matching models. Our final energy estimation is based on the refined density after K steps.

Stratified Sampling. One shortcoming of score matching is learning the correct normalization
of isolated components (Wenliang & Kanagawal 2020). Intuitively, this presents a challenge for
using the score to induce a metric tensor as even a very accurate score may assign unequal densities
to identical but separated components. We consider a novel approach for addressing this issue by
introducing clustering and stratified sampling (Owen, 2013).

Let p* denote the uniform distribution on the underlying data manifold. Since our ultimate goal
is to learn a density that is close to p*, and typical notions of distances between measures like
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integral probability metrics are based on integrating against test functions, we equivalently want a
low-variance estimator for E,.,,- [g(z)] for any test function g.

Thus, we consider a form of Rao-Blackwellization by first clustering the underlying data into clus-
ters C, ... C'y, doing score matching and annealing on each cluster component independently, be-
fore finally reweighting to learn a score over the entire dataset. Formally, this loss is

k k ; €
LEO) = Ejuinamity, (10 et | D 8" (@ + €01 01, 5) +
i

When fully trained, this loss yields a score function that can be conditioned on any individual cluster,
with a respective energy that can be distilled per cluster as well. The utility of this clustering is that,
because the score can be better approximated per local cluster, the SNIS estimator for a uniform
distribution on that cluster is more accurate, and therefore the combined reweighting across all

clusters will be closer to uniform. Explicitly, we use the normalization

pdata(x)
eXP(—ﬂwCIiP(EéC (1‘, Omin, .7))) ’

J . .
~k _ p’gata(xvj)
pdala(x) - Z |C| .
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We use Leiden clustering (Traag et al., 2019) to infer our clusters, as is common in single-cell
literature.

4.3 METRIC TENSOR AND LEARNING GEODESIC

Having estimated the energy E’, we next construct a metric tensor based on the learned energy.
More specifically, the metric tensor is,

G(x) = 7 + clip(Aexp(E" (2)))

where EX(z) is the learned energy after K refinement steps, and we clip according to quantiles
of the energy taken as hyperparameters, as specified in the Appendix. Similar to [Kapusniak et al.
(2024), we penalize trajectories passing through off-manifold regions with low data density by writ-
ing trajectory as,

x|z, 21 = (1 — t)xo + to1 + (1 — t)Y(xo, 21,t) + O fiowe

where 1) is a neural network that aims to approximate the geodesic given the metric tensor. We learn
1) by energy minimization, i.e. minimizing

L) = Einra[0,1], (20,21 )~ |:Hx't||(2G(wt):|

where 2, is the time derivative of x;.

4.4 DISTANCE LEARNING AND FLOW MATCHING

We use metric learning to obtain a distance that is consistent with the metric tensor defined. More
specifically, we learn an isometric embedding f : (M,G) — (R < .,. >ga) that maps defined
geodesic into a straight-line, constant-speed segment in Euclidean space. To achieve this, we opti-
mize

L(F) = Evato ) oenyor |10 @)=l s,

where 7 is the optimal coupling with the learned distance d(xo, 1) = || f(zo) — f(x1)]||. Finally,
flow matching is used to parameterize paths that satisfy the continuity equation. Denoting the flow
network as v(t, z;), we optimize

‘C(U) = Etwu[&l],(wo,ml)wﬂ,e [||U(t7xt) - xtH2]
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4.5 THEORETICAL ANALYSIS

In this section we show that with our stratified sampling approach, the model learns a density that is
a mixture among the clusters. Let {C;} 3’:1 be a disjoint partition of a data manifold M. Our aim

is to estimate . = [E,.[g(x)] for some testing function g(z). Assume cluster C; has size n;, the
within-in cluster proposal distribution is given by

T
- 9
Zkec 7 Tk
where r; = f(E(x;)) > 0is a positive function of learned energy. Set R; =}, ¢, Tk- if the target
distribution is uniform on cluster rescaled by number of clusters, i.e.

g, (1) == i€l

. 1 1 1
e A nii;jg(xi)
The importance weight for i € C} is
0 = 59 &
q; (%) Jr;
Given i.i.d. samples I, ..., Iy, ~ q;, the importance sampling estimator within cluster is:

pSNIS e Wil )Q(JTL).
! 1= Wi(Ie)

Across all clusters, our target and estimator becomes
1 1<
. ~SNIS ~SNIS
pr= jZUmf(Cj), K = jZMj
j=1 j=1

With this setup we can introduce the following theorem to show estimation convergence:

Theorem 4.1. Assume for each cluster C;, r; > 0 for all i € C; and the importance weights have
finite second moment under per-cluster measure q;, as number of samples m; in C; goes to infinity

we have

~SNIS; P ~SNIS
T T T

Additionally, if L(x; 0) is the denoising score matching loss, the objective converges to E,« [L(x; )]

Proof. Since W;(i) = I;;((Z)) and I; RN g;, then

By, (W, (0g(a0)] = 3 0502 ()
iGC]’ qj(Z)
N
= ZEZ(;J p; (i)g(w;) = j/ig

We also have

@) 1
= > wli) i_J

i€Cy

Hence under the law of large numbers, we have

7SNIS; i Wi(L) g(ar,) LN Eq, [W;(I)g(w:)] _ (1/J)p; = ;i
Zt:l ]( t) ]qu [W]] (1/J) !
Since global estimator is given by averaging over clusters, we have

SN — Z SSNIS Py Z i =p
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Additionally, if we set g(x;) = L(z;;0) as the testing function, the SNIS estimator becomes a risk

estimator -
TRSNIS _ 2= Wj_(ft)ﬁ(ﬂflt;e)
’ 2= Wilh)
Hence
gsvs 2, Bo, W5 (1) L0 | Liee, FOEEO) b o
! Eq, W] Ziecj P; (4) & 7

Similar mapping from cluster specific estimator to global estimator holds, hence

RN 2y . [L(25 )]

5 RESULTS

5.1 BASELINES

We consider comparison against two primary methods, namely CFM where the metric tensor is
constrained to be the identity (and therefore geodesics and a distance embedding don’t need to be
learned), and MFM where the metric tensor is given by a conformal metric defined by a linear
combination of RBF kernels as in|Arvanitidis et al.| (2020). We consider GAGA (Sun et al., 2024)) as
another worthwhile baseline, but unfortunately we were unable to reproduce and run their publicly
available code due to issues with CUDA memory and heldout test data used in the definition of their
graph-based metric tensor.

5.2  SYNTHETIC DATA

We first consider settings where we can obtain analytic, closed form characterizations of the
geodesics to measure against the learned geodesics. In those cases, we measure using an Average
Geodesic Error calculated as

2
LaveE(,7") = Einv0,1).(w0,51)~uxu 17 (@0, 71, ) — ¥ (20, 21, 1)|]

where + is the learned geodesic, v* is the analytic geodesic, and p is some base measure on the
underlying manifold, for example the uniform Haar measure.

We consider data sampled uniformly on the surface of a sphere in varying dimensions. Note that
while this task is handled by RFM (Chen & Lipman,[2023) if the manifold is known a priori, learning
it directly from the data requires parameterizing the geodesics, and therefore provides a setting to
check how accurately our learned geometry matches the ground truth. We omit comparison against
CFM, as the optimal solution is simply straight geodesics that ignore the geometry of the sphere
entirely.

Table 1: Comparison of average geodesic error along sphere geodesics in varying dimensions.

Method | Dimension AVE

MFM 10 .21 +.07
EGGFM 10 12 4+ .07
MFM 20 .20 + .05
EGGFM 20 .19+ .05

We observe that EGGFM outperforms MFM in this synthetic setting where we can measure correct
geodesics exactly. Visually, we can observe 2d slices of the energy of EGGFM (which is equiva-
lent to the metric tensor up to rescaling) and the metric tensor of MFM in Figure 2] Empirically
the energy-induced metric is accurate in projected space, while the MFM metric is parameterized
through RBF kernels around individual points. Although we found the best performance for MFM
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using a total of 2000 points to parameterize the metric, the curse of dimensionality makes it difficult
to cover even a moderately high dimensional manifold this way, and hence most of the points have

no intersection with the 2d plane.
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Figure 2: The negative energy of EGGFM (left) and negative metric tensor of MFM (right) on the
10 dimensional sphere, projected onto the first two dimensions.

5.3 INTERPOLATION OF SINGLE-CELL RNA DATA

We then consider the case of interpolating temporal single-cell RNA data. We hold out single time
points for testing and measure model performance with one Wasserstein distance.

5.3.1 EMBRYONIC BODY DATASET

We test our model on the Embryonic Body (EB) dataset introduced by Moon et al.| (2019) and
processed by Tong et al.|(2020). The dataset consists of 5 time points over 30 days, which we denote
with index 1-5. In our experiments, we hold out time points 2, 3, and 4 and train separate models
on the full-time scale. We compare our model with conditional flow matching(CFM) and metric
flow matching (MFM)(Kapusniak et al| (2024))). We compute distances in a PCA representation,
a standard practice in single-cell RNA-seq analysis that reduces noise while extracting dominant
biological variation.

Table 2: Wasserstein 1 distance averaged across left-out marginals({ better) for 5-dim PCA repre-
sentation of the EB dataset. Results are averaged across 3 independent runs.

Method W1 distance(])
CFM 0.711 £0.018
MEFM 0.727 £ 0.042

EGGFM 0.674 + 0.039

In Table 2} we observe significant performance improvement for EGGFM, which demonstrates the
benefit of constraining learned trajectories to flow through the actual data manifold. In contrast, the
weaker performance of MFM highlight the fact that even in relatively low-dimensional manifolds
(5d), local RBF-kernel based estimation of the geodesic is insufficient to capture data geometry.

5.3.2 HEMATOPOIETIC STEM CELL DATASET

We additionally apply our method to a low-dimensional projection of the CITE sequencing dataset
(measuring RNA and protein features) of hematopoietic stem cells (Burkhardt et al., 2022). This
dataset includes four timepoints on days 2, 3, 4, and 7, and therefore we can only evaluate on two
heldout timepoints that have a distribution before and after. Our metrics in Table [3|show our method
continues to show favorable results.
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Table 3: Wasserstein 1 distance averaged across left-out marginals(], better) for 5-dim PCA repre-
sentation of the CITE dataset. Results are averaged across 3 independent runs.

Method W1 distance(])
CFM 0.538 £0.012
MFM 0.571 £0.021

EGGFM  0.531 + 0.010

6 CONCLUSION

This work takes a step toward making flow-based generative models geometry-aware, by showing
how score matching and energy distillation can be harnessed to recover an adaptive metric tensor
that faithfully encodes manifold structure. We have demonstrated the utility of calculating a metric
tensor through annealed score and energy weighting, applied to synthetic and genomic datasets.
Currently, the main limitation of the work is in application to low-dimensional data, and future work
aims to generalize other strategies for using generative methods to infer geometry that are more
robust at scale. Additionally, the application to genomic data can be further buoyed by downstream
analysis of the learned trajectories, in order to understand how the prior knowledge of the data
manifold corroborates biological priors about how gene expression changes during differentiation
or other temporal processes.

REFERENCES

Tara Akhound-Sadegh, Jungyoon Lee, Avishek Joey Bose, Valentin De Bortoli, Arnaud Doucet,
Michael M Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, and Alexander
Tong. Progressive inference-time annealing of diffusion models for sampling from boltzmann
densities. arXiv preprint arXiv:2506.16471, 2025.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Georgios Arvanitidis, Sgren Hauberg, and Bernhard Scholkopf. Geometrically enriched latent
spaces. arXiv preprint arXiv:2008.00565, 2020.

Daniel Burkhardt, Malte Luecken, Andrew Benz, Peter Holderrieth, Jonathan Bloom, Christopher
Lance, Ashley Chow, and Ryan Holbrook. Open problems - multimodal single-cell integration.
https://kaggle.com/competitions/open-problems-multimodal, 2022. Kag-
gle.

Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. arXiv preprint
arXiv:2302.03660, 2023.

Friso de Kruiff, Erik Bekkers, Ozan Oktem, Carola-Bibiane Schonlieb, and Willem Diepeveen.
Pullback flow matching on data manifolds. arXiv preprint arXiv:2410.04543, 2024.

Pablo Groisman, Matthieu Jonckheere, and Facundo Sapienza. Nonhomogeneous euclidean first-
passage percolation and distance learning. Bernoulli, 28(1):255-276, 2022.

Kacper Kapusniak, Peter Potaptchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael Bronstein,
Joey Bose, and Francesco Di Giovanni. Metric flow matching for smooth interpolations on the
data manifold. Advances in Neural Information Processing Systems, 37:135011-135042, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Kevin R Moon, David Van Dijk, Zheng Wang, Scott Gigante, Daniel B Burkhardt, William S Chen,
Kristina Yim, Antonia van den Elzen, Matthew J Hirn, Ronald R Coifman, et al. Visualizing
structure and transitions in high-dimensional biological data. Nature biotechnology, 37(12):1482—
1492, 2019.


https://kaggle.com/competitions/open-problems-multimodal

Under review as a conference paper at ICLR 2026

Kirill Neklyudov, Rob Brekelmans, Alexander Tong, Lazar Atanackovic, Qiang Liu, and Alireza
Makhzani. A computational framework for solving wasserstein lagrangian flows. arXiv preprint
arXiv:2310.10649, 2023.

Art B Owen. Monte carlo theory, methods and examples, 2013.

Alessandro Palma, Sergei Rybakov, Leon Hetzel, Stephan Giinnemann, and Fabian J Theis. En-
forcing latent euclidean geometry in single-cell vaes for manifold interpolation. arXiv preprint
arXiv:2507.11789, 2025.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch cou-
plings. In International Conference on Machine Learning, pp. 28100-28127. PMLR, 2023.

Martin Rohbeck, Edward De Brouwer, Charlotte Bunne, Jan-Christian Huetter, Anne Biton,
Kelvin Y Chen, Aviv Regev, and Romain Lopez. Modeling complex system dynamics with flow
matching across time and conditions. In The Thirteenth International Conference on Learning
Representations, 2025.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Peter Sorrenson, Daniel Behrend-Uriarte, Christoph Schnérr, and Ullrich Kothe. Learning distances
from data with normalizing flows and score matching. arXiv preprint arXiv:2407.09297, 2024.

Xingzhi Sun, Danqi Liao, Kincaid MacDonald, Yanlei Zhang, Chen Liu, Guillaume Huguet, Guy
Wolf, Ian Adelstein, Tim GJ Rudner, and Smita Krishnaswamy. Geometry-aware generative
autoencoders for warped riemannian metric learning and generative modeling on data manifolds.
arXiv preprint arXiv:2410.12779, 2024.

James Thornton, Louis Béthune, Ruixiang Zhang, Arwen Bradley, Preetum Nakkiran, and
Shuangfei Zhai. Composition and control with distilled energy diffusion models and sequential
monte carlo. arXiv preprint arXiv:2502.12786, 2025.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
A dynamic optimal transport network for modeling cellular dynamics. In International conference
on machine learning, pp. 9526-9536. PMLR, 2020.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):1-12, 2019.

Li K Wenliang and Heishiro Kanagawa. Blindness of score-based methods to isolated components
and mixing proportions. arXiv preprint arXiv:2008.10087, 2020.

Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin
Meng, Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with
velocity consistency. arXiv preprint arXiv:2407.02398, 2024.

Qingtao Yu, Jaskirat Singh, Zhaoyuan Yang, Peter Henry Tu, Jing Zhang, Hongdong Li, Richard
Hartley, and Dylan Campbell. Probability density geodesics in image diffusion latent space.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 27989-27998,
2025.

10



Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 SYNTHETIC EXPERIMENTS

Table 4: Base configs for synthetic experiments. If not specified, all subsequent experiments used
these hyperparameters as well

Hyperparameter Value
Learning rate 0.0001
Hidden Dim 512
Number of Layers 4
Gradient Clipping 10
Score / Energy batch size 4196
Geodesic / Flow batch size 256
Frequencies for sinusoidal embedding of noise / cluster id 32
EMA decay 0.999
Annealing steps 2
Metric Scale (\) 10
Number of noise scales in score matching 20
Min score matching noise(c ;) 0.01
Max score matching noise(o,44) 0.2
Metric constant () 0.2
Weight beta (3,,) 0.3
Energy clip quantiles [0.05, 0.98]
Metric clip lower quantile 0.05
Flow matching noise (o f1ow) 0.1
Leiden n_neighbors 10
Leiden resolution 0.3

For all our architectures, we use MLPs to parameterize the distance embedding, geodesic and flow
networks, and MLPs with residual connections for the score and energy networks. For energy we
use the parameterization proposed in Thornton et al.| (2025) and calculate F(z) = (Ep(x),x). We
also use skip connections in the embedding network.

We consider the sphere in 10 and 20 dimensions, sampled uniformly with a total of 40000 points.
For the sake of simplicity, we consider 20000 points in each of two timepoints, and train geodesics,
distance and flow losses with a product measure coupling in order to learn geodesics over the entire
sphere.

We compare against CFM with comparable parameters using the same architectures as well as MFM,
which only requires additional parameters for number of clusters K = 2000 and regularization
+ = 0.5, as per [Kapusniak et al.[(2024).

A.2 EB EXPERIMENTS

For EB experiments, we use the following configuration for our model:
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Table 5: Configuration for EB model

Hyperparameter Value
Epochs(score net) 500
Epochs(energy net) 3000
Epochs(embedding net) 2000
Epochs(flow net) 2000
Number of layers 5
Annealing steps 3
Metric scale (M) 4
Min temperature 5.0
Max temperature 10.0

Min score matching noise(d;,;,) 0.1
Max score matching noise(c;,q,) 0.2

Flow matching noise (0 f0.) 0.05
Leiden resolution 0.0

For metric flow matching, we used 500 clusters with x = 0.1. To recreate MFM’s metric tensor,
we skip the score and energy network training. We train the embedding and flow networks with
identical hyperparameters. For conditional flow matching, the metric tensor is the identity matrix,
hence we also skip the score and energy networks. The rest of the model is trained identically. The
data is available at https://data.mendeley.com/datasets/hhny5ff7yj/1 and preprocessed according to
the same code as Tong et al.|(2020).

A.3 CITE EXPERIMENTS

We use the CITE donor RNA-seq data publicly available at
https://data.mendeley.com/datasets/hhny5ff7yj/1. ~ The data is already preprocessed, so we
simply map to SPCs and whiten each PC. As with EB, we compare against MFM on a performant
parameters with K = 2000 clusters and x = 1.0.

Table 6: Configuration for CITE model

Hyperparameter Value
Epochs(score net) 500
Epochs(energy net) 3000
Epochs(embedding net) 500
Epochs(flow net) 2000
Number of layers 4
Annealing steps 2
Metric scale (\) 1
Min temperature 1.0
Max temperature 1.0

Min score matching noise(c,,;,)  0.02
Max score matching noise(0,,q,) 0.3

Flow matching noise (0 f0.) 0.2
Energy clip quantiles [0.05, 0.95]
Metric clip lower quantile 0.05
Metric constant () 0.5
Weight beta (3,,) 0.2
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